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The goal of this research is to examine the possibility of stable gait cycles in simple three-dimensional
models of human walking with no actuation, other than gravity, and no control. We address the
passive-dynamic stability of 3D walking using a collection of models of varying complexity — 2D
and 3D rimless spoked wheels, a 3D rolling disk with oblique masses attached, and 2D and 3D
straight-legged point-foot models of human walking. Analytical and numerical linearized stability
studies are carried out to study the behavior of these systems. The mass distribution is varied to
study its effect on stability.

The main results are as follows. (1) a fully analytical nonlinear stability study of uphill and
downhill motions of the 2D rimless spoked wheel shows that two outcomes exist — coming to rest on
two spokes and entering into a limit cycle motion, both of which are always asymptotically stable
and have basins of attraction which we describe exactly. (2) A linearized stability analysis of the
3D rolling disk with oblique masses attached, that steer and bank but not roll with the wheel,
shows that it can be asymptotically stable given sufficient forward rolling speed, more stable than
an axisymmetric disk which is neutrally stable at best. (3) We carry out numerical and analytical
stability studies of steady motions of the 3D rimless spoked wheel. At any fixed, large enough
slope, the system has a one-parameter family of stable steady rolling motions. We find analytic
approximations for the minimum required slope at a given heading for asymptotically stable rolling
in three dimensions, for the case of many spokes and small slope. In the limit as the number
of spokes approaches infinity, the behavior of the rimless wheel approaches that of a rolling disk
in an averaged sense and approaches neutral stability. (4) Numerical stability studies of the 2D
straight-legged point walking model have turned up stable periodic motions for a variety of model
parameters. Of particular interest is the limiting case of a huge hip mass and tiny point feet that
can be stable, a one-parameter model depending only on the downhill slope. (6) Numerical stability
studies of a 3D straight-legged point-foot model have only turned up unstable steady walking motions
to date. Getting arbitrarily close to neutrally stable steady motions is possible, though, if we allow
the model to ‘grow’ long lateral ‘balance bars’ from its legs. The resulting motion resembles ‘tight-
rope’ walking, with tiny steps. (7) Experimental studies of a Tinkertoy® model based on the as
yet unsuccessful numerical simulations have revealed apparently stable motions. This is the first
statically unstable passive-dynamic model in theory, simulation, or experiment to show dynamic
balance fore-aft as well as side-to-side, balance.



Biographical Sketch

Mike Coleman was born at Sinai Hospital in Baltimore, Maryland on May 22, 1960 to his proud
parents Bernard and Alice. He spent his first three years with his parents and sister Frannie on
an idyllic sixty-five acre farm at the intersection of Rinehart Road and Bixler Church Road. The
farm (with house, barn, out-buildings, and a log cabin built by a freed slave) was just outside the
little town of Westminster, Maryland in the lush rolling hills of Carroll County, foothills to the Blue
Ridge Mountains, about twenty miles southeast of Hanover, Pennsylvania, forty miles northeast of
Frederick, Maryland, and thirty miles northwest of Baltimore.

When Mike was born, it was discovered that he had two thumbs, like everyone else, but both on
his right hand, for a total of three. One was surgically removed at birth but the remaining one was
severely deformed. Though it is still deformed, some function was restored through several surgeries
done by the famous Dr. Curtis of John’s Hopkins University, who always seemed god-like and, thus,
very intimidating. Today, there is a special hand center at Hopkins named in his honor. Mike was
both ashamed and proud of his small handicap. He always made sure to get on the right when
lining up by two’s for school trips; he made the mistake on a field trip to the Carroll County Fire
Department in the second grade of giving his right hand to Kathy Fringer and still can hear her
screech in horror at the sight of the alien creature’s appendage for grasping things that was sort of
like a human hand. Remember, always on the right.

When Mike was three years old, his family sold the farm for a ridiculously low price of $16,000,
including the buildings, land, and house. But, his parents were more concerned that their children
would be too isolated on a farm and not have enough friends to play with. They moved to a house
at 42 Bishop St. in the town of Westminster. When Mike was eleven, the family moved to 92
West Green St. near Western Maryland College right across from their good friends Helen and
Montgomery Schroyer.

Mike’s first and forever teachers have been his parents. From gardening to cooking to bicycle
riding to football to frisbee throwing to arithmetic to morality to music to art to literature to
politics to hand-tools to camping and more, Mike’s parents, Bud and Alice, have taught him many,
many things with caring patience and humility and and provided him with a multitude of other
opportunities to learn and experience. Mike’s father continues to teach him things even now; for
instance, he recently showed Mike a really cool and new way to draw ellipses. Mike’s sister too has
taught him many things, such as about singing, swing dance, volleyball, swimming, and what he
should know about women.

Mike first went to nursery school when he was three and then back again the next year. After
that, he joined Just Five Folks, a Montessori kindergarten, a learn-by-doing school. His teachers
were Jackie Finch and Jan Cross, both exquisite individuals. Jan and her husband remain close
family friends.

In kindergarten, it was discovered that Mike could draw with perspective, sort of an unusual
skill. Ever since, he has been known as an artist, entering contests frequently and giving shows on
occasion in school. He remembers drawing his first self-portrait at age nine, posing in his favorite
Orioles baseball T-shirt, and looking into the notebook—paper sized mirror with a thin wooden
frame painted white that the family used to keep in the bathroom for closer looks at things. His
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first organized art class outside of school was at age ten with Mrs. Trump, with whom he learned to
draw still lifes with charcoal and pastels. His family and school nurtured him well, especially his first
and only private teacher, Stan Gilmore. With Stan, Mike learned the difficult, delicate, art of water
color painting. Mike still draws seriously and is most fond of the human figure and the portrait.
Most recently, Mike attended figure drawing sessions at the Ithaca Community Arts Center. Mike
has saved much of his artwork along the way and many pieces clutter his apartment walls.

Mike started playing piano when he was seven. His first teacher was Mrs. Kennedy on Green St.
Then, he switched to Mrs. Giselle on New Windsor road. She was native to Japan and one of the
most beautiful women he had ever met. Mike fondly remembers sitting on the piano bench next to
her, looking up at her instead of the key board, admiring her beautiful smile, her soft pearly skin,
and her lovely eyes. She used to wear very tight dresses which Mike liked very much. After that
was Mrs. Adams across the street from his house on Green St. and Mr. Judge down the street who
always breathed funny when he played. Finally, Mike learned to see the finer subtleties of playing
with his last teacher, the deeply serious, meek and shy Mildred Cole. Mike played recitals starting
with Mrs. Giselle at age ten and continued to do so through High School. It was in these recitals
that Mike learned he had performance anxiety, a debilitating affliction that stays with him to this
day. Nevertheless he is most proud to have played Prelude Op. 28, 1 for pianoforte in C Major (The
Minute Prelude) by Chopin and Rhapsody in G Minor, Op.79 No.2 by Brahms at his senior recital.
Presently, Mike has an electric piano with synthesized sound and simulated key action at home but
would rather have a real one or at least one with digitally sampled sound reproduction.

After kindergarten, Mike attended the East End Elementary School for grades one with Mrs.
Westheimer and two with Mrs. Kemper (Mike’s grandmother on his father’s side attended the East
End school in 1899), the Westminster Elementary School for grades three with Mrs. Case and four
with Mrs. Reese (who used to read to us from Tom Sawyer and Treasure Island), the William
Winchester School for fifth grade with hump-backed Mrs. Rice (with whom he argued once about
the commutative law of multiplication and won), the East Middle School for sixth through eighth
grade, and, finally, Westminster High School for ninth through twelfth grades. It was in middle
and high school that Mike discovered his aptitude for and interest in mathematics and science. He
remembers being particularly intrigued with the Human Powered Flight program at MIT that he
read about in Popular Science.

Mike went to Princeton University graduating with a Bachelor’s of Science and Engineering
degree from the Department of Aerospace and Mechanical Engineering in 1982. The most significant
academic experience at Princeton for Mike was realizing his writing weakness and then working very
hard to improve on it. His best friend and roommate Christopher Barth had a significant impact
on Mike’s life, especially Chris’s zen-like approach to life. His engineering education was mostly not
very stimulating, though he did have an interesting summer job at Princeton working for Professor
Earl Dowell studying the oscillations of buckled flat plates in an air flow. His favorite engineering
course was Engineering Acoustics taught by Donald Bliss, one of the best teachers in the department
who was unfortunately denied tenure. Still, no engineering professor in particular had any deep and
lasting influence on Mike while at Princeton. His favorite course was Soviet Politics taught by
Professor Stephen Cohen (who now appears regularly on television as a commentator). Two studio
art courses in drawing and painting taught by Jerry and Sean had a significant impact on his artistic
maturity and confidence.

After Princeton, Mike went to work for the IBM Corporation in Endicott, New York in research
and development for electronic packaging and stayed for five years. His mentors there were Peter
Engel (a T&AM graduate), in structural mechanics, and Bhagat Sammakia, in fluid mechanics and
heat transfer. It was at IBM that Mike decided to return to school for a Ph. D. in engineering,
strongly encouraged by Bhagat and Cathy Biber, his co-worker, apartment mate and sometimes
lover. While at IBM, Mike first came in contact with Don Conway at Cornell. Professor Conway
has always been very supportive of Mike while he’s been at Cornell.

Much later in life, after college, Mike found new passion in sports. He trained and competed
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heavily in bicycle racing and cross-country ski racing. Mike was a member of the Tioga-Velo six-man
bicycle racing team in Binghamton and the Cornell Cycling Team. In 1990, he started a x-c ski
racing team sponsored by Wildware Outdoors Store and Fischer, Inc. Mike qualified for and raced
in the New York State Empire Games in X-C Skiing for a number of years. He participated twice
in the U.S. Cross-Country Ski National Championships. Mike was fortunate to win a number of
medals now and then. His most cherished result was finishing second overall in the 19 kilometer Tug
Hill Try-it race in 1991. He trained very seriously for skiing, working very closely with his training
partner, Raj Sundra. Due to Raj’s influence, Mike took a a highly studied approach to training,
using video taping to improve technique and making periodized training plans. A highlight of Mike’s
ski experiences was attending the 1995 World Cross-Country Ski Championships in Thunder Bay,
Ontario and getting an opportunity to see his skiing idols Bjorn Daehlie, Torgny Mogren, Validimir
Smirnov, Michael Alberello, Silvio Fauner, and Vegard Ulvang. In many ways, Mike considered
competitive sports a focus of his life while at Cornell, almost on equal footing with his graduate
work. Sports kept him alive and able to complete his work. Mike also counts basketball, squash,
and weight training among his interests, and now bouldering, due to his new friend, Tomomi Ueda.

After applying to nine graduate schools (Berkeley, Stanford, Wisconsin, Minnesota, Michigan,
M.L.T., University of Pennsylvania, Cornell University, and Johns Hopkins), Mike traveled to all
except M.IT before getting any acceptances. He was accepted at eight (who wants to go to M.LT.
anyway?), was offered tuition support from all, and was offered stipend support from all but Stanford
and Berkeley. Mike chose Cornell. You see, at the time, among his choices for schools, Mike thought
that the best environment, closest to home, for bike training and racing was Ithaca.

In the fall of 1987, Mike joined T&AM as a M.S./Ph.D. student, the beginning of a long journey
he thought he might never finish. He passed his Q exam in January 1988. It was the most dreaded
experience of his life. He failed the mathematics section but somehow recovered and aced the
continuum mechanics and dynamics sections. Mike is credited with coming up with a new concept
in mechanics during the exam. In the continuum section, Dick Lance was questioning Mike about
the stress vector, the stress tensor, and linear momentum balance. Eventually, the questioning led
to how applying angular momentum balance to a small material element yields symmetry of the
stress tensor. Trying to lead Mike to the answer, Professor Lance asked Mike what other kind
of momentum there is besides linear momentum. Going blank for a moment and desperate, Mike
blurted out, “I don’t know, nonlinear momentum?”, his voice trailing upwards at the end of his
response. The answer drew huge laughs from the committee — they thought Mike was just joking.
The laughter somehow returned Mike to a state of clarity and he was able to carry on and answer
correctly. Memorable also was Jim Jenkins only question of Mike in the dynamics section, “Well, if
no one else has any questions, there’s just one thing I have to ask: what did you do last semester?
Because, you know, it’s going to come up in the faculty deliberations after the exam.” Mike had only
taken one 3-credit course and one 1-credit course in order to leave time to study for the Q-exam.
Mike immediately thought, well, that’s it, he’s outta there. Somehow, he figured, they must know
how much Mike had been skiing and biking instead of being at school. Apparently, whatever it was
he did that semester, he passed. After that, he took way too many courses.

By far, Mike’s most startlingly surprising joy and success at Cornell has been his teaching.
Teaching far exceeded his expectations for personal accomplishments and rewards. In 1991, Mike
was selected to be Teaching Fellow for the Cornell University Teaching Assistant Development
Program. In the next year, Mike was awarded the H. D. Bloch Teaching Prize for best teaching
assistant in the department. Most importantly, Mike discovered that he had a talent for something
he never thought he could be good at, a vocation that gives him hours to spend helping people
understand things, something he loves to do, even for low pay. Particularly satisfying to him was
incorporating studio drawing exercises into the engineering drawing and design course he has taught.
For one semester, he also offered a free non-credit drawing course to anyone interested but mostly
attended by engineering students thirsting for a break from problem sets.

His first try for an advisor was Philip Holmes and for committee member, Paul Steen in Chemical



Engineering. The plan was to study pattern formation in solidifying metals. Paul decided to go on
sabbatical which killed that idea. Then, Mike switched to Dick Lance for advisor and Paul Dawson
and Leigh Phoenix for committee members. The first idea was to work on the curing of composite
materials. They failed Mike on his first A exam attempt because, as Leigh put it, “the department
is like a country club and you don’t seem to want to be a member”. Similar in tone to Leigh’s
comment, Dick Lance once commented that Mike was using his body too much and not using his
head enough, referring to his bicycle racing. They passed him on the second try in 1991 anyway.
The new idea was to study the compressive behavior of composites.

In the early stages, when Mike was having trouble focusing and getting motivated, Professor
Lance gave him a copy of a commencement speech at Brown University which made wonderful
statements about following one’s own path in the pursuit of knowledge. This was a nice gesture
on Dick’s part and the speech had a deep and lasting influence on Mike during his convoluted,
unusual, and very long route through Cornell. Indeed, its impact induced drastic changes (eventually
benefical) in Mike’s travels with his special committee (see below).

After struggling to get going, Mike began work on a project for the Monsanto corporation in
collaboration with Herbert Hui, Andy Ruina, and Ed Kramer in Materials Science. The project
was to study the fabrication of automobile window shields with a thin layer of sun-sensitive photo-
gray material embedded inside the safety-glass polymer. During the curing process, the thin layer
was buckling. The project was interesting and provided a fruitful collaboration with Andy Ruina.
The analysis involved studying the buckling of thin infinite elastic plates sandwiched symmetrically
between two viscoelastic foundations. Happy with a report Mike wrote on the buckling problem, a
possibility for research funding from the company seemed imminent and Mike seemed to be headed
towards another research topic. But, like many development projects, this one died without further
explanation.

Within a year, in a swift, decisive move, Mike “fired” his entire special committee; he was in a
down-sizing phase. Mike took up Andy Ruina’s offer to work with him on passive-dynamic walking
and to join the ranks of Andy’s “problem” students (who all turned out to do quite good work
in the end). And, thus finally began Mike’s dissertation research. In 1992, Mike co-authored a
proposal with Jeff Koechling to the Whitaker Foundation for a grant to work on three-dimensional
passive-dynamic walking research. To everyone’s surprise, the proposal was accepted including three
years of graduate student support for Mike. Unfortunately, unbeknownst to everyone except himself,
Jeff decided to leave Cornell. Consequently, the money went back to Whitaker and Mike was back
at teaching assistantship. From that point on, Mike was not guaranteed any funding to finish his
degree and had to scare up what he could each semester and summer. Not knowing where funding
was coming from each semester was a very stressful situation; finding new funding at the end of
every semester was a time consuming and uncertain process.

For a period of three semesters, starting in fall 1994, Mike assisted Andy Ruina and Rudra Pratap
with the writing of their engineering dynamics textbook. He helped with the editing, problem and
answer formulation, writing small examples, drawing figures, and typing and formatting text. It
was exhausting mentally and physically draining work. All in all, it was a good experience. Mike
is extremely grateful to Andy Ruina for paying Mike from his own funds. In the end, Mike wishes
that Andy and Rudra had included Mike as a co-author, considering his considerable effort and
contribution to the book and his enthusiasm for the project.

Most recently, Mike has been happy to co-author several journal articles on his work and receive
international press coverage in The Guardian and The Economist highlighting Andy Ruina’s Human
Power and Robotics Laboratory and Mike’s Tinkertoy ® walking invention. Developing the Tinker-
toy ® walking device was one of the most satisfying engineering experiences Mike has ever had. Tt
was the first time that he brought some engineering analysis results together with a creative design
and construction process to invent some mechanism that worked, based on some over-reaching vi-
sion, from Tad McGeer and his dissertation advisor Andy Ruina, that, though very promising, gave
no guarantee of success.
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Chapter 1

Introduction

Walking on a horizontal surface is usually easy, hardly fatiguing and sometimes
pleasant.
G. A. Borelli, On the Movement of Animals, 1681

Various creatures — birds, mammals, reptiles — walk on two legs. How is it that the nervous,
muscular, and structural systems of these organisms interact with forces from the environment (e.
g., gravity and friction) to synthesize two-legged locomotion? Though walking seems a mundane and
nearly unconscious process and has been much studied, it is nevertheless still poorly understood.

Human walking is generated, sustained, and guided by the neuro-muscular system. On one hand,
then, a legitimate and oft pursued approach to understanding muscle-powered walking is to study
powered and controlled mechanical models of walking. But, how much of walking is controlled by
the nervous and muscular systems and how much of the coordination of two-legged locomotion is
purely mechanical? Human locomotion might be studied as a mostly passive mechanical process;
that is, it may be viewed as requiring little control from the brain and nervous system and only
small amounts of actuation from the muscles.

Even before Newton spilled ink on his laws of mechanics, some scientists sought to understand
walking as a substantially mechanical process obeying the laws of nature. Paul Maquet [5], translator
of the current edition of De Motu Animalium (On the Movement of Animals) , the main work of
Giovanni Alfonso Borelli (1608 — 1679), writes in the translator’s preface:

“Borelli is a mechanist. ...

In all his work [on walking] Borelli relies on an axiom which he does not question:
Nature always acts using the simplest and most economical means. The differences which
are observed are due to mechanical necessities. Conversely, when Nature carries out an
operation, it must be concluded that this operation is the simplest possible, that it is
carried out according to the laws of mechanics and that it is impossible to do otherwise
or better. Such was also the opinion of Descartes.” [5]

Unfortunately, having preceded Newton’s discovery of the classical laws of mechanics, Borelli
apparently subscribed to some unusual notions about forces as can be seen in one of his propositions,
as stated in the translation:

“ Proposition XXXII
If a weightless rigid rod is compressed from above by a weight or by any force and rests
inferiorly on the hard ground, the force with which the rod resists compression is twice
the compressive force.” [5]

This proposition seems to say that the resisting force is equal to twice the acting force!



In the more recent past, however, a class of purely mechanical theoretical and physical models
of walking obeying Newton’s Laws of Mechanics, have been studied and constructed. These can
walk down a shallow slope with no control system and no power source, driven only by gravity. Tad
Mcgeer [4], who pioneered the study of these fascinating devices, calls this unpowered uncontrolled
behavior passive dynamic walking and he considers the mechanisms that exhibit it to be useful
models for the study of human locomotion. McGeer’s outstanding fundamental study in this area is
the motivating force behind this research which is an extension of his work. It is important and in
need of further development. Unlike Borelli, however, we will be assuming that the mechanisms we
study obey the ‘state-of-the-art’ mechanics principles — the action is equal and opposite to reaction,
and so on.

1.1 Motivation

Mcgeer [4] thought that, in the same way that the aviation pioneers learned about aerodynamics
from gliders, we can perhaps learn about the stability and control of walking by studying unpowered,
uncontrolled models. The Wright brothers only added power to their plane after they had studied
and mastered unpowered glider flight. McGeer’s central question might be stated as:

Can a statically unstable assemblage of rigid bodies powered only by gravity down a
shallow slope with no active control exhibit dynamically stable periodic motion resembling
human gait?

McGeer successfully analyzed and constructed two-dimensional, two and four link passive dynamic
walking models that displayed very graceful, stable, human-like walking on a range of shallow slopes
with no actuation and no control. Quite unlike control based models of walking, where a controller
tries to force a system to follow a prescribed trajectory, McGeer’s models exhibit gait cycles that are
a result of the natural interaction between the systems (with a given set of parameters) and their
environment (gravity forces, friction, and collisions).

An instructive model that we have studied is the 2D point-foot walker shown in Figure 1.1. It
is a special case of the more general 2D straight-legged walkers analyzed by McGeer [4] . A typical
passive walking step is shown in Figure 1.2 for the 2D point-foot model. This device can exhibit
stability in the sagittal plane. That is, it neither falls forward nor backward, and it has a stable
walking speed to which it returns following a disturbance. The stability is somehow a result of the
intermittent contact between the feet and the ground. When one foot is on the ground, the system
is, in part approximately, an unstable inverted pendulum. However, the other leg swings forward,
colliding with the ground and, given initial conditions and slope angle in the proper regime, catches
the system before it has a chance to fall down.

Unfortunately, all previously known passive walking models have no such stability in the lateral
plane. They are all two-dimensional or unstable in three dimensions. Evidence for passive stability
of various three-dimensional systems exists, supporting our conjectures regarding the existence of
gait stability in three dimensions. A linearized stability analysis shows that a disk (a coin or a
phonograph record, for example) rolling on a flat surface is neutrally stable with respect to small
lateral disturbances [6]. Given sufficient rolling speed, the disk will wobble indefinitely in response
to a small initial disturbance. This wobbling response is due to gyroscopic coupling of the various
degrees of freedom. An equilateral polygon with many sides rolling down small slopes exhibits
behavior similar to that of the rolling disk [7] (in the limit as the number of sides gets large and
the slope approaches zero, the polygon’s behavior approaches that of a circular disk on flat ground).
A bicycle, unstable while standing still, can be stable when moving depending on its geometry and
mass distribution [8]. Off diagonal terms in the inertia tensor induce kinematic coupling that keeps
the bicycle from falling over as long as it is rolling forward with sufficient speed. A rigid rider on a
skate-board is stabilized by coupling between the riders lean and the angle of the wheels[9]. These
examples provide insight into finding methods for stabilizing walking mechanisms.



Figure 1.1: The point-foot walking model. Leg lines are drawn with different line weights to corre-
spond to the plot of Figure 1.3. The angle §,; measures the rotation of the stance leg with respect
to the normal to the slope. The angle 8,,, is the rotation of the swing leg relative to the stance leg.
The hip mass is denoted by my,, and the foot mass by my. The leg length is denoted by ¢, the slope
angle, by «a, and the acceleration due to gravity, by g.



Figure 1.2: A typical passive walking step for the 2D point-foot model.

McGeer began studies of three-dimensional passive walking mechanism finding only unstable
periodic motions. Kuo [10] also studied a passive-dynamic 3D model of walking like McGeer’s
but focussed instead on stabilizing unstable passive steady gaits using simple feedback control laws
that govern foot and torso placement. Besides wobbling toys with low mass-centers and broad feet
(McGeer [11], Mochon and McMahon [12, 13]), passive-dynamic walking machines that are statically
unstable but dynamically stable in three dimensions have not yet been discovered in theory or
simulation. Only recently, we have completed experimental studies of a statically unstable walking
toy that has apparently stable 3D motions. We report on the device in Chapter 6 (also see Coleman
and Ruina [14] and [15]). This thesis extends McGeer’s work searching for stable three-dimensional
passive-dynamic models of human walking.

