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Even though human legs allow a wide repertoire of movements, when people travel
by foot they mostly use one of two locomotor patterns, namely walking and running.
This selection of two from the plethora of options might be because walking and
running require less metabolic energy than other more unusual gaits. We addressed
this possibility previously using numerical optimization of a minimal mathematical
model of a biped (Srinivasan and Ruina, 2006). We had found that for a given step-
length the two classical descriptions of walking and running, “inverted pendulum
walking” and “impulsive running”, do indeed minimize the amount of positive work
required at low and high speeds, respectively. Here, for the case of small step lengths,
we establish the previous results analytically. First, we simplify the two-dimensional
particle trajectory problem to a one-dimensional “elevator” problem. Then we use
elementary geometric arguments on the resulting phase plane to show optimality
of the two gaits: walking at low speeds and running at high speeds.

Keywords: legged locomotion, energy, optimality, inverted pendulum walking,

impulsive running, optimal control

1. Introduction

When people travel by foot from point A to point B, and are not rushed, they
walk. When they are in a hurry, they run. Classically, human walking has been
idealized as a gait in which the hip (or the body center of mass) travels in a series of
inverted-pendulum circular arcs about the foot on the ground as shown in figure 1a
(e.g., Alexander 1976). In one energy-consistent version of this idealization, only
one foot is on the ground at a time, and the transition from one circular arc to
the next is accomplished by the trailing leg pushing off just before the heel of the
leading leg strikes the ground (Kuo 2001, Ruina et al 2005, Srinivasan and Ruina
2006). Analogously, as shown in figure 1b, running is simply idealized as a series of
parabolic free-flights of the body, interrupted by brief bounces. In idealized running
the work absorbed in the downward part of a bounce is regenerated on the way
back up (Rashevsky 1944, Ruina et al 2005, Srinivasan and Ruina 2006). Among
the essentially infinite variety of motions that our two legs are capable of, why do we
choose to walk and run in ways that are somewhat close to these two idealizations?

A common and common-sense conjecture is that humans and other animals do
things in a way that minimizes metabolic energy expenditure (e.g., Borelli 1680,
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a) Inverted pendulum walking b) Impulsive running
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Figure 1. Idealized motions for a) walking and b) running. a) In inverted-pendulum walk-
ing, the body vaults in circular arcs on a straight leg. One leg is on the ground at a time.
At the change from one circular arc to the next the trailing leg pushes off and then the
leading leg heel strikes the ground. b) In impulsive running, the body travels from one
parabolic arc to the next with a bounce in between. Adapted from Srinivasan and Ruina
(2006) and Srinivasan (2006).

Alexander 1989, Anderson and Pandy 1999). To explore this conjecture, we pre-
viously formulated a simple mathematical model of a bipedal animal consisting
of a point-mass upper body and two massless legs. The legs can do and absorb
work by extending and contracting (Srinivasan and Ruina, 2006, see figure 2). The
model was a simplification of earlier models used by Alexander (Alexander, 1980,
1992) and Minetti (Minetti and Alexander, 1997). Using numerical optimization,
we found the gaits that minimized the amount of positive work required to travel
with a given speed, step length and maximum-allowed leg extension. We found
that, indeed, inverted pendulum walking is energetically optimal at low speeds and
step-lengths and impulsive running is energetically optimal at higher speeds.

In this paper, we examine the same model, this time analytically, for the special
case of small step lengths. Our aims are to more firmly establish the previous
numerical result and also to reveal more of the essential structure of the bipedal
work-minimization problem.

In section 2, we present problem A, the gait-optimization problem and add
some symmetry assumptions. In section 3, we present problem B, the simplification
to small step-lengths, further discussed in section 4. In section 5, we simplify the
locomotion problem to problem C, that of riding a descending elevator given some
constraints. Finally, in section 6, we show that the energy-optimal ways to ride the
elevator correspond, in problem A, to inverted pendulum walking and impulsive
running.

2. Problem A: model and symmetry assumptions

(a) Biped model and metabolic cost

The minimal biped model (figure 2) has a point-mass upper body and two
massless legs. Each leg is a telescoping actuator that can change its length. The legs
can apply force and perform work on the upper body when they are in contact with
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Figure 2. Minimal biped model. The upper body is modeled as a point-mass. The two
legs are modeled as massless telescoping actuators, capable of changing length, exerting
force and performing work on the upper body. Figure adapted from Srinivasan and Ruina
(2006) and Srinivasan (2006).

the ground. When not in contact with the ground, the legs can be swung around
arbitrarily. We assume that at most one of the two legs is in contact with ground
at a time. In our previous numerical work we enforced a limit on the length of the
leg lmax. Here, to simplify the mathematical argument, we replace the maximum
leg-length constraint with a specification of the height of the center of mass at mid-
step l0. For all problems, the point of contact of the foot with the ground is xc = 0
throughout the duration of the step under consideration. A step is defined as half
a stride. The flight phase, if it exists for a given gait, is the portion of the contact
phase in which the force is zero.

The idealized gaits such as inverted pendulum walking and impulsive running,
discussed in section 1, require infinite forces as they involve instantaneous velocity
changes corresponding to the kinks in the center of mass trajectories. Because
unbounded forces can be troublesome analytically, we impose simple bounds on the
leg force FA(t): Fmin ≤ FA(t) ≤ Fmax, whenever it is convenient to do so. However,
allowing infinite forces frees the model of the above force-bound parameters, making
the results simpler and more general. We assume that the forces are bounded until
the end of section 5 where we allow impulsive forces.

