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Although people’s legs are capable of a broad
range of muscle-use and gait patterns, they gener-
ally prefer just two. They walk, swinging their body
over a relatively straight leg with each step, or run,
bouncing up off a bent leg between aerial phases.
Walking feels easiest when going slowly, and run-
ning feels easiest when going faster. More unusual
gaits seem more tiring. Perhaps this is because walk-
ing and running use the least energy [1; 2; 3; 4; 5;
6; 7]. Addressing this classic [1] conjecture with ex-
periments [2; 3] requires comparing walking and
running with many other strange and unpracticed
gaits. As an alternative, a basic understanding of
gait choice might be obtained by calculating en-
ergy cost by using mechanics-based models. Here
we use a minimal model that can describe walking
and running as well as an infinite variety of other
gaits. We use computer optimization to find which
gaits are indeed energetically optimal for this model.
At low speeds the optimization discovers the clas-
sic inverted-pendulum walk [8; 9; 10; 11; 12; 13], at
high speeds it discovers a bouncing run [12; 14]1,
even without springs, and at intermediate speeds
it finds a new pendular-running gait that includes
walking and running as extreme cases.

One way of characterizing gaits is by the motions
of the body (Fig. 1a). In these terms, walking seems
well caricatured [13] (Fig. 1b) by the hip joint going
from one circular arc to the next with push-off and heel-
strike impulses in between. Similarly, running could
be caricatured by a sequence of parabolic free-flight

arcs (Fig. 1c), with impulses from the ground at each
bounce [14; 15; 16].

Why do people not walk or even run with a smooth
level gait [8], like a waiter holding two cups brim-full
of boiling coffee? Why do people select walking and
running from the other possibilities? We address such
questions by modeling a person as a machine describ-
able with the equations of newtonian mechanics. The
basic approximations are: first, that humans have com-
pact bodies and light legs; second, that gait choice is
based on energy optimization [1; 4]; and third, that en-
ergy cost is proportional to muscle work [2; 4; 8]. We
use a simplification of previous models [4; 6; 7], per-
haps the simplest mechanical model that is capable of
exhibiting a broad range of gaits that includes walking
and running. Although the model is a mechanical ab-
straction that is not physically realizable, it is subject to
the laws of physics. Because of its simplicity, the model
is amenable to interpretation. It can also be studied with
exhaustive and accurate simulation experiments, far be-
yond what is possible with human subjects.

We wish to find how a person can get from one
place to another with the least muscle workW (Meth-
ods). We treat the body as a point massm at position
(x, y) at time t (Fig. 2a). The legs are massless and
therefore, when not in ground contact, they can be ori-
ented, lengthened and shortened with no energy cost.
The fluctuations of the leg lengthl(t) due to flexion
of the hip, knee and ankle are incorporated in a single
telescoping axial actuator [4] that carries a compressive
time-varying forceF = F (t). For simplicity, we seek

1The published version incorrectly referred to [12; 13]
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Figure 1:Body motion in human gaits. a, Trajectories of the center of mass for a few possible gaits. Solid lines,
stance; dotted lines, flight.b, Trajectory for inverted-pendulum walking. c, Trajectory for impulsiverunning.d,
Trajectory for a new gait: pendular running. At least one of the gaitsb, c andd turns out to use less work than any
other candidates (for example, froma, according to the calculations here.

an explanation of gait choice with no essential depen-
dence on elastic energy storage; we assume no springs
(tendons) in series or parallel with the actuators.

We assume that during the stance phase, when a
foot is in contact with the rigid level ground, that it does
not slip. At most one foot can be in contact with the
ground at a time. During stance, both gravitymg and
F act on the body (Fig. 2a). During the flight phase,
when neither leg touches the ground, gravity is the only
force. We seek periodic motions, in which each step is
like the previous step. The left and right legs have iden-
tical force and length profiles. A single step consists of
one stance phase (possibly short, as in high-speed run-
ning) and one flight phase (possibly of zero duration,
as in walking).

A gait is characterized by the position and veloc-
ity of the body at the start of a stance phase relative to
the stance foot, by the step period, and byF (t). Given
these, we can integrate the newtonian equations of mo-
tion forwards in time to find the body trajectory and leg
length as functions of time (including the maximum leg
length lmax). At the end of the step, we assume that
the next foot is placed on the ground at the same po-
sition relative to the body as at the start. We can thus

calculate the step lengthd, the average forward speed
v, and the work done by the leg per unit weight and
distanceC = W/(mgd). For randomF (t), the final
body height and velocity generally do not match the
starting conditions and therefore do not generate a pe-
riodic gait. Nonetheless, by appropriately varyingF (t)
we can find infinitely many periodic gaits (Fig. 1a) with
all manner of complicated trajectories (Methods). Of
those periodic gaits, we wish to find those that mini-
mize the costC.

