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The goal of this research is to examine the possibility of stable gait cycles in simple three-dimensional
models of human walking with no actuation, other than gravity, and no control. We address the
passive-dynamic stability of 3D walking using a collection of models of varying complexity — 2D
and 3D rimless spoked wheels, a 3D rolling disk with oblique masses attached, and 2D and 3D
straight-legged point-foot models of human walking. Analytical and numerical linearized stability
studies are carried out to study the behavior of these systems. The mass distribution is varied to
study its effect on stability.

The main results are as follows. (1) a fully analytical nonlinear stability study of uphill and
downhill motions of the 2D rimless spoked wheel shows that two outcomes exist — coming to rest on
two spokes and entering into a limit cycle motion, both of which are always asymptotically stable
and have basins of attraction which we describe exactly. (2) A linearized stability analysis of the
3D rolling disk with oblique masses attached, that steer and bank but not roll with the wheel,
shows that it can be asymptotically stable given sufficient forward rolling speed, more stable than
an axisymmetric disk which is neutrally stable at best. (3) We carry out numerical and analytical
stability studies of steady motions of the 3D rimless spoked wheel. At any fixed, large enough
slope, the system has a one-parameter family of stable steady rolling motions. We find analytic
approximations for the minimum required slope at a given heading for asymptotically stable rolling
in three dimensions, for the case of many spokes and small slope. In the limit as the number
of spokes approaches infinity, the behavior of the rimless wheel approaches that of a rolling disk
in an averaged sense and approaches neutral stability. (4) Numerical stability studies of the 2D
straight-legged point walking model have turned up stable periodic motions for a variety of model
parameters. Of particular interest is the limiting case of a huge hip mass and tiny point feet that
can be stable, a one-parameter model depending only on the downhill slope. (6) Numerical stability
studies of a 3D straight-legged point-foot model have only turned up unstable steady walking motions
to date. Getting arbitrarily close to neutrally stable steady motions is possible, though, if we allow
the model to ‘grow’ long lateral ‘balance bars’ from its legs. The resulting motion resembles ‘tight-
rope’ walking, with tiny steps. (7) Experimental studies of a Tinkertoy® model based on the as
yet unsuccessful numerical simulations have revealed apparently stable motions. This is the first
statically unstable passive-dynamic model in theory, simulation, or experiment to show dynamic
balance fore-aft as well as side-to-side, balance.



Biographical Sketch

Mike Coleman was born at Sinai Hospital in Baltimore, Maryland on May 22, 1960 to his proud
parents Bernard and Alice. He spent his first three years with his parents and sister Frannie on
an idyllic sixty-five acre farm at the intersection of Rinehart Road and Bixler Church Road. The
farm (with house, barn, out-buildings, and a log cabin built by a freed slave) was just outside the
little town of Westminster, Maryland in the lush rolling hills of Carroll County, foothills to the Blue
Ridge Mountains, about twenty miles southeast of Hanover, Pennsylvania, forty miles northeast of
Frederick, Maryland, and thirty miles northwest of Baltimore.

When Mike was born, it was discovered that he had two thumbs, like everyone else, but both on
his right hand, for a total of three. One was surgically removed at birth but the remaining one was
severely deformed. Though it is still deformed, some function was restored through several surgeries
done by the famous Dr. Curtis of John’s Hopkins University, who always seemed god-like and, thus,
very intimidating. Today, there is a special hand center at Hopkins named in his honor. Mike was
both ashamed and proud of his small handicap. He always made sure to get on the right when
lining up by two’s for school trips; he made the mistake on a field trip to the Carroll County Fire
Department in the second grade of giving his right hand to Kathy Fringer and still can hear her
screech in horror at the sight of the alien creature’s appendage for grasping things that was sort of
like a human hand. Remember, always on the right.

When Mike was three years old, his family sold the farm for a ridiculously low price of $16,000,
including the buildings, land, and house. But, his parents were more concerned that their children
would be too isolated on a farm and not have enough friends to play with. They moved to a house
at 42 Bishop St. in the town of Westminster. When Mike was eleven, the family moved to 92
West Green St. near Western Maryland College right across from their good friends Helen and
Montgomery Schroyer.

Mike’s first and forever teachers have been his parents. From gardening to cooking to bicycle
riding to football to frisbee throwing to arithmetic to morality to music to art to literature to
politics to hand-tools to camping and more, Mike’s parents, Bud and Alice, have taught him many,
many things with caring patience and humility and and provided him with a multitude of other
opportunities to learn and experience. Mike’s father continues to teach him things even now; for
instance, he recently showed Mike a really cool and new way to draw ellipses. Mike’s sister too has
taught him many things, such as about singing, swing dance, volleyball, swimming, and what he
should know about women.

Mike first went to nursery school when he was three and then back again the next year. After
that, he joined Just Five Folks, a Montessori kindergarten, a learn-by-doing school. His teachers
were Jackie Finch and Jan Cross, both exquisite individuals. Jan and her husband remain close
family friends.

In kindergarten, it was discovered that Mike could draw with perspective, sort of an unusual
skill. Ever since, he has been known as an artist, entering contests frequently and giving shows on
occasion in school. He remembers drawing his first self-portrait at age nine, posing in his favorite
Orioles baseball T-shirt, and looking into the notebook—paper sized mirror with a thin wooden
frame painted white that the family used to keep in the bathroom for closer looks at things. His
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first organized art class outside of school was at age ten with Mrs. Trump, with whom he learned to
draw still lifes with charcoal and pastels. His family and school nurtured him well, especially his first
and only private teacher, Stan Gilmore. With Stan, Mike learned the difficult, delicate, art of water
color painting. Mike still draws seriously and is most fond of the human figure and the portrait.
Most recently, Mike attended figure drawing sessions at the Ithaca Community Arts Center. Mike
has saved much of his artwork along the way and many pieces clutter his apartment walls.

Mike started playing piano when he was seven. His first teacher was Mrs. Kennedy on Green St.
Then, he switched to Mrs. Giselle on New Windsor road. She was native to Japan and one of the
most beautiful women he had ever met. Mike fondly remembers sitting on the piano bench next to
her, looking up at her instead of the key board, admiring her beautiful smile, her soft pearly skin,
and her lovely eyes. She used to wear very tight dresses which Mike liked very much. After that
was Mrs. Adams across the street from his house on Green St. and Mr. Judge down the street who
always breathed funny when he played. Finally, Mike learned to see the finer subtleties of playing
with his last teacher, the deeply serious, meek and shy Mildred Cole. Mike played recitals starting
with Mrs. Giselle at age ten and continued to do so through High School. It was in these recitals
that Mike learned he had performance anxiety, a debilitating affliction that stays with him to this
day. Nevertheless he is most proud to have played Prelude Op. 28, 1 for pianoforte in C Major (The
Minute Prelude) by Chopin and Rhapsody in G Minor, Op.79 No.2 by Brahms at his senior recital.
Presently, Mike has an electric piano with synthesized sound and simulated key action at home but
would rather have a real one or at least one with digitally sampled sound reproduction.

After kindergarten, Mike attended the East End Elementary School for grades one with Mrs.
Westheimer and two with Mrs. Kemper (Mike’s grandmother on his father’s side attended the East
End school in 1899), the Westminster Elementary School for grades three with Mrs. Case and four
with Mrs. Reese (who used to read to us from Tom Sawyer and Treasure Island), the William
Winchester School for fifth grade with hump-backed Mrs. Rice (with whom he argued once about
the commutative law of multiplication and won), the East Middle School for sixth through eighth
grade, and, finally, Westminster High School for ninth through twelfth grades. It was in middle
and high school that Mike discovered his aptitude for and interest in mathematics and science. He
remembers being particularly intrigued with the Human Powered Flight program at MIT that he
read about in Popular Science.

Mike went to Princeton University graduating with a Bachelor’s of Science and Engineering
degree from the Department of Aerospace and Mechanical Engineering in 1982. The most significant
academic experience at Princeton for Mike was realizing his writing weakness and then working very
hard to improve on it. His best friend and roommate Christopher Barth had a significant impact
on Mike’s life, especially Chris’s zen-like approach to life. His engineering education was mostly not
very stimulating, though he did have an interesting summer job at Princeton working for Professor
Earl Dowell studying the oscillations of buckled flat plates in an air flow. His favorite engineering
course was Engineering Acoustics taught by Donald Bliss, one of the best teachers in the department
who was unfortunately denied tenure. Still, no engineering professor in particular had any deep and
lasting influence on Mike while at Princeton. His favorite course was Soviet Politics taught by
Professor Stephen Cohen (who now appears regularly on television as a commentator). Two studio
art courses in drawing and painting taught by Jerry and Sean had a significant impact on his artistic
maturity and confidence.

After Princeton, Mike went to work for the IBM Corporation in Endicott, New York in research
and development for electronic packaging and stayed for five years. His mentors there were Peter
Engel (a T&AM graduate), in structural mechanics, and Bhagat Sammakia, in fluid mechanics and
heat transfer. It was at IBM that Mike decided to return to school for a Ph. D. in engineering,
strongly encouraged by Bhagat and Cathy Biber, his co-worker, apartment mate and sometimes
lover. While at IBM, Mike first came in contact with Don Conway at Cornell. Professor Conway
has always been very supportive of Mike while he’s been at Cornell.

Much later in life, after college, Mike found new passion in sports. He trained and competed
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heavily in bicycle racing and cross-country ski racing. Mike was a member of the Tioga-Velo six-man
bicycle racing team in Binghamton and the Cornell Cycling Team. In 1990, he started a x-c ski
racing team sponsored by Wildware Outdoors Store and Fischer, Inc. Mike qualified for and raced
in the New York State Empire Games in X-C Skiing for a number of years. He participated twice
in the U.S. Cross-Country Ski National Championships. Mike was fortunate to win a number of
medals now and then. His most cherished result was finishing second overall in the 19 kilometer Tug
Hill Try-it race in 1991. He trained very seriously for skiing, working very closely with his training
partner, Raj Sundra. Due to Raj’s influence, Mike took a a highly studied approach to training,
using video taping to improve technique and making periodized training plans. A highlight of Mike’s
ski experiences was attending the 1995 World Cross-Country Ski Championships in Thunder Bay,
Ontario and getting an opportunity to see his skiing idols Bjorn Daehlie, Torgny Mogren, Validimir
Smirnov, Michael Alberello, Silvio Fauner, and Vegard Ulvang. In many ways, Mike considered
competitive sports a focus of his life while at Cornell, almost on equal footing with his graduate
work. Sports kept him alive and able to complete his work. Mike also counts basketball, squash,
and weight training among his interests, and now bouldering, due to his new friend, Tomomi Ueda.

After applying to nine graduate schools (Berkeley, Stanford, Wisconsin, Minnesota, Michigan,
M.L.T., University of Pennsylvania, Cornell University, and Johns Hopkins), Mike traveled to all
except M.IT before getting any acceptances. He was accepted at eight (who wants to go to M.LT.
anyway?), was offered tuition support from all, and was offered stipend support from all but Stanford
and Berkeley. Mike chose Cornell. You see, at the time, among his choices for schools, Mike thought
that the best environment, closest to home, for bike training and racing was Ithaca.

In the fall of 1987, Mike joined T&AM as a M.S./Ph.D. student, the beginning of a long journey
he thought he might never finish. He passed his Q exam in January 1988. It was the most dreaded
experience of his life. He failed the mathematics section but somehow recovered and aced the
continuum mechanics and dynamics sections. Mike is credited with coming up with a new concept
in mechanics during the exam. In the continuum section, Dick Lance was questioning Mike about
the stress vector, the stress tensor, and linear momentum balance. Eventually, the questioning led
to how applying angular momentum balance to a small material element yields symmetry of the
stress tensor. Trying to lead Mike to the answer, Professor Lance asked Mike what other kind
of momentum there is besides linear momentum. Going blank for a moment and desperate, Mike
blurted out, “I don’t know, nonlinear momentum?”, his voice trailing upwards at the end of his
response. The answer drew huge laughs from the committee — they thought Mike was just joking.
The laughter somehow returned Mike to a state of clarity and he was able to carry on and answer
correctly. Memorable also was Jim Jenkins only question of Mike in the dynamics section, “Well, if
no one else has any questions, there’s just one thing I have to ask: what did you do last semester?
Because, you know, it’s going to come up in the faculty deliberations after the exam.” Mike had only
taken one 3-credit course and one 1-credit course in order to leave time to study for the Q-exam.
Mike immediately thought, well, that’s it, he’s outta there. Somehow, he figured, they must know
how much Mike had been skiing and biking instead of being at school. Apparently, whatever it was
he did that semester, he passed. After that, he took way too many courses.

By far, Mike’s most startlingly surprising joy and success at Cornell has been his teaching.
Teaching far exceeded his expectations for personal accomplishments and rewards. In 1991, Mike
was selected to be Teaching Fellow for the Cornell University Teaching Assistant Development
Program. In the next year, Mike was awarded the H. D. Bloch Teaching Prize for best teaching
assistant in the department. Most importantly, Mike discovered that he had a talent for something
he never thought he could be good at, a vocation that gives him hours to spend helping people
understand things, something he loves to do, even for low pay. Particularly satisfying to him was
incorporating studio drawing exercises into the engineering drawing and design course he has taught.
For one semester, he also offered a free non-credit drawing course to anyone interested but mostly
attended by engineering students thirsting for a break from problem sets.