McGeer’s results with passive dynamic models of human locomotion suggest that human body
parameters such as mass distribution or limb lengths may have more influence on the existence
and quality of gait than is generally recognized. For instance, inappropriate mass distribution
may interfere with the passive stability of gait thereby requiring the neuro-muscular system to
expend unnecessary effort to maintain stability. Given a more complete understanding of how mass
distribution affects three-dimensional gait stability, we may be able to guide gait clinicians and
engineers in devising surgical procedures and prostheses better ‘tuned’ for a particular individual.

1.2 Objectives

Existing mechanical models for human walking generally treat gait as a planar activity. Recent
studies using these models have established the existence of steady, stable walking motions that
occur without motor activation or control. These passively generated motions have been termed
stable passive-dynamic Gait cycles. A passive gait cycle (from Garcia, Chatterjee, Ruina) [16] for
the 2D point-foot walker of Figures 1.1 and 1.2 is shown in Figure 1.3. While locomotion occurs
almost exclusively in the sagittal plane, the stability of out-of-plane motions is an important issue
that has barely been studied. We would like to extend existing planar models to allow out-of-plane
motions and search for stable passive gait cycles in these three-dimensional models.
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1.3 Review of Literature

Here, we give a brief review of work relevant to passive and active gait generation and stability.

1.3.1 What is Walking in a Nutshell?

Human walking is the cyclic movement of the legs to translate the body forward. One-half cycle of
gait begins with the pendulum like motion of the ‘swing’ leg from maximum backward extension to
maximum forward extension while the body is supported and balanced on the ‘stance’ leg. This is
followed by the heel strike of the swing leg, a short period of double support, and toe-off of the stance
leg to begin the next half-cycle. The cycle involves a complex interaction of a system of flexible
linkages, muscular activity, contact with the ground, and neurological control. A comprehensive
review of terminology, kinematics, physiological measures, and balance and posture in normal and
pathological gait is given by Winter[17, 1].

Disruption of the natural gait cycle can result from disease, aging, or traumatic injury. To restore
or partially restore function often requires rehabilitation, corrective surgery, or various devices,
braces, or prostheses that must be properly fitted and controlled to be effective.

Understanding how normal and abnormal gait is generated and maintained is important for
developing effective design solutions for restoring lost function. Most engineering models for under-
standing gait stability treat the static human body as a system of linkages. The question commonly
addressed is how the body synthesizes stable locomotion.

1.3.2 Actuated and Controlled Gait

Most gait models assume that the natural flow of events in generating stable motion proceeds outward
from the nervous system to the musculoskeletal system with sensory feedback to the nervous system.

Zajac and Winters[18] give a comprehensive overview of synthesizing a musculoskeletal dynam-
ical model including body and joint segment kinematics, equations of motion, passive-tissue joint
mechanics, geometric joint transformation, musculotendon force generation processes, and neuromo-
tor circuitry of the central nervous system (they do not discuss a specific human gait model). With
numerical models, Yamaguchi[19] and Yamaguchi and Zajac [20, 21] studied the feasibility of using
functional neuromotor stimulation(FNS) to restore normal function to paraplegics. Using dynamic
programming control, they obtained nearly normal gait characteristics (for the single support phase
only) using a three-dimensional eight degree-of-freedom model with simplified musculature, low force
levels, and minimal control of muscle activation[19]. Hausdorff and Durfee[22], Anderson et al. [23],
and Kobetic et al.[24] have investigated the feasibility of FNS experimentally. Using a knee-jointed
model confined to the sagittal plane, Taga, et al. [25] achieved stable locomotion (for entire gait
cycles, from step to step including foot and joint collisions) as a global limit cycle generated by a
global entrainment between the rhythmic activities of a nervous system composed of coupled neural
oscillators and the rhythmic movements of a musculo-skeletal system. Pandy and Berme[26, 27] de-
veloped two and three dimensional models of the single-support phase of gait including six degrees
of freedom, passive tissue elements, applied joint moments, and open-loop control. They predicted
joint angles and reaction forces similar to those in normal and abnormal human human gait over
one step, between foot collisions.

Some of the approaches involve optimization strategies to yield a particular gait pattern such as
minimizing some estimate of energy cost (Becket and Chang [28]), peak muscle force, jerk, ligament
or bone stress, etc., as reviewed by Collins [29] and also discussed by Nelson [30].

One of the biggest deficiencies of many models is that they often do not involve a complete walking
step (Pandy and Berme [26, 27], Yamaguchi and Zajac [21]). In order to more fruitfully study gait,
especially gait stability, we believe that models should include the entire gait cycle. Besides our



work and McGeer’s work, other research supports this opinion (Taga, et al. [25], Hurmuzlu and
Moskowitz [31, 32]).

Various means of active control have been implemented to generate locomotion patterns in
bipedal walking mechanisms designed to mimic human walking. Walkers built by Mita et al. [33],
Yamada et al. [34], Takanishi et al.[35], Lee and Liao[36], and Zheng et al.[37] generate gait using
feedback control while the bipeds of Miura and Shimoyama[38] generate motion using feedforward
control.

Active control also appears in prosthetic design. Phillips et al. [39], Phillips[40], and Durfee and
Hausdorff[41] have done experiments to test the feasibility of integrating FNS with prostheses for
above-the-knee amputees and orthoses for restoring normal gait to paraplegics.

One can also approach the problems of gait generation and stability in a way that deemphasizes
the role of the neural control system. Can stability be achieved solely through the passive interaction
of gravity, inertia of the body, and contact with the ground rather than by active neuromuscular
control?

1.3.3 Passive Dynamic Locomotion: Some Evidence and Research

Data from studies of human biomechanics and of controlled walking mechanisms hint at the possibil-
ity that models of walking which use no motor activation or control are plausible. Electromyographic
(EMG) recordings show lower levels of muscular activity in human legs during ordinary walking than
other voluntary movements[42]. Muscles of the swing leg are nearly inactive during the whole swing
period, except for peaks at the beginning and end[42, 1]. An EMG profile for the soleus muscle, for
example, is shown in Figure 1.4. Data is displayed for one stride period: from heel contact (HC) of
one foot to HC of the same foot, expressed as 0 to 100% in the profile. The stance period is from
0 to 60% of the stride period, where toe-off (TO) occurs, and the swing period is from 60 to 100%.
The profile shows that the muscle is nearly inactive in the swing phase and that most of the activity
occurs between 40 to 60% during the explosive push-off (PO) phase [1].

Mochon and McMahon[13] used a coupled-pendulum model, confined to the sagittal plane, to
demonstrate that, with proper initial conditions, a passive mechanical walking system could produce
swing times, joint angles, and reaction forces similar to those in normal gait (during the swing phase).

McGeer’s[43, 44, 4] magnificent work with two-dimensional passive gait models and walking
mechanisms proceeded with an evolution of models of increasing complexity coupled with appropriate
empirical studies to validate his hypotheses. This evolution is illustrated in a schematic diagram in
Figure 1.5. With mathematical gait models and using linearized stability analysis, McGeer was able
to find stable limit cycle motions confined to the sagittal plane. McGeer also built several physical
models, with and without knees, that exhibited stable passive dynamic walking in two dimensions.
Driven only by gravity down a shallow slope, McGeer’s walking mechanisms approach a steady
gait similar to human walking, without any active control or actuated energy input. McGeer[4]
also began to develop a three-dimensional mathematical model but only found unstable passive gait
cycles.

More recently, our lab (Garcia, et. al., [16]) and Goswami et. al., [45] have also studied extensively
2D straight-legged point-foot passive-dynamic models of human walking finding stable period-1 gaits
as well as stable higher period ‘limping’ and ‘stumbling’ gaits. In addition, Garcia and Ruina [2]
have duplicated McGeer’s [44, 4] 2D kneed walking work including the analytical model and building
and demonstrating a copy of McGeer’s kneed walking machine and extended his analysis.

1.4 Classification of Dynamical Systems

Here, we categorize the stability models we study, compare and contrast their stability characteristics
with other dynamical systems, and, where possible, determine their general characteristics. An
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Figure 1.4: A normalized EMG profile of the soleus muscle during one stride period (Reprinted from
Winter [1]). N is the number of data sampling intervals over the stride period and the coefficient of
variation (CV) is a measure of the mean variability across many repeat trials over the stride period.
Each subject’s mean EMG was normalized to 100% before averaging.
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Figure 1.5: Taxonomy of McGeer’s Evolution of Passive Dynamic Mechanisms

excellent reference on the dynamics of nonholonomic systems is the book by Neimark and Fufaev [46].
An excellent, if somewhat dated, reference on classifications of systems is by Ziegler [47]

First, we will briefly review the definitions of terms that we will use to characterize our walking
systems.

A geometric or configuration constraint restricts the geometric position of individual parts of
a system. A rate or velocity constraint restricts the velocities of the individual parts. Geometric
constraints must give rise to a specific constraint on velocities. The converse need not be true,
however: a velocity constraint need not lead to specific restrictions on the possible positions of the
parts of a system. Kinematic constraints are integrable if the differential equations that represent
them are integrable with respect to time. If a kinematic constraint is integrable, it is is called
holonomic; if it is not, it is termed nonholonomic. Below, we will give alternative and equally valid
definitions of nonholonomic systems.

Equivalently, we can define nonholonomic systems as those where:

1. velocity constraints are non-integrable (cannot be reduced to geometric constraints) or

2. the number of generalized coordinates is greater than the instantaneous degrees of freedom by
the number of non-integrable kinematic constraints (the dimension of the configuration space
is greater than the number of degrees of freedom) [46] or

3. the number of generalized coordinates is greater than the number of velocity constraints by
the number of non-integrable kinematic constraints (the dimension of the configuration space
is greater than the dimension of the instantaneously accessible velocity space).

An example of a nonholonomic system is a disk free to roll without slip on a plane. The position of
the disk is described by five generalized coordinates: two to mark the position of the contact point
of the disk on the plane and three independent orientation coordinates. The no-slip constraint gives
rise to two non-integrable velocity constraints.
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Though these two kinematic constraints must be satisfied at all times, the five coordinates can
take all sets of values on the plane; i.e., the kinematic constraints do not impose any restrictions on
the possible configurations. In other words, even though the coordinates that determine the position
of the disk relative to the plane must always satisfy two conditions, meeting the conditions does not
specify its position; while satisfying the kinematic constraints, the disk can be brought from one
position to any other position by a variety of moves.

Equivalently, the system is nonholonomic because the number of generalized coordinates exceeds
the dimension of the velocity space by two (5 > 3). Only three rates are necessary to specify the
velocity of the disk at any time.

Conservative and Non-conservative Systems

A conservative system is characterized by work-less constraints and conservative forces (those that
are derivable from a potential). In conservative systems, potential energy plus kinetic energy is a
constant. In a nonconservative system, the time rate of change of the sum of potential plus kinetic
energy is less than zero; the sum is not a constant. Systems with friction, inelastic collisions, or
inelastic deformations are nonconservative.

Equilibrium States, Steady Motions, and Stability

Equilibrium states of a system are those where its position does not change in time (its velocities are
zero). An equilibrium state may also be one where the system has the same position and velocities
at regular temporal or spatial intervals, such as steady or periodic motions.

An equilibrium state is said to be stable if, when subjected to arbitrarily small perturbations,
the resulting motion of the system over time or at regular spatial or temporal intervals remains in
a small neighborhood whose extent depends on the size of the initial perturbation. If, in addition,
small perturbations to the equilibrium state decay to zero over time or over regular intervals, then
the equilibrium state is said to be asymptotically stable.

According to Neimark and Fufaev [46], equilibrium states of a nonholonomic system cannot
be isolated but instead form a surface or manifold whose dimension is equal to the number of
nonholonomic constraints; the manifold is parameterized by a subset of the state variables whose
dimension is equal to the number of nonholonomic constraints. Thus, one may think of the remaining
state variables as functions of this parameter subset.

Since isolated equilibrium states do not exist, we can only talk about the stability of the manifold
of equilibria. The linearized equations of motion in the neighborhood of a certain point of the
manifold of equilibrium states enables one to study the stability of a system in a small neighborhood
of the surface. If in some region of the manifold of equilibria states, small deviations from the surface
decay over time, then that region of the manifold is asymptotically stable in the following sense. If
one disturbs a system from one of the states in this asymptotically stable region of the manifold,
then the disturbances will decay over in time and the system will return to an equilibrium state on
the manifold that is nearby to but not in general the original equilibrium state.

Steady motions of holonomic and nonholonomic systems may also form manifolds of various
dimensions in the phase space and configuration space. Stability of such steady motions may be
studied in the same way as for the manifolds of equilibrium states.

It is well known that manifolds of equilibrium states or steady motions of conservative holonomic
(Hamiltonian) systems cannot be asymptotically stable. On the other hand, not as well known is that
conservative nonholonomic systems can have asymptotically (exponentially) stable steady motions
in some variables while at most mild instability in the others, as recalled in Zenkov, et al. [48].
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Summary Table of System Stability Behavior

In the table in Figure 1.6, we classify systems as conservative (or non-dissipative) or nonconservative
with holonomic, nonholonomic, or piece-wise holonomic constraints. In each case, we list the stability
characteristics and, if possible, give the simplest example(s) we know about.

Our models are nonlinear, piecewise conservative and holonomic yet globally nonconservative and
possibly globally nonholonomic dynamical systems. For instance, the point-foot, straight-legged
walker constrained to two-dimensional motions is simply a double pendulum without dissipation
between collisions; it is holonomic between collisions since there are no kinematic constraints on the
stance and swing leg rates, only geometric constraints on the position of points of the system relative
to each other. The overall motions of the system are dissipative due to the inelastic foot collisions.
Globally the system can be said to be nonholonomic in the following sense: describing the position
of the walker requires three generalized coordinates but at any instant in time the dimension of the
accessible generalized velocity space is only two.

As suggested by the simple example of a discrete Chaplygin sleigh, a rigid body moving on a
plane constrained by a single skate, in Ruina [49], this discrete nonholonomicity may account for
exponential stability of some systems. Ruina [49] shows that, for the discrete model of the sleigh, its
stability eigenvalues approach those of the smooth analog system in the limit as the dissipation due
to collisions goes to zero. The walking models we study are all nonholonomic in this intermittent
sense (and also in the conventional sense if they have rounded feet). They can, for example, translate
forwards by walking although the contact constraint does not allow forward sliding.

General understanding of the stability of such intermittent systems is lacking. Two questions
this thesis only indirectly addresses are: (1) Does stability of passive motion depend on dissipation
(say, due to inelastic foot and joint collisions)? and (2) Does nonholonomicity enhance stability of
passive motion?
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Figure 1.6: Classification of dynamical systems by type of constraints and by the whether the system
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1.5 Research Program

Following McGeer, this dissertation follows a an evolution of models of increasing complexity (see
Figure 1.5.) In most cases, the bulk of our modeling approaches and analysis procedures are similar
in style to that used by McGeer for his successful two-dimensional and unsuccessful three-dimensional
walking analyses.

1.5.1 Ewvolution of Models

A brief summary of McGeer’s models are summarized here.

1. McGeer began with a study of a 2D rimless spoked wheel. The rimless wheel mimics the foot
collisions and inverted pendulum behavior of walking but not the oscillations of the leg. The
main feature of the 2D rimless wheel is that dissipation from the inelastic spoke collisions
regulates its speed. In simple mechanical terms, the gravitational energy available per step
is speed-independent for a given slope whereas the kinetic energy lost per collision increases
with speed (proportional to speed squared). The balance of the energy loss and gain per
step determines the steady-state speed. A one-dimensional map can be used to characterize
the motion of the 2D rimless wheel from one step to the next and determine the stability of
periodic motions (motions in which the state variables are the same after each step). Using
the linearized equations of motion for the rimless wheel (small slopes angles and large number
of spokes), McGeer constructed an iterative map for the state of the wheel from collision to
collision, and showed that asymptotically stable limit cycle motions of the wheel exist.

2. The next model McGeer studied (which we have not) is the 2D synthetic wheel, two straight
legs pinned at the hip with curved feet having a radius equal to the leg length. Whether a
foot slides freely or rolls is determined by a ratchet-like foot contact condition. The synthetic
wheel simulates leg oscillations and inverted pendulum behavior but not foot collisions.

3. McGeer’s next model was the 2D two-degree-freedom straight legged walker, with foot radius
less than the leg length.

4. Next, McGeer investigated a 2D, four link knee-jointed walker (Figure 1.7) which avoids the
foot scuffing problems in the previous walkers. A passive gait cycle for McGeer’s 2D kneed
walker is shown in Figure 1.8.

5. Finally, McGeer [4] analyzed a two-legged straight-legged walker with curved feet and hip-
spacing that was free to move in three dimensions but only found unstable limit cycles.

Our evolution of models and how it fits in with McGeer’s is shown in Figure 1.9. Our analysis also
proceeds with a rimless spoked wheel, constrained to move in two dimensions (in a vertical plane)
down a shallow slope. Our 2D analysis, however, only adds a slight depth to McGeer’s results.

We start our study of three-dimensional systems by studying the motions and stability of rolling
disks. To investigate our ideas of the how mass distribution affects stability of steady 3D motions,
we add rigid bodies which turn and bank with a disk but do not roll with it, thereby adding new
couplings between gyroscopic terms.
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a) Dimensional Parameters

b) Dynamic Variables

Figure 1.7: Our realization of McGeer’s knee-jointed walking model. Shown are the (a) model
parameters and (b) dynamic variables (from [2]). Radii of gyration and masses of thigh and shank
are denoted by ry, my, rs, and my, respectively. The foot is a circular arc centered at the ‘+’. The
angle between the stance thigh and the line connecting the hip to the foot center is defined to be e7.
The dynamic variables 8y, 0;1,, and 8, are measured from a line, normal to the slope, to lines offset
by er from their respective segments. A stop (not shown) at each knee prevents hyper-extension of

either knee. (Drawings courtesy Mariano Garcia [3])
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Figure 1.8: A simulated gait cycle of McGeer’s 2D kneed walker (from [2]). Angles of leg segments are
shown from just before heel-strike to just after the next heel-strike for a stable gait cycle of the walker
from Figure 1.7. In this gait simulation, the system returns to its original initial conditions after
one step. The parameters shown in the figure correspond to measured values from an experimental
walker studied by [2]. The heavy line on the graph corresponds to the motion of the heavy-line leg
on the cartoon under the graph. At the start of the step, this is the stance leg, but it becomes the
swing leg just after the first heel-strike. After the first heel-strike, the swing leg begins to flex and
swing as a double pendulum under the moving hip. At knee-strike, the swing shank collides against a
knee-stop. The swing leg then swings as a simple pendulum under the moving hip until it has a heel-
strike, when the two legs exchange roles. Heel-strike and the double-support phase are instantaneous
in this model. In general, the angular velocities of the joint segments have discontinuities at knee-
strike and heel-strike, which would appear as kinks in the plots of angle trajectories. These kinks
do not happen to be prominent in this particular simulation. (Figure and caption courtesy Mariano
Garcia [3])
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Figure 1.9: The un-invention of the wheel. Taxonomy of our analysis models. Models studied by
McGeer but not by the author are shown in gray. Models the author has studied are shown in black.
Models not studied by McGeer are indicated by an asterisk.
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We adjust the distribution of mass in the additional bodies to upgrade the neutral stability of the
uniform disk to asymptotic stability with respect to small lateral disturbances.

Next, an analysis of the 3D rimless wheel captures the essential features of our proposed study
of three-dimensional walking mechanisms by allowing us to study out-of-plane stability of a simple
mechanical analogue to walking. We use our insights from this spoked wheel to progress to the
legged walker.

Finally, then, moving away from 3D wheels, we study a straight-legged point-foot walking model
free to move in three-dimensions. We study planar motions of this model as a special case and a
starting point.

1.5.2 Modeling Approach and Analysis Procedures

We first begin with a qualitative overview of the procedures of study and then make their description
more formal with mathematical notation in Appendices A, B, and E.

Qualitative Overview of Procedures of Study

A step of a walking mechanism can be represented by a function which takes as input the measure-
ment of the state of the device at definite points in its motion, usually(and perhaps most logically)
just after foot collisions with the ground, and returns as output the values just after the next iden-
tically defined event. Thus, the state of the system after a step is a function of the state just after
the previous step. McGeer calls the function or return map the stride function.

This mapping approach has also been used in other work involving discontinuous vector fields
such as studies of: hopping robots (Biihler and Koditschek, 1990 [50]); bouncing balls (Guckenheimer
and Holmes, 1983 [51]); elasto-plastic oscillators (Pratap, et. al., 1992 [52, 53]); impact oscillators
(Shaw and Holmes, 1983 [54], Shaw and Rand, 1989 [55]); balance wheels and pendula in clocks
(Andronov, et al. [56]); and walking (McGeer, 1991 [4], Hurmuzlu, 1993 [57, 58]). A more general
discussion of the dynamics of systems with impacts can be found in Brogliato, 1996 [59].

If nonlinear one-dimensional return maps describing the state of systems at successive collisions
fall into a class of well defined functions, then certain conclusions may be made about the stability of
periodic points of the maps. Koditschek and Biihler[60] verified one aspect of Raibert’s [61] exper-
imental work with hopping and running robots by establishing the existence of globally attracting
vertical hopping modes (constrained against falling over) using unimodal maps whose properties
are well established. In addition, Biihler and Koditschek [50] determined the existence of globally
attracting 1D juggling modes for the one-dimensional juggler using unimodal maps and verified their
simulations with careful experiments.

The stride function is found by deriving the differential equations of motion between collisions
and collision conditions at end-of-step, subject to the classical laws of mechanics. Appendix B
describes the details of deriving the equations of motion and the collision rules for the case of the
point-foot straight-legged walker free to move in three-dimensions.

The models we study are systems of rigid-body links with hinge connections at the link joints.
In this study, we only consider mechanisms with at most two links.

For two-link devices, in between foot collisions, we assume the stance foot remains on the ground.
We treat it as a ball joint if it is modeled as having point feet or as having no-slip rolling constraints
if it is modeled as having rolling contact, until the swing foot makes contact. We model the hip
joint as a hinge. We assume additionally that there are no resisting torques about the point of
contact and about the hinge joint axis. We derive the equations of motion between foot collisions by
applying angular momentum balance about: (1) the stance foot contact point for the entire system
and (2) the hinge rotation axis at the hip joint for the swing leg.

The swing foot contact point receives an impulse at foot-strike. Due to the swing foot collision,
an impulse is also transmitted to the swing leg at the hip joint. We assume that, during collision,
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other smaller forces (e.g., gravity) acting on the system are negligible in comparison to the collision
impulses. We also assume there are no impulsive ground contact torques. At the instant of collision
at the hip, we assume that the former stance leg loses contact with the ground (at the same instant
the swing foot makes contact) and that it has no impulsive reaction with the ground as it leaves.
Based on these assumptions, angular momentum is conserved for the entire system about the swing
foot contact point during the collision process. Angular momentum is also conserved for the new
swing leg (formerly the stance leg) about the hip joint hinge axis. These statements of angular
momentum conservation during the collision process yield the transition rules for velocities from
just before to just after foot-strike.

We derive the governing equations and collision rules by hand or on a computer using symbolic
mathematics packages such as Maple® (see Appendix B).

For a given set of initial conditions, we integrate the equations of motion over one step an-
alytically, if possible, but most often, numerically using the 4th-5th order Runge-Kutta method
from MATLAB®. End-of-step is detected using a method developed by Henon [62] for the numer-
ical computation of Poincaré Maps. Once a collision is detected, the collision condition is applied.
This sequence of integration, collision detection, and application of jump condition constitute one
evaluation of a cycle of motion.

A state of the system that returns to itself is called a fixed point of the stride function. Such a
fixed point corresponds to a gait cycle (not necessarily stable). In order to find a stable cycle, first
we have to find a cycle. We find fixed points of the stride function analytically if possible or by a
numerical search. Appendix A describes a multi-dimensional Newton’s Method fixed point search
algorithm. Fixed points known from analysis of two-dimensional walkers may serve as initial guesses
for the iterative numerical searches in three-dimensional models. For models that do not have strict
two-dimensional interpretation, we use our knowledge and intuition about walking for initial guesses.

