8.2, 8.4, 8.8, 8.16

8.2. Find (a) \(\gamma \) and (b) \(\theta \) and (c) \(\theta \).

\[M_0 \]

\[A \]

\[B \]

\[M_x \]

\[M_y \]

\[x \]

\[y \]

Soln: It's a statically determinate problem.

- Solve for moment in AB cut at any point between AB, and draw the FBD of the right cut:

\[M_b = M_0 \]

\[M_x = M_0 \]

- Part a.

\[EI \frac{d^2 y}{dx^2} = M_x = M_0 \]

\[EI \frac{dy}{dx} = M_0 x + C_1 \]

\[EI \gamma = \frac{1}{2} M_0 x^2 + C_1 x + C_2 \]

Plugging B.C.3 for AB:

At point A \((x=0) \): \(y=0 \), \(\frac{dy}{dx}=0 \)

\[\begin{align*}
\theta &= \frac{dy}{dx} = M_0 (0) + C_1 = 0 \\
0 &= \frac{1}{2} M_0 (0)^2 + C_1 (0) + C_2 = 0 \\
C_1 &= 0 \quad C_2 = 0
\end{align*} \]

\[\Rightarrow \]

\[y = \frac{1}{EI} \left(\frac{1}{2} M_0 x^2 \right) \quad \text{for AB} \]

8.4. Solve for the beam below for the questions at 8.2.

\[w \]

\[A \]

\[B \]

\[M \]

\[x \]

Soln:

- Solve for the moment in the beam.

Cutting at any point between AB and draw the FBD for the left part:

\[y = \frac{1}{EI} \left(-\frac{1}{2} w x^2 + \frac{1}{6} w l^4 \right) \]

(b) from (a).

\[\frac{dy}{dx} = \frac{1}{EI} \left(-\frac{1}{6} w x^3 + \frac{1}{6} w l^3 \right) \]

\[\Rightarrow \]

\[\frac{dy}{dx} \bigg|_{x=0} = \frac{w l^3}{6EI} \quad \theta_A = \frac{w l^3}{6EI} \]
8.8 Solve (b) and (c) for 8.4. Given \(AB \) is \(W \times 35 \), \(u_o = 3 \text{ kips/ft} \), \(L = 12 \text{ ft} \), \(E = 29 \times 10^6 \text{ psi} \)

Solution:
From 8.4 we have
\[
\begin{align*}
\frac{dy}{dx} & = -\frac{W}{24EI} (x^4 - 4L^3x + 4L^4) \\
\end{align*}
\]

\[\frac{dy}{dx} \bigg|_{x=0} = \frac{W}{6EI} (x^3 - x^3) \]

(b) \[\frac{dy}{dx} \bigg|_{x=0} = \frac{40113}{EI} \]

From appendix C:
\[I = Jx = 285 \text{ in}^4 \]

\[\frac{dy}{dx} \bigg|_{x=0} = \frac{(3 \text{ kips/ft})(12 \times 3)^3}{(29 \times 10^6 \text{ psi})(285 \text{ in}^4)} \]

\[= \frac{(5 \times 10^3 \text{ kips})(12 \times 12 \times 12)^2}{(29 \times 10^6 \text{ psi})(285 \text{ in}^4)} \]

\[\theta = 0.334 \times 10^{-3} \text{ rad} \]

(c)
\[\frac{dy}{dx} \bigg|_{x=0} = -\frac{W}{8EI} \]

\[= -\frac{(12 \times 3)^4}{8(29 \times 10^6 \text{ psi})(285 \text{ in}^4)} \]

\[= -0.1804 \text{ in} \]

\[y = -0.1804 \text{ in at free edge} \]

8.16. Find (a) \(M \) for \(AB \)
(b) \(\theta \) at \(A \)
(c) \(B \) at \(B \)

Soln:
- Solve for reactions at first

\[\begin{align*}
\sum M_A &= 0 \\
B_y (L) - W (2L) (L) &= 0 \\
B_y &= 2WL \\
\sum F_x &= 0 \\
A_y &= 0 \\
\end{align*} \]

- Solve for moment in \(AB \):
 - At any point between \(AB \), draw the FBD of the left part:

\[y = \frac{W}{24EI} (x^4 - L^3x) \]

(a).
\[\theta = \frac{40113}{24EI} (x^3 - L^3) \]

(b). From above:
\[\frac{dy}{dx} = \frac{1}{EI} (-\frac{1}{6}wx^2 + \frac{1}{24}WL^3) \]
\[= -\frac{W}{24EI} (4x^3 - L^3) \]

\[\theta = \frac{40113}{24EI} \text{ at } A \]
Cont 8:6

(c): At B, \(\theta = 0 \)

\[\theta = -\frac{w}{24EI} (4L^3 - L^3) \]

\[\theta = -\frac{wL^3}{8EI} \text{ at } B \]