We model the metabolic cost as being separable into three parts.

1. Animals have a positive metabolic expenditure even at rest. Related to this
cost, we posit a constant metabolic rate (per unit time) term Ċrest.

2. Leg-swing cost: legged locomotion may require swinging the leg with active
muscle work. Here, we assume that this leg-swing metabolic cost Cswing per
step is purely a function of the speed and step length or, equivalently, of speed
and frequency (Alexander 1976, Kuo 2001).

3. Stance cost: stance cost is incurred by a leg when it is in stance phase, that
is, in contact with the ground. We model this cost (Cstance per step) as
being proportional to a weighted sum of the total positive work and the total
negative work performed by the telescoping actuator leg.

If the average forward (horizontal) speed over a step is v, the step length is dstep,
and the step period is tstep = dstep/v, the total metabolic cost C per step is:

C = Ċresttstep + Cswing(v, dstep) + Cstance. (2.1)
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In the calculation here we prescribe the forward speed v and the step length dstep.
Step length is the horizontal distance covered during a step, which may include flight
phases†. So it does not matter whether we minimize the energetic cost per step C,
the energetic cost per unit distance C/dstep, or the energetic cost per unit time
Cv/dstep. All of those minimizations result in the same optimal solution. Further
the first two terms in the energy-cost equation 2.1 drop out of the optimization
because they are constant for a given forward speed v and step length dstep. We
observe the role of varying v and dstep by seeing how the optimal solutions depend
on them.

The leg’s instantaneous mechanical power output is P = F l̇, where F is the leg
force, with compression taken as positive, and l is the leg length (figure 2). The
stance cost over a step (with duration −tstep/2 ≤ t ≤ tstep/2) is given by

Cstance =

∫ tstep/2

−tstep/2

(
b1[P ]+ + b2[P ]−

)
dt, (2.2)

where [P ]+ registers positive leg power, equaling P when P ≥ 0 and equaling zero
when P < 0. [P ]− ≡ [−P ]+ registers negative leg power. Typically muscles are
assumed to have b1 > 0 (work costs) and b2 > 0 (absorbing mechanical work also
has a metabolic cost) but here we only need that b1 + b2 > 0.

(b) Symmetry assumptions

We assume periodic gaits with each step like the next. To simplify the analytic
argument here, we assume that the trajectory of the center of mass within a step
is symmetric about mid-step (figure 3a). “Mid-step” (at t = 0) is when the body
is directly above the foot-contact point. So only half a step — from mid-step till
the end of the step — contains all information about the gait. Although this sym-
metry assumption limits the generality of the analytic demonstration we note that
all the numerical optima we previously found had this symmetry about midstep
(Srinivasan and Ruina, 2006).

(c) Direct implications of the model assumptions

The periodicity assumption, for level-ground locomotion, implies that there is no
energy change from one midstep to the next. The boundedness of the leg force FA(t)
implies that the acceleration is always bounded and that the velocity of the body
is continuous. Because the velocity vector along the gait-trajectory is continuous,
the symmetry conditions above basically require that the vertical component of the
velocity vanishes both at mid-step and at the end of the step (figure 3b).

Because there are no passive dissipation mechanisms, the net work of the legs
in one step is zero:

∫
P dt =

∫
([P ]+− [P ]−) dt = 0 and the net positive work equals

the net negative work,
∫

[P ]+dt =
∫

[P ]−dt. Therefore, the cost in equation 2.2
is Cstance = (b1 + b2)

∫
[P ]+dt, and proportional to the total positive work. That

is, minimizing a weighted sum of the positive and negative work is equivalent to
minimizing either the total positive work or the total negative work and does not
depend on the values of b1 and b2 (so long as b1 + b2 > 0).

† In running “step length” includes the horizontal distance covered while one foot is in contact
with the ground in addition to the distance traveled in flight.
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Figure 3. Problem A (a) One step of a gait that is symmetric about the mid-step.
(b) Assuming periodic steps that are symmetric about mid-step implies that the vertical
component of the velocity is zero at mid-step and the end of the step.

Secondly, the symmetry assumption implies that the amount of positive work
in the first half of the stride equals the amount of negative work in the second half
of the stride, and vice versa. So the total cost from equation 2.2 can be rewritten
as

CA =

∫ 0

−tstep/2

(
b1[P ]+ + b2[P ]−

)
dt +

∫ tstep/2

0

(
b1[P ]+ + b2[P ]−

)
dt

=

∫ tstep/2

0

(
b1[P ]− + b2[P ]+

)
dt +

∫ tstep/2

0

(
b1[P ]+ + b2[P ]−

)
dt

= (b1 + b2)

∫ tstep/2

0

(
[P ]− + [P ]+

)
dt (2.3)

Without loss of generality, we take b1+b2 = 1, so the cost to be minimized is the sum

of the positive and the negative work over half a step: CA =
∫ tstep/2

0
([P ]− + [P ]+) dt.

(d) Optimization problem A

The position of the center of mass is given by (xA(t), yA(t)) with mid-step at
xA(0) = 0 (the subscript ‘A’ denotes problem A).