Given that we find gait cycles (fixed points of the return map), we evaluate stability by linearizing
the stride function in the neighborhood of each fixed point. The linearization requires an estimate
of how perturbations of each state-variable away from the fixed point are propagated to the next
step. These estimates come from a series of analytical calculations or numerical simulations in
the neighborhood of the fixed point. From these estimates, we can assemble the Jacobian matrix.
Close to a fixed point, the Jacobian matrix maps the perturbation to a fixed point just after a
collision to the perturbation of the fixed point just after the next collision. Since, in most cases,
we do not know the stride function explicitly, we must find the Jacobian of the stride function
numerically. Appendix A summarizes how to do this calculation. In some cases, we may obtain
analytical approximations to the Jacobian of the the stride function evaluated at a fixed point by
using perturbation methods, for example. Appendix A outlines such a procedure.

The eigenvalues of the Jacobian matrix indicate the stability of the system. If all eigenvalues
have magnitude less than one, then the fixed point, and the gait cycle, are asymptotically stable.
If any eigenvalues are outside the unit circle, then the periodic motion is unstable. If the ‘biggest’
eigenvalue has magnitude of one, then the limit cycle is neutrally stable. Appendix A explains how
the eigenvalues determine the stability of fixed points.

For a given set of parameters, the search for a gait cycle and the stability check may be automated.
If none of the fixed points for a set of parameters are stable, we modify the parameters and check
again. An automatic search through all of parameter space is impractical, however. Instead, we guide
the search using results from simpler models, our experience and insight about stability mechanisms
and natural walking, and if possible numerical optimization procedures such as a multi-dimensional
gradient search method or the method of simulated annealing.

Once we find a stable gait cycle, we perturb the parameter values and repeat the stability analysis,
in order to evaluate the sensitivity of the stable cycle to changes in parameters.

We summarize the procedure as follows:

1. Define a mechanical model and make assumptions that determine parameters, kinematical
description, and constraints.
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2. Derive the equations of motion between foot collisions.
3. Describe the foot collision and derive a rule for the change in velocities during a collision.

4. Construct the stride function numerically by integrating the equations of motion between
collisions, detecting a collision, and applying the collision rule.

5. Check validity of simulation. If the simulation results are not consistent with the laws of
mechanics or the walking mechanisms are otherwise not behaving as should be expected, start
at the beginning and refine the simulation.

6. Use root finding to find fixed points of the stride function.

7. Numerically evaluate the Jacobian of the stride function at the fixed points and find its eigen-
values.

8. If there are stable limit cycles for a set of parameters, try to determine the basin of attraction
for the fixed points and vary the parameters to achieve the most stable periodic motions. If
there are no stable limit cycles for a set of parameters, adjust parameters to find stable walking
motions and redo the analysis procedure.

1.6 Dissertation Organization by Chapters

The rest of this dissertation is organized as follows: the motions, behaviors, and stability of the 2D
rimless wheel are presented in Chapter 2; the effects of mass distribution on the stability of a rolling
disk are presented in Chapter 3; numerical and analytical stability analyses of planar limit cycles of
the 3D rimless wheel are presented in Chapter 4; finding walking motions and their stability for the
2D straight-legged point-foot walker is presented in Chapter 5; and, finding walking motions and
their stability for the 3D straight-legged point-foot walker is presented in Chapter 6. Appendix A
gives a mathematical description of the analytical, numerical, and simulation procedures and includes
relevant Maple® and MATLAB® codes. Appendix B describes the methodology for the derivation
of the governing equations for the 3D straight-legged passive-dynamic walking mechanism including
relevant Maple® codes. Appendix C outlines the derivation of a special sequence of angular rates for
the 2D rimless wheel analysis referred to in Chapter 2. Appendix D reviews the special set of 3-1-2
Euler angles used to describe orientations in Chapter 4 of the 3D rimless wheel and Chapter 6 of
the 3D walker. Appendix E presents the Maple® code for the perturbation analysis of the stability
of the 3D rimless wheel reported on in Chapter 4.
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Chapter 2

‘Step One’: Rimless Spoked
Wheel Constrained to Motions in
a Vertical Plane

... I envy the spokes of wheels ...
Emily Dickinson, Poems. Book II. Love. XXI. Longing

2.1 Introduction

Following McGeer, our analysis of walking mechanisms starts with an investigation of a rimless
spoked wheel confined to move in a vertical plane in a fixed direction on a slope. The 2D rimless
wheel is shown circled in Figure 2.1 below to remind the reader of where it fits into the evolution
of models in the research program. Henceforth, we will repeat the figure at the beginning of each
chapter to show the progression of the models.

The configuration of the wheel is shown in Figure 2.2. A rimless wheel free to move in three
dimensions is the subject of the Chapter 4. The rimless wheel captures some of the essential features
of human walking. It mimics the foot collision, falling-and-catching, and inverted pendulum behavior
of walking but not leg oscillations or fore and aft instability. The 2D rimless wheel also, obviously,
does not have the lateral instability issues of 3D walking. The 2D wheel is a first ‘step’ in a
progression to walking mechanisms with two swinging legs with and without knees in two and three
dimensions. It is amenable to simple analyses yielding results about periodic motion and stability
of a particular passive dynamic system without active energy input or control. In this problem, the
wheel, statically unstable when balancing on one spoke, is stabilized dynamically in the direction
of motion by repeated collisions. McGeer[43, 44, 4], claiming to follow Margaria[63], carried out
a stability analysis of the rimless wheel, using linearized equations of motion, accurate when the
number of spokes is large and the slope is small; i. e., when n — oo and a € 1. McGeer found
stable limit cycles and the asymptotic rate of approach to these cycles. The subject of this chapter
is a full nonlinear analysis of the wheel. This analysis adds a slight depth to the discussions of
McGeer[43, 44, 4].

The rimless wheel is an example of a mechanical system with intermittent contacts. The spoke
impacts give rise to discontinuities in the velocities. One can deduce the trajectories and the phase
plane portrait of this simple system. The system is piecewise holonomic and conservative, or Hamil-
tonian. Like the 2D rolling disk, in its overall motion, it is holonomic. Globally, it is non-conservative
due to the instantaneous loss in energy at each inelastic spoke collision.

21
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Figure 2.1: The place of the 2D rimless wheel in the passive-dynamic family tree.

Though the 2D rimless wheel is nonlinear in between collisions, it is simply an inverted rigid
body pendulum for which a first integral exists - conservation of energy. Thus, the orbits in between
collisions are easily generated. They are then pieced together using angular momentum balance at
the collisions to obtain a complete phase plane portrait.

From this formulation, an explicit one-dimensional piecewise continuous Poinc-aré map is ob-
tained that takes a measure of the velocity just after a spoke collision to just after the next. The
Poincaré map samples the phase space at an angle of rotation fixed by the number of spokes, just
after each spoke collision with the ground.

From this map, we obtain results regarding the existence and stability of two possible fixed
points corresponding to static equilibrium and limit cycle motion of the wheel. The existence of
these points depends on the model parameters. The birth and death of the fixed points cannot be
classified according to classical theory of bifurcation of smooth scalar maps due to discontinuity in
the Poincaré map.

We also find the asymptotic rate of approach to the fixed points, the non-dimensional energy loss
per wheel revolution, steady-state non-dimensional speed and rate of change of speed of the center
of mass as functions of slope angle, number of spokes, and moment of inertia about the center of
mass. We show that in the limit as the number of spokes goes to infinity the rimless wheel behaves
like a rolling disk. Finally, we summarize McGeer’s linear analysis of the wheel and compare it to
our nonlinear results. Numerical simulations are presented to verify and demonstrate the results.

2.1.1 Chapter Organization

The rest of this chapter is organized as follows: The physical system and model are described in
Section 2.2; the governing equations and phase space are presented in Section 2.3; the Poincaré
section and return map are defined in Section 2.4; fixed points, their stability, their criteria for
existence and the rate of approach to them are described in Sections 2.5 to 2.9; an energy analysis
is carried out in Section 2.10; the limit cycle non-dimensional speed and rate of change of speed
are calculated in Section 2.11; a review of McGeer’s linear analysis is given in Section 2.12, and a
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\ Spoke k+1

Figure 2.2: Wheel model: A rimless spoked wheel of mass m, moment of inertia about the center
of mass I, and n evenly spaced spokes of uniform mass and length [ rolls down a slope of angle a.
The orientation of the wheel is given by angle 6. The angle between the spokes is 8 = 27 /n.
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summary and discussion of this analysis with reference to the study of walking and the goals of this
research are presented in Section 2.13.

In addition to introducing the physical system and assumptions, Section 2.2 (Description of the
System), is intended as an overview of the concepts and techniques of our analysis and as a prelude
to a more formal presentation of the details of the analysis in subsequent sections.

2.2 Description of the System

A wheel of mass m and moment of inertia about the center of mass I with the rim removed and n
evenly spaced spokes of uniform mass and length [, acting as ‘legs’, rolls down a slope of angle a.
(See Figure 2.2.) Unlike a wheel with a rim, this device cannot roll steadily on a level surface since
it loses energy at collisions. We assume the spoke collisions are perfectly inelastic and impulsive,
an idealization of foot collisions. Kinetic energy is, thus, lost in each dissipative impact and the
wheel’s speed is consequently reduced. For completeness, we also allow the wheel to roll backward
and forward.

Once a spoke contacts the ground, it maintains hinged contact with the ground until the next
spoke collides. In the model here, we explicitly exclude loss of ground contact and do not allow
any slip — unrealistic assumptions for some of the motions. (Allowing for slip and/or loss of contact
would limit the maximum slope for no-bounce, no-slip limit cycles to exist. Other, more complicated
limit cycles could exist, however.)

2.2.1 Configuration

The orientation of the wheel is characterized by 6y, the angle of spoke k measured from the vertical,
positive in the counter clockwise sense. 6y is zero when spoke k is vertical and in contact with
the ground. Since the spoked wheel has n-fold symmetry, the angle with the vertical of the spoke
presently on the ground in some sense characterizes the configuration of the system.

Special times of interest are just before and just after collision i. (—) and (+) are used as the
superscripts to denote these times. For instance, iO,j is the angle of any spoke k, just after collision
i. j(7) is the spoke touching the ground just after collision . For downbhill rolling, j(i) = ¢ and
j(i +1) = j(4) + 1. For uphill rolling, j(i + 1) = j(¢) — 1. "Hj(z.) is the angle of spoke j(%), the spoke
which just collided with the ground at collision %, just after collision i. The overall motion of the
wheel is recorded by, say, 01 (¢).

2.2.2 Cycle of Motion

A schematic of one cycle, for downhill rolling, is shown in Figure 2.3. The wheel rotates over the
‘stance’ spoke, spoke j(i) , as an inverted pendulum with initial angle "6;(1.) = a —m/n and rotation
rate § = ’0;?1) The non-collisional portion of the stride ends just before the next spoke in sequence,
spoke j(i + 1), analogous to the swing leg in walking, strikes the ground at ""'10;(1.) =a+m/n and
6 = "+19j’(1.) instantaneously transferring support from the trailing spoke to the leading spoke. After
impact, the wheel is now poised for the next start-of-cycle at z"'“16?;'21. by = "Hj(z.) = a — 7/n and
)y _ i+t

0_ =" ej (i+1)°
0 henceforth.

Since the angular velocity of all of the spokes is the same, we will drop subscripts on

2.2.3 Motions and Limiting States of the Wheel

When the wheel is rolling up or down, it may or may not have sufficient energy to pass over the
vertical position. When the wheel does not have enough energy to pass the vertical in the downhill
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Figure 2.3: Schematic showing: (a) the state of the wheel over one stride just after the collision of
spoke j(z) with point A, (b) the state of the wheel just before collision 7 + 1 of spoke j(i + 1) at
point B, (c¢) the free body diagram of the wheel during the collision of spoke j(i + 1) at point B, and
(d) the state of the wheel just after the collision of spoke j(¢ + 1) at point B. The unit vector n is

normal to the slope and the unit vector t is tangent to the slope.

Spoke (i)
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direction, the wheel has one motion: reversing direction and then rocking back and forth between
two spokes. When the wheel does not have enough energy to pass the vertical in the uphill direction,
the wheel can have two motions: reversing direction and rocking back and forth between two spokes,
as above, or reversing direction and rolling downbhill.

If the wheel completes a downhill cycle, the kinetic energy of the wheel just before collision is
greater than the kinetic energy at the start-of-cycle due to the downhill slope (KE;;, > K Ef).
The kinetic energy of the wheel drops instantaneously at impact, however. For downhill motions,
the following outcomes are possible.

e 1. Periodic motion arises if the the energy lost in collision is exactly balanced by the kinetic
energy gained in falling. In this case, the state variables are equal to those at the start of the
previous stride. The wheel is in periodic or limit cycle motion that repeats indefinitely.

e 2. If more energy is lost in collision than gained in falling, the wheel slows, either towards a
periodic motion or to an eventual stop on two spokes, depending on the slope, inertia, and
number of spokes.

e 3. If more energy is gained in falling than lost in collision, we expect the wheel to increase in
speed towards the periodic motion.

e 4. For a particular angular velocity after collision and small enough slope, the wheel will
approach the unstable vertical equilibrium in infinite time.

For uphill motions, the wheel will eventually reverse direction, roll downhill, and reach one of the
outcomes above for downhill rolling.

Thus, the possible limiting states for the wheel are limit cycle motion, the stopped position on
two spokes, and the unstable vertical equilibrium. Limit cycles and the stopped position correspond
to the condition 16+ = g+ and 1T = T = a — I; i.e., the state of the wheel is the same just
after every collision 1.

2.2.4 Behaviors of the Wheel

The behaviors of the wheel are the ways in which the wheel approaches the possible limiting states.
The behaviors depend upon the wheel parameters and initial conditions. For example, the wheel
can roll down the slope at higher than the angular rate needed to just reach the vertical position
in infinite time but less than the limit cycle angular rate, increase in speed and approach a limit

cycle from below. Using our notation, we can represent the behavior schematically as Down=y Limit
Cycle where the (+) or (—) refers to increasing or decreasing angular velocity after each collision.
In summary, using our shorthand notation, the behaviors of the wheel are as follows:

e 1. Down Limit Cycle

e 2. Down— Limit Cycle

e 3. Down— Rock — Stop

4. Rock— Stop

e 5. Up— Rock — Stop

e 6. Up— Down= Limit Cycle
e 7. Down— Vertical

e 8. Up— Vertical
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e 9. Up— Down — Vertical
e 10. Up— Stop
e 11. Down— Stop

These behaviors are more compactly summarized in a diagram in Figure 2.4.

Rocking

Up Rolling Down Rolling

* N N
\1
Stable

Stopped Limit
Position Cycle
Vertical

Upright

Position

Figure 2.4: Diagram showing the possible motions, the condition of rocking, and the possible limiting
states, stopped on two spokes, the limit cycle, and the vertical position. Solid arrows indicate that
a motion or limiting state can be reached in finite time after one collision or in infinite time before
the next collision can occur. Dotted arrows indicate that a limiting state is reached asymptotically
after infinite collisions in finite time. The asterisks next to a solid arrow indicate that the stopped
position can be reached in one collision; e.g., cases 10 and 11 in the text. The arrows turning back
on themselves and attached to the motions indicate that the motion can occur over one or more
iterations.

In cases 3, 4, 5, the wheel rocks back and forth on two spokes until coming to rest on two spokes
after an infinite number of collisions in finite time. Since, as we will see, support transfer produces
a simple ratio (less than one) between adjacent terms in the sequence of angular rates, the rocking
cannot stop in a finite number of collisions. But, it can stop in finite time since the total time of
rocking is an infinite geometric series that has a finite sum. McGeer [64] finds the finite sum of this
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infinite series, obtained from a linear analysis of rocking, with arbitrary accuracy for the case where
the angular rate has gotten very small after some large but finite number of collisions.

Cases 10 and 11 can only happen with three and four spoked wheels and sufficiently small radius
of gyration. In these special cases, the wheel comes to a stop after the first spoke collision, for any
initial conditions.

We now move on to the details of the full nonlinear analysis of the 2D rimless wheel by starting
with the equation of motion, collision transition conditions, and the associated phase space.

2.3 Governing Equations and the Phase Space

Since the rimless wheel has n-fold symmetry, the wheel looks the same for a given angle of any
spoke that is currently in contact with the ground between collisions. The angle with the vertical
of the spoke presently on the ground in between collisions, then, can be used to characterize the
configuration of the system, as noted in Section 2.2.1. As the center of rotation of the rimless wheel is
instantaneously moved with each collision from the tip of one spoke to the next, we thus consider the
orientation of the wheel between collisions restricted to the closed interval I = [a@ — 7/n,a + 7/n)
over many collisions by resetting the angle at each collision. The boundaries of the interval are
determined by the number of spokes, n, and the slope angle, a. The rule for updating the orientation
was introduced in Equation (2.4).

We use angular momentum balance about the point of spoke contact to find the equation of
motion between collisions, the configuration scheme described above to find the collision transition
rule for the orientation angle of the wheel, and conservation of angular momentum about the incipient
point of spoke contact to find the collision transition condition for the angular velocity of wheel.

2.3.1 Equation of Motion between Collisions

Referring to Figure 2.3, the equation of motion is derived from angular momentum balance about
point A, )
M =Ha,. (2.1)

The non-dimensionalized equation of motion between collisions is:

6 — Msinf =0, |0 —a| < 7/n. (2.2)
where
1
2 _
A= 2J+1 (2:3)
e
2J = —
4 ml?
3 n<oo, and

<
0 < a<m/2
An overdot indicates differentiation with respect to non-dimensional time 7 = ¢4/g/l. This equation

is simply that of an inverted rigid body pendulum.

2.3.2 Collision Transition Conditions

The angle is reset at each collision ¢+ 1 as support is transferred from spoke j (%) to j(i+ 1) according
to the following mapping:

@-a)——(0—a), |0 —a| =x/n. (2.4)
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This relation is obtained by noting that the orientation of the wheel is rotated by —27” after a
downhill collision and by 27” after an uphill collision.

Ignoring the impulse due to gravity during collision, the condition relating the angular velocity
of the wheel before and after collision is derived from the conservation of angular momentum during
collision about the incipient point of spoke contact. Referring to Figure 2.3, we can write this as

Hj = Hj (2.5)
where H is angular momentum and
Hy = Hg+rg/pxmvg (2.6)
Hy = Io("7)k
= (H'lé_) K XTc/a,
Hf = Iy ("6*)k, and
Ig = Ic+ml?

The conservation of angular momentum stated in Equation (2.5) yields the following transition
function relating angular velocity before and after collision:

0 — pé, |0 —a|=7/n (2.7)
where )
yis
_ 2J + cos(Z)
2J+1
The collision parameter u in Equation (2.7) represents energy lost during impact since it is always
less than one, except when the number of spokes is infinity so that p is equal to one. Before we

can define the Poincaré section and return map for the 2D rimless wheel, we must first describe the
phase space and trajectories for the system.

. 2
-1+ Az(cos(%) —1), 0<u<l1. (2.8)

2.3.3 The Phase Space and Trajectories
The Phase Space

Rewriting Equation (2.2) in first order form, the (,0) phase flow is governed by

=y, |0 —a| <7/n (2.9)
gy = Msind
O —ay) = (=(0-a)um), 0 —a] =m/n (2.10)

The flow in phase space between collisions is easily generated using the first integral of motion(conservation
of energy)

6 = \/0% + 2X2(cos(fy) — cos(8)). (2.11)

The simple rigid body pendulum without collisions has the usual phase space with coordinates
(6,0) € R2. The evolution of the trajectories for the rimless wheel, however, is contained in a closed

subset of phase space )
U={(6,0) |#—a|<w/n}=IxRcCR. (2.12)

All trajectories start in U and terminate in U. Figure 2.5 shows the subtended phase space U for
the rimless wheel superimposed on the phase space for the simple rigid body pendulum.
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Figure 2.5: The phase space U and its boundaries OU with slope angle a = {¢, number of spokes

n = 6, and 2J = 0.5 for the rimless wheel is shown superimposed on the phase portrait for the
nonlinear simple rigid body pendulum. The interval I is I = [a — 7/n,a + 7/n] = [-0.3142,0.733].
The trajectories of the motion of the rimless wheel are contained in this subset of the phase space for
the simple rigid body pendulum also with non-dimensional inertia 2J = 0.5. Note the asymmetry
of U about the vertical axis due to the slope angle: the greater the slope angle the greater the
asymmetry.
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Phase Flow in U

We can re-write Equation (2.9) as
q="1(q,p) (2.13)

where q = (9,9) and f : U — U is a time-independent vector field depending upon a vector of
parameters, p = {\?,n,a}. Back, et. al [65] have elucidated a concise framework for describing
dynamical systems such as the rimless wheel which require a mixture of discrete and continuously
evolving events, what they call hybrid systems. Conceptually, they view the evolution of the system
as a sequence of trajectory segments where the endpoint of one segment is connected to the initial
point of the next by a transformation. They divide time into contiguous periods, called epochs,
separated by instantaneous events where transition functions are applied. We will borrow this
terminology to describe our system.

The epochs here are the time periods between spoke collisions which are the events. The transi-
tion function here is a map T : OU — 8U, where 8U = {(0,0)| |0 —«| =m/n} and T is defined by
Equation (2.10). Within this framework, an orbit in the flow of this system which begins at a time
to and terminates at time t; may be completely described. Back, et. al [65] define a trajectory for
Equation (2.13) to be a curve v : [tg,ts] = U together with an increasing sequence of real numbers
to < t1 < --- < ty that satisfies three properties:

e Each time interval corresponds to an epoch and ~y(¢) lies entirely in U for all t € (¢, ti41).
e For t € [t;,ti41), t = v(t) is an integral curve of the vector field f.
e lim,_ - ~(t) =v exists, vé OU, and T(v)= 1imt—>t‘."+1 ~(t), T(v)e oU.

t—t7

It is possible for v(tf) € U; i.e., y(t) terminates in U.
A representative phase plane portrait, generated using modified MATLAB® integration routines
is shown in Figure 2.6 for several initial conditions. Some remarks regarding the phase plane portrait:

e The nature of the phase plane portrait and, hence, the physical behavior of the wheel depend
on the wheel parameters.

e Trajectories for a simple pendulum cannot cross the separatrices but the collisions allow this
for the rimless spoked wheel.

e Every trajectory terminates on U except for those on the separatrices which initiate at

g = \/2X2(1 — cos(a — m/n)) (2.14)

or

uPf = —\/2X2(1 — cos(a + 7/n)) (2.15)

and terminate at the unstable equilibrium (6,60) = (0,0). If a > 7, the unstable equilibrium
is not in U.

In Figure 2.7, 6 and 6 are plotted versus non-dimensional time, 7, corresponding to trajectory
71 (t) in Figure 2.6. The plots show the discontinuities in the state variables at the collisions and
shows how 6 is bounded by § = a— ~ and 0 = a + 7.

For illustrative purposes, the trajectories and phase space for the rimless wheel shown in Fig-
ure 2.6 are shown superimposed on the corresponding trajectories of the simple rigid body pendulum
in Figure 2.8.