His first try for an advisor was Philip Holmes and for committee member, Paul Steen in Chemical



Engineering. The plan was to study pattern formation in solidifying metals. Paul decided to go on
sabbatical which killed that idea. Then, Mike switched to Dick Lance for advisor and Paul Dawson
and Leigh Phoenix for committee members. The first idea was to work on the curing of composite
materials. They failed Mike on his first A exam attempt because, as Leigh put it, “the department
is like a country club and you don’t seem to want to be a member”. Similar in tone to Leigh’s
comment, Dick Lance once commented that Mike was using his body too much and not using his
head enough, referring to his bicycle racing. They passed him on the second try in 1991 anyway.
The new idea was to study the compressive behavior of composites.

In the early stages, when Mike was having trouble focusing and getting motivated, Professor
Lance gave him a copy of a commencement speech at Brown University which made wonderful
statements about following one’s own path in the pursuit of knowledge. This was a nice gesture
on Dick’s part and the speech had a deep and lasting influence on Mike during his convoluted,
unusual, and very long route through Cornell. Indeed, its impact induced drastic changes (eventually
benefical) in Mike’s travels with his special committee (see below).

After struggling to get going, Mike began work on a project for the Monsanto corporation in
collaboration with Herbert Hui, Andy Ruina, and Ed Kramer in Materials Science. The project
was to study the fabrication of automobile window shields with a thin layer of sun-sensitive photo-
gray material embedded inside the safety-glass polymer. During the curing process, the thin layer
was buckling. The project was interesting and provided a fruitful collaboration with Andy Ruina.
The analysis involved studying the buckling of thin infinite elastic plates sandwiched symmetrically
between two viscoelastic foundations. Happy with a report Mike wrote on the buckling problem, a
possibility for research funding from the company seemed imminent and Mike seemed to be headed
towards another research topic. But, like many development projects, this one died without further
explanation.

Within a year, in a swift, decisive move, Mike “fired” his entire special committee; he was in a
down-sizing phase. Mike took up Andy Ruina’s offer to work with him on passive-dynamic walking
and to join the ranks of Andy’s “problem” students (who all turned out to do quite good work
in the end). And, thus finally began Mike’s dissertation research. In 1992, Mike co-authored a
proposal with Jeff Koechling to the Whitaker Foundation for a grant to work on three-dimensional
passive-dynamic walking research. To everyone’s surprise, the proposal was accepted including three
years of graduate student support for Mike. Unfortunately, unbeknownst to everyone except himself,
Jeff decided to leave Cornell. Consequently, the money went back to Whitaker and Mike was back
at teaching assistantship. From that point on, Mike was not guaranteed any funding to finish his
degree and had to scare up what he could each semester and summer. Not knowing where funding
was coming from each semester was a very stressful situation; finding new funding at the end of
every semester was a time consuming and uncertain process.

For a period of three semesters, starting in fall 1994, Mike assisted Andy Ruina and Rudra Pratap
with the writing of their engineering dynamics textbook. He helped with the editing, problem and
answer formulation, writing small examples, drawing figures, and typing and formatting text. It
was exhausting mentally and physically draining work. All in all, it was a good experience. Mike
is extremely grateful to Andy Ruina for paying Mike from his own funds. In the end, Mike wishes
that Andy and Rudra had included Mike as a co-author, considering his considerable effort and
contribution to the book and his enthusiasm for the project.

Most recently, Mike has been happy to co-author several journal articles on his work and receive
international press coverage in The Guardian and The Economist highlighting Andy Ruina’s Human
Power and Robotics Laboratory and Mike’s Tinkertoy ® walking invention. Developing the Tinker-
toy ® walking device was one of the most satisfying engineering experiences Mike has ever had. Tt
was the first time that he brought some engineering analysis results together with a creative design
and construction process to invent some mechanism that worked, based on some over-reaching vi-
sion, from Tad McGeer and his dissertation advisor Andy Ruina, that, though very promising, gave
no guarantee of success.
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Chapter 1

Introduction

Walking on a horizontal surface is usually easy, hardly fatiguing and sometimes
pleasant.
G. A. Borelli, On the Movement of Animals, 1681

Various creatures — birds, mammals, reptiles — walk on two legs. How is it that the nervous,
muscular, and structural systems of these organisms interact with forces from the environment (e.
g., gravity and friction) to synthesize two-legged locomotion? Though walking seems a mundane and
nearly unconscious process and has been much studied, it is nevertheless still poorly understood.

Human walking is generated, sustained, and guided by the neuro-muscular system. On one hand,
then, a legitimate and oft pursued approach to understanding muscle-powered walking is to study
powered and controlled mechanical models of walking. But, how much of walking is controlled by
the nervous and muscular systems and how much of the coordination of two-legged locomotion is
purely mechanical? Human locomotion might be studied as a mostly passive mechanical process;
that is, it may be viewed as requiring little control from the brain and nervous system and only
small amounts of actuation from the muscles.

Even before Newton spilled ink on his laws of mechanics, some scientists sought to understand
walking as a substantially mechanical process obeying the laws of nature. Paul Maquet [5], translator
of the current edition of De Motu Animalium (On the Movement of Animals) , the main work of
Giovanni Alfonso Borelli (1608 — 1679), writes in the translator’s preface:

“Borelli is a mechanist. ...

In all his work [on walking] Borelli relies on an axiom which he does not question:
Nature always acts using the simplest and most economical means. The differences which
are observed are due to mechanical necessities. Conversely, when Nature carries out an
operation, it must be concluded that this operation is the simplest possible, that it is
carried out according to the laws of mechanics and that it is impossible to do otherwise
or better. Such was also the opinion of Descartes.” [5]

Unfortunately, having preceded Newton’s discovery of the classical laws of mechanics, Borelli
apparently subscribed to some unusual notions about forces as can be seen in one of his propositions,
as stated in the translation:

“ Proposition XXXII
If a weightless rigid rod is compressed from above by a weight or by any force and rests
inferiorly on the hard ground, the force with which the rod resists compression is twice
the compressive force.” [5]

This proposition seems to say that the resisting force is equal to twice the acting force!



In the more recent past, however, a class of purely mechanical theoretical and physical models
of walking obeying Newton’s Laws of Mechanics, have been studied and constructed. These can
walk down a shallow slope with no control system and no power source, driven only by gravity. Tad
Mcgeer [4], who pioneered the study of these fascinating devices, calls this unpowered uncontrolled
behavior passive dynamic walking and he considers the mechanisms that exhibit it to be useful
models for the study of human locomotion. McGeer’s outstanding fundamental study in this area is
the motivating force behind this research which is an extension of his work. It is important and in
need of further development. Unlike Borelli, however, we will be assuming that the mechanisms we
study obey the ‘state-of-the-art’ mechanics principles — the action is equal and opposite to reaction,
and so on.

1.1 Motivation

Mcgeer [4] thought that, in the same way that the aviation pioneers learned about aerodynamics
from gliders, we can perhaps learn about the stability and control of walking by studying unpowered,
uncontrolled models. The Wright brothers only added power to their plane after they had studied
and mastered unpowered glider flight. McGeer’s central question might be stated as:

Can a statically unstable assemblage of rigid bodies powered only by gravity down a
shallow slope with no active control exhibit dynamically stable periodic motion resembling
human gait?

McGeer successfully analyzed and constructed two-dimensional, two and four link passive dynamic
walking models that displayed very graceful, stable, human-like walking on a range of shallow slopes
with no actuation and no control. Quite unlike control based models of walking, where a controller
tries to force a system to follow a prescribed trajectory, McGeer’s models exhibit gait cycles that are
a result of the natural interaction between the systems (with a given set of parameters) and their
environment (gravity forces, friction, and collisions).

An instructive model that we have studied is the 2D point-foot walker shown in Figure 1.1. It
is a special case of the more general 2D straight-legged walkers analyzed by McGeer [4] . A typical
passive walking step is shown in Figure 1.2 for the 2D point-foot model. This device can exhibit
stability in the sagittal plane. That is, it neither falls forward nor backward, and it has a stable
walking speed to which it returns following a disturbance. The stability is somehow a result of the
intermittent contact between the feet and the ground. When one foot is on the ground, the system
is, in part approximately, an unstable inverted pendulum. However, the other leg swings forward,
colliding with the ground and, given initial conditions and slope angle in the proper regime, catches
the system before it has a chance to fall down.

Unfortunately, all previously known passive walking models have no such stability in the lateral
plane. They are all two-dimensional or unstable in three dimensions. Evidence for passive stability
of various three-dimensional systems exists, supporting our conjectures regarding the existence of
gait stability in three dimensions. A linearized stability analysis shows that a disk (a coin or a
phonograph record, for example) rolling on a flat surface is neutrally stable with respect to small
lateral disturbances [6]. Given sufficient rolling speed, the disk will wobble indefinitely in response
to a small initial disturbance. This wobbling response is due to gyroscopic coupling of the various
degrees of freedom. An equilateral polygon with many sides rolling down small slopes exhibits
behavior similar to that of the rolling disk [7] (in the limit as the number of sides gets large and
the slope approaches zero, the polygon’s behavior approaches that of a circular disk on flat ground).
A bicycle, unstable while standing still, can be stable when moving depending on its geometry and
mass distribution [8]. Off diagonal terms in the inertia tensor induce kinematic coupling that keeps
the bicycle from falling over as long as it is rolling forward with sufficient speed. A rigid rider on a
skate-board is stabilized by coupling between the riders lean and the angle of the wheels[9]. These
examples provide insight into finding methods for stabilizing walking mechanisms.



Figure 1.1: The point-foot walking model. Leg lines are drawn with different line weights to corre-
spond to the plot of Figure 1.3. The angle §,; measures the rotation of the stance leg with respect
to the normal to the slope. The angle 8,,, is the rotation of the swing leg relative to the stance leg.
The hip mass is denoted by my,, and the foot mass by my. The leg length is denoted by ¢, the slope
angle, by «a, and the acceleration due to gravity, by g.



Figure 1.2: A typical passive walking step for the 2D point-foot model.

McGeer began studies of three-dimensional passive walking mechanism finding only unstable
periodic motions. Kuo [10] also studied a passive-dynamic 3D model of walking like McGeer’s
but focussed instead on stabilizing unstable passive steady gaits using simple feedback control laws
that govern foot and torso placement. Besides wobbling toys with low mass-centers and broad feet
(McGeer [11], Mochon and McMahon [12, 13]), passive-dynamic walking machines that are statically
unstable but dynamically stable in three dimensions have not yet been discovered in theory or
simulation. Only recently, we have completed experimental studies of a statically unstable walking
toy that has apparently stable 3D motions. We report on the device in Chapter 6 (also see Coleman
and Ruina [14] and [15]). This thesis extends McGeer’s work searching for stable three-dimensional
passive-dynamic models of human walking.

McGeer’s results with passive dynamic models of human locomotion suggest that human body
parameters such as mass distribution or limb lengths may have more influence on the existence
and quality of gait than is generally recognized. For instance, inappropriate mass distribution
may interfere with the passive stability of gait thereby requiring the neuro-muscular system to
expend unnecessary effort to maintain stability. Given a more complete understanding of how mass
distribution affects three-dimensional gait stability, we may be able to guide gait clinicians and
engineers in devising surgical procedures and prostheses better ‘tuned’ for a particular individual.

1.2 Objectives

Existing mechanical models for human walking generally treat gait as a planar activity. Recent
studies using these models have established the existence of steady, stable walking motions that
occur without motor activation or control. These passively generated motions have been termed
stable passive-dynamic Gait cycles. A passive gait cycle (from Garcia, Chatterjee, Ruina) [16] for
the 2D point-foot walker of Figures 1.1 and 1.2 is shown in Figure 1.3. While locomotion occurs
almost exclusively in the sagittal plane, the stability of out-of-plane motions is an important issue
that has barely been studied. We would like to extend existing planar models to allow out-of-plane
motions and search for stable passive gait cycles in these three-dimensional models.
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1.3 Review of Literature

Here, we give a brief review of work relevant to passive and active gait generation and stability.

1.3.1 What is Walking in a Nutshell?

Human walking is the cyclic movement of the legs to translate the body forward. One-half cycle of
gait begins with the pendulum like motion of the ‘swing’ leg from maximum backward extension to
maximum forward extension while the body is supported and balanced on the ‘stance’ leg. This is
followed by the heel strike of the swing leg, a short period of double support, and toe-off of the stance
leg to begin the next half-cycle. The cycle involves a complex interaction of a system of flexible
linkages, muscular activity, contact with the ground, and neurological control. A comprehensive
review of terminology, kinematics, physiological measures, and balance and posture in normal and
pathological gait is given by Winter[17, 1].

Disruption of the natural gait cycle can result from disease, aging, or traumatic injury. To restore
or partially restore function often requires rehabilitation, corrective surgery, or various devices,
braces, or prostheses that must be properly fitted and controlled to be effective.

Understanding how normal and abnormal gait is generated and maintained is important for
developing effective design solutions for restoring lost function. Most engineering models for under-
standing gait stability treat the static human body as a system of linkages. The question commonly
addressed is how the body synthesizes stable locomotion.

1.3.2 Actuated and Controlled Gait

Most gait models assume that the natural flow of events in generating stable motion proceeds outward
from the nervous system to the musculoskeletal system with sensory feedback to the nervous system.