The optimal solutions have cost arbitrarily close to
zero unless the optimization is further constrained. The
cost can be made arbitrarily small by growing the leg
length (and the locomotion becomes akin to the rolling
of a giant multi-spoked wheel), so we set the maximum
length to belmax, representing the leg length. Because
we have no leg-swing cost,C can be reduced to zero
by taking very small steps [6; 12; 17] so we optimize
for various fixed values of step lengthd. Finally,C has
a non-anthropomorphic lower bound (corresponding to
standing on one leg for an infinite time mid-step), ap-
proached as the average speedv goes to zero, so we
constrainv.

After non-dimensionalizing usingm, g and lmax,
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no free parameters remain. We seek solutions as
two conditions are varied: the dimensionless average
speed2 V = v/

√
glmax (V 2 is the so-called Froude

number) and the dimensionless step lengthD =
d/lmax. For given values ofV andD, the optimal peri-
odic gait is determined with numerical optimal control
methods that are more or less standard (Methods).

All optimizations converged toward one of three
stereotypical collisional gaits, depending onV andD,
but never to a smooth collisionless gait. First, at lowV ,
the classic inverted-pendulum walking gait (Figs. 1b
and 2b) is optimal. Second, at highV , an impulsive
running gait is optimal (Figs 1c and 2c). Third, at in-
termediateV , a new gait, pendular running (Figs. 1d
and 2d), is optimal. Pendular running has a flight phase
between extended inverted-pendulum stance phases.
Pendular running is a generalization of, and a connec-
tion between, walking and running: with no flight phase
it is inverted-pendulum walking; with an infinitesimal
pendular phase it is impulsive running.

The numerical optimization, unbiased by an expec-
tation of what the optimal gaits might be, has thus dis-
covered the classic gaits that caricature walking and
running. The new third gait might be the model’s way
of running with a non-zero stance phase, given the
model’s lack of tendons. A tentative prediction would
be the existence of a ground force versus time curve
with two humps during the stance phase for, perhaps,
weak or obese people running slowly. The respective
regions of optimality of the three gaits are shown in
Fig. 3.

Alexander [8; 10] argued that inverted-pendulum
walking is limited to those speeds at which the cen-
tripetal acceleration of a body pivoting over a straight
leg is less than gravity, ensuring that the body does not
vault off the ground. However, walking becomes ener-
getically non-optimal at speeds lower than the above
limit [8; 10] (Fig. 33). Indeed, people switch from a
walk to run [18; 19] at about V=0.65 and D=0.95, close
to the boundary at which walking ceases to be optimal
(Fig. 3) in this model.

The numerical optimization results are buttressed
by heuristic considerations. The costC is an integral
of the leg power (Methods). There are two ways of set-
ting this power to zero: settinġl = 0 (corresponding
to inverted-pendulum motion) or settingF = 0 (corre-
sponding to free flight). Thus, the flight phase (F = 0)
of running is an energy-saving analogue of the pendu-
lar (l̇ = 0) motion of walking; both phases involve no
work. All the work is crowded into brief impulses at

appropriate times.
Inverted-pendulum walking, pendular running and

impulsive running all have work-free motions, punctu-
ated by impulses (collisions). The costs of these colli-
sional gaits can be calculated directly [10; 11; 12]. For
inverted-pendulum walking, positive work performed
during push-off is evaluated as the difference in ki-
netic energy just before and after the push-off [8; 20;
12]. Cwalking = DV 2

I /(8 − 2D2), whereVI is the
magnitude of the velocity vector just before push-
off. For impulsive running, cost is equal to the ver-
tical kinetic energy that is lost and regained in every
bounce [12; 13] (Crunning = D/8V 2). For a given
V and small values ofD, the cost for the collisional
gaits is proportional [12] to the square of the kink-angle
in the trajectory (Fig. 4c). The energetic trade-off be-
tween inverted-pendulum walking and impulsive run-
ning (Fig. 4a, b) can be understood as a minimization
of collision angles [12] for a specific step lengthD. At
low speeds the circular arc of walking has shallower
collisions than the parabolic free-flight of running, and
at high speeds the situation is reversed (Fig. 4c).