Now that we have described the phase space and trajectories, we can define the Poincare section
and return map.
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Figure 2.6: Two phase plane trajectories in U and between the boundaries of U. The trajectories
are labeled 7, (t) and 72(t) and both use 2J = 0.5, n = 6, and a = {¢. The initial condition for
the first trajectory is v1(to) = vo = (—0.314,0.30) and subsequent points of the trajectory on the
boundary of U are denoted by v;, i = 1,2,3,.... The initial condition for the second trajectory
is y2(tg) = Vo = (—0.314,0.22) and subsequent points of the trajectory on the boundary of U are
Vi, 1 = 1,2,3,.... The solid lines are integral curves of the vector field f representing the motion
between collisions and the dashed lines are fictitious ‘curves’ that piece together the integral curves
at collisions to make a complete trajectory. The dashed lines represent the instantaneous application
of the transition function T at each collision that manifests itself as a decrease in angular velocity.
The dotted lines are trajectories that correspond to the separatrices for the simple pendulum. If the
wheel starts at initial conditions that are on these trajectories the wheel either reaches the vertical
unstable equilibrium 6 = 0 in infinite time or leaves the vertical position and makes a collision in
finite time. The arrows on the trajectories indicate the forward direction in time.
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Figure 2.7: In figures (a) and (b), 6 and 6 are plotted, respectively, versus non-dimensional time,
T, corresponding to trajectory 7y, (¢) in Figure 2.6. In the time interval shown, the wheel makes two
collisions. The plots show the discontinuities in the state variables at the collisions. The first plot
shows how 6 is bounded by # = a — T and 6 = a + - and how the angle is reset after each collision
according to the collision transition rule Equation (2.4). The size of the interval is equal to the angle

between the spokes, 3 = 2Z.
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Figure 2.8: The trajectories and the phase space for the rimless wheel shown in Figure 2.6 are
shown superimposed on the corresponding trajectories of the simple rigid body pendulum that pass
through the angular velocities after collision on the boundaries of U where the trajectories of the
rimless wheel start. The bold lines are the trajectories of the rimless wheel and the dotted lines are
the trajectories of the simple rigid body pendulum.
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2.4 Poincaré Section and Return Map

To study this system, we shall use the method of a Poincaré section. The one degree of freedom
rimless wheel has a two dimensional phase space with coordinates (0,9) € U. A natural place to
sample this space is at the points of discontinuity, the collisions, where we know the orientation of
the wheel. We then will define a scalar map P that takes an angular velocity after a collision that
is in the section to the angular velocity after the next collision that is also in the section.

2.4.1 The Poincaré Section

We define the sampling location in the phase space, the Poincaré section ¥, as:

_ NICESCEEIR 6>0, and 0 #£ 9
z_{(e,o)‘ O=(a+1), 6<0, and §# 4 (2.16)
where
dng \/2)\2(1 — cos(a — %)) (2.17)
and
uPg = —\/2,\2(1 — cos(a + %)). (2.18)

dng is the angular velocity just after collision in the forward direction such that the wheel reaches the
vertical position # = 0 in infinite time. “P§ is the angular velocity just after collision in the backward
direction such that the wheel reaches § = 0 in infinite time. These critical values are obtained using
conservation of energy; all of the kinetic energy of the wheel following a spoke collision is converted
to potential energy at 6 = 0.

The critical values of angular velocity after collision, dng and “”9, defined above, are excluded
from the Poincaré section because once the wheel attains either of the critical values after a collision,
the wheel will not have any more collisions since the wheel reaches the vertical in infinite time. Thus,
we cannot sample the space after collisions since the wheel has stopped in the vertical position.

The flow of the differential equation is everywhere transverse to X; i.e. the phase plane trajectories
pass through the Poincaré section. This is easily seen by considering the vector field in (8,6) space

dé

on ¥ given by Equation (2.9). The flow is transverse to ¥ since 5 - is defined.
=« %

Orbits in the phase space will be studied by considering the mapping
P:¥->X (2.19)

induced by the solutions of Equation (2.2). Figure 2.9 shows the phase space and the section X.
Positive orbits are sequences of the angular velocity of wheel after each collision. The sequences are
obtained by iterating forward from an initial condition in ¥ using the Poincaré map P. The orbits
can be visualized by marking the sequences of angular velocities on the Poincaré section. Consider
orbits with initial angular velocities just after collision, 8y € X, in Figure 2.9. Positive orbits from
initial conditions with § > 98 > 0 and “Pf < § < %0 are shown for several iterates with a < z
The section we have defined is used since the first integral of motion, the conservation of energy,
exists for motion between collisions and since the transition function for the angular velocity at each
collision is simple. Thus, the map P can be obtained in closed form. Discontinuities in the map can
exist, however, and we must locate them and determine their dependence on the wheel parameters
before constructing the map.
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Figure 2.9: The phase space (0, 0) € U showing the Poincaré section ¥.. Positive orbits from initial

conditions 6y > 96 > 0 and “Pf < §y < @ are shown for several iterates with o =

T
152

2J = 0.5,

and n = 6. In this case, dng = (0.255 and “P§ = —0.585. The orbits in ¥ starting with with
6o = 0.30 and 6y = 0.22 are marked by the sequences, 1,2,3,... and 1',2',3',..., respectively. The
orbit starting with 6, = 0.30 > 978 corresponds to the wheel starting off downhill and approaching
a limit cycle. The orbit starting at 8y = 0.22 < 9”@ corresponds to starting off downhill with too
little energy to make it past the vertical position and rocking back and forth between two spokes,
eventually coming to rest.
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Piecewise Continuity of the Return Map

The Poincare map can be discontinuous. Discontinuities can arise in the return map at the critical
values of angular velocity after collision for stopping at the vertical position in infinite time, uP and
dng. The critical values depend upon the number of spokes, the slope angle, and the non-dimensional
inertia. The critical angular velocities exist for shallow and intermediate slopes, a < . The map
will have one functional dependence on the angular velocities after collision in the interval between
the critical velocities, “?§ < 6 < @, and another outside the interval. In the interval, the map
P must represent the wheel having too little energy to reach the vertical and then reversing its
direction. Outside the interval, the map must represent the wheel having enough energy to pass the
vertical. The critical angular velocities do not exist for very steep slopes, a > 7, and, hence, no
discontinuities exist in that case. For steep slopes, the map is continuous for all angular velocities
after collision.

Now, using conservation of energy between collisions, the collision transition condition for angular
velocity, and the slope dependence of the discontinuities, we can construct the map P.

Constructing the Return Map, P

To simplify the definition of the map and its interpretation, it is desirable to first make a change of
variables which gives a new measure of the angular velocity just after a collision. The new variable,
the measure of angular velocity after collision, z, is taken to be the square of the angular rate times
its sign

2(8) = 62sgn(8) (2.20)

such that ) ) ) )
dny = 2(M0) = (") and “Pz = z(“Ph) = —(“Ph)>. (2.21)

With this change in variables, P will be at least piecewise linear in z. We will refer to z as the
measure of angular velocity, henceforward.

The first order equations, Equation (2.9), and collision transition functions, Equation (2.10),
rewritten in terms of z, are

6 = sgn(2)Vzl, |0 —a| < 7/n (2.22)
7 = X/|z|siné
O—az) = (—(0-0a)2), 6—al =n/n (2.23)

We are looking for the map P in a form given schematically as the difference equation
[2(6)]is1 = P(2(0))), 6 €. (2.24)

Due to the two possible discontinuities, the map P can be composed of two linear functions. The
first function applies in two cases. It applies if the slope is small enough, a < 7, and if the wheel
has enough energy after a collision to make it past the vertical in the uphill or downhill direction,
2> "z >0orz < %z <0, respectively. It is also the only part of P that applies when the slope
is so large, a > 7, that the center of mass is always past the vertical in the downhill direction, for
any measure of angular velocity, —oo < z < oo0. To construct this part of the map, conservation of
energy takes the measure of angular velocity of the wheel just after collision i to just before collision
i + 1 and, then, the collision transition condition, z — u2z, takes the measure of angular velocity
just before collision i + 1 to just after collision 4 + 1.

The second function applies if the slope is small enough, a < 7, and if the wheel does not
have enough energy after a collision to make it past the vertical in the uphill or downhill direction,
Wy < 2z < %, and consequently reverses direction in between collisions. This part does not apply
to very steep slopes. To construct this part of the map, conservation of energy between collisions
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gives us that the measure of angular velocity just after collision i is equal in magnitude but opposite

in sign to the measure of angular velocity just before collision i+ 1 and, again, the collision transition

condition, z — u%z, takes the angular velocity just before collision 4 + 1 to just after collision 4 + 1.
In functional form, then, the map P can be summarized as:

(1) p?(z+4NsinasinZ) if 2>%2>0 and a<Z, or
; 2<"z<0 and a<Z  or
P(2(9)) = —0 < z< oo and 07>n£. (2:25)
n

(2) —p2z if z<z<%z and a<Z.

The different regimes of slope and the measure of angular velocity for which each part of the map
applies are summarized by the inequalities listed on separate lines after the definition of each part
of the map.

The piecewise linearity of the map makes its graphical construction and interpretation easier.
Three typical graphs of the Poincaré map, P(z) versus z, are shown fora < X, a =% and a > &
in Figure 2.10.

Next, reconsider the first graph of the Poincaré map from the previous figure in more detail, with
the parameter values, non-dimensional inertia, 2J = 0.5, number of spokes, n = 6, and slope angle,
a = {¢ < & in Figure 2.11. Three intervals of the measure of angular velocity, z, are shown on the

graph:

e 1. In the first interval, z < “Pz, the wheel has enough energy to make it past the vertical in
the uphill direction and P(z) = p*(z + 4\ sinasin I).

e 2. In the second interval, “Pz < z < 9"z, the wheel does not have enough energy to make it
past the vertical position in the uphill or downhill direction and P(z) = —pu?z.

e 3. In the third interval, z > 9"z, the wheel has enough energy to make it past the vertical in
the downhill direction and P(z) = p?(z + 4\? sinasin T).

The graph shows a stair-step diagram, with initial condition z;. The progress of the wheel can
be traced by following the arrows on the diagram:

e 1. The wheel starts off uphill with initial measure of angular velocity z; in the first interval.

e 2. The wheel makes it past the vertical and has a collision with the slope and emerges with a
new measure of angular velocity z2 = P(z1) in the second interval.

e 3. The energy lost to the collision does not leave the wheel with enough energy to make it
past the vertical. It reverses direction and makes another collision with the slope leaving the
wheel with the next measure of velocity z3 = P(22) in the third interval. The wheel now has
enough energy to make it past the vertical in the downhill direction.

e 4. The wheel rolls downhill and makes repeated collisions with the slope and so on until
the wheel eventually approaches a steady-state measure of angular velocity after an infinite
number of collisions in finite time. The fixed point is marked by the intersection of the graph
of P with the identity line P(z) = z.

In short, the wheel rolls uphill, collides with the slope, reverses direction, rolls downhill and
approaches the limit cycle motion in infinite time, from below. Previously, we denoted this motion
in Section 2.2.4 as Up— Down™ Limit Cycle.

Next, we show how the character of the return map P varies with the slope angle for fixed inertia
J and number of spokes n. In Figure 2.12, the return map is shown for a variety of slope angles.

We define and find the fixed points of P and determine their stability exactly in the next section.
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Figure 2.10: Three typical graphs of the Poincaré map, P(z) versus z, with 2J = 0.5 and n = 6:(a)
a = {¢ < =, showing the piecewise linearity and two discontinuities at z = “Pz and z = dnz: (b)
a = g = 7, showing the piecewise linearity and the two discontinuities of the map at dny =0 and

cﬁl:l»—\|

uPz = —y/4X?sin® Z; and (¢) @ = £ > Z, showing the linearity of the map for all z. The open

circles in (a) and (b) indicate that the maps are not defined at these locations.
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Figure 2.11: The graph of the Poincaré map with 2J = 0.5, n = 6, and a = {5 < %. Three intervals
of the measure of velocity after each collision, z, are shown: (1) z <*? 2z < 0, (2) Pz < z < "2, and
(3) z > Iz, A stair-step diagram is shown with initial condition 2; for several iterations. The wheel
starts off uphill at initial value z1, makes it past the vertical, collides with the slope, and emerges
with P(21) = 22. The wheel does not make past the vertical now, reverses direction, collides with
the slope, and emerges with P(z3) = z3. Thereafter, it continues to make it past the vertical position
after each collision increasing its angular velocity as it goes until it eventually converges in infinite
time to the fixed point shown on the diagram. The fixed point is at the intersection of the graph
with the identity line, P(z) = z.
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Figure 2.12: The return map is shown for a variety of slope angles, 0 < a < 7 and 2J = 0.5 and
n = 6. Note that the the part of the map P(z) = —u?2 cannot be represented properly as a varies
since for each a the slope of the map is the same but the values of “Pz and 9"z are different; i.e.,
the part of the map P(z) = —u%z overlaps for each a.
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2.5 Fixed Points and Stability

The limiting states, limit cycle motion and the eventual stopping of the wheel, are fixed points of the
map P, since, for each of these limiting states, the state of the wheel is the same after every collision.
The vertical unstable vertical equilibrium is not a fixed point of P, however, since the wheel does
not complete a cycle in that case. The vertical position is, however, an unstable equilibrium of the
system describing the motion in between collisions.

Here, we find the analytical expressions for the measure of angular velocity associated with the
limit cycle and show that the fixed points are asymptotically stable by showing that the absolute
value of the slope of the map evaluated at the fixed points is less than one.

2.5.1 Fixed Points of P
A point z* is a fixed point of P if P(2*) = z*. The possible fixed points of P are:

4222 sin = sin a
(1) ch* = p A Smy SiIna

T—p2 > 0

*

VA—
{ (2) strz* =0,

The non-zero fixed point !z* is the measure of angular velocity after each collision that corre-
sponds to the limit cycle motion. The limit cycle is approached monotonically from above or below
as the wheel rolls down the slope. The zero fixed point *Pz* is the measure of angular velocity
that corresponds to the stopped position of the wheel at rest on two spokes. The stopped position
is approached monotonically as the wheel rocks back and forth between two spokes. The angular
velocities corresponding to the fixed points are “6* = v/lcz* > (0 and 5Pg* = stPz* = (.

The ranges of slope angles for which the limit cycle and stopped condition fixed points exist and
the initial conditions which are attracted to the fixed points are specified in a subsequent section.

(2.26)

2.5.2 Stability of the Fixed Points

The stability of a fixed point of a scalar map is determined by the first derivative of the map
evaluated at that point. A fixed point z* of P is asymptotically stable if the absolute value of the
first derivative of the map evaluated at the fixed points is less than one, |[DP(2*)| < 1 . The first
derivative of the map P at the fixed points *z* and *Pz* is

ap — 2
DP(z*) ={ dz la=teze ) . (2.27)

4z |z:3“’z* =k

Since the collision parameter u is always less than one, 0 < p < 1, the first derivative of the map
at the fixed points is always less than one, |[DP(z*)| < 1. Both fixed points of P, !°2* and *P2* are,
thus, asymptotically stable.

In the next section, we present the conditions on the wheel parameters for the existence of the
fixed points, and for given wheel parameters, which initial conditions are attracted to the fixed
points.

2.6 Existence of Fixed Points and Their Basins of Attrac-
tion of Initial Angular Velocities after Collision

A sufficient condition on the slope angle for the existence of the the limit cycle associated with the
fixed point ‘¢2* is o > 7. The condition is sufficient since, for steep slopes and any measure of
angular velocity, only the limit cycle exists. In other words, the map is linear and continuous with

positive slope less than one, for all z, and, hence, intersects the identity line P(z) = z only once
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at some positive measure of angular velocity, the limit cycle fixed point. The graph of the map in
Figure 2.10(c) shows how only the limit cycle exists for a > T.

A necessary condition for the existence of the stopped position associated with the fixed point
Sy is o < =. 'This condition is necessary since the second part of the map does not exist for
a > T and, thus, the wheel can never approach the stopped position; i.e., the part of the map that
intersects the identity line at z = 0 is not defined. The graphs of the map in Figure 2.10(a) and
Figure 2.10(c) illustrate how the stopped condition does not exist for a > 7.

We have not presented the complete conditions on slope angle that guarantee the existence of
the fixed points. There are additional restrictions, however, on the slope angle that, together with
those above, completely specify the existence of the fixed points. Below, we derive the additional
conditions for the existence of the fixed points.

2.6.1 Slope Angle and Existence of the Fixed Points

The necessary condition for the existence of the limit cycle corresponding to the fixed point z* > 0
can be derived as follows. For a limit cycle to exist, the wheel must be able to make it past the
vertical position in the downhill direction repeatedly after each collision; i.e., the angular velocity
of the limit cycle must be greater than the angular velocity just after a collision required to reach
the vertical in infinite time, ¥"0. Written in terms of the measure of angular velocity after collision,
this requirement is

fegr > dng, (2.28)

Referring to the definitions of ‘*2* in Equation (2.26) and 9"z in Equation (2.21) this inequality can
be rewritten as a criterion relating slope angle a, nondimensional inertia A2, and number of spokes
n?

2

e % sina < 0. (2.29)

0
,A2,n) =1 —cos — —
g(a n) cos oS — o
Taking « as a function of A\? and n, this inequality requires that
a> o (2.30)

where a, is a solution to g(a, A2,n) = 0. A graph of g(a, A\2,n) versus « for fixed \? and n verifies
that a > a. satisfies the inequality in Equation 2.29(See Figure 2.13).

A necessary condition, then, for the existence of the limit cycle corresponding to the fixed point
lez* > 0 and the stopped position corresponding to the fixed point *P2* = 0 are @ > . and a < .
respectively.

We can now summarize the necessary and sufficient conditions on slope angle for the existence
of the fixed points of P:

e 0 < a< ag, only *Pz* exists,
e a. <a < I both 2* and *P2* exist, and
e a>Z only “2* exists.

As ais varied, then, the number and type of fixed points changes. The appearance and disappearance
of the fixed points as the slope angle « is varied cannot be classified according to the classical theory
of bifurcation of scalar maps due to the discontinuity in the Poincaré map. The fixed points are
shown as a function of a in Figure 2.14.

In the next section we quantify the domains of attraction for the fixed points within each of the
three slope intervals.
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Figure 2.13: A graph of g(a, A2,n) versus a for 2J = 0.5 and n = 6. The function g is less than zero
for a > a.. If g < 0, then limit cycles can exist.
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limit cycle is available as a limiting state for a > 7.
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2.6.2 Basins of Attraction for the Fixed Points

So far, we have determined within each slope interval which fixed points exist. We also know that,
for all initial conditions, the wheel always enters into a limit cycle for steep slopes, a > =. Any
initial condition is attracted to limit cycle motion for this slope range since the map P is linear,
with slope less than one, continuous for all z, and thus intersects the identity line only once at
some non-zero measure of angular velocity. The domains of attraction for the fixed points within
the remaining two slope intervals remains to be prescribed because of the piecewise linearity of the
map and the possibility of the wheel eventually stopping in the vertical position after one or more
collisions.

The values of initial measure of angular velocity attracted to the fixed points for shallow and
intermediate slopes can be completely specified by considering two situations regarding the measure
of angular velocity. We describe the two situations first and then follow with a detailed analysis of
each.

First, for rolling uphill or downhill on shallow or intermediate slopes, it is possible that the wheel
starts with a velocity just after collision that eventually leaves the wheel, after one or more collisions,
with the critical velocities after collision for reaching the vertical position in infinite time, *?8 or 976.
For such initial conditions, limit cycles and the stopped position cannot exist. The initial conditions
that eventually leave the wheel in the vertical position can be found as three different monotonic
infinite sequences of angular velocities after collision where each term in the sequence depends on
the wheel parameters.

Second, for intermediate slopes only, the wheel can do one of three things: reach the vertical
position, come to rest on two spokes, or approach the limit cycle. Initial angular velocities which are
attracted to the limit cycle and those which are attracted to the stopped position are organized into
alternating ‘patches’ of initial angular velocity after collisions; i.e., alternating subsets of the domain
of the map P that we call basins of attraction. The ‘patches’ can be visualized as alternating line
segments along the horizontal axis of the graph of P(z). The boundaries of the the ‘patches’ are
the defined by the critical angular velocities after collision for reaching the vertical in infinite time
and the terms in the infinite sequences described above that eventually get mapped to the vertical
position.

Infinite Sequences of Angular Velocity After Collision

We first describe qualitatively the three very special and improbable infinite sequences of the after-
collision angular rate that leave the wheel eventually in the vertical position. Then, we will define
them and the criteria for their existence precisely in Appendix C.

e 1. The first sequence of points is defined for initially rolling downhill with greater angular
velocity after collision than that required to eventually stop in the vertical position. For any
point in the sequence, the wheel will eventually reach the vertical in the downhill direction.
The sequence is written as "z, > 9"z for m = 1,2, 3, ... and exists only for nearly flat slopes,
a < .

e 2. The second sequence of points is defined for initially rolling uphill with angular velocity
after collision greater in magnitude than that required to eventually stop in the vertical in the
uphill direction. For any point in the sequence, the wheel will eventually reach the vertical in
the uphill direction. The sequence is written as “Pz,, <“P z for m = 1,2,3,... and exists for
nearly flat and intermediate slopes, 0 < a < 7.

e 3. The third sequence of points is defined for initially rolling uphill with angular velocity after
collision greater in magnitude than that required to eventually stop in the vertical position.
The wheel, however, eventually reverses direction after one or more uphill collisions and then
makes one downhill collision before stopping in the vertical position in the downhill direction
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in infinite time. This sequence is written as “Pz,, <P z, m = 1,2,3,... and exists only for
intermediate slopes, a. < a < T.

The existence of these sequences and critical angular velocities, as we have shown in Appendix C,
depends upon slope angle and is summarized in Table 2.1. In the next section, we define the alter-

Table 2.1: The existence of the critical angular velocities and sequences of angular velocities for
0 < a < 3. The existence of the points and sequences in each slope regime are noted by an asterisk
in each column of the table.

Measures of Angular Velocity
Slope Angle o/ || “Pz | ¥z, | 2z | T2, | ¥z | Pz,
0<a<a, * * * *
o= * *
a.<a<Z * * * *
a=7 *
T<a<3

nating basins of attraction of initial angular velocity after collision that exist only for intermediate
slopes.

Alternating Basins of Attraction of Angular Velocity After Collision for Intermediate
Slopes

The alternating basins of attraction exist only for intermediate slope angles, a. < a < 7. For

this slope range, if the wheel starts off downhill, it has one of three initial energies: (1) the critical
energy for reaching the vertical in infinite time (denoted by Down— Vertical), (2) less than the energy
needed to pass the vertical in the downhill direction so that it approaches the stopped position by
rocking back and forth on two spokes (denoted by Down— Rock — Stop), or (3) more than the
energy needed to pass the vertical so that it approaches the limit cycle from above or below (denoted

by Down— Limit Cycle or Down= Limit Cycle, respectively).

If the wheel starts uphill, it has one of three initial energies: (1) critical energy for reaching the
vertical in infinite time(denoted by Up— Vertical), (2) energy such that the initial angular velocity
is in one of the critical sequences and it eventually stops in the vertical position, or (3) enough
energy to pass the vertical in the uphill direction but, after one or more collisions, loses so much
energy in the collision(s) that, eventually, it cannot make it past the vertical, reverses direction
and starts downhill. The subsequent behavior after the wheel reverses direction is determined by
the the energy of the wheel after the last collision before reversing direction. If the wheel has too
little energy after the last collision before reversing direction, it makes one downhill collision, cannot
make it past the vertical in the downhill direction, rocks back and forth between two spokes, and
approaches the stopped position (Stop) (denoted by Up— Rock — Stop). If the wheel has sufficient
energy after the last collision before reversing direction, it has enough energy to pass the vertical
in the downhill direction, increases in angular velocity and approaches the limit cycle (Limit Cycle)

from below (denoted by Up— Down — Limit Cycle).

For intermediate slopes, whether starting off downhill or uphill, the initial energy of the wheel,
then, predetermines if the wheel will reach the vertical position, the limit cycle, or the stopped
position. If the wheel starts with the measure of angular velocity 9"z and “Pz or one of the measures
of angular velocity in the sequences “Pz,, or “PZ,,, the wheel will eventually stop in the vertical
position, as we have shown.

Now, we show that similarly well defined sets of initial measure of angular velocity eventually
approach either the limit cycle or the stopped condition, exclusively. As we noted, the initial
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angular velocities that are attracted to the limit cycle and those which are attracted to the stopped
position are organized into alternating ‘patches’ or basins of attraction. If the angular velocities in a
given basin of attraction get mapped to the limit cycle, the adjacent basin of initial conditions gets
mapped to the stopped condition, and so on, for each succeeding ‘patch’, alternating in this way.
The boundaries of the basins are formed by the critical measures of angular velocity, "z and “Pz,
and the terms of the second and third sequences we have just defined, *Pz,, and “PZ,,.