Zajac and Winters[18] give a comprehensive overview of synthesizing a musculoskeletal dynam-
ical model including body and joint segment kinematics, equations of motion, passive-tissue joint
mechanics, geometric joint transformation, musculotendon force generation processes, and neuromo-
tor circuitry of the central nervous system (they do not discuss a specific human gait model). With
numerical models, Yamaguchi[19] and Yamaguchi and Zajac [20, 21] studied the feasibility of using
functional neuromotor stimulation(FNS) to restore normal function to paraplegics. Using dynamic
programming control, they obtained nearly normal gait characteristics (for the single support phase
only) using a three-dimensional eight degree-of-freedom model with simplified musculature, low force
levels, and minimal control of muscle activation[19]. Hausdorff and Durfee[22], Anderson et al. [23],
and Kobetic et al.[24] have investigated the feasibility of FNS experimentally. Using a knee-jointed
model confined to the sagittal plane, Taga, et al. [25] achieved stable locomotion (for entire gait
cycles, from step to step including foot and joint collisions) as a global limit cycle generated by a
global entrainment between the rhythmic activities of a nervous system composed of coupled neural
oscillators and the rhythmic movements of a musculo-skeletal system. Pandy and Berme[26, 27] de-
veloped two and three dimensional models of the single-support phase of gait including six degrees
of freedom, passive tissue elements, applied joint moments, and open-loop control. They predicted
joint angles and reaction forces similar to those in normal and abnormal human human gait over
one step, between foot collisions.

Some of the approaches involve optimization strategies to yield a particular gait pattern such as
minimizing some estimate of energy cost (Becket and Chang [28]), peak muscle force, jerk, ligament
or bone stress, etc., as reviewed by Collins [29] and also discussed by Nelson [30].

One of the biggest deficiencies of many models is that they often do not involve a complete walking
step (Pandy and Berme [26, 27], Yamaguchi and Zajac [21]). In order to more fruitfully study gait,
especially gait stability, we believe that models should include the entire gait cycle. Besides our



work and McGeer’s work, other research supports this opinion (Taga, et al. [25], Hurmuzlu and
Moskowitz [31, 32]).

Various means of active control have been implemented to generate locomotion patterns in
bipedal walking mechanisms designed to mimic human walking. Walkers built by Mita et al. [33],
Yamada et al. [34], Takanishi et al.[35], Lee and Liao[36], and Zheng et al.[37] generate gait using
feedback control while the bipeds of Miura and Shimoyama[38] generate motion using feedforward
control.

Active control also appears in prosthetic design. Phillips et al. [39], Phillips[40], and Durfee and
Hausdorff[41] have done experiments to test the feasibility of integrating FNS with prostheses for
above-the-knee amputees and orthoses for restoring normal gait to paraplegics.

One can also approach the problems of gait generation and stability in a way that deemphasizes
the role of the neural control system. Can stability be achieved solely through the passive interaction
of gravity, inertia of the body, and contact with the ground rather than by active neuromuscular
control?

1.3.3 Passive Dynamic Locomotion: Some Evidence and Research

Data from studies of human biomechanics and of controlled walking mechanisms hint at the possibil-
ity that models of walking which use no motor activation or control are plausible. Electromyographic
(EMG) recordings show lower levels of muscular activity in human legs during ordinary walking than
other voluntary movements[42]. Muscles of the swing leg are nearly inactive during the whole swing
period, except for peaks at the beginning and end[42, 1]. An EMG profile for the soleus muscle, for
example, is shown in Figure 1.4. Data is displayed for one stride period: from heel contact (HC) of
one foot to HC of the same foot, expressed as 0 to 100% in the profile. The stance period is from
0 to 60% of the stride period, where toe-off (TO) occurs, and the swing period is from 60 to 100%.
The profile shows that the muscle is nearly inactive in the swing phase and that most of the activity
occurs between 40 to 60% during the explosive push-off (PO) phase [1].

Mochon and McMahon[13] used a coupled-pendulum model, confined to the sagittal plane, to
demonstrate that, with proper initial conditions, a passive mechanical walking system could produce
swing times, joint angles, and reaction forces similar to those in normal gait (during the swing phase).

McGeer’s[43, 44, 4] magnificent work with two-dimensional passive gait models and walking
mechanisms proceeded with an evolution of models of increasing complexity coupled with appropriate
empirical studies to validate his hypotheses. This evolution is illustrated in a schematic diagram in
Figure 1.5. With mathematical gait models and using linearized stability analysis, McGeer was able
to find stable limit cycle motions confined to the sagittal plane. McGeer also built several physical
models, with and without knees, that exhibited stable passive dynamic walking in two dimensions.
Driven only by gravity down a shallow slope, McGeer’s walking mechanisms approach a steady
gait similar to human walking, without any active control or actuated energy input. McGeer[4]
also began to develop a three-dimensional mathematical model but only found unstable passive gait
cycles.

More recently, our lab (Garcia, et. al., [16]) and Goswami et. al., [45] have also studied extensively
2D straight-legged point-foot passive-dynamic models of human walking finding stable period-1 gaits
as well as stable higher period ‘limping’ and ‘stumbling’ gaits. In addition, Garcia and Ruina [2]
have duplicated McGeer’s [44, 4] 2D kneed walking work including the analytical model and building
and demonstrating a copy of McGeer’s kneed walking machine and extended his analysis.

1.4 Classification of Dynamical Systems

Here, we categorize the stability models we study, compare and contrast their stability characteristics
with other dynamical systems, and, where possible, determine their general characteristics. An
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Figure 1.4: A normalized EMG profile of the soleus muscle during one stride period (Reprinted from
Winter [1]). N is the number of data sampling intervals over the stride period and the coefficient of
variation (CV) is a measure of the mean variability across many repeat trials over the stride period.
Each subject’s mean EMG was normalized to 100% before averaging.
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Figure 1.5: Taxonomy of McGeer’s Evolution of Passive Dynamic Mechanisms

excellent reference on the dynamics of nonholonomic systems is the book by Neimark and Fufaev [46].
An excellent, if somewhat dated, reference on classifications of systems is by Ziegler [47]

First, we will briefly review the definitions of terms that we will use to characterize our walking
systems.

A geometric or configuration constraint restricts the geometric position of individual parts of
a system. A rate or velocity constraint restricts the velocities of the individual parts. Geometric
constraints must give rise to a specific constraint on velocities. The converse need not be true,
however: a velocity constraint need not lead to specific restrictions on the possible positions of the
parts of a system. Kinematic constraints are integrable if the differential equations that represent
them are integrable with respect to time. If a kinematic constraint is integrable, it is is called
holonomic; if it is not, it is termed nonholonomic. Below, we will give alternative and equally valid
definitions of nonholonomic systems.

Equivalently, we can define nonholonomic systems as those where:

1. velocity constraints are non-integrable (cannot be reduced to geometric constraints) or

2. the number of generalized coordinates is greater than the instantaneous degrees of freedom by
the number of non-integrable kinematic constraints (the dimension of the configuration space
is greater than the number of degrees of freedom) [46] or

3. the number of generalized coordinates is greater than the number of velocity constraints by
the number of non-integrable kinematic constraints (the dimension of the configuration space
is greater than the dimension of the instantaneously accessible velocity space).

An example of a nonholonomic system is a disk free to roll without slip on a plane. The position of
the disk is described by five generalized coordinates: two to mark the position of the contact point
of the disk on the plane and three independent orientation coordinates. The no-slip constraint gives
rise to two non-integrable velocity constraints.
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Though these two kinematic constraints must be satisfied at all times, the five coordinates can
take all sets of values on the plane; i.e., the kinematic constraints do not impose any restrictions on
the possible configurations. In other words, even though the coordinates that determine the position
of the disk relative to the plane must always satisfy two conditions, meeting the conditions does not
specify its position; while satisfying the kinematic constraints, the disk can be brought from one
position to any other position by a variety of moves.

Equivalently, the system is nonholonomic because the number of generalized coordinates exceeds
the dimension of the velocity space by two (5 > 3). Only three rates are necessary to specify the
velocity of the disk at any time.

Conservative and Non-conservative Systems

A conservative system is characterized by work-less constraints and conservative forces (those that
are derivable from a potential). In conservative systems, potential energy plus kinetic energy is a
constant. In a nonconservative system, the time rate of change of the sum of potential plus kinetic
energy is less than zero; the sum is not a constant. Systems with friction, inelastic collisions, or
inelastic deformations are nonconservative.

Equilibrium States, Steady Motions, and Stability

Equilibrium states of a system are those where its position does not change in time (its velocities are
zero). An equilibrium state may also be one where the system has the same position and velocities
at regular temporal or spatial intervals, such as steady or periodic motions.

An equilibrium state is said to be stable if, when subjected to arbitrarily small perturbations,
the resulting motion of the system over time or at regular spatial or temporal intervals remains in
a small neighborhood whose extent depends on the size of the initial perturbation. If, in addition,
small perturbations to the equilibrium state decay to zero over time or over regular intervals, then
the equilibrium state is said to be asymptotically stable.

According to Neimark and Fufaev [46], equilibrium states of a nonholonomic system cannot
be isolated but instead form a surface or manifold whose dimension is equal to the number of
nonholonomic constraints; the manifold is parameterized by a subset of the state variables whose
dimension is equal to the number of nonholonomic constraints. Thus, one may think of the remaining
state variables as functions of this parameter subset.

Since isolated equilibrium states do not exist, we can only talk about the stability of the manifold
of equilibria. The linearized equations of motion in the neighborhood of a certain point of the
manifold of equilibrium states enables one to study the stability of a system in a small neighborhood
of the surface. If in some region of the manifold of equilibria states, small deviations from the surface
decay over time, then that region of the manifold is asymptotically stable in the following sense. If
one disturbs a system from one of the states in this asymptotically stable region of the manifold,
then the disturbances will decay over in time and the system will return to an equilibrium state on
the manifold that is nearby to but not in general the original equilibrium state.

Steady motions of holonomic and nonholonomic systems may also form manifolds of various
dimensions in the phase space and configuration space. Stability of such steady motions may be
studied in the same way as for the manifolds of equilibrium states.

It is well known that manifolds of equilibrium states or steady motions of conservative holonomic
(Hamiltonian) systems cannot be asymptotically stable. On the other hand, not as well known is that
conservative nonholonomic systems can have asymptotically (exponentially) stable steady motions
in some variables while at most mild instability in the others, as recalled in Zenkov, et al. [48].
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Summary Table of System Stability Behavior

In the table in Figure 1.6, we classify systems as conservative (or non-dissipative) or nonconservative
with holonomic, nonholonomic, or piece-wise holonomic constraints. In each case, we list the stability
characteristics and, if possible, give the simplest example(s) we know about.

Our models are nonlinear, piecewise conservative and holonomic yet globally nonconservative and
possibly globally nonholonomic dynamical systems. For instance, the point-foot, straight-legged
walker constrained to two-dimensional motions is simply a double pendulum without dissipation
between collisions; it is holonomic between collisions since there are no kinematic constraints on the
stance and swing leg rates, only geometric constraints on the position of points of the system relative
to each other. The overall motions of the system are dissipative due to the inelastic foot collisions.
Globally the system can be said to be nonholonomic in the following sense: describing the position
of the walker requires three generalized coordinates but at any instant in time the dimension of the
accessible generalized velocity space is only two.

As suggested by the simple example of a discrete Chaplygin sleigh, a rigid body moving on a
plane constrained by a single skate, in Ruina [49], this discrete nonholonomicity may account for
exponential stability of some systems. Ruina [49] shows that, for the discrete model of the sleigh, its
stability eigenvalues approach those of the smooth analog system in the limit as the dissipation due
to collisions goes to zero. The walking models we study are all nonholonomic in this intermittent
sense (and also in the conventional sense if they have rounded feet). They can, for example, translate
forwards by walking although the contact constraint does not allow forward sliding.

General understanding of the stability of such intermittent systems is lacking. Two questions
this thesis only indirectly addresses are: (1) Does stability of passive motion depend on dissipation
(say, due to inelastic foot and joint collisions)? and (2) Does nonholonomicity enhance stability of
passive motion?
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Figure 1.6: Classification of dynamical systems by type of constraints and by the whether the system
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1.5 Research Program

Following McGeer, this dissertation follows a an evolution of models of increasing complexity (see
Figure 1.5.) In most cases, the bulk of our modeling approaches and analysis procedures are similar
in style to that used by McGeer for his successful two-dimensional and unsuccessful three-dimensional
walking analyses.

1.5.1 Ewvolution of Models

A brief summary of McGeer’s models are summarized here.

1. McGeer began with a study of a 2D rimless spoked wheel. The rimless wheel mimics the foot
collisions and inverted pendulum behavior of walking but not the oscillations of the leg. The
main feature of the 2D rimless wheel is that dissipation from the inelastic spoke collisions
regulates its speed. In simple mechanical terms, the gravitational energy available per step
is speed-independent for a given slope whereas the kinetic energy lost per collision increases
with speed (proportional to speed squared). The balance of the energy loss and gain per
step determines the steady-state speed. A one-dimensional map can be used to characterize
the motion of the 2D rimless wheel from one step to the next and determine the stability of
periodic motions (motions in which the state variables are the same after each step). Using
the linearized equations of motion for the rimless wheel (small slopes angles and large number
of spokes), McGeer constructed an iterative map for the state of the wheel from collision to
collision, and showed that asymptotically stable limit cycle motions of the wheel exist.