We wish to determine that values of ẋA(0) and FA(t) over t ∈ [0, tstep/2] that
together minimize the total cost CA:

CA =

∫ tstep/2

0

(

[FA l̇A]+ + [FA l̇A]−
)

dt, (2.4)

subject to the restriction that xA, yA, lA =
√

x2
A + y2

A, and FA all obey the differ-
ential equations

mẍA = FA
xA

lA
, and (2.5)

mÿA = −mg + FA
yA

lA
(2.6)

and the boundary conditions that xA(0) = 0, yA(0) = l0, xA(tstep/2) = dstep/2,
dyA/dt|0 = 0 and dyA/dt|tstep/2 = 0.

Article submitted to Royal Society



6 M. Srinivasan and A. Ruina

The specification of the initial conditions and the single control function leg-
force FA(t) determine (xA(t), yA(t)) through the differential equation. We proceed
to solve this optimization problem, with the added “small angle” assumption that
d ≪ l0 by considering a sequence of equivalent replacement problems.

Lemma 2.1. Trajectories can be completely specified by dstep, tstep, and ÿA(t)

Proof. Since yA(0) = l0, ẏA(0) = 0, we can obtain the vertical velocity component
ẏA(t) and the vertical position yA(t) by integrating the vertical acceleration ÿA.
Having determined yA(t), we can determine FA(t)/lA(t) from equation 2.6:

FA(t)

lA(t)
=

mÿA(t) + mg

yA(t)

def
= f(t). (2.7)

We can use this f(t) in equation 2.5 to obtain for xA:

mẍA = f(t)xA. (2.8)

Solving for xA(t) requires two initial conditions. One of these, the horizontal posi-
tion at mid-step, is given: xA(0) = 0. The other initial condition ẋA(0) can uniquely
be determined as a function of f(t), dstep and tstep as follows.

First, observe that equation 2.8 is linear in xA. This linearity implies that the
final horizontal position is given by xA(

tstep

2 ) = k1xA(0) + k2ẋA(0), where k1,2

depend on f(t). Since xA(0) = 0, we have xA(
tstep

2 ) = k2ẋA(0). This proportionality

implies that any given dstep = 2xA(
tstep

2 ) is obtained by a unique choice of the initial
speed ẋA(0). Determination of xA(t) completes the description of the trajectory.

3. Problem B: Riding on a circular track with a vertical

extendible leg

Now we simplify problem A to obtain problem B, motivated by the following ob-
servations.

1. In problem A, motion in circular arcs about the foot contact point do not
require mechanical work (P = FA l̇A = 0 since l̇A = 0). We would like a
similar property for problem B.

2. We have assumed that the leg makes small angles with the vertical.

We combine these two ideas to obtain problem B (figure 4a). Imagine a circular
track of radius l0 centered at (0, 0) in the sagittal plane and a point-mass body
riding the circular track with a vertical telescoping leg. The foot of the vertical tele-
scoping leg rides on the circular track with constant horizontal speed. This constant
horizontal velocity component is assumed to be enforced externally, without any
energetic cost to the biped.

As shown in figure 4a, yB is the vertical position of the point-mass from the
ground. yV (t) is the length of the vertical telescoping leg and yC(t) = yB(t)−yV (t)
is the height of the circular track from the ground, corresponding to where the point-
mass is at time t. FB is the vertical force transmitted by the vertical telescoping
actuator.
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Figure 4. Problem B: riding a circular track (a) The radial telescoping leg of problem
A has been replaced by a vertical telescoping leg in Problem B. The foot of the vertical
telescoping leg moves on the circular track with constant horizontal speed, enforced ex-
ternally. (b) The action of the vertical telescoping leg riding on a circular track is shown
in detail. The vertical velocity components must vanish at mid-step and end of step.

(a) Optimization problem B

The governing equation for the vertical motion is:

mÿB = m(ÿV + ÿC) = FB − mg. (3.1)

where the vertical force FB(t) is bounded: Fmin ≤ FB(t) ≤ Fmax. The goal is to
minimize the sum of the positive and negative work CB of the vertical telescoping
actuator:

CB =

∫ tstep/2

0

[FB(t)ẏB(t)]+ + [FB(t)ẏB(t)]−dt (3.2)

subject to the same boundary conditions as problem A:

yB(0) = l0, dyB/dt(0) = 0, and dyB/dt(tstep/2) = 0. (3.3)

The one extra constraint in problem A, namely xA(tstep/2) = dstep/2 is automati-
cally satisfied here by the assumption of constant horizontal speed v. A formula for
ÿC in equation 3.1 might be obtained by twice differentiating yC =

√

l20 − x2
B with

respect to time, where xB(t) = vt.

4. Small step lengths: Problem B is similar to Problem A

An optimization problem is characterized by the objective function to be minimized
and the constraints defining the space of feasible solutions. Here, we will only show
the similarity of the objective functions in problems A and B rigorously, and provide
only a heuristic justification for the similarity of the set of feasible trajectories.

(a) Definition: analogous trajectories

As established in lemma 2.1, every trajectory in Problem A is completely de-
scribed by the specification of the speed v, step length dstep and the vertical accel-
eration ÿA(t). For every such trajectory in Problem A, we define a unique analogous
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trajectory in Problem B as that having the same speed v, step length dstep and ver-
tical motion yB(t) = yA(t). A trajectory in problem B can be uniquely described
thus.