In order to define the basins of attraction, we need first to order the critical points and the terms
of the second and third sequences. The critical points and the terms of the sequences are ordered
as follows:

Pom < PZy <Pz <"z <0 (2.31)

and
Wyt < a1 < Pz (2.32)

It is trivial to prove that these inequalities hold for a. < a < 7.

Now that the important points are ordered, which basins are attracted to the limit cycle and
which are attracted to the stopped position can be determined visually by examining graphs of the
Poincaré map. For example, reconsider the map of Figure 2.11 in Figure 2.15 with restrictions on
the measure of angular velocity added for determining which fixed points exist.

Thus, generalizing from the special case illustrated in Figure 2.15 for a. < a < 7, we state
without proof: the basins of attraction for the limit cycle are

2> Wy < 2 <Pz and Pz, < 2 < "PZ,, (2.33)

and the basins of attraction for the stopped position are
WrL < My WE <2< Py, and P, < 2 < Pz, (2.34)
The basins of attraction for the fixed fixed points given intermediate slope angles, a. < a < 7,

are summarized in Table 2.2.

Table 2.2: The basins of attraction for the fixed points corresponding to the limit cycle and the
stopped position with intermediate slope angle, a. < a < T, are noted by an asterisk in each row
of the table.

Fixed Points
Measure of Angular Velocity || ©z* | 5Pz*
WPzt < z2 <Pz, *
P < 2 < "PZ, *
Pz <z < Pz *
Py L 2 < WPz *
wr <z <y *
z> dnz *

In the next section, we consider the behavior of the wheel for some special values of the wheel
parameters.

2.6.3 Special Cases

If @ = a,, the limit cycle can only be approached from above and the limit cycle angular velocity
is equal to the angular velocity after collision in the downhill direction for stopping in the vertical
position in infinite time; i.e., 7z = f€2*.

Ifa=7,
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Return Map, P(z)

—-1.0 -0.5 0.0
Measure of Angular Velocity, z

Figure 2.15: Again, the graph of the Poincaré map with 2J = 0.5, n = 6, and a = £ < %.
The critical measures of angular velocity, the fixed points, and the sequences “Pz,, and “PZ,, are
marked on the graph up to m = 1 for the given wheel parameters. The basins of initial measure
of angular velocity attracted to the limit cycle are marked on the graph with bold line segments
to differentiate them from those attracted to the stopped position. Six representative basins of
attraction are labelled on the graph. Initial conditions in the intervals (1), “Pz2 < z < “Pzq, (3),
Pz <z < "z, and (5), ¥z < z < 9"z get mapped to the stopped condition corresponding to the
fixed point **Pz*. Initial conditions in the intervals (2), “Pz; < z < “Pz, (4), Pz < z < “Pz, and
(6), "z < 2z < oo get mapped to the limit cycle corresponding to the fixed point {“z*. The orbit
labelled I starts in interval(2) and goes to the limit cycle fixed point. The orbit labelled IT starts in
interval (3) and goes to the zero fixed point.
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1. The wheel is oriented at the vertical position 8 = 0 at each collision. The critical measures
of angular velocity are %z = 0 and “Pz = —4)? sin® .

e 2. If the measure of angular velocity is z > 0, the wheel will roll down the slope. If z = 0, a
small positive disturbance will cause the wheel to fall downhill.

e 3. If the measure of angular velocity is Pz < z < 0, the wheel makes a collision instantaneously
with the slope in the uphill direction but loses so much energy in collision that it cannot reach
the next vertical position and falls back down the slope eventually entering into a limit cycle.

e 4. If the angular velocity just after collision is z < "Pz < 0, the wheel makes a collision
instantaneously with the slope in the uphill direction and makes one or more collisions in the
uphill direction before reversing direction and approaching a limit cycle..

In this case, ™z = %Pz* = 0. Thus, the vertical position, balanced at rest unstably on one spoke,
and the stopped position, at rest stably on two spokes, are indistinguishable for o = . The only
way, then, in which the stopped condition, corresponding to the fixed point %Pz = 4"z* = 0, can
exist is if the wheel stays at rest, z = 0.

Next, for 0 <2J <1 and 3 < n < oo, it can be shown that a. < 7. The case a. = 7 occurs
when gy =0or 2J = —cos(%’r) > 0;i.e., when 2J =0.5and n =3 or J =0 and n = 4.

If u = 0, the angular rate after collision equals zero, according to the collision condition, Equa-
tion (2.10), and, thus, for any initial conditions, only the stopped position exists. The wheel either
rotates past the vertical or does not and then comes to a complete stop after one collision in finite
time, (not by rocking back and forth on two spokes and coming to a stop after infinite collisions in
finite time). We denoted this behavior previously by Up— Stop or Down— Stop. These behaviors
only exist, then, for a < 7.

Ifn=3and 0 < 2J < —cos 27” = 0.5, then —0.5 < p < 0. For this parameter combination
where pu < 0, the wheel would instantaneously reverse direction after a collision AND slow down,
leading to an infinite sequence of collisions in zero time with no motion. That, is, the entire wheel
stops dead, not just the tip of the colliding spoke.

To summarize:

1. if n=4and J =0, then g =0 and
2. ifn=3and 0 <2J < —cos 2™ =0.5 then —0.5 < < 0.

In both cases (a) and (b) above, the wheel comes to a dead stop.
The dependence of the critical angles on the number of spokes, n, and inertia parameter, J, are
shown in Figure 2.16.

2.6.4 Summary of the Existence Criteria and Basins of Attraction for
Fixed Points

In Table 2.3, we summarize the necessary and sufficient conditions on slope angle, a, and measure
of angular velocity, z, that specify which of the fixed points will arise. We display the information
tabulated in Table 2.3 in a diagram in Figure 2.17. If similar information shown in Figure 2.17,
were plotted in the phase plane, or on a phase cyclinder, we would notice that the 2D rimless
wheel dynamics is nearly completely analogous in qualitative behavior to the forced, damped simple
pendulum (see, for example, the excellent discussion in Andronov, et al [56], pp. 422-436). The
main difference bewteen the systems, of course, is the discontinous decrease in velocities for the
wheel due to spoke collisions. For certain combinations of torques and damping constants, three
cases arise for the pendulum, depending on the initial conditions: (1) only stable limit cycles exist;
(2) both stable limit cycles and tending to a state of rest exist; and (3) no limit cycles exist and no
coming to rest. Case (2) is similar to the case for the rimless wheel shown in Figure 2.17. Given
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Figure 2.16: The critical angles, . and 7, are shown as functions of n for several values of J. The
critical angles a, and 7 are discrete functions of n but the function values are connected with lines
for illustrative purposes.

Table 2.3: The dependence of the fixed points on the wheel parameters and the basins of attraction
for the fixed points are summarized in the table. The critical angles, a. and 7., are functions of
the non-dimensional inertia, J and the number of spokes, n. The critical measures of the angular
velocity are functions of a, J, and n. For each slope range and all possible initial conditions, which
fixed points arise is denoted by an asterisk in the appropriate column.

Fixed Points
Slope Angle o || Measure of Angular Velocity || °z* | *Pz*

0<a<a 2# M2, Mo, P2, Py, *
P Zmt1 < 2 < Pz, *
o <2< Pz, *
a.<al Pz <z < YPz *
Py L z < UPZ *
Wz < 2z < Iy *
z> g
T T
T <a<sF all z
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a damping constant and torque within certain ranges, initial conditions are attracted to either (1)
a stable focus or node (a rest position) or (2) a stable limit cycle. The regions of attraction can
be displayed on a phase cyclinder. For the wheel, too, there are three regimes depending on slope
angle. Coming to rest, however, is an option in the third regime for the wheel.

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ =~ bhag
2
=)
o
lc+ 1 o
(@)}
C
attracted to stable limit cycle g
Q.
o
"
-0.5 ©
Oc
» L~
attracted to stopped position

-30 -25 -20 -15 -10 -5 0
z, inital measure of angular velocity after collision

Figure 2.17: A plot displaying the information summarized in Table 2.3. The basins of attraction
for the two fixed points are plotted for n = 6 and 2J = 0.5. Initial speeds z falling in the dark gray
region for a given slope angle o are attracted to *Pz* and those falling in the light gray region are
attracted to a limit cycle, ‘°2*.

Finally, using another representation to display the existence criteria for the fixed points and
their dependence on initial conditions, we code the maps previously shown in Figure 2.12 to show
which initial conditions are attracted to the limit cycle and those which are attracted to the stopped
position. (See Figures 2.18 and 2.19.)

In Figures 2.18, 2.19, and 2.17 there are analytical expressions for the curves bounding the
regions that mark the basins of attraction for each slope angle.

Two of the bounding curves are formed by the set of critical angular velocities for reaching the
vertical in infinite time, ™z(a) and “Pz(a) for slope angle 0 < a < Z. The curves can be found as
functions of z.

In terms of the map P, we define the first curve as

F(z(a)) = P(™z(a)) (2.35)
= 12(%"2(a) + 2X*(cos(a — %) —cos(a + %))

= 2X\%u%(1 — cos(a + %))
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Figure 2.18: The return map is shown for a variety of slope angles, 0 < a < 7 and 2J = 0.5 and
n = 6. The initial values on the horizontal axis corresponding to the shaded region get mapped
eventually to the limit cycle fixed point, °2*. All other initial conditions get mapped to the stopped
position fixed point, **P2*. Note that the maps are not coded for Pz < 2%z are not coded because
for each a the map information is overlapping in this interval of measure of angular velocity.
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Return Map, P(z)
(@)

-5 -4 -3 -2 =1 0 1
Measure of Angular Velocity, z

Figure 2.19: In this plot, only the bounding curves on the regions and the shaded region that get
mapped to each fixed point are shown to help clarify the previous figure.
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dn

27 z
_ 2,2
= 2\l - cos(; — arccos(1 — W))]
where, referring to Equation (2.21),
=T _ arccos(1 d"—z) (2.36)
a = — arccos e .
So, we have
2r z
_912,,2
f(z) =2\ p 1 - cos(g — arccos(1 — W))]’ (2.37)
for 0<z<2X2(1— cos(%)). (2.38)
Similarly, we define the second curve to be
ov2. 2 z 27
h(z) = 2X*p?[cos(arccos(1 + W) - ;) —1], (2.39)
9 2m 9 T
for —2X\°(1- COS(F)) <z <=2\ (1- cos(ﬁ)). (2.40)

The remaining bounding curves are formed by sets of terms from the infinite sequences of angular
velocities for intermediate slopes, “Pz,, < “Pz and “PZ,, < "Pz. For each m, the bounding curves
can be found as functions of slope angle a.

The first of the pair of curves for each m is

22

fm(a) = m

[(,u2 -1) (1 — COoS o cos %) —-... (2.41)
(3u® —2p*™ — 1) (sinasin %)] . (2.42)

The second of the pair of curves for each m is

hm(a) = ﬁ [(;ﬁ —1) (cosacos% — 1) ——_— (2.43)
(2;/‘ +p? — 2u2m+) _ 1) (sinasin %)] . (2.44)

In each case, the slope angle is a, < a < . The bounding curves are noted in Figures 2.18 and
2.19.

Now, having summarized the analysis of the fixed points, we summarize in the next section how
the wheel behavior, that is, how the wheel reaches a final state, depends on the wheel parameters
and initial conditions.

2.7 Existence of Possible Wheel Behaviors and their De-
pendence on Initial Conditions

Different behaviors occur depending on whether the slope is very steep, intermediately steep, or
nearly flat. Which behaviors arise in each of these slope intervals depends upon the initial conditions.
The occurrence of each of the eleven behaviors, described above in Section 2.2.4, in the three
slope intervals and for the two critical angles, o, and a = 7, is indicated in Table 2.4.
The initial conditions for the angular velocity after collision can be greater than, less than, or

equal to the critical angular velocities for reaching the vertical position in infinite time, 9"z or
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Figure 2.20: Five diagrams encapsulating the possible behaviors and their dependence on initial
conditions for (a) 0 < a < ag, (b) a = a., (¢c) ac <a< T, (d) a=T,and (e) T <a < 7. The
conventions used here are the same as in Figure 2.4 except that the plus(+) and minus(—) signs
have been added to indicate increasing and decreasing speed, respectively, in reaching a limit cycle.
Note that limit cycle motion does not exist for nearly flat slopes and neither the vertical position

nor coming to rest on two spokes exists for very steep slopes.
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Table 2.4: The dependence of the eleven possible behaviors on slope angle is indicated by an asterisk
in each column.

Slope Angle o

Behavior 0<a<a |a=a |a.<a<P la=2 ]2 <alF
1 Down-y Limit Cycle * * *
2 Down— Limit Cycle * * * *
3 Down— Rock — Stop
4 Rock— Stop *
5 Up— Rock — Stop * *
6 | Up— Down =5 Limit Cycle * * *
7 Down— Vertical * *
8 Up— Vertical * * *
9 Up— Down — Vertical * *
10 Up— Stop * * *
11 Down— Stop * * *

uPz. or the fixed point angular velocities, “z* > 0 or *Pz* = (. The possible behaviors for each
slope interval and their dependence on initial conditions is summarized in five flowchart diagrams
in Figure 2.20. The critical angular velocities “Pz and "z, the vertical position, and the stopped
position do not exist for very steep slopes and limit cycles do not exist for nearly flat slopes.

In the next section, we present a few other results.

2.8 Other Results

For shallow, intermediate, and steep slopes, we display some of the more interesting possible behav-
iors, out of a possible total of eleven behaviors, in the following plots:

e (i). Poincaré map showing fixed points and characteristic stair-step diagrams.
e (ii). Phase portrait showing the trajectories as the wheel approaches the fixed points.

The two plots are displayed on one page for each behavior that exists for each slope range. Each plot
displays the shorthand notation for the behavior displayed, the critical measures of angular velocity
and sequences for reaching the vertical position in infinite time, the fixed points, the slope angle, the
wheel parameters, and the initial conditions. For all cases, the non-dimensional inertia is 2J = 0.5
(A2 = 2/3) and the number of spokes is n = 6. For these given wheel parameters, the critical slope
angle is a, = 0.107.

The fixed points found using the exact solution given by Equation (2.26) agree well with those
found numerically. These graphs show how the existence of the fixed points depends on slope angle
«a and the initial angular velocity, 8y € ¥X. They also show how the wheel approaches the fixed
points. The behaviors where the wheel reaches the vertical in infinite time or comes to a stop in
one collision are not displayed; i.e., behaviors 7-11, Down— Vertical, Up— Vertical, Up— Down—
Vertical, Up— Stop, and Down— Stop. In addition, behavior 4 is the final part of behaviors 3 and
5 and, thus, is not displayed separately.

Figure 2.21 and Figure 2.22 shows behaviors 3 and 5, Down— Rock — Stop and Up— Rock —

iy

Stop, respectively, for 0 < a < a.. Here, a = .

Figure 2.23 shows behavior 6, Up— Down X Limit Cycle , for a. < a < 7. Here, a = {¢.
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Figure 2.24 and Figure 2.25 show behaviors 1 and 2, Down> Limit Cycle and Down= Limit

Cycle, respectively, for - < a < 7. Here, a = 7.

2.9 Rate of Approach to Fixed Points

The Poincaré map may be written schematically as

Zk+1 = P(z)- (2.45)

Consider the evolution of small perturbations from the fixed point z*. The linearization of P near
z* is given by

241 = 2" + Azgp1 = P(z) = P(2" + Az) (2.46)

dpP

P(Z)"‘E

Azk

Canceling the cyclic term P(z*) yields
d_P
dz
= WAz

Azk+1 Azk (247)

z=z*

Thus, a perturbation from the fixed point, Az*, iterates according to
Az, = p?F Az (2.48)

In the next section, we consider the energy of the rolling wheel.

2.10 Energy Analysis

2.10.1 Approach to Fixed Points

How limit cycles or the stopped position are approached can be seen by considering the energy of
the wheel. Below, we will consider this discussion more formally. In between spoke collisions, the
kinetic energy gained by the wheel is proportional to the distance the center of mass falls and is a
constant. The energy lost per collision is variable, however, and proportional to the wheel speed
squared.

If the wheel starts off very slowly on a large enough slope, the energy lost per collision is much
less than the energy gained between collisions so that the speed of the wheel increases with each
collision. The loss in energy per collision, proportional to the speed squared, eventually catches up
with, but cannot exceed, the constant gain in energy and the wheel approaches a steady speed.

If the same wheel starts off very fast on a large enough slope, the energy lost per collision is
much more than the energy gained between collisions so that the wheel speed decreases with each
collision. But the energy lost per collision in this case eventually diminishes to, but not below, the
constant gain in energy, and the wheel approaches the same steady speed.

If the slope is not high enough, the energy loss per collision is greater than the energy gained
between collisions so that the wheel speed decreases. In this case, however, the wheel eventually
reaches a condition where its speed after collision is too low to carry it past the vertical and the
wheel falls backward, eventually coming to rest. Once the wheel falls backward, there is no gain in
energy, only losses, as the wheel rocks back and forth between two spokes.

The approach to a limit cycle or static equilibrium is monotonic; i.e., the wheel does not alternate
between slowing down and speeding up. In addition, the only case in which the wheel speed can
increase without bound is when the number of spokes is infinity, which is the case of the rolling disc.
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Figure 2.21: The plots shown here characterize behavior 3, Down— Rock — Stop. The wheel
parameters are 2J = 0.5, n = 6, and a = ;. The initial condition is zo = 1.0. The fixed point is

stpz* =0
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Figure 2.23: The plots shown here characterize behavior 6, Up— Down-; Limit Cycle. The wheel

parameters are 2J = 0.5, n = 6, and @ = J¢. The initial condition is 29 = —0.9. For the given

initial condition, the fixed point is !°z* = 0.2218.



62

(1) 15

—~~ -

ORI

a 10

o, i

o -

= 05

G -

5 i

+ 0.0

9} - /

2 - s/
L 7/
L 7/

_05 ! ! ! ! | ! ! ! ! ! ! ! ! | ! ! ! !

-2 ~1 0 1 2

Measure of Angular Velocity, z

(ii) 15

0.5

0.0

0.0 0.5 1.0 1.5

Figure 2.24: The plots shown here characterize behavior 1, Down-% Limit Cycle. The wheel pa-

rameters are 2J = 0.5, n = 6, and a« = Z. The initial condition is zg = 0.0. The fixed point is

1
leg* =0.7542.



—~
e
N—"

1.5

1.0

0.5

0.0

Return Map, P(z)

-0.5

2.0

1.5

1.0

0.5

0.0

63

—1

Measure of Angular Velocity, z

lcé*

0.0

1.0 1.5

Figure 2.25: The plots shown here characterize behavior 2, Down— Limit Cycle. The wheel pa-
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The initial condition is zy = 2.0. The fixed point is
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2.10.2 Energy Loss per Spoke Collision with the Ground

The energy loss during each spoke collision is equal to the change in kinetic energy during the
collision since there is no change in potential energy; i e., no change in elevation of the center of
mass occurs at collisions. The non-dimensional energy loss during collision 7 is
AKE; = KEf - KB~ = 2=/ |1(0 4
i = KE — KE; —m”z( )i (2.49)
where @ is the angular velocity after the iy, collision or § € ¥. AKE; is independent of slope angle.
The energy gained by the wheel in falling downhill between the collisions is the loss in potential
energy and is a constant for a given slope, inertia, and number of spokes. The non-dimensional gain
in potential energy between collisions is

APE = PE; — PE}, = KE; =2sinasin % (2.50)

The wheel enters into a limit cycle motion when the energy lost in each collision is balanced
by the energy gained in falling between collisions when the wheel makes it past the vertical in the
downhill direction; i.e., when

1—p?
2)\2 HQ
Solving this equation for the limit cycle measure of angular velocity, we get the fixed point

2* = 2sinasin _. (2.51)
n

lon _ 4p® X? sin Z sin o

S 7

which agrees, of course, with the previous result in Equation (2.26). This result is illustrated in
Figure 2.26.

In Figure 2.27, we show how the existence of the limit cycle fixed point depends on the slope
angle and the measure of angular velocity. In order for the limit cycle to exist, the fixed point
measure of angular velocity must be greater than the measure of angular velocity needed for the
wheel to stop in the vertical position in infinite time.

The fractional change in energy loss per collision is given by

AK?" =1—p? (2.53)
KE,

which is independent of slope and the angular velocity of the wheel after collision. So, when u =0
all of the wheel energy is lost in collision and when g = 1, which only happens if the number of
spokes equals infinity, no energy is lost in collision.

Next, we are interested in the energy lost per revolution of the wheel in the limit as the number
of spokes n goes to infinity, for two cases: when the wheel is and is not in a limit cycle but has
enough energy to make it past the vertical in the downhill direction for both cases.

>0 (2.52)

2.10.3 Energy Loss per Revolution of the Wheel
Non-steady State Energy Accounting

At any given speed not at steady-state but where the measure of angular velocity after each collision
i is great enough for the wheel to pass the vertical position, z; > %"z, the non-dimensional energy
loss per revolution of an n-spoked wheel is
2 n
¢ = 1K NEN (2.54)
i=1
n

2,27 o
4N pPnsin &

= i Zpi(z(])7

4X22nsin T
Au?ns e
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Figure 2.26: A plot of AKFE, directly proportional to the measure of angular velocity and inde-
pendent of slope angle, and APE, a constant for fixed J and n, versus measure of angular velocity

after collision with a = {¢, 2J = 0.5, and n = 6. The slope of the line representing the energy loss

per collision is % = 0.9375. The point of intersection of this line with the horizontal line rep-

resenting the energy loss per collision, APE = 2sinasin 7 = 0.2079, is the limit cycle fixed point,

lez* = I3 sin & = 0.222, marked by the vertical dashed line. The vertical dotted line represents the

measure of angular velocity needed to reach the vertical in infinite time in the downhill direction,
dn
z = 0.0653.
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Figure 2.27: A plot of AKE and APE versus angular velocity after collision with 0 < o < 7,
2J = 0.5, and n = 6. Four horizontal lines represent the constant gain in energy between collisions
for slope angles a = 0.0,0,053,0.107, and 0.3083. The horizontal line corresponding to zero slope
angle is the z axis. The vertical lines represent the critical measures of angular velocity for the
wheel to reach the vertical position in infinite time in the downhill direction, 4"z. Each vertical line
corresponds to the slope angle associated with each horizontal line. The vertical and horizontal lines
corresponding to the same slope angle are plotted in the same linestyle. The horizontal dash-dot
line APE(a = 0.3083), intersects the solid sloping line, representing the energy loss per collision,
at z > 9"2(a = 0.3083) indicated by the vertical dash-dot line. In this case, a limit cycle exists. In
contrast, the horizontal dashed line, APE(a = 0.053) intersects the energy loss line at z < ¥"2(a =
0.053) indicated by the vertical dashed line. In this case, no limit cycle exits. For fixed wheel
parameters, J and n, the minimum slope angle for which limit cycles exist corresponds to the point
where the loss in energy per collision, constant gain in energy between collisions, and the associated
critical measure of angular velocity intersect. The minimum slope angle is the critical angle a. found
previously. The shaded region, APE > APE(a.), indicates where only limit cycles exist.
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where 2y # °2* is the angular velocity of the wheel just after the the first collision in a particular
revolution of the wheel, collision ¢ = 0. The energy has been non-dimensionalized with respect
to time, mass, the moment of inertia, and the perimeter @, of the rimless wheel, an equilateral
polygon,

Qn = 2nsin % (2.55)

The map P has been defined previously.
Tterating P under the summation in Equation (2.54), we obtain

1—p? = 2i 2 T 2
=——— 40 si in — T 2.56
£ I Pnsin T ;:1 |f¢ 20 + sin.csin — TEZI 1 ( )

Summing the two series and simplifying yields

1 [20(1=p*) 2Xsina (1 — p2™)p?
_ _ 2.
¢ 22 [ 2nsin £ + n " 1— p? (2:57)
n
As n gets large, we have
22 /27\?
1—— | — 2.
w15 (2 (2.58)
2
o= 1) (—W) ,and
n
2\ 2
wnoos 1-X\n (—ﬂ> .
n
Substituting the above and after much simplification, we obtain
. T T2, %0 2 . _
nl;néof = nl;néo(n) (—Sin£ +4) sina) = 0. (2.59)

That is, £ % + % as n — oo, where C7 and Cy are constants. Thus, as the number of spokes
goes to infinity, the energy loss per revolution goes to zero and the speed of the wheel approaches

infinity, as for a uniform disk.