The optimizations here show that smooth collision-
less gaits require more work than the optimal colli-
sional gaits. For example, consider a flat walk [8; 10],
in which the body moves at constant height. This gait
has [8; 10]Cflat = D/8

√
1 − D2. Figure 4a, b shows

that the exceptionally smooth, flat walk is never op-
timal (Methods). Recent human experiments [21; 22]
also show that a flat walk uses more energy than nor-
mal walking.

As has been found for a gait model that assumes
collisions a priori [12], the more general model here
shows that it is advantageous to simulate elasticity dur-
ing running, even with no genuine elasticity (tendons).
Indeed, real human legs do approximately simulate an
elastic spring during running [16; 23]. More generally,
the model here, as well as simpler models [4; 8; 12],
indicates that the energetic utility of running proba-
bly does not depend on genuine elasticity in the legs.
However, such elasticity, neglected here, would further
decrease the cost of running [4; 6; 9], supporting the
idea [24] that human ancestors could have started to
run before the modern human long Achilles tendon was
fully evolved.

To maximize simplicity of calculation and interpre-
tation, we have neglected various crucial features in-
cluding a cost for leg-swing [12; 17; 26], a more re-
alistic model of muscle cost [7; 27], allowance of a
non-infinitesimal double-stance phase [4; 6; 28], elas-

2The published version hadV = v/
√

gl/max, a typo.
3In Fig. 3 of the published version, the y-intercept of the dashed line was at about 1.7. The y-intercept should be at about 1.5 as shown

in Fig. 3 in this corrected version.
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Figure 2:Point-mass biped model and its optimal solutions. a, The configuration shown is part way through
the stance phase. The next stance leg is oriented to prepare for a new contact at a distanced from the last.b-d,
Dimensionless force and length shown as functions of dimensionless time, forthe three optimal gaits (b, pendular
walk; c, impulsive run;d, pendular run), before full convergence of the numerical optimization.The finite forces
in the figures are approximations to the converged impulsive (collisional) forces. In the extrapolated optimum, as
the grid sizeh → 0 and the allowed force upper boundFmax, the optimizations find thate1, e2 → 0 and that
the maximum forces used go to infinity (Methods). In these limits the walking gait (b) is an inverted pendulum
with heel-strike and push-off impulses, the running gait (c) is an impulsive bounce between free flights, and the
pendular run (d) has constant-length pendulum phases and flight phases separated byimpulses.

tic and dissipative elements in series with the actua-
tor [4; 6; 7; 24], the possibility of higher-period gaits
(for example skipping [29]), an extended foot instead
of a point foot [27], and other anatomical realism [27].

The simplest way of including a leg-swing cost
would be to assume that it is a function of frequency
and amplitude which is independent of gait. The leg-
swing cost is then a function ofV andD, has no effect
on which gait uses less energy at a givenV andD, and
therefore has no effect on which gait is optimal at that
V andD. Figure 3 would be exactly unchanged. The
simplest way of incorporating elastic recovery is to as-
sume that a fixed fraction of the leg work is from elastic
energy storage and hence should have no cost in the op-
timization. This would scale the costs of all gaits by the
same constant (less than1) and would therefore have
no effect on any of the relative costs of various gaits.
Thus, leg-swing and elastic-recovery effects can affect
gait choice only through more complex dependences.

We do not know which neglected effects are
the most important for explaining the deviations of
observed human behavior from the model predic-
tions here, particularly the prediction of the pendular-
running gait, which seems little used by humans.
Nonetheless, this model, having no free parameters,

might most simply explain why we choose walking and
running over the plethora of other possible gaits.

Methods

Formulation

The governing equations are

mẍ = F (x − xc)/l, mÿ = −mg + Fy/l (1)

for stance with durationts, and

ẍ = 0, ÿ = −g (2)

for flight with durationtf , wherel =
√

(x − xc)2 + y2

. Time t = 0 is the beginning of a stance phase with
foot-contact pointxc = 0. The initial conditions are
x(0) = x0, y(0) = y0, ẋ = ẋ0 and ẏ = ẏ0. At t =
tf + ts, periodicity requires thatxf = x0 +d, yf = y0,
ẋf = ẋ0 andẏf = ẏ0. The numerical integration then
determinesv, d, lmax and C. For given lmax, d and
v, we seek the control strategy(x0, ẋ0, y0,ẏ0, F (t), ts)
that minimizes the work-based specific mechanical cost
of transport

C =

∫ tstep

0

[F (t)l̇]+

mgd
dt (3)
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where[]+ is non-zero only for positive values ([p]+ = p
if P = 0 and[p]+ = 0 if p < 0). The only cost is for
mechanical work (dW = Fdl).