(b) Relation between the space of feasible trajectories in Problems A and B

The vertical forces are equal for analogous trajectories in problem A and B
because the vertical accelerations are the same, by definition. Therefore, |FB(t)| =
|FAy| ≤ |FA(t)|. As a consequence of this inequality and the boundedness of the
forces, the feasible region of problem A is not in general identical to the feasible
region of Problem B. However, we imagine that the disparity between the two
feasible sets vanishes in some sense in the limit of small step lengths and as we let
the force bounds go to their respective infinities. We shall not state this claim more
precisely nor prove it rigorously.

(c) A one parameter family of gaits: limit of small step-lengths

In order to meaningfully take the limit of small step lengths, we need to spec-
ify what is kept constant as we take the limit. In Problem A, given a particular
trajectory with speed v, step-length d0, step-duration t0 and vertical acceleration
ÿA0(t) = g(t), we can generate a one-parameter family of gaits, all with the same
average speed v, but with different step-lengths by simply using a time-stretched
version of the vertical acceleration g(t). That is, the vertical acceleration for a gait
with a step-length dstep 6= d0 is given by

ÿA(t) = g(td0/dstep). (4.1)

Clearly, this one parameter family is uniquely defined for every v, d0, and g(t).
Having defined a one parameter family of gaits parameterized by the step length,
we can meaningfully ask how the energetic costs scale as dstep → 0. In the following,
we use dstep = ǫ, as ǫ → 0.

Proposition 4.1. For analogous trajectories of Problems A and B, we have CA/CB =
1 + O(ǫ2) when dstep = ǫ. That is, we claim that

∫ tstep/2

0

[FA(t)l̇A]+dt = (1 + O(ǫ2))

∫ tstep/2

0

[FB(t)ẏV ]+dt (4.2)

for analogous trajectories of Problems A and B.

Simply showing that CA → CB is not meaningful as both CA and CB approach
zero as d → 0.

Proof. Noting that the integrands in equation 4.2 are essentially products of two
terms, we shall simply show that the analogous multiplicands in the integrands are
respectively equal up to a factor of at most (1 + O(ǫ2)). In particular, lemma 4.4
shows that l̇A = (1 + O(ǫ2))ẏV and lemma 4.5 shows that FA = (1 + O(ǫ2))FB for
all analogous trajectories. We now show lemmas 4.2 and 4.3, which will be used in
lemma 4.4.
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Lemma 4.2. In problem A, for any given ÿA0(t) = g(t) and v, the fluctuations

in the leg-length are much smaller than the initial leg-length in the limit of small

step-lengths. That is, lA(t) = l0(1 + O(ǫ2)).

Proof. Noting that ÿA(t) = g(td0/dstep) from Eq.4.1, we have

yA(t) = l0 +

∫ tstep

0

∫ t′

0

g

(
t′′d0

dstep

)

dt′′dt′ = l0 + O(ǫ2), (4.3)

because t′ ≤ tstep = O(ǫ) and g(t) is bounded and independent of dstep. Combining

this with xA(t) ≤ dstep and lA(t) =
√

y2
A + x2

A, we have lA(t) = l0 + O(ǫ2) =
l0(1 + O(ǫ2)).

Lemma 4.3. In problem A, for any given g(t) and v, the fluctuations of the hor-

izontal velocity component become much smaller than the average horizontal speed

in the limit of small step-lengths. In particular, ẋA(t) = v(1 + O(ǫ2)).

Proof. g(t) determines yA(t), which in turn determines f(t) in the differential
equation for ẋA(t): ẍA = f(t)xA (equation 2.8). This gives ẋA(t) = ẋA(0) +
∫ t

0
f(t′)xA(t′)dt′ = ẋA(0) + O(ǫ2) since both t and xA(t) are O(ǫ). That is, the

fluctuations in the horizontal speed about the initial speed ẋA(0) are O(ǫ2). But
this implies ẋA(t) = v + O(ǫ2). Since v does not depend on ǫ, we have ẋA(t) =
v(1 + O(ǫ2)).

Lemma 4.4. In problems A and B, l̇A = ẏV (1 + O(ǫ2)) for analogous trajectories.

That is, the leg’s extension rate in problem A is asymptotically equal to the extension

rate of the vertical telescoping leg in problem B.

Proof. 1. lA =
√

xA
2 + yA

2. Differentiating this equation with respect to t, we

have l̇A = xAẋA/lA+yAẏA/lA. Noting that lA = l0(1+O(ǫ2)) = yA(1+O(ǫ2))
from lemma 4.2, we have l̇A = (xAẋA/l0 + ẏA)(1 + O(ǫ2)). Equivalently,
ẏA = (l̇A − xAẋA/l0)(1 + O(ǫ2))

2. The equation for the circular track of radius l0 is y2
C = l0

2 − x2
B . This im-

plies ẏC = −ẋBxB/yC . Since yC = l0(1 + O(ǫ2)), we have ẏC = −(1 +
O(ǫ2))xBẋB/l0.