Limit Cycle Energy Accounting

When the wheel is in a limit cycle, the measure of angular velocity after each collision in a revolution
is z; = {°2* and the non-dimensional energy lost per revolution is

* 1- /J’2 T -
& = mn sin ~ iEZI | 2] (2.60)
1— 2
— 14 n(lcz*)2

2,20 oin &
4\?p?n sin 7
= sina

At steady state, the non-dimensional energy loss per revolution simply equals the sine of the slope
angle a for any number of spokes n.

A graph of the non-dimensional energy loss per revolution & is shown as a function of revolution
number in Figure 2.28.

In addition, we show in Figure 2.29 a plot of the non-dimensionalized potential energy, kinetic
energy, and total energy of the rimless wheel versus time for the case of the wheel approaching a
limit cycle from above, the behavior denoted by Down— Limit Cycle.

In the next section, we consider the speed and rate of change of speed of the center of mass of
the rimless wheel.
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Figure 2.28: Non-dimensionalized energy loss per revolution up to steady state for 2J = 0.5, a = %,
and n = 6, 10, 75 and 200 spokes. After many revolutions, and, hence, many spoke collisions , the
energy loss per revolution is £* = sina = 0.2079 as the wheel approaches a limit cycle, for any
number of spokes n.
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Figure 2.29: The non-dimensionalized potential energy, kinetic energy, and total energy of the rimless
wheel are plotted versus time as the wheel approaches a limit cycle from above. The total energy is
conserved between collisions but decreases with every collision due to the dissipative impact. The
potential energy of the wheel between every collision is always measured with respect to a datum
set at the foot of the spoke currently in contact with the ground. We thus term this unusual energy
measure pseudo-potential energy. The range of the pseudo-potential energy is determined by the
wheel parameters. Eventually, the total energy between collisions becomes constant as the wheel
approaches a limit cycle motion. The energy lost per collision is represented by the vertical dotted
lines and the energy gained between collisions, a constant, is represented by the vertical dashed
lines. The plot shows that the wheel starts off at a velocity greater than the limit cycle velocity.
Since the kinetic energy of the wheel is proportional to the wheel speed squared, at first the energy
loss per collision is much greater than the energy gain between collisions so that the wheel speed
decreases with each collision. The energy lost per collision eventually diminishes to, but not below,
the constant gain in energy and the wheel speed after each collision approaches the same value
in infinite time after every collision. As the wheel enters into the limit cycle, the vertical lines
representing the energy loss at collisions and the energy gain between collisions approach the same
length, indicating the eventual balance between energy loss and energy gain.
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2.11 Non-dimensional Average Speed and Average Rate of

Change of Speed of the Center of Mass of the Wheel
in the Limit Cycle

Let A7, be the non-dimensional time between spoke collisions in the limit cycle. From the first
integral of motion in Equation (2.11), we obtain

ot df
Am, = / ' (2.61)
a- \/(169*)2 + 22 (cos(ac — %) — cosf)
The non-dimensional speed of the center of mass in between collisions is given by
Vem () = (1) (2.62)

where the speed has been non-dimensionalized with respect to the spoke length I. The non-
dimensionalized average speed of the center of mass in the limit cycle is

1 AT |
Vemayg = ATlc/o |6(7)|dT (2.63)
1 ATy
_ / do(r) dr
A7 Jo dr
_ 1 ATy
- AT[CO(T)O
1 7T ™
= zla+D-(@-D)
_ i
h AT[C n

The non-dimensionalized average speed of the rimless wheel in the limit cycle is plotted as a function
of slope angle for a variety of number of spokes in Figure 2.30.

The non-dimensionalized average rate of change of speed of the center of mass in the limit cycle
is

Demany = Alm /0 o de;(:) dr (2.64)
= SO
legw )
B Ai’lc[z ]
_ ALTICI_TH(ICG*)’

where again the overdot indicates differentiation with respect to non-dimensional time 7 = t+/g/I.

In the limit as the number of spokes goes to infinity, we expect the rimless wheel to behave like
a uniform disk rolling down a slope; i.e., the velocity should become infinite and the acceleration
constant. To check this expectation, we first compute the non-dimensional time between collisions
for finite slope in the limit as n gets large:

B /a+% df
a—% \/(lcé*)2 + 2X2(cos(a — E) — cosb)

n

AT
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Figure 2.30: Non-dimensionalized average speed at steady state, vem,,,, as a function of slope angle
and for n =3, 4, 6, 25, 50, and 100 spokes. At each of these spoke numbers, the plots are initialized
at an angle above the critical slope angle, a.. As expected, the steady state speed increases with the
number of spokes and slope angle.
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R

<

1 /(1"1‘%
dé
(fe6*)? + 4 %?sinasin I Yo%

R

Q

(2.65)

where we have assumed that the integrand is constant as the interval [a — 7, & + 7] shrinks to zero.

Thus, for finite slope angle «, as n gets large, Ar, ~ O(n_%).
Next, for the non-dimensional average speed in the limit cycle, we have

. . 1 27
lim vem,,, = lim —
n—00 g n—o0 AT N

(2.66)

. n .
= lim 4/—sina = oo.
n—oo v
If, in the limit as the number of spokes goes to infinity, the rimless wheel approaches a thin uniform
disk, then the moment of inertia about the center of mass I = %le or the non-dimensional moment
of inertia 2J = % For the non-dimensional average rate of change of speed in the limit cycle, then,
we have

1 1-— .
lim dep,,, = lm = B iegry
n—00 n—o00 ATlc 12
= Msina
2,
= -—sina,
3

since A2 = ﬁ — 2 for a uniform disk as n — occ.

As the number of spokes gets large, then, the speed and acceleration of the center of mass of the
rimless wheel in the limit cycle approaches that of a uniform disk rolling down a slope of angle a.

For slope angle o = 7 and non-dimensional inertia 2J = 0.5 corresponding to a uniform disk,
Figure 2.31 shows how in the limit cycle as the number of spokes goes to infinity, the speed of the
rimless wheel, v¢,,,, approaches infinity and the rate of change of speed, ¥cp,,,, approaches a
constant.

If we take a to be small as well as letting n go to infinity, say, @ ~ O(%) but bigger than
ac ~ O(s), then we find from Equation (2.65) that the time between spoke collisions, when the

wheel is in a limit cycle, is of the same order,

Ariy ~ 0(%). (2.67)

2.12 Linear Analysis

Here, we review McGeer’s[43, 44, 4] linearized analysis for finding limit cycles and their stability
for the rimless wheel. For small angles, the equation of motion between collisions and collision
conditions are

-2 = o, |6—a|<% (2.68)
6-a) —» —(0-a), |0—a|:%, and

é = p’éa |6—a|:£.
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Figure 2.31: Non-dimensionalized average speed, v, ,, and average rate of change of speed, V¢, »
of the rimless wheel at steady state as a function of slope angle and for 2J = 0.5, and n = 4 to
n = 25 spokes. As the number of spokes gets large, the speed increases without bound and the rate
of change of speed is asymptotic to Ucm,,, = %sina = 0.2893, indicated by the horizontal dashed
line which is the acceleration of a uniform disk, with inertia 2J = 0.5 rolling down a slope of angle
Q.
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Again, an overdot indicates differentiation with respect to non-dimensional time 7 = t4/g/!.
Considering Equation (2.68) as a linear first order system, the phase space is defined as before
in Section 2.3.3 and the trajectories are generated using the first integral of motion

6 = \/02 + \2(62 — 62). (2.69)

The linear phase plane portrait is locally approximate to the nonlinear one near § = 0.
The start-of-cycle conditions just after the collision i are

6(0) =0 =a — - (2.70)

1 Hj_ AT 1 ™ Hj_ —AT
0(’7’) = 5(0& - —+ T)e + 5( - E - T)e and (271)
) A ™ 01—’_ AT A ™ gj_ —AT
0(7’) = §(a__+_A) —5(01—5——)\)6 .

McGeer was only interested in finding limit cycles and, thus, only considered the wheel having
enough energy to make it past the vertical after each collision. In this case, a cycle of motion after
starting after collision i at time 7;" = 0 ends at time 7 = 7, when 0(7iy1) = 6;,; = a + Z.

Applying this condition to the linear solution, we get the cycle period, At =7, , — T;L =T, and

the end-of-cycle angular velocity, 6;,,, given by

AT = = BY — ™ and (2.72)
a—T+
07, = /() +4X"a%. (2.73)
The collision condition is ) )
Of1 = pb, . (2.74)

Thus, we get a map for small angles

0, = (a'j)2+4,\2a% or (2.75)
L) = pu 92+4A2a%.

We find the fixed point 8* of the map L as before by requiring that 9;;1 = 0,+ =6* or L(G*) = 6*.
This yields the fixed point
_ [dalpA?

lep:
0 =
1—p?

> 0. (2.76)

Differentiating L and evaluating at the fixed point gives

e — =<1 (2.77)
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as we found before in Equation (2.27) indicating that the limit cycles are stable. ) )
The limit cycle period A7, can be found by substituting the limit cycle angular velocity 8 = ‘¢6*
into Equation (2.72).
The non-dimensional average speed of the center of mass of the wheel for large numbers of spokes
and small slopes is as before in the non-linear case

1 27
= —. 2.78
Vemawg Ao n ( )

The equation of motion, Equation (2.2), first integral of motion, Equation (2.11), map P, Equa-
tion (2.25) and the fixed point ‘§*, Equation (2.26), from the nonlinear analysis, reduce to the
equation of motion, Equation (2.68), the first integral of motion, Equation (2.69), the map L, Equa-
tion (2.76), and the fixed point *¢*, Equation (2.76), determined by the linear analysis for large
numbers of spokes and small slope angle.

For large n, the limit cycle angular speed is

. no
leg s ([ —. (2.79)
™

McGeer [66] noted that no cycle exists if the slope is too small. As before, if the slope is too small, the
wheel does not start with sufficient speed in a limit cycle to rotate past the vertical. Mathematically,
McGeer found the critical slope angle by finding the slope angle corresponding to infinite cycle time;

i.e., the angle corresponding to the denominator of Equation (2.72) going to zero or

_m(1—p)?

= — . 2.
=T (2.80)

If the terms in the transcendental equation from the nonlinear analysis for the critical slope angle,
g(a, J,n) = 0, are linearized for small slope angle and large numbers of spokes, it can be solved for
a and the solution agrees with that above.

For large n, if we take a ~ O(L), guaranteeing limit cycles, then we find from Equation (2.73)
that the limit cycle period is of the same order

Arie ~ 0(%) (2.81)

which agrees with the result we found from the nonlinear analysis, Equation (2.67).

2.13 Conclusion

In this complete nonlinear analysis of the 2D rimless wheel, we have defined a cycle of motion of
the wheel, derived the equations of motion and collision transition conditions, defined the phase
space of the motion, defined a Poincaré section and return map to represent the cyclic motion of the
wheel, found fixed points of the map that correspond to limit cycle motion and eventual stopping
of the wheel, showed the two fixed points are stable, and defined various behaviors of the wheel. In
addition, we showed for what slope angles the fixed points and behaviors exist and how they depend
on the initial angular velocity of the wheel. Analyses of the energy and speed of the wheel show that
the wheel behaves like a disk rolling down a slope when the number of spokes is infinity. The results
are only a small enhancement to the elegant linear analysis of the wheel carried out by McGeer. For
small slope angles and large numbers of spokes, all of the results of the nonlinear analysis reduce to
the results of McGeer’s linear analysis.

Next, in Chapter 3, we begin our study of three-dimensional walking mechanisms by analyzing
the motions and stability of a three-dimensional device whose behavior is altered by modifying its
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mass distribution; i.e., by adding oblique masses to a disk rolling in a vertical position at constant

speed.
In Chapter 4 we return to the rimless wheel. This time, however, we study the stability of planar
limit cycle motions of a rimless spoked wheel free to move in three dimensions.



Chapter 3

‘Step Two’: Stabilizing a Rolling
Disk by Adjusting its Mass
Distribution

The world is a wheel, and it will all come round right.
Benjamin Disraeli (Earl Beaconsfield) Endymion. Chap. lzz

3.1 Introduction

In this chapter, we begin our study of three-dimensional passive-dynamic walking mechanisms by
investigating the stability of a disk rolling without slip at constant speed in a vertical plane both
with and without a uniform mass distribution. The 3D rolling disk with oblique masses added is
shown in Figure 3.1 below to remind the reader of where it fits into the evolution of models in the
research program.

The purpose of the analysis in this chapter is to demonstrate that we can alter the stability
characteristics of a simple conservative 3D system passively (without dissipation), by adjusting
its physical parameters, namely its mass distribution, rather than actively through some control
algorithm. This result has been demonstrated previously in a paper on monocycles and bicycles by
Carvallo [67].

Conservative holonomic systems cannot have asymptotically stable steady motions. On the other
hand, not as widely known is that conservative nonholonomic systems can have asymptotically
(exponentially) stable steady motions in some variables while at most mildly unstable in the others,
as recalled in Zenkov, et al. [48]. We know of only a few examples of conservative nonholonomic
systems which can have asymptotically stable steady motions at or near a potential energy maximum
without fast-spinning parts: 1) a no-hands bicycle with massless wheels (say skates) and a special
mass distribution [8, 68]; (2) a no-hands tricycle (where gyroscopic terms from the spinning wheels
are not relevant for balance because of the three point support) with a mildly soft de-centering
(negative spring constant) spring on the steering [69, 70]; (3) a rigid rider attached appropriately
to a moving skate-board [9]; and (4) rattlebacks (or celts) [71]. (For a general discussion of the
dynamics and stability of nonholonomic systems see Neimark and Fufaev [46].)

It is well known from linearized stability analyses that a disk rolling at constant rate, at a
constant bank angle, and at a constant heading rate in a circle is stable, thought not asymptotically
stable, given sufficient forward rolling speed; i.e., small lateral disturbances cause the disk to ‘wobble’
indefinitely in simple harmonic motion — the wobbles do not grow or decay in time [6]. This family
of steady motions on circular paths forms a surface or manifold of steady motions and it is this

7
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Figure 3.1: The place of the 3D rolling disk with oblique masses in the passive-dynamic family tree.

manifold whose stability we are considering. If one perturbs a member of the family of solutions, it
is considered asymptotically stable if you end up on another nearby member of the family. A special
member of the family of solutions is rolling straight ahead at constant rate in a vertical plane.

A reasonable question to ask is whether a physically realizable mechanical device or adjustment
of parameters can allow the disk to recover from small disturbances and eventually return to the
vertical (or near vertical) reference condition, without active control or dissipation. We investigate
a suitable device below after first reviewing the thin uniform disk rolling without slip.

3.2 Rolling Disk

We review here the well known analysis of rolling disk (see, e.g., Greenwood [6], Neimark and
Fufaev [46]). More recent extensive analyses can be found in O’reilly [72] and Cushman, it et.
al. [73].

Consider a thin uniform disk of mass m and radius r that rolls without slipping on a horizontal
plane. Its orientation is defined by the 3-1-2 Euler angles: heading angle ¢, bank angle ¢, and pitch
angle 6. (Refer to Appendix D for a description of 3-1-2 Euler angles.) Gravity acts in the negative
z direction and the disk rolls forward in the positive z direction. The configuration is shown in
Figure 3.2. The moment of inertia matrix for the uniform planar disk with respect to its center of
mass and in body coordinates is given by :

0 0
C

0 I1g 0

o o IS

For the disk, IS, = I¢, and IS, = IS, + IY,. We write our equations of motion in terms of the
non-dimensionalized quantities J = IS, /mr? = IF, /mr? and 2J = IS, /mr?.
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Figure 3.2: The dimensional parameters and orientation variables for the uniform disk.
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The system is non-holonomic (see page 9 in Chapter 1) ; the configuration space is five dimen-
sional. The state space is six dimensional and q, the state vector, is

q= {¢a¢a63¢a¢aé}T' (31)

Taking angular momentum balance about the point of contact, point D, the non-dimensionalized
equations of motion are:

0 = (1+M)¢—2ct ¢ — (1+ A2)stp cp % — 2)% 59 (3.2)
0 = cpd+246 (3.3)
0 = 6+sd+ (14 i, (3.4)
where ‘s’and ‘¢’ are used to denote ‘sin’ and ‘cos’ and
1
2 _
2T 417 (3:5)

An overdot indicates differentiation with respect to non-dimensional time 7 = ¢4/g/r.
Linearization of the non-linear equations about the steady vertical rolling reference condition
(fo = constant) or . )
qo = {90(7') = 907’,0,0,0,0,90}, (36)

is accomplished by letting q(7) = qg + €q(7), substituting it into the equations of motion and
truncating the result to first order in €, where € is a small number. A ‘hat’ ( * ) denotes perturbed
quantities.

The equations of motion linearized about the reference condition are:

0 = (1+A2)— 2006 — 222 3.7)
0 = o+ 260 (3.8)
0 = 8 (3.9)

Equation (3.9) above indicates that a perturbation in the pitch rate is constant to first order, 6 = 90,
resulting in a small change in the overall speed of the disk. Integrating Equation (3.8) with respect
to time yields ) )

¢ = —260(¢ — vo) + do- (3.10)
Substituting Equation (3.10) into Equation (3.7) yields a simple linear inhomogeneous second order
ordinary differential equation governing small disturbances in the bank angle

2(293-)2)1&_ 26,
14 A2 142

v+ (200t)0 + o)- (3.11)
Oscillating solutions to the homogeneous version of Equation (3.11) exist when the roots of the
characteristic equation are imaginary. That requires 203 — A or

6 > . (3.12)
2

The non-zero constant on the right hand side of Equation (3.11) gives rise to a constant particular
solution. Thus, given initial perturbations in the bank or heading angles, the solution will oscillate
about some small non-zero bank angle. In addition, Equation (3.10) shows that the heading rate
will oscillate about some small non-zero value that depends on the bank angle. This means that
the the disk will shift away from its original zero heading onto a circular path while it is wobbling
forever about some mean bank angle at some mean heading rate.
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3.3 Disk with Oblique Masses

Two identical planar rigid bodies of total mass m¢ are fixed symmetrically about the plane of the
disk with centers of mass collinear with the center of mass of the disk, point G, but are not free to roll
with the disk. The masses are rigidly attached to a supporting ‘fork’ of negligible mass constrained
to slide frictionlessly on the the ground at point E at a distance L from the contact point D of the
disk. The fork has a frictionless axle of negligible length about which the disk rotates. Again, its
orientation is defined by the 3-1-2 Euler angles, gravity acts in the negative z direction, and the
system moves forward in the positive z direction. The configuration is shown in Figure 3.3. The

Az

q Massless Fork

Crooked
Masses;| G, me

Figure 3.3: The dimensional parameters of the disk plus oblique masses. The angle « is a geometric
design parameter that describes the orientation of the masses in the plane of the disk and may be
adjusted to stabilize the disk.

masses do not roll with the disk but have the same heading and bank angles as the disk. The inertia
matrix for the masses with respect to point G and in body coordinates is given by:

I 0 I
G

0 IS 0

I 0 If

For the crooked masses, I = IS, + IS, We write the equations of motion in terms of the non-
dimensionalized quantities A = IS, /myr?, B = IS [mpr?, A+ B = I§ [mpr?, and C = IS, /mqr?,
where mp = m + m¢ is the total mass of the system of disk and crooked masses. Here, we re-define
the non-dimensional transverse moment of inertia to be J = IS, /myr?.

For the moment of inertia matrix for the crooked masses to be positive definite, its eigenvalues:

(1) must be positive and (2) must satisfy the triangle inequality (the sum of any two of the eigenvalues
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is greater than or equal to the the third). Since A > 0 and B > 0, condition(2) determines that
AB > C?.

Taking angular momentum balance of (1) the system of disk and crooked masses about point
D of and (2) the fork and crooked masses about the axle yields the following non-dimensionalized
equations of motion:

0 = (A+p°A+24)0+202C e ¢ — (1 + p°(1 + 24)) sy cipd® — (3.13)
2¢ct) ¢0 —2p° 1

0 = (PP(2(A+2B)—1)+2(1—p*(1+24)) s¢p ctp + 1)¢ (3.14)
+4Cp* () ¢ — s %) + 8Ap” cip svp P +4(1 = p*) cip 8

0 = 6+5¢ ¢+ 1+ p>)ey v (3.15)

where p? = 1/2J + 1. Following the same procedure as above but for the system of disk and
additional masses, the linearization of the equations of motion yields

0 = (1+p2(1+24))0 +2Cp*$ — 206 — 20%) (3.16)
0 = (1+4p*@2B—-1))¢+2Cp*0 +2(1 — p*)bot) (3.17)
0 = 6 (3.18)

Integrating Equation (3.17) with respect to time yields

1

b= o [~2007(d — o) — 2(1 — p)bo(d — $0)] + Go- 3.19
0= T pap =) 2070 — d0) = 20 = (@ — )] + by (3.19)
Substituting Equation (3.19) into Equation (3.16) yields a single simple equation for small distur-

bances in the bank angle

Pp+Qip+R)p=S5 (3.20)
where
4p*(AB — C?) 9 B A
= |2 24 — ) +1
P [ 1= + 2p 1—p2+1+p2 +1f,
Q _ 4Cp40.0
1—pt’
_ .| (265-p") 2Bp*
R = 2|90 - | and (3.21)
290 Aoa N 292 (B$0 + C"Zo)
T+p2 2(thoblo + ¢g) + 1 (3:22)

Equation (3.20) is similar to Equation (3.11) except for the additional term proportional to the bank
rate which resembles a linear damping term. Again, the right hand terms in Equation (3.20) give
rise to a small constant steady-state solution. Despite the fact that the system of disk plus masses
is has the linear growth in the heading angle, the crooked masses can cause the wobbling to die out.
Damping of bank angle disturbances requires negative real roots of the characteristic equation for
Equation (3.20). That is, according to Routh’s criterion, P, @, and R must be positive. Thus, we
make the following observations:

1. P > 0 is automatically satisfied since p?> = 1/(2J + 1) < 1 and AB > C? by definition,
2. Q@ > 0if C > 0 since p? < 1, and
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3. R > 0 if the pitch rate satisfies

2 2
o PP (1+p2(2B-1)
L (I i St I 2
63> 5 ( - (3.23)

The middle term in Equation (3.20) is a ‘damping’ term that arises due to a coupling between heading
and bank rate. The coupling is induced by the off-diagonal product of inertia term, I,., introduced
by the non-axisymmetric masses. While the diagonal elements of the moment of inertia matrix are
always positive, the off diagonal elements, the products of inertia, can be positive or negative. Given
sufficient rolling speed and a proper orientation of the masses, the lateral oscillations of the disk
can be damped out. For example, if two identical uniform thin bars are fixed in the bank frame of
the disk with orientation 7/2 < a < 7 (giving C > 0) such that C? < AB, then the conditions for
asymptotic stability are met.

It is interesting to note that if the moments of inertia of the disk are zero, we get the following
equation for stability,

(B + AB — C?){) + Clt) — B = fo(Bdy + Cily). (3.24)

In this case, since B > 0, the characteristic will not have negative real roots. So, it seems that for
wobbling to die out (or continue indefinitely), the gyroscopic effect of the rolling disk is necessary to
counteract the effect of gravity tending to make the disk fall over when it is perturbed from vertical
rolling.