Numerical solution of the optimal control prob-
lem

We non-dimensionalize all quantities bylmax, M and
g. We seek

(X0, Ẋ0, Y0, Ẏ0, F̄ (τ), τs) =

(x0/lmax, ẋ0/
√

glmax, y0/lmax,

ẏ0/
√

glmax, F (t)/mg, ts
√

glmax)

whereτ is the non-dimensional time, that produce the
optimal periodic gait with givenV andD, and with the
non-dimensional step-length satisfying0 ≤ L(τ) ≤ 1.

The infinite-dimensional search space for this opti-
mization problem contains the set of all possible func-
tions F̄ (τ). We restrict our search to the set of piece-
wise linear functions, defined on an evenly spaced
time-grid (0 = τ0, τ1, τ2, . . . , τN = τs), with grid
spacing4 τi − τi−1 = h = τs/N . So the search space
becomesz = (X0, Ẋ0, Y0, Ẏ0, F̄i=0...N , τs), where5

F̄i = F̄ (τi). The linear constraints areǫ ≤ τs ≤ τstep,
F̄min ≤ F̄i ≤ F̄max. We needǫ > 0 because a peri-
odic step requires a stance phase. In addition, although
the forces are allowed to be unbounded conceptually,
for numerical optimization they need to be bounded:

we choose a bound̄Fmax >> 1 and F̄min = 0. Ul-
timately F̄max is allowed to grow arbitrarily, so that it
is not a parameter in the solutions we present. Inter-
estingly, choosingF̄min < 0, allowing tensional leg-
forces, does not affect the optima. The leg-length con-
straint,0 ≤ L(τ) ≤ 1, is enforced at the grid points
τ = τi. Gait periodicity is another nonlinear constraint.

For given z, C and the constraint violations are
evaluated by integration of the differential equations.
C(z) is to be minimized subject to the various lin-
ear and nonlinear equality and inequality constraints:
geq(z) = 0 andgineq(z) ≤ 0. We smoothC(z) with h
as a smoothing parameter. We used a particularly robust
implementation of Sequential Quadratic Programming
(SQP) [30] for the optimization.

Convergence to the idealized collisional gaits is dis-
covered by lettingN → large,F̄max → large andǫ →
small. At high V , if F̄max is set large enough for a
given ǫ, F̄max has no effect onC. The optimization
then always findsτs = ǫ as ǫ → 0, thus converging
to impulsive running. We assure ourselves of the con-
vergence to the collisional walking by Richardson ex-
trapolation. That is, we solve the problem for grids of
sizesN = N1, N2, N3, . . . assuming that the cost is a
smooth function ofN−1, and extrapolating the cost to
N−1 → 0. F̄max is maintained high enough andǫ low
enough to be unused constraints. The ODE solutions
are accurate to about10−14 over a grid interval (ob-
tained by integrating from grid-point to grid-point with

4The published version hadτi − ti−1 = h = τs/N , a typo
5The published version had̄Fi(τ) = F̄ (τi), a typo.
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and level walking (green; no kinks, but generally more costly), all with thesame step length.

an adaptive RK-45 method, benchmarked by a Taylor-
series method) and accurate to less than10−14N over
the whole step. We thus avoid significant sources of er-
ror not related to the finiteness ofN and can therefore
treat the convergence as dependent only onN . The con-
vergence is observed to be linear inN−1. The linearly
extrapolated limit of the sequence ofC values is found
to differ from the cost of the corresponding analytically
determined inverted-pendulum collisional walking gait
by a relative error of about10−3.

For eachV andD, multiple optimization runs, each
started with a different initial seed, all converged to-
wards the same control strategy, indicating the likely
uniqueness and globality of each collisional minimum.
To determine the regions in which each gait is optimal
more precisely (Fig. 3) we repeated the optimization
over the space of (analytically calculable) collisional
gaits.

Pontryagin’s maximum principle

Pontryagin’s maximum principle [31] can be used over
the stance phase, neglecting the leg-length constraint,
to get necessary conditions on the optimal solutions.
This calculation shows that during stance, if the opti-
mal control is not singular, the leg-forces must be max-
imum (Fmax, apparently corresponding to heel-strike
or push-off), or zero (stance simulating flight by having
no force). This much agrees with our full optimizations
and heuristics. The pendular stance portions we found,
with l̇ = 0, seem to be singular arcs of the optimal con-
trol.
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