2. The next model McGeer studied (which we have not) is the 2D synthetic wheel, two straight
legs pinned at the hip with curved feet having a radius equal to the leg length. Whether a
foot slides freely or rolls is determined by a ratchet-like foot contact condition. The synthetic
wheel simulates leg oscillations and inverted pendulum behavior but not foot collisions.

3. McGeer’s next model was the 2D two-degree-freedom straight legged walker, with foot radius
less than the leg length.

4. Next, McGeer investigated a 2D, four link knee-jointed walker (Figure 1.7) which avoids the
foot scuffing problems in the previous walkers. A passive gait cycle for McGeer’s 2D kneed
walker is shown in Figure 1.8.

5. Finally, McGeer [4] analyzed a two-legged straight-legged walker with curved feet and hip-
spacing that was free to move in three dimensions but only found unstable limit cycles.

Our evolution of models and how it fits in with McGeer’s is shown in Figure 1.9. Our analysis also
proceeds with a rimless spoked wheel, constrained to move in two dimensions (in a vertical plane)
down a shallow slope. Our 2D analysis, however, only adds a slight depth to McGeer’s results.

We start our study of three-dimensional systems by studying the motions and stability of rolling
disks. To investigate our ideas of the how mass distribution affects stability of steady 3D motions,
we add rigid bodies which turn and bank with a disk but do not roll with it, thereby adding new
couplings between gyroscopic terms.
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a) Dimensional Parameters

b) Dynamic Variables

Figure 1.7: Our realization of McGeer’s knee-jointed walking model. Shown are the (a) model
parameters and (b) dynamic variables (from [2]). Radii of gyration and masses of thigh and shank
are denoted by ry, my, rs, and my, respectively. The foot is a circular arc centered at the ‘+’. The
angle between the stance thigh and the line connecting the hip to the foot center is defined to be e7.
The dynamic variables 8y, 0;1,, and 8, are measured from a line, normal to the slope, to lines offset
by er from their respective segments. A stop (not shown) at each knee prevents hyper-extension of

either knee. (Drawings courtesy Mariano Garcia [3])
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Figure 1.8: A simulated gait cycle of McGeer’s 2D kneed walker (from [2]). Angles of leg segments are
shown from just before heel-strike to just after the next heel-strike for a stable gait cycle of the walker
from Figure 1.7. In this gait simulation, the system returns to its original initial conditions after
one step. The parameters shown in the figure correspond to measured values from an experimental
walker studied by [2]. The heavy line on the graph corresponds to the motion of the heavy-line leg
on the cartoon under the graph. At the start of the step, this is the stance leg, but it becomes the
swing leg just after the first heel-strike. After the first heel-strike, the swing leg begins to flex and
swing as a double pendulum under the moving hip. At knee-strike, the swing shank collides against a
knee-stop. The swing leg then swings as a simple pendulum under the moving hip until it has a heel-
strike, when the two legs exchange roles. Heel-strike and the double-support phase are instantaneous
in this model. In general, the angular velocities of the joint segments have discontinuities at knee-
strike and heel-strike, which would appear as kinks in the plots of angle trajectories. These kinks
do not happen to be prominent in this particular simulation. (Figure and caption courtesy Mariano
Garcia [3])
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Figure 1.9: The un-invention of the wheel. Taxonomy of our analysis models. Models studied by
McGeer but not by the author are shown in gray. Models the author has studied are shown in black.
Models not studied by McGeer are indicated by an asterisk.
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We adjust the distribution of mass in the additional bodies to upgrade the neutral stability of the
uniform disk to asymptotic stability with respect to small lateral disturbances.

Next, an analysis of the 3D rimless wheel captures the essential features of our proposed study
of three-dimensional walking mechanisms by allowing us to study out-of-plane stability of a simple
mechanical analogue to walking. We use our insights from this spoked wheel to progress to the
legged walker.

Finally, then, moving away from 3D wheels, we study a straight-legged point-foot walking model
free to move in three-dimensions. We study planar motions of this model as a special case and a
starting point.

1.5.2 Modeling Approach and Analysis Procedures

We first begin with a qualitative overview of the procedures of study and then make their description
more formal with mathematical notation in Appendices A, B, and E.

Qualitative Overview of Procedures of Study

A step of a walking mechanism can be represented by a function which takes as input the measure-
ment of the state of the device at definite points in its motion, usually(and perhaps most logically)
just after foot collisions with the ground, and returns as output the values just after the next iden-
tically defined event. Thus, the state of the system after a step is a function of the state just after
the previous step. McGeer calls the function or return map the stride function.

This mapping approach has also been used in other work involving discontinuous vector fields
such as studies of: hopping robots (Biihler and Koditschek, 1990 [50]); bouncing balls (Guckenheimer
and Holmes, 1983 [51]); elasto-plastic oscillators (Pratap, et. al., 1992 [52, 53]); impact oscillators
(Shaw and Holmes, 1983 [54], Shaw and Rand, 1989 [55]); balance wheels and pendula in clocks
(Andronov, et al. [56]); and walking (McGeer, 1991 [4], Hurmuzlu, 1993 [57, 58]). A more general
discussion of the dynamics of systems with impacts can be found in Brogliato, 1996 [59].

If nonlinear one-dimensional return maps describing the state of systems at successive collisions
fall into a class of well defined functions, then certain conclusions may be made about the stability of
periodic points of the maps. Koditschek and Biihler[60] verified one aspect of Raibert’s [61] exper-
imental work with hopping and running robots by establishing the existence of globally attracting
vertical hopping modes (constrained against falling over) using unimodal maps whose properties
are well established. In addition, Biihler and Koditschek [50] determined the existence of globally
attracting 1D juggling modes for the one-dimensional juggler using unimodal maps and verified their
simulations with careful experiments.

The stride function is found by deriving the differential equations of motion between collisions
and collision conditions at end-of-step, subject to the classical laws of mechanics. Appendix B
describes the details of deriving the equations of motion and the collision rules for the case of the
point-foot straight-legged walker free to move in three-dimensions.

The models we study are systems of rigid-body links with hinge connections at the link joints.
In this study, we only consider mechanisms with at most two links.

For two-link devices, in between foot collisions, we assume the stance foot remains on the ground.
We treat it as a ball joint if it is modeled as having point feet or as having no-slip rolling constraints
if it is modeled as having rolling contact, until the swing foot makes contact. We model the hip
joint as a hinge. We assume additionally that there are no resisting torques about the point of
contact and about the hinge joint axis. We derive the equations of motion between foot collisions by
applying angular momentum balance about: (1) the stance foot contact point for the entire system
and (2) the hinge rotation axis at the hip joint for the swing leg.

The swing foot contact point receives an impulse at foot-strike. Due to the swing foot collision,
an impulse is also transmitted to the swing leg at the hip joint. We assume that, during collision,
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other smaller forces (e.g., gravity) acting on the system are negligible in comparison to the collision
impulses. We also assume there are no impulsive ground contact torques. At the instant of collision
at the hip, we assume that the former stance leg loses contact with the ground (at the same instant
the swing foot makes contact) and that it has no impulsive reaction with the ground as it leaves.
Based on these assumptions, angular momentum is conserved for the entire system about the swing
foot contact point during the collision process. Angular momentum is also conserved for the new
swing leg (formerly the stance leg) about the hip joint hinge axis. These statements of angular
momentum conservation during the collision process yield the transition rules for velocities from
just before to just after foot-strike.

We derive the governing equations and collision rules by hand or on a computer using symbolic
mathematics packages such as Maple® (see Appendix B).

For a given set of initial conditions, we integrate the equations of motion over one step an-
alytically, if possible, but most often, numerically using the 4th-5th order Runge-Kutta method
from MATLAB®. End-of-step is detected using a method developed by Henon [62] for the numer-
ical computation of Poincaré Maps. Once a collision is detected, the collision condition is applied.
This sequence of integration, collision detection, and application of jump condition constitute one
evaluation of a cycle of motion.

A state of the system that returns to itself is called a fixed point of the stride function. Such a
fixed point corresponds to a gait cycle (not necessarily stable). In order to find a stable cycle, first
we have to find a cycle. We find fixed points of the stride function analytically if possible or by a
numerical search. Appendix A describes a multi-dimensional Newton’s Method fixed point search
algorithm. Fixed points known from analysis of two-dimensional walkers may serve as initial guesses
for the iterative numerical searches in three-dimensional models. For models that do not have strict
two-dimensional interpretation, we use our knowledge and intuition about walking for initial guesses.

Given that we find gait cycles (fixed points of the return map), we evaluate stability by linearizing
the stride function in the neighborhood of each fixed point. The linearization requires an estimate
of how perturbations of each state-variable away from the fixed point are propagated to the next
step. These estimates come from a series of analytical calculations or numerical simulations in
the neighborhood of the fixed point. From these estimates, we can assemble the Jacobian matrix.
Close to a fixed point, the Jacobian matrix maps the perturbation to a fixed point just after a
collision to the perturbation of the fixed point just after the next collision. Since, in most cases,
we do not know the stride function explicitly, we must find the Jacobian of the stride function
numerically. Appendix A summarizes how to do this calculation. In some cases, we may obtain
analytical approximations to the Jacobian of the the stride function evaluated at a fixed point by
using perturbation methods, for example. Appendix A outlines such a procedure.

The eigenvalues of the Jacobian matrix indicate the stability of the system. If all eigenvalues
have magnitude less than one, then the fixed point, and the gait cycle, are asymptotically stable.
If any eigenvalues are outside the unit circle, then the periodic motion is unstable. If the ‘biggest’
eigenvalue has magnitude of one, then the limit cycle is neutrally stable. Appendix A explains how
the eigenvalues determine the stability of fixed points.

For a given set of parameters, the search for a gait cycle and the stability check may be automated.
If none of the fixed points for a set of parameters are stable, we modify the parameters and check
again. An automatic search through all of parameter space is impractical, however. Instead, we guide
the search using results from simpler models, our experience and insight about stability mechanisms
and natural walking, and if possible numerical optimization procedures such as a multi-dimensional
gradient search method or the method of simulated annealing.

Once we find a stable gait cycle, we perturb the parameter values and repeat the stability analysis,
in order to evaluate the sensitivity of the stable cycle to changes in parameters.

We summarize the procedure as follows:

1. Define a mechanical model and make assumptions that determine parameters, kinematical
description, and constraints.
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2. Derive the equations of motion between foot collisions.
3. Describe the foot collision and derive a rule for the change in velocities during a collision.

4. Construct the stride function numerically by integrating the equations of motion between
collisions, detecting a collision, and applying the collision rule.

5. Check validity of simulation. If the simulation results are not consistent with the laws of
mechanics or the walking mechanisms are otherwise not behaving as should be expected, start
at the beginning and refine the simulation.

6. Use root finding to find fixed points of the stride function.

7. Numerically evaluate the Jacobian of the stride function at the fixed points and find its eigen-
values.

8. If there are stable limit cycles for a set of parameters, try to determine the basin of attraction
for the fixed points and vary the parameters to achieve the most stable periodic motions. If
there are no stable limit cycles for a set of parameters, adjust parameters to find stable walking
motions and redo the analysis procedure.

1.6 Dissertation Organization by Chapters

The rest of this dissertation is organized as follows: the motions, behaviors, and stability of the 2D
rimless wheel are presented in Chapter 2; the effects of mass distribution on the stability of a rolling
disk are presented in Chapter 3; numerical and analytical stability analyses of planar limit cycles of
the 3D rimless wheel are presented in Chapter 4; finding walking motions and their stability for the
2D straight-legged point-foot walker is presented in Chapter 5; and, finding walking motions and
their stability for the 3D straight-legged point-foot walker is presented in Chapter 6. Appendix A
gives a mathematical description of the analytical, numerical, and simulation procedures and includes
relevant Maple® and MATLAB® codes. Appendix B describes the methodology for the derivation
of the governing equations for the 3D straight-legged passive-dynamic walking mechanism including
relevant Maple® codes. Appendix C outlines the derivation of a special sequence of angular rates for
the 2D rimless wheel analysis referred to in Chapter 2. Appendix D reviews the special set of 3-1-2
Euler angles used to describe orientations in Chapter 4 of the 3D rimless wheel and Chapter 6 of
the 3D walker. Appendix E presents the Maple® code for the perturbation analysis of the stability
of the 3D rimless wheel reported on in Chapter 4.
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Chapter 2

‘Step One’: Rimless Spoked
Wheel Constrained to Motions in
a Vertical Plane

... I envy the spokes of wheels ...
Emily Dickinson, Poems. Book II. Love. XXI. Longing

2.1 Introduction

Following McGeer, our analysis of walking mechanisms starts with an investigation of a rimless
spoked wheel confined to move in a vertical plane in a fixed direction on a slope. The 2D rimless
wheel is shown circled in Figure 2.1 below to remind the reader of where it fits into the evolution
of models in the research program. Henceforth, we will repeat the figure at the beginning of each
chapter to show the progression of the models.