Finally, taking A = B = C' = 0 and m¢=0, then p? = A\? and all of the equations and stability
results for the disk with the crooked masses reduce to the results obtained above for the uniform
disk.

3.4 Numerical Simulation

We numerically integrate the fully nonlinear equations of motion for the uniform disk and the disk
with crooked masses using MATLAB® and compare the results.

3.4.1 Uniform Disk

First, we present the result of a simulation of the uniform disk (A=B=C=0) with A2 =2/3, Ay =
0.001, and 62 = 100A\?/2 (the steady rolling speed is ten times the minimum speed required for the
disk to be neutrally stable). Results of numerical integration are shown in Figure 3.4. Note that 1
and ¢ oscillate about constant non-zero values as predicted by the linearization. The linearization
predicts the particular solution for the bank angle to be

. 60(2dobo + o) _ 1
= ———— = — = 0.00101010, 3.25
v (263 — \2) 990 (3.25)
The numerical solution gives ¥* = 0.00101007. The linearization predicts the particular solution for
the heading rate as given by Equation (3.10)

¢* = —200(¢) — o) + ¢y ~ —0.00011675. (3.26)
The numerical solution gives #* = —0.00011673. Finally, the frequency of oscillation w of the
perturbations is predicted to be )
_2(203 - %)
== ~ 0706, (3.27)

The numerical simulation gives w = 0.704.
The numerical results are in good agreement with the analytical predictions from the lineariza-
tion.
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Figure 3.4: State of the uniform disk versus non-dimensional time 7 up to 7 = 5 after it is per-
turbed from its steady vertical motion with a disturbance in the bank angle Aty = 0.001. For this
simulation, 2J = 0.5 (or A? = 2/3).
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3.4.2 Disk with Crooked Masses

Next, we present the result of a simulation of the uniform disk plus crooked masses with A = B = 0.5,
C =0.25, p*> = 2/3, and Aty = 0.001. Note that AB > C?, a requirement of the inertia matrix. For
2 2
’;((lljpg))
ten times the minimum speed required for the disk to be wobble indefinitely). Results of numerical
integration are shown in Figure 3.5. Note that, while the oscillations due to the initial disturbance
die out, the bank angle ¢ and and heading rate ¢ approach constant non-zero steady-state values
as predicted by the linearization. The linearization predicts that the steady-state value for the bank

angle is

the given parameters, we set the steady rolling speed at §2 = 100

(the steady rolling speed is

. a . A 2/ pi >
g ) [2(¢090 + ¢o) + 2P(BI¢:70;CW] 1
Yos = = = i = — ~0.001010101010 (3.28)
R [(29(2) —p?) — %J_Bz:] 990

The numerical simulation gives ¥4s =~ 0.001010101016. The linearization predicts the steady-state
solution for the heading rate as given by Equation (3.19)

éss = m [—QCPQ(KZ - Kzo) -2(1— P2)9.0(1; - 1&0)] + <Z.50
~ —0.00006734011. (3.29)

The numerical simulation gives ¢, ~ —0.00006734009. Again, the numerical results for the disk
with crooked masses are in good agreement with the results predicted by the linearization.

To a first order approximation, if there is no perturbation in the pitch rate, the linearization
predicts that the pitch rate remains constant even if the bank or heading angle (or their rates) are
perturbed. Upon closer inspection of the numerical results, however, the plots of the pitch rate
show higher order effects that the linear approximation misses. For the uniform disk, the pitch rate
oscillates about a value slightly higher than its initial value with amplitude about 80 times smaller
than that of the bank angle, 750 times smaller than that of the bank rate, and about 1000 times
smaller than that of the heading rate, but at the same frequency. For the uniform disk with crooked
masses, the oscillations in the pitch rate die out at the the same rate and frequency of oscillation
as the bank angle to a steady-state value whose difference from the initial pitch rate is about 150
times smaller than the difference of the steady-state bank angle from its initial value and about 1000
times smaller than the steady-state heading rate.

3.4.3 More General Crooked Masses

In this study, we have neither investigated the effects of (1) moving around the center-of-mass or (2)
more general mass distributions of the crooked masses. Either of these enhancements might produce
stability without rotational inertia of the disk.

3.5 Conclusions and Future Work

The altered disk is a conservative non-holonomic system. Although the damping term induced by
the off-diagonal inertia terms causes the bank angle disturbances to die out, no energy can be lost.
Introducing a small disturbance to the system increases the total energy of the system. When the
disturbance dies out, where does the energy go? Due to the kinematic coupling between the lean
and steer, the energy of the initial wobble is ‘re-directed’ into an increase in the the heading rate
and the pitch rate of the system, and energy is conserved.

This study gives evidence of how a device free to move in three dimensions may be made more
stable in a purely passive manner by simply altering the distribution of mass in the system without
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Figure 3.5: State of the uniform disk with crooked masses versus non-dimensional time 7 up to 7 = 5
after it is perturbed from its steady vertical motion with an initial disturbance in the bank angle
A)y = 0.001. For this simulation, 2J = 0.5(\% = 2/3), A = 0.5, B = 0.5, and C = 0.25.
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any active control or energy input. The particular mass distribution investigated here, one that
makes I, nonzero in the inertia matrix, changes the steady motions on circular paths at constant
bank angle from stable to asymptotically stable. Thus, this study suggests that mass distribution is
an important parameter in increasing the stability of the rolling disk, a conservative non-holonomic
system. Perhaps the mass distribution may be adjusted in a similar way for walking mechanisms to
add to or enhance stability in the presence of the dissipative foot collisions (non-conservative and
piece-wise holonomic). We investigate this in our study of 3D passive-dynamic walkers in Chapter
6. But, the gyroscopic effect of the rolling disk is necessary for its asymptotic stability, a stability
mechanism that counter oscillating swinging legs do not offer in walking models. So, it would be
useful to consider how a more general mass distribution and center of mass location for the crooked
masses might offer possibilities for greater stability of the rolling disk.

Next, as noted at the end of Chapter 2, we reconsider the rimless wheel, this time free to move
in three dimensions. In the limit as the number of spokes gets very large and the slope very small,
we check to see that the rimless wheel’s behavior approaches that of the rolling disk. For a finite
number of spokes, we compare stability of the rimless wheel to that of a rolling disk.
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Chapter 4

‘Step Three’: Rimless Spoked
Wheel Free to Move in Three

Dimensions

I'm a spoke on a wheel. I am, and so are you.
Lefty in the movie Donnie Brasco

We now present an analysis of the three dimensional motions of a rimless spoked wheel, or
polygon, ‘rolling’ downhill under the action of gravity. The 3D rimless wheel is shown in Figure 4.1
below to remind the reader of where it fits into the evolution of models in the research program.
While preparing a talk on this work, the author was inspired to draw the cartoon shown in Figure 4.2.

3D
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. — at
2D .
Wa\iba'g‘h/t @
erW/Q\L
™~ -t kagr@eq
\
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Figure 4.1: The place of the 3D rimless wheel in the passive-dynamic family tree.
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Figure 4.2: An anthropomorphized realization of the rimless spoked wheel free to move in three
dimensions.

This chapter is an expanded version of the author’s work reported on earlier in a paper published
by Coleman, Chatterjee, and Ruina entitled Motions of a Rimless Spoked Wheel: A Simple 3D
System with Impacts [74]. In particular: (1) Section 4.8.1 we add the details of a calculation on how
to predict the steady state of the wheel using the numerically obtained Jacobian of the return map
and (2) Section 4.8.2 includes much more of the details of the asymptotic expansion used to obtain
an analytical approximation to the Jacobian of the return map.

We carry out three-dimensional numerical and analytical stability studies of steady motions of
this system. At any fixed, large enough slope, the system has a one-parameter family of stable
steady rolling motions. We find analytic approximations for the minimum required slope at a given
heading for stable rolling in three dimensions, for the case of many spokes and small slope. The
rimless wheel shares some qualitative features with passive-dynamic walking machines; it is a passive
three dimensional system with intermittent impacts and periodic motions. In terms of complexity it
lies between one dimensional impact oscillators and three dimensional walking machines. In contrast
to a rolling disk on a flat surface which has steady rolling motions that are only neutrally stable
at best, the rimless wheel can have asymptotic stability. In the limit as the number of spoke s n
approaches infinity, the behavior of the rimless wheel approaches that of a rolling disk in an averaged
sense and becomes neutrally stable. Also, in this averaged sense, the piecewise holonomic system
(rimless wheel) approaches a nonholonomic system (disk).

4.1 Introduction

We study the three dimensional motions of a spoked, rimless wheel ‘rolling’ down a slope under the
action of gravity (see Figure 4.3). A planar rimless wheel of mass m, with moment of inertia matrix
I¢ about the center of mass, and n evenly spaced identical spokes of length £ rolls down a slope
of angle . The orientation variables are 3-1-2 Euler angles representing pitch(6), heading(¢), and
bank(¢)). For 2D motions of the wheel at any fixed heading ¢, the only non-constant variable is 6
since the motion is then confined to a vertical plane aligned with gravity (1) a constant).

By rolling, we mean motions in which the wheel pivots on one ‘support’ spoke until another
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spoke collides with the ground, followed by transfer of support to that spoke, and so on. There is
no power input (except gravity) and no control. For a given slope, the only free parameters of the
system are the mass distribution and number of spokes.

4.1.1 Motivation

Our interest in the rimless wheel starts from an interest in the dynamics of human walking. Stud-
ies of the dynamics of walking motions sometimes involve mechanical systems with the following
characteristics: (a) over certain periods, the systems have smooth motions that may be roughly
described as unstable falling (near a statically unstable configuration); (b) these smooth motions
are interrupted by collisions, at which velocities change quickly; and support might be transferred
from one foot to another; and (c) after each collision, another phase of smooth motion begins.

Steady walking corresponds to periodic motions of these dynamic systems. Such systems have
been studied with no actuation and control (McGeer, 1990, 1991 [43, 44, 4]; McMahon, 1984 [75];
Garcia, et. al., 1996 [16]; Goswami, et. al., 1996 [45]) as well as with various amounts and types
of power input and active control (see, e.g., Hemami and Chen, 1984 [76]; Furusho and Sano,
1990 [77]; Taga, 1991 [25]; Beletskii, 1990 [78]; Pandy and Berme, 1988 [79]; Hurmuzlu, 1993 [57, 58];
Yamaguchi, 1990 [19]; Zajac and Winters, 1990 [18]; Vukobratovic, et. al., 1990 [80]).

One goal of studies of gait is to understand stability. McGeer’s machines, and the walking toys
that inspired them (McGeer, 1989) [11], are passive and dynamically stable. We are not aware of
studies of systems that are simpler than McGeer’s, yet retain the essential features mentioned above.
Besides wobbling toys with low mass-centers and broad feet (McGeer, 1989) [11], passive dynamic
walking machines that are stable in three dimensions have not yet been discovered in theory or
simulation. We have developed the only such device in practice that we know of [14]; our device is
based loosely on simulations of a similar model that is almost stable. We report on this device in
more detail in Chapter 6.

Two dimensional motions of the rimless wheel were studied briefly by McGeer (note that in
2D motions, the system has only one degree of freedom). Although three-dimensional motions of
a rolling regular polygons (the same as a rimless wheel) were studied by Goyal (1992) [7], three
dimensional stability analyses of rolling polygons have not been conducted before. We hope that
a 3D stability analysis of the wheel will provide some insight into possible stabilizing mechanisms
which in turn might improve our understanding of the dynamics of passive walking in 3D. Like
McGeer’s walking machines, the rimless wheel has periodic motions in two dimensions which are
stable if restricted to two dimensions. Also, like walking machines, the rimless wheel can fall down
in 3D. The wheel is simpler to study than the walking machines for the following reasons: (a) if the
slope is large enough, periodic motions always exist within some interval of heading angle ¢; (b) if
periodic motions exist, they are always stable if constrained to 2D; and (c) the motion is simpler
because the system consists of a single rigid body, unlike the walking machines, which are made of
interconnected rigid bodies.

Another reason why the rimless wheel is of interest is that its rolling motion resembles that of a
disk, especially so as the number of spokes becomes large. Steady rolling of a disk on a level surface
is not asymptotically stable; if slightly disturbed, the wheel wobbles forever (e.g., see Greenwood [6]
and Chapter 3 of this dissertation). The similarity of the rolling motions, leads to the question of
whether steady motions of the rimless wheel can be asymptotically stable.

4.2 Description of the System
A wheel of net mass m with the rim removed and n evenly spaced identical spokes of length £ rolls

down a slope of angle « (see Figure 4.3). Assuming n-fold symmetry and that all mass is in the
plane, the moment of inertia matrix about the center of mass with the y-axis normal to the plane
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a) Dimensional Parameters
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Figure 4.3: (a) Parameters and (b) orientation variables of the 3D rimless wheel model.
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of the wheel is

D 0 O
I=| 0 2D 0 |, forsome D > 0. (4.1)
0 0 D

Unlike a wheel with a rim, since this device loses energy at collisions, it cannot roll steadily on a
level surface. Here, we only consider downhill rolling.

It is possible that appreciably elastic and/or sliding collisions will make the dynamics of the
system more complicated, and perhaps change its stability. We do not consider such cases here.
Once a spoke contacts the ground, we assume that it pivots about the contact point until the next
spoke collides and we do not allow slip and/or loss of contact between collisions.

The perfectly plastic, instantaneous collision assumption is reasonable when the distance of
rebound or sliding is small compared to the distance between neighboring spoke tips, and the time
of collisional interaction is small compared to the time between collisions. The perfectly plastic
assumption reduces nicely to the rolling disk as n — oc.

4.2.1 Configuration and State Spaces

We characterize the configuration of the wheel between collisions using 3-1-2 Euler angles as shown
in Figure 4.3 (see Appendix D). The heading angle is the rotation ¢ about the original z axis, the
bank angle is the rotation ¢ about the new z axis, and the pitch angle is the rotation 6 about the
newest y axis.

Globally, the system has five generalized coordinates, like a rolling disk: two for contact posi-
tion and three for the three-dimensional orientation. Unlike the rolling wheel, the contact point
is stationary between collisions and shifts discontinuously during collisions. The velocity at any
instant is fully determined by only three generalized coordinates, the Euler angle rates. Thus, the
nonholonomy of the system — the dimension of the configuration space has dimension two more than
that of the instantaneously accessible velocity space (5 > 3).

In our stability analysis, we do not keep track of the foot contact position over several foot
collisions; we just keep track of the orientation variables ¢, v, and 8. We use equations of motion
for a rimless wheel pivoting on one spoke (holonomic system with three degrees of freedom), and use
angular momentum-balance-deduced jump conditions to map the state variables from just before a
foot collision to just after. Thus, in our analysis, the state space is six dimensional and q, the state
vector, is defined to be

a=1{¢v.0,0,4,6}". (4.2)

4.2.2 Indexing Scheme

We move the origins of each of the frames instantaneously with each collision, from the tip of spoke ¢
to the tip of spoke i+ 1 currently in contact with the ground at collision ¢+ 1. After a collision, then,
we redefine the wheel orientation with the respect to the newly positioned frames. With our choice
of 3-1-2 Euler angles, the heading and bank frames are translated after a collision yet maintain their
orientations with respect to each other and the fixed frame.

As the origins of the various frames i are moved to the tip of the colliding spoke i + 1, however,

27
we not only translate the wheel frame but also rotate it by —— about the yp-axis with respect to

n
the bank frame so that the z,-axis of the new wheel frame is aligned with spoke i + 1. The spoke
presently on the ground in some sense characterizes the orientation of the wheel frame with respect

to the bank frame. Thus, the pitch angle changes from Tio T through a downhill collision.

n n
The relationships between frames and their associated bases from before to after collision i + 1
are

’H—lH-i— _ i+17_t7 z'+1e;|l— _ i+1e;
= , =
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i+t # i-i-l)/\;—7 i+1e$ =Ry(0 = F) i"'le;, (4.3)

where the upper left superscript 4 + 1 refers to collision ¢ + 1 and the upper right superscript refers
the instants just before (-) or just after (+) collision.

4.2.3 Cycle of Motion

A cycle of the wheel is the motion from one spoke collision through the next. A schematic of one
cycle, for downhill rolling, is shown in Figure 4.4. As before with the 2D wheel, we pick as the

(a) just after collision (b) between collisionsandi+1 (c) just before collisioni+1

fq+
A a(m

P

downslop/ A

(d) collisioni+1 (e) just after collisio+1

Figure 4.4: Schematic over one cycle of motion showing: (a) the state of the wheel just after collision
i with point A, (b) the state of the wheel between collisions, (c) the state of the wheel just before
collision 4 + 1 at point B, (d) collision ¢ + 1 at point B, and (e) the state of the wheel just after
collision ¢ 4+ 1 at point B.

starting point the instant when the trailing spoke leaves the ground. The wheel rotates over the
‘stance’ spoke, spoke i , as an inverted pendulum with initial state ‘“qt. The initial pitch angle is

known and is 19T = — . The non-collisional portion of the stride ends just before the next spoke
in sequence, spoke i + TIL, analogous to the swing leg in walking, strikes the ground when the pitch
angle is also known, ‘19~ = % instantaneously transferring support from the trailing spoke to the
leading spoke. The state of the wheel is “T'q~. After impact, the wheel is now poised for the next
start-of-cycle at pitch angle 14T =9+ = —% and state “tlqt.

4.3 Governing Equations

The beginning and end of the cycle is determined by the pitch angle §. The pitch angle of the wheel
o . . e . . .
between collisions is restricted to the interval [_ﬁ’ ﬁ] by resetting the pitch angle at each downhill

collision to § = — . When we are concerned with the overall motion of the system (position of the

n
center of mass versus time), then the net total pitch angle and the position of the tip of the spoke
currently on the ground are also important.
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4.3.1 Equations of Motion between Collisions

Referring to Figure 4.4 and the description of the Euler angle frames in Appendix D, the equation of
motion is derived from angular momentum balance about the contact point of the spoke currently
touching the ground, say, point A,

M, =7 Hy4, (4.4)
where
EM/A = Tg/a Xmg, (45)
g = g(sina iy —cosaky) (4.6)
]:H/A = WH/A+wW/;xH/A, and (4.7
ww/r = WaFtwsmtwws (4.8)

The non-dimensionalized equations for motion between collisions are:

sa (¢l cp — s sip s¢) +s6 cip ca = /\—12(c¢¢<23+s¢<}5+5)+
(cO ¢t ¢+ 6 ) (—sb cip ¢+ cb 1))
0 = [s0c¢é¢—cas¢¢<f}+coczp<}5+c09’¢
+56 ¢ + (¢ b+ 0)(—sb ctp ¢ + b w)]

1 2 . ..
cpspsat+sypca = — ;_)\j [09 cy ¢ — s sy Yo+
s6 cih ¢+ 50 6p — b P +
(510 &+ 0)(ct ctp §+50 )] (4.10)
1
where ‘’and ‘¢’ are used to denote ‘sin’ and ‘cos’, and A% = with the square of the radius

27 +1
of gyration J = # (non-dimensionalized with respect to £). An overdot indicates differentiation
with respect to non-dimensional time 7 = t\/g_/ﬁ. The Maple® codes for generating the equations of
motion between collisions are given in Appendix E. These equations are simply those of an inverted
rigid body pendulum. This set of equations can be converted to a first order system of the form
This set of equations can be converted to a first order system of the form

q=1g(a,p) (4.11)

where p is a vector of the parameters
p=(\%a). (4.12)

We do not restate the equations in first order form for brevity. Henceforth, the dependence on the
parameters p will not be explicitly stated.

As a brief aside, the parameter a could be eliminated from the equations of motion by a change
of variable using angles measured with with respect to a fixed frame whose z-axis is aligned with
gravity rather than the normal to the plane. By including « here in Equation (4.10), we eliminate
it from the collision transition equations that we develop below.
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4.3.2 Collision Transition Conditions

Collision Rule for Configuration Variables

Due to our choice of Euler angles, the heading and bank angles do not change through a collision. The
pitch angle is reset at each collision as support is transferred from one spoke to the next according
to the following mapping:

6+ —6 or ‘9t = 6. (4.13)
Thus, we can write
ot ¢~ 1 0 O
T »=8< ¢~ 3, whereS=]0 1 0 |. (4.14)
0+ 0~ 0 0 -1

Collision Rule for Angular Rates

We model the collision as instantaneous. When a spoke collides with the ground, we assume that
the trailing spoke instantaneously loses contact with the ground so that only one spoke is in contact
with the ground at any time. We assume that no impulse is transmitted at the trailing spoke and
that the collision of the new spoke with the ground is perfectly plastic.

Ignoring the impulse due to gravity during collision, the condition relating the angular velocity
of the wheel before and after collision is derived from the conservation of angular momentum during
collision about the incipient point of spoke contact. Referring to Figure 4.4, we can write this as

H, =H} (4.15)
where H is angular momentum and
Hpy = Hg+rgpxmvg (4.16)
_ C _
Hy = [I9] Wy F
Vo = Wy g XTo/a
Hf = [[Plwf, s (4.17)

Under the assumptions above, the angular rates before and after a collision are related as follows:

ot a
gt =T G b, (4.18)
o+ 0~
where
2
1+ 1224;\>‘2(cos27”— ) O 0
—14’:7 costpsin(2Z) 1 0

e ., 2m (4.19)
202 Rz singsin®(X) 0 14+ (cos?—l)

~

~~

"

The (3,3) element of the matrix T appears again in the stability calculations. We call it p =
1+ A%(cos %’r — 1) which is exactly the collision quantity that appears in the 2D analysis.
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Total Collision Rule

Finally, we can merge the transition rules for the orientation variables and their rates into one map
from the state of the system just before a collision to just after:

o* ¢
e
- S
<i_’+ =L q}_ , where L = [ 0 ,g ] . (4.20)
T v
o+ 0~

We can rewrite this collision law that maps the state of the wheel just before to just after a collision
as

qt =h(q7) = [L(q7)] a7, (4.21)

where the matrix [L(q~)] depends only on the orientation variables and not their rates. The Maple®
code for for generating the total collision rule is presented in Appendix E.

4.4 Poincaré Section, Return Map, and Fixed Points

To study this system, we use again a Poincaré section as we did with the 2D rimless wheel in Chapter
2. Ignoring the absolute position of the wheel on the plane, the rimless wheel has a six-dimensional
phase space with coordinates (¢,v,0,¢,1,0). The Poincaré section for this autonomous system
cannot be taken, say, at the period of some forcing function. Instead, a natural place to sample this
space is at the points of discontinuity, the collisions, where we know the pitch angle of the wheel to
be § =  as for the 2D rimless wheel in Chapter 2. The map we use, say f, takes the state of the

n
wheel from just after one collision to just after the next collision.
In addition, we assume that the surface of the slope is not curved or bumpy so that the wheel

27 .. . . L
must rotate through the same angle § = — between collisions; thus, the Poincaré section is taken
n

at the same 6 for every collision.
The state of the system after each collision i on the Poincaré section is ‘q*. The map from one
point to the next can be written as q — f(q) or

Hqt =f(q"), (4.22)

where we call f the return map (or Poincaré map) and iq* is the state vector of the system at the
start of a cycle, just after the iz, collision.

The map f may be looked upon as a composition of two maps, f = h od; here, d governs the
motion from just after collision i to just before collision i + 1, obtained by integrating the equations
of motion between collisions, and h governs support transfer, from just before to just after collision
1+ 1.

For periodic or steady motion, we must find fixed points of the return map, q* = £(q*).

4.5 Stability of Periodic Motions

In this chapter we consider a system that, with fixed system parameters, (m, n, £, J), exhibits
a one-parameter family of periodic motions corresponding to rolling down the slope at different
headings. On a Poincaré section, periodic motions appear as fixed points; thus a 1 parameter family
of periodic motions appears as a curve on the Poincaré section.
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Since we have a one-parameter family of fixed points, one eigenvalue will always be exactly equal
to one. If all the other eigenvalues are smaller than one in magnitude, then the fixed point is
asymptotically stable in the weak sense described in AppendixA.