3. yV = yB − yC and yB = yA for analogous trajectories. Therefore, ẏV =
ẏB − ẏC = ẏA − ẏC . Substituting the results of items (1) and (2) above into
this equation, we have

ẏV =
(
1 + O(ǫ2)

)
(

l̇A − xAẋA

l0
+

xBẋB

l0

)

But by lemma 4.3, we have ẋA(t) = v(1 + O(ǫ2)) = ẋB(1 + O(ǫ2)) and as a
corollary, xA(t) = xB(t)(1 + O(ǫ2)). Using these, we have

ẏV =
(
1 + O(ǫ2)

)
(

l̇A +
xBẋB(1 + O(ǫ2))2

l0
− xBẋB

l0

)

=
(
1 + O(ǫ2)

)
l̇A
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Lemma 4.5. FA = FB(1 + O(ǫ2))

Proof. If FAy is the component of FA in the vertical direction, FAy = yAFA

lA
=

yAFA√
y2

A
+x2

A

= (1 + O(ǫ2))FA. By definition, the vertical accelerations and therefore,

the vertical forces for analogous trajectories in problems A and B are identical. So
FB = FAy = FA(1 + O(ǫ2)).

5. Problem C: Riding an elevator that accelerates down

(a) Replace the circular path by a parabolic path

In the discussion of the equivalence of problems A and B, only item 2 of lemma
4.4 above uses anything about the foot of the vertical telescoping actuator traveling
in a circular path. And yC(t) enters the proof of lemma 4.4 only as its first derivative
ẏC . Differentiating yC(t) =

√

l20 − x2
B(t) =

√

l20 − (vt)2, we have ẏC = −v2t/yC .

We replace the circular track by a parabolic track, yp(t) = l0 − v2t2

2l0
. We see

that yp(t) == l0 − v2t2

2l0
describes a parabolic track in the x-y plane by substituting

t = xB/v in the expression for yp(t). If the foot of the vertical telescoping actuator
travels with constant horizontal speed on this parabolic track, the corresponding
vertical velocity component of the foot will be

ẏp = −v2t

l0
= − v2t

√

y2
C + x2

B

= − v2t

(1 + O(ǫ2))yC
= (1 + O(ǫ2))ẏC (5.1)

So replacing the circle yC by the parabola yp does not falsify lemma 4.4 or propo-
sition 4.1. We make this replacement because the vertical acceleration of the foot

(ÿp = − v2

l0
) is conveniently a constant when traveling on the parabolic track with

constant horizontal speed.
Summarizing, the original problem A has been reduced to finding the path of

the body that entails the least cost while riding a parabolic track with a vertical
telescoping leg and constant horizontal velocity. The constraints are that the initial
and final vertical speeds must be zero.

(b) Galilean relativity

Since the horizontal speed is a constant in problem B, the body will have no
horizontal motion when observed from an inertial frame moving with horizontal
speed v. Since the foot of the vertical telescoping actuator is riding the parabolic
arc, when the constant speed is subtracted out, the foot will be simply seen to be
accelerating downwards with −ÿp = ae, say.

ae = −ÿp = v2/l0 (5.2)

Note further that the cost to be minimized (equation 3.2) and the boundary
conditions (equation 3.3) also depend on only the vertical motion of the telescoping
leg. Therefore, we can rewrite problem B with the parabolic track, just in terms of
the vertical coordinates.
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Figure 5. Problem C: Riding an accelerating elevator. Both the point-mass and
the elevator start at the same position (START) with zero vertical speeds. The elevator
maintains a constant downward acceleration ae. The point-mass can push or pull against
the elevator using arbitrarily strong vertical telescoping legs. When the elevator reaches
END, the vertical speed of the point-mass should again be zero. The objective is to ensure
this by doing the least amount of work with the vertical telescoping legs.

(c) Problem C: Elevator problem

The foot moving downwards with constant downward acceleration ae = v2

l0
is

most conveniently represented as being attached to an elevator moving downwards
with constant acceleration ae (figure 5). At time t = 0, both the person and the
elevator are at the same position (without loss of generality). This initial state
corresponds to mid-step, the apex of the parabolic or circular arc. The person can
push or pull on the elevator with his vertical telescoping legs without affecting the
elevator’s motion. The person must have zero vertical velocity at time t =

tstep

2 .
The objective is to meet this zero vertical velocity constraint by reacting against
the elevator in a manner that incurs the least cost.

Figure 5 shows the key variables in the elevator problem. Downward displace-
ments and velocities are considered positive. ye is the position of the elevator, ym is
the position of the mass m, and yr = ye − ym is the relative position of the elevator
with respect to the mass. The vertical motion of the point-mass is governed by the
equation: mÿm = mg − F , where F is the compressive leg-force. The differential
equation for the relative position yr is

mÿr = mÿe − mÿm = mae − mg + F (5.3)

At mid-step t = 0, the positions and the velocities of both the elevator and the
mass are equal to zero: ye(0) = ym(0) = yr(0) = 0 and ẏe(0) = ẏm(0) = ẏr(0) = 0.
Thus this starting configuration is represented by the origin O in the yr-ẏr plane
(figure 6a, b, c). Since ÿe(t) = ae, we have ẏe(

tstep

2 ) =
aetstep

2 . The constraint that

the mass must have zero velocity at the end of the step (ẏm(
tstep

2 ) = 0) can be

restated as ẏr(
tstep

2 ) = ẏe − ẏm =
aetstep

2 . That is, in the yr-ẏr plane, the final state

should lie somewhere on the line AB corresponding to ẏr =
aetstep

2 (figure 6a, b, c).
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12 M. Srinivasan and A. Ruina

Thus, graphically, the goal in the elevator problem is to take the state of the
system from the origin O in the yr-ẏr plane to any point on the line AB in a given
amount of time

tstep

2 , and with minimum cost.
Summarizing, the elevator problem is to minimize the total cost

Ce =

∫ tstep/2

0

[F (t)ẏr]
+

+ [F (t)ẏr]
−

dt. (5.4)

subject to the terminal constraint ẏr(tstep/2) = 0, no explicit constraint on the force
F (t), and the relative position yr(t) being determined by the differential equation
mÿr = mae − mg + F and the initial conditions yr(0) = 0 and ẏr(0) = 0. Recall
that [P ]+ = P when P ≥ 0, [P ]+ = 0 when P < 0, and [P ]− = [−P ]+.