The configuration of the wheel is shown in Figure 2.2. A rimless wheel free to move in three
dimensions is the subject of the Chapter 4. The rimless wheel captures some of the essential features
of human walking. It mimics the foot collision, falling-and-catching, and inverted pendulum behavior
of walking but not leg oscillations or fore and aft instability. The 2D rimless wheel also, obviously,
does not have the lateral instability issues of 3D walking. The 2D wheel is a first ‘step’ in a
progression to walking mechanisms with two swinging legs with and without knees in two and three
dimensions. It is amenable to simple analyses yielding results about periodic motion and stability
of a particular passive dynamic system without active energy input or control. In this problem, the
wheel, statically unstable when balancing on one spoke, is stabilized dynamically in the direction
of motion by repeated collisions. McGeer[43, 44, 4], claiming to follow Margaria[63], carried out
a stability analysis of the rimless wheel, using linearized equations of motion, accurate when the
number of spokes is large and the slope is small; i. e., when n — oo and a € 1. McGeer found
stable limit cycles and the asymptotic rate of approach to these cycles. The subject of this chapter
is a full nonlinear analysis of the wheel. This analysis adds a slight depth to the discussions of
McGeer[43, 44, 4].

The rimless wheel is an example of a mechanical system with intermittent contacts. The spoke
impacts give rise to discontinuities in the velocities. One can deduce the trajectories and the phase
plane portrait of this simple system. The system is piecewise holonomic and conservative, or Hamil-
tonian. Like the 2D rolling disk, in its overall motion, it is holonomic. Globally, it is non-conservative
due to the instantaneous loss in energy at each inelastic spoke collision.

21
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Figure 2.1: The place of the 2D rimless wheel in the passive-dynamic family tree.

Though the 2D rimless wheel is nonlinear in between collisions, it is simply an inverted rigid
body pendulum for which a first integral exists - conservation of energy. Thus, the orbits in between
collisions are easily generated. They are then pieced together using angular momentum balance at
the collisions to obtain a complete phase plane portrait.

From this formulation, an explicit one-dimensional piecewise continuous Poinc-aré map is ob-
tained that takes a measure of the velocity just after a spoke collision to just after the next. The
Poincaré map samples the phase space at an angle of rotation fixed by the number of spokes, just
after each spoke collision with the ground.

From this map, we obtain results regarding the existence and stability of two possible fixed
points corresponding to static equilibrium and limit cycle motion of the wheel. The existence of
these points depends on the model parameters. The birth and death of the fixed points cannot be
classified according to classical theory of bifurcation of smooth scalar maps due to discontinuity in
the Poincaré map.

We also find the asymptotic rate of approach to the fixed points, the non-dimensional energy loss
per wheel revolution, steady-state non-dimensional speed and rate of change of speed of the center
of mass as functions of slope angle, number of spokes, and moment of inertia about the center of
mass. We show that in the limit as the number of spokes goes to infinity the rimless wheel behaves
like a rolling disk. Finally, we summarize McGeer’s linear analysis of the wheel and compare it to
our nonlinear results. Numerical simulations are presented to verify and demonstrate the results.

2.1.1 Chapter Organization

The rest of this chapter is organized as follows: The physical system and model are described in
Section 2.2; the governing equations and phase space are presented in Section 2.3; the Poincaré
section and return map are defined in Section 2.4; fixed points, their stability, their criteria for
existence and the rate of approach to them are described in Sections 2.5 to 2.9; an energy analysis
is carried out in Section 2.10; the limit cycle non-dimensional speed and rate of change of speed
are calculated in Section 2.11; a review of McGeer’s linear analysis is given in Section 2.12, and a
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\ Spoke k+1

Figure 2.2: Wheel model: A rimless spoked wheel of mass m, moment of inertia about the center
of mass I, and n evenly spaced spokes of uniform mass and length [ rolls down a slope of angle a.
The orientation of the wheel is given by angle 6. The angle between the spokes is 8 = 27 /n.
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summary and discussion of this analysis with reference to the study of walking and the goals of this
research are presented in Section 2.13.

In addition to introducing the physical system and assumptions, Section 2.2 (Description of the
System), is intended as an overview of the concepts and techniques of our analysis and as a prelude
to a more formal presentation of the details of the analysis in subsequent sections.

2.2 Description of the System

A wheel of mass m and moment of inertia about the center of mass I with the rim removed and n
evenly spaced spokes of uniform mass and length [, acting as ‘legs’, rolls down a slope of angle a.
(See Figure 2.2.) Unlike a wheel with a rim, this device cannot roll steadily on a level surface since
it loses energy at collisions. We assume the spoke collisions are perfectly inelastic and impulsive,
an idealization of foot collisions. Kinetic energy is, thus, lost in each dissipative impact and the
wheel’s speed is consequently reduced. For completeness, we also allow the wheel to roll backward
and forward.

Once a spoke contacts the ground, it maintains hinged contact with the ground until the next
spoke collides. In the model here, we explicitly exclude loss of ground contact and do not allow
any slip — unrealistic assumptions for some of the motions. (Allowing for slip and/or loss of contact
would limit the maximum slope for no-bounce, no-slip limit cycles to exist. Other, more complicated
limit cycles could exist, however.)

2.2.1 Configuration

The orientation of the wheel is characterized by 6y, the angle of spoke k measured from the vertical,
positive in the counter clockwise sense. 6y is zero when spoke k is vertical and in contact with
the ground. Since the spoked wheel has n-fold symmetry, the angle with the vertical of the spoke
presently on the ground in some sense characterizes the configuration of the system.

Special times of interest are just before and just after collision i. (—) and (+) are used as the
superscripts to denote these times. For instance, iO,j is the angle of any spoke k, just after collision
i. j(7) is the spoke touching the ground just after collision . For downbhill rolling, j(i) = ¢ and
j(i +1) = j(4) + 1. For uphill rolling, j(i + 1) = j(¢) — 1. "Hj(z.) is the angle of spoke j(%), the spoke
which just collided with the ground at collision %, just after collision i. The overall motion of the
wheel is recorded by, say, 01 (¢).

2.2.2 Cycle of Motion

A schematic of one cycle, for downhill rolling, is shown in Figure 2.3. The wheel rotates over the
‘stance’ spoke, spoke j(i) , as an inverted pendulum with initial angle "6;(1.) = a —m/n and rotation
rate § = ’0;?1) The non-collisional portion of the stride ends just before the next spoke in sequence,
spoke j(i + 1), analogous to the swing leg in walking, strikes the ground at ""'10;(1.) =a+m/n and
6 = "+19j’(1.) instantaneously transferring support from the trailing spoke to the leading spoke. After
impact, the wheel is now poised for the next start-of-cycle at z"'“16?;'21. by = "Hj(z.) = a — 7/n and
)y _ i+t

0_ =" ej (i+1)°
0 henceforth.

Since the angular velocity of all of the spokes is the same, we will drop subscripts on

2.2.3 Motions and Limiting States of the Wheel

When the wheel is rolling up or down, it may or may not have sufficient energy to pass over the
vertical position. When the wheel does not have enough energy to pass the vertical in the downhill
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During Collision
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Figure 2.3: Schematic showing: (a) the state of the wheel over one stride just after the collision of
spoke j(z) with point A, (b) the state of the wheel just before collision 7 + 1 of spoke j(i + 1) at
point B, (c¢) the free body diagram of the wheel during the collision of spoke j(i + 1) at point B, and
(d) the state of the wheel just after the collision of spoke j(¢ + 1) at point B. The unit vector n is

normal to the slope and the unit vector t is tangent to the slope.

Spoke (i)
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direction, the wheel has one motion: reversing direction and then rocking back and forth between
two spokes. When the wheel does not have enough energy to pass the vertical in the uphill direction,
the wheel can have two motions: reversing direction and rocking back and forth between two spokes,
as above, or reversing direction and rolling downbhill.

If the wheel completes a downhill cycle, the kinetic energy of the wheel just before collision is
greater than the kinetic energy at the start-of-cycle due to the downhill slope (KE;;, > K Ef).
The kinetic energy of the wheel drops instantaneously at impact, however. For downhill motions,
the following outcomes are possible.

e 1. Periodic motion arises if the the energy lost in collision is exactly balanced by the kinetic
energy gained in falling. In this case, the state variables are equal to those at the start of the
previous stride. The wheel is in periodic or limit cycle motion that repeats indefinitely.

e 2. If more energy is lost in collision than gained in falling, the wheel slows, either towards a
periodic motion or to an eventual stop on two spokes, depending on the slope, inertia, and
number of spokes.

e 3. If more energy is gained in falling than lost in collision, we expect the wheel to increase in
speed towards the periodic motion.

e 4. For a particular angular velocity after collision and small enough slope, the wheel will
approach the unstable vertical equilibrium in infinite time.

For uphill motions, the wheel will eventually reverse direction, roll downhill, and reach one of the
outcomes above for downhill rolling.

Thus, the possible limiting states for the wheel are limit cycle motion, the stopped position on
two spokes, and the unstable vertical equilibrium. Limit cycles and the stopped position correspond
to the condition 16+ = g+ and 1T = T = a — I; i.e., the state of the wheel is the same just
after every collision 1.

2.2.4 Behaviors of the Wheel

The behaviors of the wheel are the ways in which the wheel approaches the possible limiting states.
The behaviors depend upon the wheel parameters and initial conditions. For example, the wheel
can roll down the slope at higher than the angular rate needed to just reach the vertical position
in infinite time but less than the limit cycle angular rate, increase in speed and approach a limit

cycle from below. Using our notation, we can represent the behavior schematically as Down=y Limit
Cycle where the (+) or (—) refers to increasing or decreasing angular velocity after each collision.
In summary, using our shorthand notation, the behaviors of the wheel are as follows:

e 1. Down Limit Cycle

e 2. Down— Limit Cycle

e 3. Down— Rock — Stop

4. Rock— Stop

e 5. Up— Rock — Stop

e 6. Up— Down= Limit Cycle
e 7. Down— Vertical

e 8. Up— Vertical
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e 9. Up— Down — Vertical
e 10. Up— Stop
e 11. Down— Stop

These behaviors are more compactly summarized in a diagram in Figure 2.4.

Rocking

Up Rolling Down Rolling

* N N
\1
Stable

Stopped Limit
Position Cycle
Vertical

Upright

Position

Figure 2.4: Diagram showing the possible motions, the condition of rocking, and the possible limiting
states, stopped on two spokes, the limit cycle, and the vertical position. Solid arrows indicate that
a motion or limiting state can be reached in finite time after one collision or in infinite time before
the next collision can occur. Dotted arrows indicate that a limiting state is reached asymptotically
after infinite collisions in finite time. The asterisks next to a solid arrow indicate that the stopped
position can be reached in one collision; e.g., cases 10 and 11 in the text. The arrows turning back
on themselves and attached to the motions indicate that the motion can occur over one or more
iterations.

In cases 3, 4, 5, the wheel rocks back and forth on two spokes until coming to rest on two spokes
after an infinite number of collisions in finite time. Since, as we will see, support transfer produces
a simple ratio (less than one) between adjacent terms in the sequence of angular rates, the rocking
cannot stop in a finite number of collisions. But, it can stop in finite time since the total time of
rocking is an infinite geometric series that has a finite sum. McGeer [64] finds the finite sum of this
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infinite series, obtained from a linear analysis of rocking, with arbitrary accuracy for the case where
the angular rate has gotten very small after some large but finite number of collisions.

Cases 10 and 11 can only happen with three and four spoked wheels and sufficiently small radius
of gyration. In these special cases, the wheel comes to a stop after the first spoke collision, for any
initial conditions.

We now move on to the details of the full nonlinear analysis of the 2D rimless wheel by starting
with the equation of motion, collision transition conditions, and the associated phase space.

2.3 Governing Equations and the Phase Space

Since the rimless wheel has n-fold symmetry, the wheel looks the same for a given angle of any
spoke that is currently in contact with the ground between collisions. The angle with the vertical
of the spoke presently on the ground in between collisions, then, can be used to characterize the
configuration of the system, as noted in Section 2.2.1. As the center of rotation of the rimless wheel is
instantaneously moved with each collision from the tip of one spoke to the next, we thus consider the
orientation of the wheel between collisions restricted to the closed interval I = [a@ — 7/n,a + 7/n)
over many collisions by resetting the angle at each collision. The boundaries of the interval are
determined by the number of spokes, n, and the slope angle, a. The rule for updating the orientation
was introduced in Equation (2.4).

We use angular momentum balance about the point of spoke contact to find the equation of
motion between collisions, the configuration scheme described above to find the collision transition
rule for the orientation angle of the wheel, and conservation of angular momentum about the incipient
point of spoke contact to find the collision transition condition for the angular velocity of wheel.

2.3.1 Equation of Motion between Collisions

Referring to Figure 2.3, the equation of motion is derived from angular momentum balance about
point A, )
M =Ha,. (2.1)

The non-dimensionalized equation of motion between collisions is:

6 — Msinf =0, |0 —a| < 7/n. (2.2)
where
1
2 _
A= 2J+1 (2:3)
e
2J = —
4 ml?
3 n<oo, and

<
0 < a<m/2
An overdot indicates differentiation with respect to non-dimensional time 7 = ¢4/g/l. This equation

is simply that of an inverted rigid body pendulum.

2.3.2 Collision Transition Conditions

The angle is reset at each collision ¢+ 1 as support is transferred from spoke j (%) to j(i+ 1) according
to the following mapping:

@-a)——(0—a), |0 —a| =x/n. (2.4)
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This relation is obtained by noting that the orientation of the wheel is rotated by —27” after a
downhill collision and by 27” after an uphill collision.