5. Compare the deflection at for a beam support a weight \(P \) mid away from the end: for case (a) and case (b)

Case (a) supported as cantilever beam

Cont. 5:

Solu:

First we solve it in a regular method

Case (a):

- Finding moment in the beam. cut at any point between AB and draw the FBD of the right part

\[+ \underbrace{M_x = 0} \Rightarrow \quad P(L-x) + M = 0 \]

\[M = -P(L-x) \]

- Solve for elastic curve

\[EI \frac{d^2y}{dx^2} = M = -P(L-x) \]

\[\Rightarrow \quad EI \frac{dy}{dx} = -PLx + \frac{1}{2} x^2 + C_1 \]

\[\Rightarrow \quad EI \ y = \frac{1}{2EI} (-P L x^2 + \frac{1}{6} (L-x)^3 + C_1 x + C_2) \]

- Plug in B.C.S at \(x = 0 \): \(\theta = 0, y = 0 \)

\[y|_{x=0} = C_2 = 0 \]

\[\theta|_{x=0} = C_1 = 0 \]

\[y = -\frac{PLx^2}{6EI} \quad (3L-x) \]

when \(x = L \):

\[y = -\frac{PL^2}{6EI} \quad \text{for } x = L \]

Case (b) both ends are clamped.

Cont. 5:

It's symmetric about the center, so we only need to study AB.

- Solve for \(M \) in AB. Cut at any point between AB and draw the FBD of the left part

\[+ \underbrace{M_x = 0} \Rightarrow \quad M = M_A - R_A x = 0 \]

\[M = M_A + R_A x \]

- Solve for reactions \(R_A \) and \(M_A \)

Case (b)

From symmetry:

\[R_A = R_B = \frac{P}{2} \]

\[M_A = M_B = M_0 \]

- Solve for elastic curve equation for AB

\[EI \frac{d^2y}{dx^2} = M = M_0 + \frac{1}{2} P x \]

\[\Rightarrow \quad EI \frac{dy}{dx} = M_0 x + \frac{1}{6} P x^3 + C_1 \]

\[\Rightarrow \quad EI \ y = \frac{1}{2EI} M_0 x^2 + \frac{1}{12} P x^3 + C_1 x + C_2 \]

- Plug in B.C.S at \(A(x=0): y = 0 \Rightarrow C_2 = 0 \)

\[\theta = 0 \Rightarrow C_1 = 0 \]

\[B(x=L): \theta = 0 \Rightarrow M_0 x + \frac{1}{4} P L^2 + C_1 = 0 \]
Cont. 5.

\[M_x = -\frac{1}{4} P L \]

\[\Rightarrow \quad y = \frac{1}{EL} \left(-\frac{1}{8} P L x^2 + \frac{1}{12} P x^3 \right) \]

\[y = \frac{P x^2}{24 EI} \left(3L - 2x \right) \]

when \(x = L \):

\[y = -\frac{PL^3}{24EI} \quad \text{for} \quad x = L \]

Comparing the \(y \) at \(x = L \) for case a and (b):

\[y^{(b)} = \frac{1}{8} y^{(a)} \]

which means the deflection of the cantilever case is 8 times the clamped on.

Now we slove by shortcut:

for case (a), we already got:

\[y = -\frac{P x^2}{6 EI} \left(3L - x \right) \]

The deformation of case (b) is:

\[A \quad B \quad C \quad D \]

This means \(\theta = 0 \) at \(L \), and the curve for \(AB \) are symmetric to \(BC \)

(Beam \(AC \) is symmetric about \(B \))

Also, curve for \(BC \) is symmetric about \(D \), where \(D \) is the center of \(BC \)

The curve for \(BD \) is equal to the curve caused by case C.

Case (c)

It's \(\frac{P}{2} \) because when you cut at \(D \) and draw the FBD of the right part

\[\frac{P}{2} \]

Compare case (a) and case (c), they're all cantilever beam except the length of (c) is half of case (a) and the load in case (c) is half of \(P \).

Using the eqn for cantilever beam (a)

\[y_D = -\frac{P L^3}{3EI} \quad \text{here} \quad P = \frac{P}{2} \quad L = \frac{L}{2} \]

\[= -\left(\frac{P}{2} \right) \left(\frac{L}{2} \right)^3 \]

\[= -\frac{1}{2} \left(\frac{P L^3}{24EI} \right) \]

but \(y_c \) is only half of the deflection of the center \(B \) (look at the deformation curve)

\[\Rightarrow \quad y_B = 2y_D = -\frac{P L^3}{24EI} = \frac{1}{8} y_B \]