Equation 5.4 tells us that work is performed only when there is change in the
relative distance between the elevator and the person.

(d) Limit of infinite force-bounds

As in Srinivasan and Ruina (2006) and as alluded to in section 2a, we formally
wish to determine the limit of the sequence of optimal solutions as the force-bounds
in the elevator problem increase without bound (Fmax → ∞ and Fmin → −∞)
for every combination of speed v and step-length dstep. To show the similarity
of Problem A with Problem B (section 4) in the limit of small step-lengths, we
assumed that the leg-forces were bounded. However, in the following discussion, we
find it convenient to allow infinite leg-forces, in particular, impulses that change
the vertical speed instantaneously.

6. Optimal “gaits” in the elevator problem.

(a) Walking and running in the elevator problem

We now describe how the two idealized gaits, inverted pendulum walking and
impulsive running, described earlier in section 1 and illustrated in figure 1, can be
most naturally described in the context of the elevator problem. Inverted pendulum
walking can be most naturally described as riding the elevator till t = tstep/2 and
then pushing-off impulsively against the elevator at exactly t = tstep/2 so that the
vertical velocity of the person gets reset to zero. Impulsive running, on the other
hand, is jumping impulsively off the elevator at t = 0 giving the point-mass an
initial vertical velocity that ensures that the vertical speed at t = tstep/2 equals
zero. Before we show that these strategies are optimal (proposition 6.1), we present
some results, to be used later, about the structure of the optimization problem in
the yr-ẏr plane.

(b) Constant energy contours

Rearranging equation 5.3, we get F = m(ÿr + g − ae). The instantaneous me-
chanical power of this force (as used in equation 5.4) is given by:

P = F ẏr = m(ÿr + g − ae)ẏr =
d

dt

(
mẏ2

r/2 + m(g − ae)yr

)

︸ ︷︷ ︸

E

=
dE

dt
(6.1)
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Figure 6. Solution to the elevator problem. (a) Case 1, ae < g: The thin parabolic
contours are constant energy lines. The goal is to go from the origin O to the dotted line
AB with the least positive work. Optimal strategy is the vertical line OM. Two alternate
suboptimal strategies ON and OPQ are shown as thin dashed lines. (b) Case 2, g < ae:
Optimal strategy is the path ORS. An alternate path OT is shown as a thin dotted line.
(c) Case 3, g = ae: All trajectories (e.g., OF, OG, OH) that do not backtrack have the
same cost and hence are optimal. (d) shows the set of accessible velocity directions –
directions in which a trajectory can proceed. In the upper half-plane, the trajectories can
never move left. In the lower half plane, the trajectories can never move to the right. No
magnitude information is intended by the equality of the length of the arrows.

Equation 6.1 simply notes that the leg power P is the time derivative of the
total energy E = mẏ2

r/2 + m(g − ae)yr. Contours of constant energy E in the yr-
ẏr plane play a key role in the proof of optimality of walking and running below.
Generically, the constant energy contours are parabolas in the yr-ẏr plane (figure 6).
When ae < g, the parabolas open leftward (figure 6a), when ae > g the parabolas
open rightward (figure 6b), and when ae = g, the parabolas degenerate into straight
lines (figure 6c). The constant energy contours coincide with the trajectories cor-
responding to gravitational free-fall, with F (t) = 0 and P (t) = 0. The total cost
Ce is simply the absolute sum of all positive and negative increments of E along a
trajectory. A trajectory that goes from contour E1 to contour E2 incurs a cost of
at least |E1 − E2|.
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14 M. Srinivasan and A. Ruina

(c) Feasible directions of progress in the yr-ẏr plane

The trajectory of the point-mass in the yr-ẏr plane is determined by the follow-
ing equations (the second equation among which is the same as Equation 5.3).

dyr

dt
= ẏr and

dẏr

dt
= ae − g +

F

m
(6.2)

The set of feasible tangent vector directions is shown in Fig. 6d. Since ẏr > 0 in the
upper half-plane, any trajectory can only move to the right. Similarly, a trajectory
can move only to the left in the lower half-plane (ẏr > 0). Because the force can
be unbounded, all rightward tangent vector directions are accessible in the upper
half-plane and all leftward directions are accessible in the lower half-plane. On the
line ẏr = 0, a trajectory necessarily has a vertical tangent.

No information about the feasible magnitudes of the tangent vectors to a tra-
jectory is intended by the equality of arrow lengths in figure 6d. Not every tangent-
vector magnitude is possible in a given tangent vector direction (equation 6.2).