Ignoring the impulse due to gravity during collision, the condition relating the angular velocity
of the wheel before and after collision is derived from the conservation of angular momentum during
collision about the incipient point of spoke contact. Referring to Figure 2.3, we can write this as

Hj = Hj (2.5)
where H is angular momentum and
Hy = Hg+rg/pxmvg (2.6)
Hy = Io("7)k
= (H'lé_) K XTc/a,
Hf = Iy ("6*)k, and
Ig = Ic+ml?

The conservation of angular momentum stated in Equation (2.5) yields the following transition
function relating angular velocity before and after collision:

0 — pé, |0 —a|=7/n (2.7)
where )
yis
_ 2J + cos(Z)
2J+1
The collision parameter u in Equation (2.7) represents energy lost during impact since it is always
less than one, except when the number of spokes is infinity so that p is equal to one. Before we

can define the Poincaré section and return map for the 2D rimless wheel, we must first describe the
phase space and trajectories for the system.

. 2
-1+ Az(cos(%) —1), 0<u<l1. (2.8)

2.3.3 The Phase Space and Trajectories
The Phase Space

Rewriting Equation (2.2) in first order form, the (,0) phase flow is governed by

=y, |0 —a| <7/n (2.9)
gy = Msind
O —ay) = (=(0-a)um), 0 —a] =m/n (2.10)

The flow in phase space between collisions is easily generated using the first integral of motion(conservation
of energy)

6 = \/0% + 2X2(cos(fy) — cos(8)). (2.11)

The simple rigid body pendulum without collisions has the usual phase space with coordinates
(6,0) € R2. The evolution of the trajectories for the rimless wheel, however, is contained in a closed

subset of phase space )
U={(6,0) |#—a|<w/n}=IxRcCR. (2.12)

All trajectories start in U and terminate in U. Figure 2.5 shows the subtended phase space U for
the rimless wheel superimposed on the phase space for the simple rigid body pendulum.
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Figure 2.5: The phase space U and its boundaries OU with slope angle a = {¢, number of spokes

n = 6, and 2J = 0.5 for the rimless wheel is shown superimposed on the phase portrait for the
nonlinear simple rigid body pendulum. The interval I is I = [a — 7/n,a + 7/n] = [-0.3142,0.733].
The trajectories of the motion of the rimless wheel are contained in this subset of the phase space for
the simple rigid body pendulum also with non-dimensional inertia 2J = 0.5. Note the asymmetry
of U about the vertical axis due to the slope angle: the greater the slope angle the greater the
asymmetry.



31

Phase Flow in U

We can re-write Equation (2.9) as
q="1(q,p) (2.13)

where q = (9,9) and f : U — U is a time-independent vector field depending upon a vector of
parameters, p = {\?,n,a}. Back, et. al [65] have elucidated a concise framework for describing
dynamical systems such as the rimless wheel which require a mixture of discrete and continuously
evolving events, what they call hybrid systems. Conceptually, they view the evolution of the system
as a sequence of trajectory segments where the endpoint of one segment is connected to the initial
point of the next by a transformation. They divide time into contiguous periods, called epochs,
separated by instantaneous events where transition functions are applied. We will borrow this
terminology to describe our system.

The epochs here are the time periods between spoke collisions which are the events. The transi-
tion function here is a map T : OU — 8U, where 8U = {(0,0)| |0 —«| =m/n} and T is defined by
Equation (2.10). Within this framework, an orbit in the flow of this system which begins at a time
to and terminates at time t; may be completely described. Back, et. al [65] define a trajectory for
Equation (2.13) to be a curve v : [tg,ts] = U together with an increasing sequence of real numbers
to < t1 < --- < ty that satisfies three properties:

e Each time interval corresponds to an epoch and ~y(¢) lies entirely in U for all t € (¢, ti41).
e For t € [t;,ti41), t = v(t) is an integral curve of the vector field f.
e lim,_ - ~(t) =v exists, vé OU, and T(v)= 1imt—>t‘."+1 ~(t), T(v)e oU.

t—t7

It is possible for v(tf) € U; i.e., y(t) terminates in U.
A representative phase plane portrait, generated using modified MATLAB® integration routines
is shown in Figure 2.6 for several initial conditions. Some remarks regarding the phase plane portrait:

e The nature of the phase plane portrait and, hence, the physical behavior of the wheel depend
on the wheel parameters.

e Trajectories for a simple pendulum cannot cross the separatrices but the collisions allow this
for the rimless spoked wheel.

e Every trajectory terminates on U except for those on the separatrices which initiate at

g = \/2X2(1 — cos(a — m/n)) (2.14)

or

uPf = —\/2X2(1 — cos(a + 7/n)) (2.15)

and terminate at the unstable equilibrium (6,60) = (0,0). If a > 7, the unstable equilibrium
is not in U.

In Figure 2.7, 6 and 6 are plotted versus non-dimensional time, 7, corresponding to trajectory
71 (t) in Figure 2.6. The plots show the discontinuities in the state variables at the collisions and
shows how 6 is bounded by § = a— ~ and 0 = a + 7.

For illustrative purposes, the trajectories and phase space for the rimless wheel shown in Fig-
ure 2.6 are shown superimposed on the corresponding trajectories of the simple rigid body pendulum
in Figure 2.8.

Now that we have described the phase space and trajectories, we can define the Poincare section
and return map.
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Figure 2.6: Two phase plane trajectories in U and between the boundaries of U. The trajectories
are labeled 7, (t) and 72(t) and both use 2J = 0.5, n = 6, and a = {¢. The initial condition for
the first trajectory is v1(to) = vo = (—0.314,0.30) and subsequent points of the trajectory on the
boundary of U are denoted by v;, i = 1,2,3,.... The initial condition for the second trajectory
is y2(tg) = Vo = (—0.314,0.22) and subsequent points of the trajectory on the boundary of U are
Vi, 1 = 1,2,3,.... The solid lines are integral curves of the vector field f representing the motion
between collisions and the dashed lines are fictitious ‘curves’ that piece together the integral curves
at collisions to make a complete trajectory. The dashed lines represent the instantaneous application
of the transition function T at each collision that manifests itself as a decrease in angular velocity.
The dotted lines are trajectories that correspond to the separatrices for the simple pendulum. If the
wheel starts at initial conditions that are on these trajectories the wheel either reaches the vertical
unstable equilibrium 6 = 0 in infinite time or leaves the vertical position and makes a collision in
finite time. The arrows on the trajectories indicate the forward direction in time.
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Figure 2.7: In figures (a) and (b), 6 and 6 are plotted, respectively, versus non-dimensional time,
T, corresponding to trajectory 7y, (¢) in Figure 2.6. In the time interval shown, the wheel makes two
collisions. The plots show the discontinuities in the state variables at the collisions. The first plot
shows how 6 is bounded by # = a — T and 6 = a + - and how the angle is reset after each collision
according to the collision transition rule Equation (2.4). The size of the interval is equal to the angle

between the spokes, 3 = 2Z.
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Figure 2.8: The trajectories and the phase space for the rimless wheel shown in Figure 2.6 are
shown superimposed on the corresponding trajectories of the simple rigid body pendulum that pass
through the angular velocities after collision on the boundaries of U where the trajectories of the
rimless wheel start. The bold lines are the trajectories of the rimless wheel and the dotted lines are
the trajectories of the simple rigid body pendulum.
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2.4 Poincaré Section and Return Map

To study this system, we shall use the method of a Poincaré section. The one degree of freedom
rimless wheel has a two dimensional phase space with coordinates (0,9) € U. A natural place to
sample this space is at the points of discontinuity, the collisions, where we know the orientation of
the wheel. We then will define a scalar map P that takes an angular velocity after a collision that
is in the section to the angular velocity after the next collision that is also in the section.

2.4.1 The Poincaré Section

We define the sampling location in the phase space, the Poincaré section ¥, as:

_ NICESCEEIR 6>0, and 0 #£ 9
z_{(e,o)‘ O=(a+1), 6<0, and §# 4 (2.16)
where
dng \/2)\2(1 — cos(a — %)) (2.17)
and
uPg = —\/2,\2(1 — cos(a + %)). (2.18)

dng is the angular velocity just after collision in the forward direction such that the wheel reaches the
vertical position # = 0 in infinite time. “P§ is the angular velocity just after collision in the backward
direction such that the wheel reaches § = 0 in infinite time. These critical values are obtained using
conservation of energy; all of the kinetic energy of the wheel following a spoke collision is converted
to potential energy at 6 = 0.

The critical values of angular velocity after collision, dng and “”9, defined above, are excluded
from the Poincaré section because once the wheel attains either of the critical values after a collision,
the wheel will not have any more collisions since the wheel reaches the vertical in infinite time. Thus,
we cannot sample the space after collisions since the wheel has stopped in the vertical position.

The flow of the differential equation is everywhere transverse to X; i.e. the phase plane trajectories
pass through the Poincaré section. This is easily seen by considering the vector field in (8,6) space

dé

on ¥ given by Equation (2.9). The flow is transverse to ¥ since 5 - is defined.
=« %

Orbits in the phase space will be studied by considering the mapping
P:¥->X (2.19)

induced by the solutions of Equation (2.2). Figure 2.9 shows the phase space and the section X.
Positive orbits are sequences of the angular velocity of wheel after each collision. The sequences are
obtained by iterating forward from an initial condition in ¥ using the Poincaré map P. The orbits
can be visualized by marking the sequences of angular velocities on the Poincaré section. Consider
orbits with initial angular velocities just after collision, 8y € X, in Figure 2.9. Positive orbits from
initial conditions with § > 98 > 0 and “Pf < § < %0 are shown for several iterates with a < z
The section we have defined is used since the first integral of motion, the conservation of energy,
exists for motion between collisions and since the transition function for the angular velocity at each
collision is simple. Thus, the map P can be obtained in closed form. Discontinuities in the map can
exist, however, and we must locate them and determine their dependence on the wheel parameters
before constructing the map.
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Figure 2.9: The phase space (0, 0) € U showing the Poincaré section ¥.. Positive orbits from initial

conditions 6y > 96 > 0 and “Pf < §y < @ are shown for several iterates with o =

T
152

2J = 0.5,

and n = 6. In this case, dng = (0.255 and “P§ = —0.585. The orbits in ¥ starting with with
6o = 0.30 and 6y = 0.22 are marked by the sequences, 1,2,3,... and 1',2',3',..., respectively. The
orbit starting with 6, = 0.30 > 978 corresponds to the wheel starting off downhill and approaching
a limit cycle. The orbit starting at 8y = 0.22 < 9”@ corresponds to starting off downhill with too
little energy to make it past the vertical position and rocking back and forth between two spokes,
eventually coming to rest.
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Piecewise Continuity of the Return Map

The Poincare map can be discontinuous. Discontinuities can arise in the return map at the critical
values of angular velocity after collision for stopping at the vertical position in infinite time, uP and
dng. The critical values depend upon the number of spokes, the slope angle, and the non-dimensional
inertia. The critical angular velocities exist for shallow and intermediate slopes, a < . The map
will have one functional dependence on the angular velocities after collision in the interval between
the critical velocities, “?§ < 6 < @, and another outside the interval. In the interval, the map
P must represent the wheel having too little energy to reach the vertical and then reversing its
direction. Outside the interval, the map must represent the wheel having enough energy to pass the
vertical. The critical angular velocities do not exist for very steep slopes, a > 7, and, hence, no
discontinuities exist in that case. For steep slopes, the map is continuous for all angular velocities
after collision.

Now, using conservation of energy between collisions, the collision transition condition for angular
velocity, and the slope dependence of the discontinuities, we can construct the map P.

Constructing the Return Map, P

To simplify the definition of the map and its interpretation, it is desirable to first make a change of
variables which gives a new measure of the angular velocity just after a collision. The new variable,
the measure of angular velocity after collision, z, is taken to be the square of the angular rate times
its sign

2(8) = 62sgn(8) (2.20)

such that ) ) ) )
dny = 2(M0) = (") and “Pz = z(“Ph) = —(“Ph)>. (2.21)

With this change in variables, P will be at least piecewise linear in z. We will refer to z as the
measure of angular velocity, henceforward.

The first order equations, Equation (2.9), and collision transition functions, Equation (2.10),
rewritten in terms of z, are

6 = sgn(2)Vzl, |0 —a| < 7/n (2.22)
7 = X/|z|siné
O—az) = (—(0-0a)2), 6—al =n/n (2.23)

We are looking for the map P in a form given schematically as the difference equation
[2(6)]is1 = P(2(0))), 6 €. (2.24)

Due to the two possible discontinuities, the map P can be composed of two linear functions. The
first function applies in two cases. It applies if the slope is small enough, a < 7, and if the wheel
has enough energy after a collision to make it past the vertical in the uphill or downhill direction,
2> "z >0orz < %z <0, respectively. It is also the only part of P that applies when the slope
is so large, a > 7, that the center of mass is always past the vertical in the downhill direction, for
any measure of angular velocity, —oo < z < oo0. To construct this part of the map, conservation of
energy takes the measure of angular velocity of the wheel just after collision i to just before collision
i + 1 and, then, the collision transition condition, z — u2z, takes the measure of angular velocity
just before collision i + 1 to just after collision 4 + 1.