(d) Time duration of a given trajectory in the yr-ẏr plane

The time taken to go between two points P1 and P2 along a trajectory in the
yr-ẏr plane is given by the integral

∫
dt =

∫

P1P2

dyr

ẏr
if ẏr 6= 0 everywhere along the

trajectory.
By choosing F = mg−mae and ẏr = 0, the right hand sides of the equation 6.2

become identically zero. Thus, for this choice of force, the line ẏr = 0 becomes a
line of fixed points. That is, arbitrary lengths of time can be spent at any point on
the ẏr = 0 line. So if a trajectory P1P2 intersects the ẏr = 0 axis, the total time
duration for the trajectory needs to be formally calculated as:

Time duration = (Time spent at line ẏr = 0) +

(∫

P1P2:ẏr 6=0

dyr

ẏr

)

. (6.3)

The specific instances of the improper integral in equation 6.3 that we will consider
will either be convergent by construction or their convergence will not affect the
ensuing arguments.

Proposition 6.1. For the elevator problem, when ae < g, “inverted pendulum

walking” minimizes the cost Ce, when ae > g, “impulsive running” minimizes the

cost Ce, and when ae = g, there are infinitely many strategies that have the same

minimum cost Ce.

Case 1: ae < g. Recall that the goal is to move from the origin O to the line AB
with the least cost in figure 6a. We claim that the optimal strategy is to “walk”:
that is, ride the elevator with zero relative speed ẏr (remaining at the origin O)
and then at the last moment t = tstep/2− push-off impulsively to make the vertical
velocity of the point-mass ẏm zero (jumping instantaneously from O to M).

Proof. By construction, it is clear that OM is a feasible trajectory. We now need
to establish that every other feasible trajectory (such as the dotted lines ON and
OPQ in figure 6a) necessarily incurs a greater cost. We shall consider two types of
feasible trajectories.
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1. Trajectories entirely in the upper half-plane Trajectories entirely in
the upper half-plane can never move leftward, as discussed earlier. Starting
from O, such a trajectory can reach any point on AB in the right half-plane
(yr = 0 axis included). The point on the right-half of AB that is on the least-
energy parabolic contour is M. So, for instance, reaching N requires higher
net positive work. The path OM reaches M by performance of only positive
work and so achieves the minimum possible cost |EM −EO|. Further, the only
way to reach M from O while remaining in the upper half plane (therefore,
never going left) is the straight line OM, thus establishing uniqueness of the
minimum.

2. Trajectories not entirely in the upper half-plane Consider any such
path OPQ, where PQ is the part of the path that lies entirely in the upper
half-plane, and Q is on AB. Then,

Cost COPQ = COP + CPQ ≥ COP + Minimum cost from P to AB (6.4)

The cost for going from P to AB when restricted to the upper half-plane is
minimized when Q is directly above P (repeating arguments from item 1). This
minimum cost will be the same as that of OM, COM = |EM−EO| (because the
energy-contour parabolas are equally spaced). Thus, COPQ ≥ COP +COM . If
OP does not degenerate to the point O, the trajectory OP requires either some
positive work or negative work or both, so that the cost associated with OP is
positive. Therefore, the cost COPQ is greater than the cost COM , establishing
optimality for OM among all possible trajectories.

Case 2: ae > g. We claim that the optimal strategy in this case is to “run”. That
is, jump impulsively at t = 0+ (going from O to R in figure 6b), and then fly freely
without doing any further work (constant-E parabola RS with F = 0). Here, R has
ẏr(0

+) = gtstep/2 = −ẏm(0+), so that at t = tstep/2, ẏm = 0 and ẏr = aetstep/2 on
AB, as required. So the path RS takes exactly t = tstep/2.

Proof. By construction, the trajectory ORS is feasible (satisfies all constraints). A
necessary condition for an alternate path OT to have a lower positive work than
ORS is that OT never touches RS or an E-contour of higher energy. So path OT
lies entirely below the path ORS (figure 6b). We will now show that any such path
OT that has lower positive work will necessarily take longer than tstep/2 to go from
O to AB.

We use the equation 6.3 for the time of a trajectory. By construction of trajectory
ORS, the time spent at O or along OR is equal to zero. So the time duration for
the path ORS is simply given by

∫

RS
dyr

ẏr
. Since yr(S) < yr(T ) and at a given yr,

ẏr(yr) on OT (when defined) is less than that on ORS, we have

∫ yr(S)

0+

dyr

ẏr
<

∫ yr(T )

0+

dyr

ẏr
. (6.5)

Therefore, Time for ORS < Time for O+T ≤ Time for OT. Summarizing, no path
OT that requires a lower positive work than ORS can also reach AB in time.
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16 M. Srinivasan and A. Ruina

Therefore, any trajectory that reaches AB at the same time as ORS must require
at least as much positive work.

Cost CORS = COR = |ER −EO| is all due to positive work. Since any other fea-
sible trajectory (satisfying all constraints) requires at least as much positive work,
any other feasible trajectory incurs at least as much cost. Thus ORS minimizes
the cost. Uniqueness of the minimum ORS is easily demonstrated: any path not
identical to ORS but only touching ORS from below and requiring same positive
work or cost, will require a longer time, repeating earlier arguments.

Case 3: ae = g. For this case, we show below by construction that there are
infinitely many globally optimal trajectories.

Proof. Consider trajectories that go from O to AB over which ẏr never decreases
(e.g., OF, OG, OH in figure 6c). That is, ÿr ≥ 0. Such “non-backtracking” trajec-
tories also necessarily have ẏr ≥ 0. Named examples include inverted pendulum
walking, impulsive running, pendular running (Srinivasan and Ruina, 2006), level
walking, and many other gaits.