The second function applies if the slope is small enough, a < 7, and if the wheel does not
have enough energy after a collision to make it past the vertical in the uphill or downhill direction,
Wy < 2z < %, and consequently reverses direction in between collisions. This part does not apply
to very steep slopes. To construct this part of the map, conservation of energy between collisions
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gives us that the measure of angular velocity just after collision i is equal in magnitude but opposite

in sign to the measure of angular velocity just before collision i+ 1 and, again, the collision transition

condition, z — u%z, takes the angular velocity just before collision 4 + 1 to just after collision 4 + 1.
In functional form, then, the map P can be summarized as:

(1) p?(z+4NsinasinZ) if 2>%2>0 and a<Z, or
; 2<"z<0 and a<Z  or
P(2(9)) = —0 < z< oo and 07>n£. (2:25)
n

(2) —p2z if z<z<%z and a<Z.

The different regimes of slope and the measure of angular velocity for which each part of the map
applies are summarized by the inequalities listed on separate lines after the definition of each part
of the map.

The piecewise linearity of the map makes its graphical construction and interpretation easier.
Three typical graphs of the Poincaré map, P(z) versus z, are shown fora < X, a =% and a > &
in Figure 2.10.

Next, reconsider the first graph of the Poincaré map from the previous figure in more detail, with
the parameter values, non-dimensional inertia, 2J = 0.5, number of spokes, n = 6, and slope angle,
a = {¢ < & in Figure 2.11. Three intervals of the measure of angular velocity, z, are shown on the

graph:

e 1. In the first interval, z < “Pz, the wheel has enough energy to make it past the vertical in
the uphill direction and P(z) = p*(z + 4\ sinasin I).

e 2. In the second interval, “Pz < z < 9"z, the wheel does not have enough energy to make it
past the vertical position in the uphill or downhill direction and P(z) = —pu?z.

e 3. In the third interval, z > 9"z, the wheel has enough energy to make it past the vertical in
the downhill direction and P(z) = p?(z + 4\? sinasin T).

The graph shows a stair-step diagram, with initial condition z;. The progress of the wheel can
be traced by following the arrows on the diagram:

e 1. The wheel starts off uphill with initial measure of angular velocity z; in the first interval.

e 2. The wheel makes it past the vertical and has a collision with the slope and emerges with a
new measure of angular velocity z2 = P(z1) in the second interval.

e 3. The energy lost to the collision does not leave the wheel with enough energy to make it
past the vertical. It reverses direction and makes another collision with the slope leaving the
wheel with the next measure of velocity z3 = P(22) in the third interval. The wheel now has
enough energy to make it past the vertical in the downhill direction.

e 4. The wheel rolls downhill and makes repeated collisions with the slope and so on until
the wheel eventually approaches a steady-state measure of angular velocity after an infinite
number of collisions in finite time. The fixed point is marked by the intersection of the graph
of P with the identity line P(z) = z.

In short, the wheel rolls uphill, collides with the slope, reverses direction, rolls downhill and
approaches the limit cycle motion in infinite time, from below. Previously, we denoted this motion
in Section 2.2.4 as Up— Down™ Limit Cycle.

Next, we show how the character of the return map P varies with the slope angle for fixed inertia
J and number of spokes n. In Figure 2.12, the return map is shown for a variety of slope angles.

We define and find the fixed points of P and determine their stability exactly in the next section.
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Figure 2.10: Three typical graphs of the Poincaré map, P(z) versus z, with 2J = 0.5 and n = 6:(a)
a = {¢ < =, showing the piecewise linearity and two discontinuities at z = “Pz and z = dnz: (b)
a = g = 7, showing the piecewise linearity and the two discontinuities of the map at dny =0 and

cﬁl:l»—\|

uPz = —y/4X?sin® Z; and (¢) @ = £ > Z, showing the linearity of the map for all z. The open

circles in (a) and (b) indicate that the maps are not defined at these locations.
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Figure 2.11: The graph of the Poincaré map with 2J = 0.5, n = 6, and a = {5 < %. Three intervals
of the measure of velocity after each collision, z, are shown: (1) z <*? 2z < 0, (2) Pz < z < "2, and
(3) z > Iz, A stair-step diagram is shown with initial condition 2; for several iterations. The wheel
starts off uphill at initial value z1, makes it past the vertical, collides with the slope, and emerges
with P(21) = 22. The wheel does not make past the vertical now, reverses direction, collides with
the slope, and emerges with P(z3) = z3. Thereafter, it continues to make it past the vertical position
after each collision increasing its angular velocity as it goes until it eventually converges in infinite
time to the fixed point shown on the diagram. The fixed point is at the intersection of the graph
with the identity line, P(z) = z.
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Figure 2.12: The return map is shown for a variety of slope angles, 0 < a < 7 and 2J = 0.5 and
n = 6. Note that the the part of the map P(z) = —u?2 cannot be represented properly as a varies
since for each a the slope of the map is the same but the values of “Pz and 9"z are different; i.e.,
the part of the map P(z) = —u%z overlaps for each a.
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2.5 Fixed Points and Stability

The limiting states, limit cycle motion and the eventual stopping of the wheel, are fixed points of the
map P, since, for each of these limiting states, the state of the wheel is the same after every collision.
The vertical unstable vertical equilibrium is not a fixed point of P, however, since the wheel does
not complete a cycle in that case. The vertical position is, however, an unstable equilibrium of the
system describing the motion in between collisions.

Here, we find the analytical expressions for the measure of angular velocity associated with the
limit cycle and show that the fixed points are asymptotically stable by showing that the absolute
value of the slope of the map evaluated at the fixed points is less than one.

2.5.1 Fixed Points of P
A point z* is a fixed point of P if P(2*) = z*. The possible fixed points of P are:

4222 sin = sin a
(1) ch* = p A Smy SiIna

T—p2 > 0

*

VA—
{ (2) strz* =0,

The non-zero fixed point !z* is the measure of angular velocity after each collision that corre-
sponds to the limit cycle motion. The limit cycle is approached monotonically from above or below
as the wheel rolls down the slope. The zero fixed point *Pz* is the measure of angular velocity
that corresponds to the stopped position of the wheel at rest on two spokes. The stopped position
is approached monotonically as the wheel rocks back and forth between two spokes. The angular
velocities corresponding to the fixed points are “6* = v/lcz* > (0 and 5Pg* = stPz* = (.

The ranges of slope angles for which the limit cycle and stopped condition fixed points exist and
the initial conditions which are attracted to the fixed points are specified in a subsequent section.

(2.26)

2.5.2 Stability of the Fixed Points

The stability of a fixed point of a scalar map is determined by the first derivative of the map
evaluated at that point. A fixed point z* of P is asymptotically stable if the absolute value of the
first derivative of the map evaluated at the fixed points is less than one, |[DP(2*)| < 1 . The first
derivative of the map P at the fixed points *z* and *Pz* is

ap — 2
DP(z*) ={ dz la=teze ) . (2.27)

4z |z:3“’z* =k

Since the collision parameter u is always less than one, 0 < p < 1, the first derivative of the map
at the fixed points is always less than one, |[DP(z*)| < 1. Both fixed points of P, !°2* and *P2* are,
thus, asymptotically stable.

In the next section, we present the conditions on the wheel parameters for the existence of the
fixed points, and for given wheel parameters, which initial conditions are attracted to the fixed
points.

2.6 Existence of Fixed Points and Their Basins of Attrac-
tion of Initial Angular Velocities after Collision

A sufficient condition on the slope angle for the existence of the the limit cycle associated with the
fixed point ‘¢2* is o > 7. The condition is sufficient since, for steep slopes and any measure of
angular velocity, only the limit cycle exists. In other words, the map is linear and continuous with

positive slope less than one, for all z, and, hence, intersects the identity line P(z) = z only once
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at some positive measure of angular velocity, the limit cycle fixed point. The graph of the map in
Figure 2.10(c) shows how only the limit cycle exists for a > T.

A necessary condition for the existence of the stopped position associated with the fixed point
Sy is o < =. 'This condition is necessary since the second part of the map does not exist for
a > T and, thus, the wheel can never approach the stopped position; i.e., the part of the map that
intersects the identity line at z = 0 is not defined. The graphs of the map in Figure 2.10(a) and
Figure 2.10(c) illustrate how the stopped condition does not exist for a > 7.

We have not presented the complete conditions on slope angle that guarantee the existence of
the fixed points. There are additional restrictions, however, on the slope angle that, together with
those above, completely specify the existence of the fixed points. Below, we derive the additional
conditions for the existence of the fixed points.

2.6.1 Slope Angle and Existence of the Fixed Points

The necessary condition for the existence of the limit cycle corresponding to the fixed point z* > 0
can be derived as follows. For a limit cycle to exist, the wheel must be able to make it past the
vertical position in the downhill direction repeatedly after each collision; i.e., the angular velocity
of the limit cycle must be greater than the angular velocity just after a collision required to reach
the vertical in infinite time, ¥"0. Written in terms of the measure of angular velocity after collision,
this requirement is

fegr > dng, (2.28)

Referring to the definitions of ‘*2* in Equation (2.26) and 9"z in Equation (2.21) this inequality can
be rewritten as a criterion relating slope angle a, nondimensional inertia A2, and number of spokes
n?

2

e % sina < 0. (2.29)

0
,A2,n) =1 —cos — —
g(a n) cos oS — o
Taking « as a function of A\? and n, this inequality requires that
a> o (2.30)

where a, is a solution to g(a, A2,n) = 0. A graph of g(a, A\2,n) versus « for fixed \? and n verifies
that a > a. satisfies the inequality in Equation 2.29(See Figure 2.13).

A necessary condition, then, for the existence of the limit cycle corresponding to the fixed point
lez* > 0 and the stopped position corresponding to the fixed point *P2* = 0 are @ > . and a < .
respectively.

We can now summarize the necessary and sufficient conditions on slope angle for the existence
of the fixed points of P:

e 0 < a< ag, only *Pz* exists,
e a. <a < I both 2* and *P2* exist, and
e a>Z only “2* exists.

As ais varied, then, the number and type of fixed points changes. The appearance and disappearance
of the fixed points as the slope angle « is varied cannot be classified according to the classical theory
of bifurcation of scalar maps due to the discontinuity in the Poincaré map. The fixed points are
shown as a function of a in Figure 2.14.

In the next section we quantify the domains of attraction for the fixed points within each of the
three slope intervals.
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Figure 2.13: A graph of g(a, A2,n) versus a for 2J = 0.5 and n = 6. The function g is less than zero
for a > a.. If g < 0, then limit cycles can exist.
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limit cycle is available as a limiting state for a > 7.
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2.6.2 Basins of Attraction for the Fixed Points

So far, we have determined within each slope interval which fixed points exist. We also know that,
for all initial conditions, the wheel always enters into a limit cycle for steep slopes, a > =. Any
initial condition is attracted to limit cycle motion for this slope range since the map P is linear,
with slope less than one, continuous for all z, and thus intersects the identity line only once at
some non-zero measure of angular velocity. The domains of attraction for the fixed points within
the remaining two slope intervals remains to be prescribed because of the piecewise linearity of the
map and the possibility of the wheel eventually stopping in the vertical position after one or more
collisions.

The values of initial measure of angular velocity attracted to the fixed points for shallow and
intermediate slopes can be completely specified by considering two situations regarding the measure
of angular velocity. We describe the two situations first and then follow with a detailed analysis of
each.

First, for rolling uphill or downhill on shallow or intermediate slopes, it is possible that the wheel
starts with a velocity just after collision that eventually leaves the wheel, after one or more collisions,
with the critical velocities after collision for reaching the vertical position in infinite time, *?8 or 976.
For such initial conditions, limit cycles and the stopped position cannot exist. The initial conditions
that eventually leave the wheel in the vertical position can be found as three different monotonic
infinite sequences of angular velocities after collision where each term in the sequence depends on
the wheel parameters.

Second, for intermediate slopes only, the wheel can do one of three things: reach the vertical
position, come to rest on two spokes, or approach the limit cycle. Initial angular velocities which are
attracted to the limit cycle and those which are attracted to the stopped position are organized into
alternating ‘patches’ of initial angular velocity after collisions; i.e., alternating subsets of the domain
of the map P that we call basins of attraction. The ‘patches’ can be visualized as alternating line
segments along the horizontal axis of the graph of P(z). The boundaries of the the ‘patches’ are
the defined by the critical angular velocities after collision for reaching the vertical in infinite time
and the terms in the infinite sequences described above that eventually get mapped to the vertical
position.

Infinite Sequences of Angular Velocity After Collision

We first describe qualitatively the three very special and improbable infinite sequences of the after-
collision angular rate that leave the wheel eventually in the vertical position. Then, we will define
them and the criteria for their existence precisely in Appendix C.

e 1. The first sequence of points is defined for initially rolling downhill with greater angular
velocity after collision than that required to eventually stop in the vertical position. For any
point in the sequence, the wheel will eventually reach the vertical in the downhill direction.
The sequence is written as "z, > 9"z for m = 1,2, 3, ... and exists only for nearly flat slopes,
a < .

e 2. The second sequence of points is defined for initially rolling uphill with angular velocity
after collision greater in magnitude than that required to eventually stop in the vertical in the
uphill direction. For any point in the sequence, the wheel will eventually reach the vertical in
the uphill direction. The sequence is written as “Pz,, <“P z for m = 1,2,3,... and exists for
nearly flat and intermediate slopes, 0 < a < 7.

e 3. The third sequence of points is defined for initially rolling uphill with angular velocity after
collision greater in magnitude than that required to eventually stop in the vertical position.
The wheel, however, eventually reverses direction after one or more uphill collisions and then
makes one downhill collision before stopping in the vertical position in the downhill direction
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in infinite time. This sequence is written as “Pz,, <P z, m = 1,2,3,... and exists only for
intermediate slopes, a. < a < T.

The existence of these sequences and critical angular velocities, as we have shown in Appendix C,
depends upon slope angle and is summarized in Table 2.1. In the next section, we define the alter-

Table 2.1: The existence of the critical angular velocities and sequences of angular velocities for
0 < a < 3. The existence of the points and sequences in each slope regime are noted by an asterisk
in each column of the table.

Measures of Angular Velocity
Slope Angle o/ || “Pz | ¥z, | 2z | T2, | ¥z | Pz,
0<a<a, * * * *
o= * *
a.<a<Z * * * *
a=7 *
T<a<3

nating basins of attraction of initial angular velocity after collision that exist only for intermediate
slopes.

Alternating Basins of Attraction of Angular Velocity After Collision for Intermediate
Slopes

The alternating basins of attraction exist only for intermediate slope angles, a. < a < 7. For

this slope range, if the wheel starts off downhill, it has one of three initial energies: (1) the critical
energy for reaching the vertical in infinite time (denoted by Down— Vertical), (2) less than the energy
needed to pass the vertical in the downhill direction so that it approaches the stopped position by
rocking back and forth on two spokes (denoted by Down— Rock — Stop), or (3) more than the
energy needed to pass the vertical so that it approaches the limit cycle from above or below (denoted

by Down— Limit Cycle or Down= Limit Cycle, respectively).

If the wheel starts uphill, it has one of three initial energies: (1) critical energy for reaching the
vertical in infinite time(denoted by Up— Vertical), (2) energy such that the initial angular velocity
is in one of the critical sequences and it eventually stops in the vertical position, or (3) enough
energy to pass the vertical in the uphill direction but, after one or more collisions, loses so much
energy in the collision(s) that, eventually, it cannot make it past the vertical, reverses direction
and starts downhill. The subsequent behavior after the wheel reverses direction is determined by
the the energy of the wheel after the last collision before reversing direction. If the wheel has too
little energy after the last collision before reversing direction, it makes one downhill collision, cannot
make it past the vertical in the downhill direction, rocks back and forth between two spokes, and
approaches the stopped position (Stop) (denoted by Up— Rock — Stop). If the wheel has sufficient
energy after the last collision before reversing direction, it has enough energy to pass the vertical
in the downhill direction, increases in angular velocity and approaches the limit cycle (Limit Cycle)

from below (denoted by Up— Down — Limit Cycle).

For intermediate slopes, whether starting off downhill or uphill, the initial energy of the wheel,
then, predetermines if the wheel will reach the vertical position, the limit cycle, or the stopped
position. If the wheel starts with the measure of angular velocity 9"z and “Pz or one of the measures
of angular velocity in the sequences “Pz,, or “PZ,,, the wheel will eventually stop in the vertical
position, as we have shown.

Now, we show that similarly well defined sets of initial measure of angular velocity eventually
approach either the limit cycle or the stopped condition, exclusively. As we noted, the initial
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angular velocities that are attracted to the limit cycle and those which are attracted to the stopped
position are organized into alternating ‘patches’ or basins of attraction. If the angular velocities in a
given basin of attraction get mapped to the limit cycle, the adjacent basin of initial conditions gets
mapped to the stopped condition, and so on, for each succeeding ‘patch’, alternating in this way.
The boundaries of the basins are formed by the critical measures of angular velocity, "z and “Pz,
and the terms of the second and third sequences we have just defined, *Pz,, and “PZ,,.

In order to define the basins of attraction, we need first to order the critical points and the terms
of the second and third sequences. The critical points and the terms of the sequences are ordered
as follows:

Pom < PZy <Pz <"z <0 (2.31)

and
Wyt < a1 < Pz (2.32)

It is trivial to prove that these inequalities hold for a. < a < 7.

Now that the important points are ordered, which basins are attracted to the limit cycle and
which are attracted to the stopped position can be determined visually by examining graphs of the
Poincaré map. For example, reconsider the map of Figure 2.11 in Figure 2.15 with restrictions on
the measure of angular velocity added for determining which fixed points exist.

Thus, generalizing from the special case illustrated in Figure 2.15 for a. < a < 7, we state
without proof: the basins of attraction for the limit cycle are

2> Wy < 2 <Pz and Pz, < 2 < "PZ,, (2.33)

and the basins of attraction for the stopped position are
WrL < My WE <2< Py, and P, < 2 < Pz, (2.34)
The basins of attraction for the fixed fixed points given intermediate slope angles, a. < a < 7,

are summarized in Table 2.2.

Table 2.2: The basins of attraction for the fixed points corresponding to the limit cycle and the
stopped position with intermediate slope angle, a. < a < T, are noted by an asterisk in each row
of the table.

Fixed Points
Measure of Angular Velocity || ©z* | 5Pz*
WPzt < z2 <Pz, *
P < 2 < "PZ, *
Pz <z < Pz *
Py L 2 < WPz *
wr <z <y *
z> dnz *

In the next section, we consider the behavior of the wheel for some special values of the wheel
parameters.

2.6.3 Special Cases

If @ = a,, the limit cycle can only be approached from above and the limit cycle angular velocity
is equal to the angular velocity after collision in the downhill direction for stopping in the vertical
position in infinite time; i.e., 7z = f€2*.

Ifa=7,
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Return Map, P(z)

—-1.0 -0.5 0.0
Measure of Angular Velocity, z

Figure 2.15: Again, the graph of the Poincaré map with 2J = 0.5, n = 6, and a = £ < %.
The critical measures of angular velocity, the fixed points, and the sequences “Pz,, and “PZ,, are
marked on the graph up to m = 1 for the given wheel parameters. The basins of initial measure
of angular velocity attracted to the limit cycle are marked on the graph with bold line segments
to differentiate them from those attracted to the stopped position. Six representative basins of
attraction are labelled on the graph. Initial conditions in the intervals (1), “Pz2 < z < “Pzq, (3),
Pz <z < "z, and (5), ¥z < z < 9"z get mapped to the stopped condition corresponding to the
fixed point **Pz*. Initial conditions in the intervals (2), “Pz; < z < “Pz, (4), Pz < z < “Pz, and
(6), "z < 2z < oo get mapped to the limit cycle corresponding to the fixed point {“z*. The orbit
labelled I starts in interval(2) and goes to the limit cycle fixed point. The orbit labelled IT starts in
interval (3) and goes to the zero fixed point.
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1. The wheel is oriented at the vertical position 8 = 0 at each collision. The critical measures
of angular velocity are %z = 0 and “Pz = —4)? sin® .

e 2. If the measure of angular velocity is z > 0, the wheel will roll down the slope. If z = 0, a
small positive disturbance will cause the wheel to fall downhill.

e 3. If the measure of angular velocity is Pz < z < 0, the wheel makes a collision instantaneously
with the slope in the uphill direction but loses so much energy in collision that it cannot reach
the next vertical position and falls back down the slope eventually entering into a limit cycle.

e 4. If the angular velocity just after collision is z < "Pz < 0, the wheel makes a collision
instantaneously with the slope in the uphill direction and makes one or more collisions in the
uphill direction before reversing direction and approaching a limit cycle..

In this case, ™z = %Pz* = 0. Thus, the vertical position, balanced at rest unstably on one spoke,
and the stopped position, at rest stably on two spokes, are indistinguishable for o = . The only
way, then, in which the stopped condition, corresponding to the fixed point %Pz = 4"z* = 0, can
exist is if the wheel stays at rest, z = 0.

Next, for 0 <2J <1 and 3 < n < oo, it can be shown that a. < 7. The case a. = 7 occurs
when gy =0or 2J = —cos(%’r) > 0;i.e., when 2J =0.5and n =3 or J =0 and n = 4.

If u = 0, the angular rate after collision equals zero, according to the collision condition, Equa-
tion (2.10), and, thus, for any initial conditions, only the stopped position exists. The wheel either
rotates past the vertical or does not and then comes to a complete stop after one collision in finite
time, (not by rocking back and forth on two spokes and coming to a stop after infinite collisions in
finite time). We denoted this behavior previously by Up— Stop or Down— Stop. These behaviors
only exist, then, for a < 7.

Ifn=3and 0 < 2J < —cos 27” = 0.5, then —0.5 < p < 0. For this parameter combination
where pu < 0, the wheel would instantaneously reverse direction after a collision AND slow down,
leading to an infinite sequence of collisions in zero time with no motion. That, is, the entire wheel
stops dead, not just the tip of the colliding spoke.

To summarize:

1. if n=4and J =0, then g =0 and
2. ifn=3and 0 <2J < —cos 2™ =0.5 then —0.5 < < 0.

In both cases (a) and (b) above, the wheel comes to a dead stop.
The dependence of the critical angles on the number of spokes, n, and inertia parameter, J, are
shown in Figure 2.16.

2.6.4 Summary of the Existence Criteria and Basins of Attraction for
Fixed Points

In Table 2.3, we summarize the necessary and sufficient conditions on slope angle, a, and measure
of angular velocity, z, that specify which of the fixed points will arise. We display the information
tabulated in Table 2.3 in a diagram in Figure 2.17. If similar information shown in Figure 2.17,
were plotted in the phase plane, or on a phase cyclinder, we would notice that the 2D rimless
wheel dynamics is nearly completely analogous in qualitative behavior to the forced, damped simple
pendulum (see, for example, the excellent discussion in Andronov, et al [56], pp. 422-436). The
main difference bewteen the systems, of course, is the discontinous decrease in velocities for the
wheel due to spoke collisions. For certain combinations of torques and damping constants, three
cases arise for the pendulum, depending on the initial conditions: (1) only stable limit cycles exist;
(2) both stable limit cycles and tending to a state of rest exist; and (3) no limit cycles exist and no
coming to rest. Case (2) is similar to the case for the rimless wheel shown in Figure 2.17. Given
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Figure 2.16: The critical angles, . and 7, are shown as functions of n for several values of J. The
critical angles a, and 7 are discrete functions of n but the function values are connected with lines
for illustrative purposes.

Table 2.3: The dependence of the fixed points on the wheel parameters and the basins of attraction
for the fixed points are summarized in the table. The critical angles, a. and 7., are functions of
the non-dimensional inertia, J and the number of spokes, n. The critical measures of the angular
velocity are functions of a, J, and n. For each slope range and all possible initial conditions, which
fixed points arise is denoted by an asterisk in the appropriate column.

Fixed Points
Slope Angle o || Measure of Angular Velocity || °z* | *Pz*

0<a<a 2# M2, Mo, P2, Py, *
P Zmt1 < 2 < Pz, *
o <2< Pz, *
a.<al Pz <z < YPz *
Py L z < UPZ *
Wz < 2z < Iy *
z> g
T T
T <a<sF all z
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a damping constant and torque within certain ranges, initial conditions are attracted to either (1)
a stable focus or node (a rest position) or (2) a stable limit cycle. The regions of attraction can
be displayed on a phase cyclinder. For the wheel, too, there are three regimes depending on slope
angle. Coming to rest, however, is an option in the third regime for the wheel.

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ =~ bhag
2
=)
o
lc+ 1 o
(@)}
C
attracted to stable limit cycle g
Q.
o
"
-0.5 ©
Oc
» L~
attracted to stopped position

-30 -25 -20 -15 -10 -5 0
z, inital measure of angular velocity after collision

Figure 2.17: A plot displaying the information summarized in Table 2.3. The basins of attraction
for the two fixed points are plotted for n = 6 and 2J = 0.5. Initial speeds z falling in the dark gray
region for a given slope angle o are attracted to *Pz* and those falling in the light gray region are
attracted to a limit cycle, ‘°2*.

Finally, using another representation to display the existence criteria for the fixed points and
their dependence on initial conditions, we code the maps previously shown in Figure 2.12 to show
which initial conditions are attracted to the limit cycle and those which are attracted to the stopped
position. (See Figures 2.18 and 2.19.)

In Figures 2.18, 2.19, and 2.17 there are analytical expressions for the curves bounding the
regions that mark the basins of attraction for each slope angle.

Two of the bounding curves are formed by the set of critical angular velocities for reaching the
vertical in infinite time, ™z(a) and “Pz(a) for slope angle 0 < a < Z. The curves can be found as
functions of z.

In terms of the map P, we define the first curve as

F(z(a)) = P(™z(a)) (2.35)
= 12(%"2(a) + 2X*(cos(a — %) —cos(a + %))

= 2X\%u%(1 — cos(a + %))
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Figure 2.18: The return map is shown for a variety of slope angles, 0 < a < 7 and 2J = 0.5 and
n = 6. The initial values on the horizontal axis corresponding to the shaded region get mapped
eventually to the limit cycle fixed point, °2*. All other initial conditions get mapped to the stopped
position fixed point, **P2*. Note that the maps are not coded for Pz < 2%z are not coded because
for each a the map information is overlapping in this interval of measure of angular velocity.