When ae = g, the equation of motion reduces to mÿr = F . For non-backtracking
trajectories, first, we need ÿr ≥ 0 and therefore F ≥ 0, that is, non-tensional leg

forces. Next, for such a trajectory to reach AB in t = tstep/2, we need
∫ tstep/2

0
F (t)
m dt =

etstep

2 . Clearly, infinitely many functions F (t) ≥ 0 satisfy this equation. Further,
when ae = g, the power P from equation 6.1 simplifies to P = mÿrẏr, which for
non-backtracking trajectories is greater than zero by definition. That is, all these
trajectories reach AB by performance of no negative work and only positive work.
Since line AB is an iso-energy contour, we see that the cost incurred by every non-
backtracking trajectory equals the energy difference between O and AB, clearly the
minimum possible cost. Summarizing, all feasible gaits with non-tensional leg-forces
(F ≥ 0) are optimal when ae = g.

7. Discussion

Recall that the elevator acceleration ae is the centripetal acceleration while traveling

on a circular arc: ae = v2

l0
from equation 5.2. Thus the conditions for walking

(ae < g), running (ae > g) and the transition ae = g reduce to conditions on the
so-called Froude number v2/(gl0) (Alexander 1976) or the non-dimensional forward
speed V = v/

√
gl0. We have shown that the gait transition (at least for low step

lengths) occurs at V = 1.
One classical theory of why animals switch from an walk to a run (Alexander

1976, Usherwood 2006, Srinivasan 2006) is that traveling in a circular arc requires
physically unreasonable tensional forces at higher speeds. This classical theory does
indeed show why pendular walking is undesirable at high speeds, but it does not
explain why another walking gait, one without such a tightly curved trajectory (like
level walking), might not be optimal at higher or lower speeds.

Here, despite allowing for tensional leg forces, we find that all the optimal gaits
have only compressive leg forces, and, due purely to energetic reasons, that there is
still a gait transition. Interestingly, the speed above which walking requires tension
(V = 1) and when walking becomes energetically unfavorable coincide, at least for
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small step lengths (see discussion of longer step lengths in Srinivasan and Ruina,
2006).

At the transition speed V = 1 or ae = g, the elevator problem shows that
all gaits that use only non-tensional leg forces (F ≥ 0) have the same cost. The
cost landscape is perfectly flat at the optimum. The flatness of the cost-landscape in
this simple model suggests that the actual optimal solution may be very sensitive to
small changes in the model, at least near V = 1. Indeed, numerical optimizations
indicate that at slightly larger step-lengths an apparently unique third gait, “a
pendular run” seems optimal at these intermediate speeds (Srinivasan and Ruina,
2006). In the calculation here, the pendular run is one of an infinite number of
optimal gaits at exactly V = 1.

The analytic demonstration in this paper depends on the limit of small step-
lengths. However, the essential structure of the optimal solutions seem to be pre-
served as we go from small step-lengths to large step-lengths (as seen in the numer-
ical explorations of Srinivasan and Ruina, 2006), except for details near V = 1.

The allowance of infinite (impulsive) forces was another simplification. Presum-
ably, more realistic finite force bounds will “soften” the impulses, resulting in a
smooth change in velocities instead of discontinuous changes. Perhaps the essential
structure of the optima will remain the same.

Finally, the biped model itself is obviously a gross simplification of a real bipedal
animal, not taking into account, for instance, the presence of elastic elements (ten-
dons that can store and release mechanical energy reducing requirements for muscle
work), leg dynamics (except for simple leg swing costs in section 2), muscle proper-
ties (including a more realistic metabolic cost not exactly aligned with mechanical
work), and other anatomical realism (Anderson and Pandy 1999). Obviously, it is
of interest which generalizations of the simple model here change the conclusions,
and in what way.

8. Conclusions

Legs of real animals perform positive and negative work during locomotion at finite
speed. One might hope for ever-improving coordination strategies that could reduce
this mechanical work to arbitrarily small levels. The present calculation shows that
animal legs cannot get away with zero positive work, even the absence of dissipation,
when traveling at finite speeds and step lengths (see also Chatterjee and Garcia
2000 for a related discussion in the context of passive-dynamic robots). We started
with a minimal model of a bipedal animal and asked what the energy-optimal ways
are for it to travel on its legs. We reduced this locomotion problem to a simpler
and somewhat entertaining problem of finding the work-minimizing way of riding
a downward accelerating elevator while ensuring that the vertical velocity at the
end of the ride is zero. We solved this simpler problem analytically, with elementary
geometric arguments. We showed that the optimal solutions for the elevator problem
are analogous to the solutions obtained for the original locomotion optimization
problem of Srinivasan and Ruina (2006). That is, we discovered that the two classic
idealized gaits, inverted pendulum walking and impulsive running , indeed minimize
a work-based metabolic cost. That both of these two classic idealizations that have
been around for a few decades in various forms should prove to be work-minimizing
for the same biped model at different regimes is interesting and is perhaps a tribute
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to those earlier researchers, mainly Rashevsky in the 1940s and Alexander, Cavagna
et al, and Margaria in the 1970s (Rashevsky 1948, Alexander 1976, Margaria 1976,
Cavagna et al 1977).
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