For the system we consider in this chapter, the Poincaré section is five dimensional (the phase
space is six dimensional). Thus, the Jacobian is a 5 X 5 matrix which can be numerically computed
by five calculations using independent perturbations qg — q* for each case. Naturally, the perturbed
point gqo must lie on the Poincaré section in each case. For no special reason, we chose to do siz (
dimension of the phase space) calculations, where the perturbed point qg need notlie on the Poincaré
section in each case, resulting in a 6 x 6 Jacobian matrix. Note: Our six dimensional calculation
yields a Jacobian with six eigenvalues; one eigenvalue is exactly zero, and reflects the fact that the
initially perturbed point might lie off the Poincaré section, but the next iterate q; will lie exactly on
the Poincaré section. The remaining five eigenvalues of our 6 x 6 Jacobian matrix are identical to
the eigenvalues of the 5 x 5 Jacobian obtained by selecting initial perturbations only on the Poincaré
section. Since our system has a one-parameter family of fixed points, one eigenvalue is exactly equal
to one. Thus, there remain four eigenvalues to be examined. We apply the same approach for
stability calculations to the 2D and 3D point-foot walkers in Chapters 5 and 6, respectively.

4.6 Motion Restricted to 2D: Some Results

A detailed analysis of all possible 2D motions of the rimless wheel may be found in Chapter 2. A
simple analysis is described in McGeer (1990) [43]. Here, we consider only the motions near steady
downbhill rolling motions. If the rimless wheel completes a downhill cycle, the kinetic energy of the
wheel at the end-of-cycle, just before collision ¢ + 1, is greater than the kinetic energy at the start-
of-cycle, just after collision i, due to the downhill slope ((K.E.);,; > (K.E.)]). The kinetic energy
of the wheel drops instantaneously at impact.

For downhill motions, three distinct outcomes are possible when (a) the slope is big enough and
(b) the wheel has enough initial kinetic energy make it past the vertical position (§ = —v) in its
cycle of motion to the next downhill collision:

1. Periodic motion occurs if the energy lost in collision is exactly balanced by the kinetic energy
gained in falling. In this case, the state variables are equal to those at the start of the previous
cycle. The wheel is in periodic or limit cycle motion that repeats indefinitely.

2. The wheel slows down towards a periodic motion, which may be shown to be unique; this
happens if more energy is lost in collision than gained in moving downhill.

3. The wheel speeds up towards the periodic motion; this happens if more energy is gained in
moving downhill than lost in collision.

In Chapter 2, it is shown that condition (a) is satisfied if the effective slope angle v > . where 7,

satisfies R

+ N2 sin — siny =0, (4.23)

™
1—cos—cosy—
n K 1—p n

and that condition (b) is satisfied if the the pitch rate just after a collision i+ > 6, where 0. is
given by

b, = \/2,\2(1 — cos(y — %)). (4.24)

Based on the observations above, key aspects of the 2D motions that are relevant to steady rolling
motions in 3D are stated below:

1. For large enough slopes, v > 7., unique steady 2D rolling motions always exist.
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2. The steady 2D motions (restricted to 2D) are asymptotically stable. The eigenvalue of the
linearization of the map about the fixed point is p? < 1.

4.7 3D Motions

The solutions found in 2D will satisfy the 3D equations of motion; i.e., all 2D solutions are also 3D
solutions. There is a family of 2D periodic motions restricted to different vertical planes; i.e., the
wheel may roll downhill at different heading angles ¢*. We call these steady 3D motions planar (or
2D) limit cycles. A planar limit cycle is illustrated schematically in Figure 4.5. Corresponding to

e g

fixed coordinateZ
limit cycle plane
T {of progression

_,\

e a . o)

direction of ..
progression )

Figure 4.5: The schematic here depicts the planar limit cycle motion, for the 3D wheel, showing how
the plane of the wheel at heading ¢* is aligned with the force acting on the wheel due to gravity.

each fixed point q* is a trajectory q*(7) in phase space, between collisions, which we call the 2D
limit cycle trajectory (see Figure A.2 in Appendix A). The fixed point q* and its associated 2D
limit cycle trajectories between collisions are summarized in Table 4.1. For motions of the wheel
restricted to two dimensions, the plane of the wheel is parallel to the line of action of the net gravity
force acting on the wheel. In terms of the 3D variables, this gives the bank angle 1)* of the wheel as
a function of the slope angle a and the heading angle ¢*

Y* = (g%, a) = tan~ ' (—sin ¢* tana). (4.25)
The effective slope v at a particular heading is given by
v = 7(¢*) = sin"(sina cos¢*). (4.26)

The heading angle ¢* may be looked upon as a free parameter that determines a one-parameter
family of steady rolling motions. Finally, the limit cycle pitch rate, as sampled on the Poincaré
section, and the limit cycle period T are, respectively,

o —
b =) = Vu and 427

1—p?
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Table 4.1: The planar limit cycle in three dimensions. The limit cycle time histories ¢*(7), ¢*(7),
¢*(7), and *(7) are constant over a cycle and equal to the corresponding fixed point values at the
start-of-cycle. The limit cycle pitch angle 6*(7) and rate 8*(7) are not constant.

State Variable || Limit Cycle Trajectory (in time) | Fixed Point of f (on ¥) |

Heading Angle o* (1) = ¢* ¢
Heading Rate ¢*(r) =0 " =0
Bank Angle PV (1) = ¢* Y =9 (4",7)
Bank Rate P*(r) =0 P* =0
Pitch Angle 0" (1) 0* = —g
Pitch Rate 0* (1) 6* = 0*(y,n, \?)

- /f do
- \/(9*)2 +2A2(cos(Z) — cos b)

. (4.28)

both of which can be found using a simple 2D energy analysis. As the number of spokes n gets large,
various planar limit cycle quantities (the limit cycle pitch rate 6%, the limit cycle time between
collisions 7*, the critical effective slope angle ~., and the collision parameter u) scale with n as
follows:

. i 2(7)\3 A273 22
0" ~ nsm'y, T~ (”) , 702—731-, and pu~1-4 7; . (4.29)
™ V/siny n n

Here, 7. is the minimum required slope for steady rolling motions to exist. The limit cycle pitch angle,
equal to half the angle between the spokes, is " = —7/n which obviously scales as 6* ~ O(1/n).

For our 3D analytical stability study, we take the effective slope to be inversely proportional to
the number of spokes,

oL 1
7=240(=) > 5~ 0() (4:30)

where ¥ ~ O(1) is a constant. For such slopes, the limit cycle period scales as 7% ~ O(1/n) and the
limit cycle pitch rate tends to a constant 8* ~ \/5/m. As n — oo, we obtain a disk on a flat surface
rolling at constant speed proportional to #.

4.8 3D Stability of the 2D Limit Cycle

For a rimless wheel restricted to planar motions, asymptotically stable fixed points exist if the
effective slope is big enough. The limit cycle pitch rate 8* is a function of the number of spokes, the
radius of gyration of the wheel, and the effective slope angle. We determine the three-dimensional
stability of this planar limit cycle whose 2D characteristics we already know in closed form from a
nonlinear analysis of the rimless wheel restricted to two dimensions, as summarized in the previous
section (for details, see Chapter 2).

In this chapter, we focus on the three-dimensional stability of the planar limit cycle. Though the
3D rimless wheel may have other periodic motions other than 2D limit cycles, such as zig-zagging
or looping motions, we did not look for these solutions or investigate their stability.

Unlike the 2D case, we cannot find explicitly the 3D return map, its non-planar fixed points, or
the stability of fixed points. Instead, we approximate the Jacobian of the map at the planar fixed
point both numerically and analytically. In the analytical approach, the approximation is based on
a perturbation expansion for a wheel with many spokes and small slopes. (See Appendix A and
Appendix E for details.)
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Figure 4.6: State of the rimless wheel plotted versus 7 for 350 collisions after it is perturbed from
its limit cycle with a disturbance in the bank angle Ay = 0.001. For this simulation, 2J = 0.5,
n =16, a = 2/n, and ¢ = 7/10. Note that § and 6 are plotted over only about 25 collisions since
their variation with 7 is at too high a frequency to be seen over 350 collisions. The discontinuities
in the graphs of angular rates are due to the collisions.

4.8.1 Numerical Approximation

We integrated the fully nonlinear equations of motion using int henon temp_3D.m, a version of
MATLAB®’s ode45.m (a 4th-5th order automatic step-sizing routine) modified to detect spoke
collisions using Henon’s [62] method (see Appendix A). We used an integration tolerance 10~ in
the automatic step-sizing routine. We use the same routine in Chapters 5 and 6. Figure 4.6 shows
the state of the rimless wheel disturbed slightly from a planar limit cycle over many collisions.
For the parameter values used, the steady rolling motion is stable. The disturbance eventually
decays and the rimless wheel enters into a new planar limit cycle at a slightly different heading (and
corresponding bank angle) across the slope.

We found fixed points and the Jacobian eigenvalues using a MATLAB® routine newton_3D.m
(see Appendix A). We use the same routines in Chapters 5 and 6. The finite difference step size used
to compute the Jacobian numerically was 10~* and error tolerance for the fixed point search was
10~%. The six numerically evaluated eigenvalues for the case in Figure 4.6 are: g9 = 0, 01 = 1 (see
discussion in Section 4.5), o2 = 0.9011, 03 4 = 0.9108 +0.3839i = 0.9884 ¢*0-398% 'and o5 = 0.96133.
The numerically evaluated Jacobian is

0.9975  0.4658 —0.0206 —0.1950 0 0
—-0.0181 0.6529 —0.1515 -0.6950 —0.0000 —0.0000
] = 0.0125  0.1968  1.1050  0.4840 0 0 (4.31)
0.0525  0.5312  0.4403 1.0274  0.0000  0.0000 )
0 0 0 0 0 0

—0.0127 —-0.0141 —-0.0057 —0.0250 0.0620  0.9011

We will compare the numerical estimates of the eigenvalues for this case to asymptotic estimates in
a later section. Since |o| < 1, and only one eigenvalue is exactly equal to one, the planar limit cycle
motion is asymptotically stable.

Given the initial perturbed state of the wheel from its limit cycle, we can predict approximately
the subsequent motion of the wheel, using J. We can do this as follows. To the linear approximation,
the small initial perturbation to the fixed point of the return map propagates over k collisions as

Aqi =" Aqp (4.32)

where Aqp is the perturbation to the fixed point qg.
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The new limit cycle of the wheel after many collisions is given by
Q- =qj+ klir{:o J*Aqp. (4.33)
In this numerical example,
q; = {¢* = 0.3142,¢* = —0.0378,6* = —0.1963, ¢* = 0,¢* = 0,6* = 0.7496}"

and Aqg = {A¢e = 0, Ay = 0.001, A8y = 0, Adp = 0, A¢p = 0, A = 0}7. Therefore, we estimate
the state vector after 350 collisions to be

qp + J**°Aqo = {0.2872, —0.0356, —0.1963, 0.0000, 0.0000, 0.7529}7. (4.34)
In comparison, we obtained the state vector from numerical integration as
q* = {0.2875, —0.0356, —0.1963, 0.0000, 0.0000, 0.7527}" (4.35)

after 350 collisions, rather close agreement as expected.

Alternatively, we know
JE=xCkx! (4.36)

where X is a matrix whose 4y, column is the eigenvector associated with the iy, element of the
diagonal matrix C whose elements are the eigenvalues of the Jacobian matrix J of the map f
evaluated at the fixed point of the return map.

The matrix of eigenvalues of the Jacobian evaluated at qj is

o3 0 0 O O O
0 oo« 0 0 O O
_ 0 0 oo O O O
C= 0 0 0 o5 0 O (4.37)
0 0 0 0 o2 O
0 0 0 0 0 oo
and the corresponding matrix of eigenvectors is
0.6518 4+ 0.2802¢ —0.6518 —0.28027 —0.9858
—0.1935 — 0.4866¢ —0.1935+ 0.4866:  0.0000
X 0.1833 + 0.3051¢  0.1833 —0.3051¢  0.1176
—0.2200 + 0.2136¢ —0.2200 — 0.2136:  0.0000
0.0000 0.0000  0.0000
—0.0088 — 0.0406¢ —0.0088 + 0.0406¢  0.1201
0.9781 0.0000  0.0000
—0.0718 0.0000  0.0000
—0.0321 0.0000  0.0000 (4.38)
0.0134 0.0000  0.0000 '
0.0000 0.0000  0.9976
—0.1923 1.0000 —0.0686
Upon inspection of C, we see that
000 00O
000 00O
limCfk=| 001 0 0 0 (4.39)
ke 000000
000 00O
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Thus, upon further inspection, we have

lim X C*X ! Aqp (4.40)
k—o0
Aghg - X71(3,3) - (‘3,4 column of X’)

= {-0.0270, 0.0000, 0.0032, 0.0000, 0.0000, 0.0033}". (4.41)

Finally, according to Equation (4.33) we estimate the attracting fixed point to be

Q" = q+ lim XC*X'Aq
k—oo
= {0.2872, —0.0356, —0.1963, 0.0000, 0.0000,0.7529}7". (4.42)

exactly as we obtained above.

Also, note that, for the new limit cycle, the numerically calculated heading and bank angles are
in the proper relationship and the numerically calculated limit cycle pitch rate is correct for the
effective slope at the final heading:

P
¥* = tan™" (= sin ¢* tana) = —0.0356 and §* = \/ ‘“‘AlSl—nugSlm — 0.7527
where v is defined by Equation (4.26).

More qualitatively, we note that the eigenvalues of largest magnitude less than 1 are o3 4, whose
magnitude is about 0.99. These eigenvalues cause the slow, oscillatory decay in the disturbance.
Note that the period of oscillation 27r/0.3989 is about 16, and so there are about 22 oscillations over
350 collisions. After, say, 80 collisions, we have (02)% < 0.0003, (05)%° < 0.05, and |o3,4|%° = 0.39.
Therefore, the decay in the disturbance after about five oscillations (80 collisions) is almost solely
governed by o34, and the decay per oscillation (per 16 collisions) thereafter is roughly given by
los.4|'® =~ 0.83, which agrees with Figure 4.6.

The good agreement between the linearized dynamics (Equation (4.34)) and the numerical so-
lution (Equation (4.35), Figure 4.6) are an indication that the numerical calculations are worthy
The good agreement between the linearized dynamics (Equation (4.34)) and the numerical solution
(Equation (4.35), Figure 4.6) are an indication that the numerical calculations are worthy and the
asymptotic stability is genuine.

4.8.2 Analytical Approximation

In order to analytically determine the 3D stability of the steady rolling motion, we use a perturbation
method with ( = 1/n as a small parameter.

A numerical study of the eigenvalues of the Jacobian of the map for large n shows that two
eigenvalues are of the form 1+ k(? for some constant k, so the Jacobian needs to be found at least
up to O(¢?).

Our approach is based on the following observations: (a) we cannot find an analytical approxi-
mation of the full 3D return map; (b) we can find an analytical approximation to the steady rolling
or periodic motion as a power series in ¢, up to arbitrary orders; (c) we can solve the first order (or
linearized) variational equations for motions close to the limit cycle, also up to arbitrary orders in
¢; and, (d) using (b) and (c), we can find the Jacobian of the return map at the fixed point up to
arbitrary orders in (.

Asymptotic Expansion

We define
(4.43)

TN
1l
S|



104

and note that ( is small but finite and, hence, much larger than the variations used in the stability
calculations. An overview of the general perturbation analysis procedure applied to this problem may
be found in Appendix A. We summarize below the calculation of the three matrices comprising the
approximation to the Jacobian, A = BDE, which have the following interpretations: B represents an
approximation to the collision transition map. Matrix D represents a correction to the perturbation
map to account for the perturbed time between collisions. Matrix E represents the map of the
perturbations just after a collision to just before the next. The Maple® codes for generating these
three matrices, finding the approximate Jacobian, and calculating the eigenvalue approximations
are are provided in Appendix E.

2
For a small slope, taken to be a = —, the eigenvalues of the Jacobian of the map are shown in

n
the complex plane in Figure 4.7 and the modulus of the difference of the eigenvalues from one is
shown in Figure 4.8. Figure 4.8 shows that the eigenvalues scale with ¢ as

0-8 T T T T T
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Figure 4.7: The eigenvalues of the Jacobian evaluated at the limit cycle fixed point are shown for
2
increasing numbers of spokes n, slope angle & = =, and inertia parameter \* = 3" The path of the

eigenvalues as n increases is indicated with arrows.
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5. oy & 1+ Co2.

From the numerics we assume that, in order to get the modulus of the difference of the eigenvalues

from one to O(6%), we must find the approximation to the Jacobian [A] to O(6?). (The reasoning

is as follows. Suppose, for example, we perturb the identity matrix to O(6™) to get a new matrix

[M] = [I] + O(6™). The roots of the characteristic polynomial of ([M] — o [I]) will then be O(6™).)
We rescale the non-dimensional time 7, pitch angle 8, and slope angle as follows:

T = (T
o0(r) = ¢O(T)
a = (o (4.44)

Using these new scalings, we write the variational equations for small perturbations using

$(T) ~ ¢ +ed(T),
Y(T) ~ 9" +ep(T), and
O(T) =~ O*T)+eO(T), (4.45)
where
Y* = *(¢*,a) = tan~(—sin ¢* tan(Ca)) (4.46)
and
e <. (4.47)

The Perturbed Equations of Motion

We need to find the perturbed motions of the system up to strictly first order in €. Recall that
the equations of motion for the system are of the form ¢ = g(q). The variational equations have
time-varying coefficients which involve the limit cycle period ©*(T),

a(T) =~ Dg(qa*(T)&(T). (4.48)

Substituing Equations (4.44), (4.45), and (4.46) into the three nonlinear equations of motion (4.10)
and truncating the resulting equations to first order in e yields the following six €® and e'order
variational equations that govern the evolution of perturbations from the planar limit cycle:

601

= o) (4.49)
= 0 - )20+ acos(¢*)¢?, and (4.50)
0 = o (4.51)

0 = %( +A2) — (1+A2)[<®$+%6$)]C—
[1+)\2 (®@¢+ ®2¢> —A%] ¢+

[ (1+ 2% 6®(®2+a sm(¢))¢+

)

2
(3a2sin?(¢*) + ©2) ¢) — a2 cos(qs*)qB] ¢ (4.52)
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asin(¢*) [/\2$ + %o‘? (sin®(¢*) — 2 cos?®(¢*)) qg] ¢ (4.53)
1 By 1 N =

0 = SA-X)p+501-X) (200 +600) ¢
3(1 —\%) [4(4)6)43 + (0% + a’sin®(¢*)) <13] ¢ -

1 A by
567 (606 +09) ¢* (4.54)

Equation(4.49) shows that the zeroth order term in the first variational equations has only O(¢7) and
higher and Equation(4.49) shows that the zeroth order term third variational equation is identically
zero. From Equation 4.50, we get an equation for (7))

O — X2 (® 4 acos(¢*)) 2 =0. (4.55)

The motions between collisions can be found in terms of a power series in (, which we truncate
beyond third order. We expand ©*(T) as

O (T) =0"(T,{)  O(T) +COL(T)+ - -+ ("OR(T) + ---. (4.56)

Upon substitution of Equation(4.56) into Equation(4.55), after applying the start-of-cycle condition
0©(0) = — and end-of-cycle conditions in order for a limit cycle to exist, ©(T*) = 7 and u©(T*) =

©(0) to solve for ©¢(T) and ©1(T), and expanding in ¢, we get an approximate solution for limit
cycle pitch angle ©*(T) and limit cycle period T* accurate up to O(¢?)

y 1 o 1
oY (T) = (\/gT — 7r> + 6,\2\/§T?’ + 5)3(@ —m)T%+

1 =5
3 (w/wu —18)%) — \/ET\/Z%) T| ¢ +0(¢h (4.57)
. 3 2 (79 1 [«7 1+/(77%)3
o= 2 (35 e BT ¢
+0(¢Y (4.58)
where (see Equation (4.30))
¥ = @acos ¢*, (4.59)

and we have expanded the limit cycle period T* in the power series
T*=To+TiC(+ -+ Tp¢"---. (4.60)

Now that we have used the € variational equations to obtain approximations to the pitch angle
©*(T) between collisions and the limit cycle period T*, we can return to the €' equations to solve
for approximations to the perturbations to the limit cycle, qE(T), 1/3(T), and é(T) To do this, we
first substitute the expression for ©*(T) into Equations(4.54), expand up to O(¢?), and solve for the

second derivatives ¢(T'), ¢(T), and §(T). The equations are too cumbersome so we do not display
them here.

Next, we expand the perturbations in power series in ¢ up to O(¢2), substitute the expansions
into the equations for the second derivatives, and obtain simple uncoupled ordinary differential
equations for each expansion coefficient which are easily solved.
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Then, once we have the expressions for the expansion coefficients, we can construct the power
series solutions for the perturbations in the Euler angles and differentiate them once to get their
rates.

Finally, we can obtain the state of the perturbations just before the next collision i 4+ 1 in terms
of the perturbations just after collision ¢ by substituting the limit cycle period into the solutions for
the evolution of the perturbations. The solved equations can be represented somewhat compactly
in a matrix equation relating the perturbations to the limit cycle just after collision ¢ to the state of
those perturbations just before the next collision 7 + 1

Q(T*) ="+ § = B((, A2, ¢x,a) g (4.61)

We do not show the components of E due to their complexity.

The Approximate Collision Map

Now, we calculate the matrix B = Dh(q*(T*)) that approximates the collision function h defined
by Equation(4.21). To obtain B, we first simply find the Jacobian of h (using Maple®) and then
evaluate it at q*(T*). Without yet expanding the elements of the matrix in ¢, we get

1 0 0 00O
1422 (4 cos?(w¢)—3
0 L (feos (ne)=s) 0000
0 10 0 0O
B = 2 _ . * . . (462)
4N a( sin(¢ in(7(¢) sin(w¢
0 — cos(ags (1+))\)2S (m¢) sin(m¢) 01 0 0
0 0 0 00O
0 0 0 00O
Perturbation to the Limit Cycle Period
Finally, we calculate the matrix that accounts for the perturbed limit cycle time
p=1-9C ) - UG\ fT 2) (4.63)
Dr(q*(r*)) - q*(7*)
The collision detection function is
rq)=6-" (4.64)
n
and its gradient is simply
Dr(q*(r*)) = {0,0,0,0,1,0}%. (4.65)

We do not display the matrix D here due to its size.

Eigenvalues of the Approximate Jacobian

We approximate the Jacobian evaluated at the fixed point of the return map to O((?) as (see
Appendix A and Appendix E)

A =BDE = (4.66)
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Factoring the characteristic equations of the matrix A, we get the approximation to the eigenvalues

o of the Jacobian as

0o
01
02
03,4
05

where

Bo

I}

P2

Q

0
14+ 0(¢®)

1+ Bo¢ + Bi¢?
1 - B¢

212

(in fact, this eigenvalue is exactly 1)
1—- A2 )P~ p? <1

A2 — 2%
F(1+ A2)’
2(—72 Mt + 2720\t — 8725 + 2A2 + 872) 72

(4.69)

F(7AZ = 29)(1 + A?)

4(mA% — N2y —

,7)71_2 /\2

(T2 — 27)(1 + \2)

, and

The numerical and asymptotic estimates of the eigenvalues are compared in Figure 4.9 and show
the convergence to near-perfect agreement as the number of spokes gets large. Note that the ap-
proximation is based on the assumption of large n and the expressions for 8; and B show that
accurate estimates are not expected for 1A% — 2% close to zero. For the particular case presented in
sub-section 4.8.1, we compare the numerical and asymptotic estimates of the eigenvalues from Equa-
tions (4.69) in Table 4.2 below. In addition, we compare the numerical and asymptotic estimates
of the non-dimensional limit cycle period from Equation (4.58); the numerically computed value is

7 = 0.5155 and the asymptotic estimate is 7* = (T = 0.5203.

Stability Criteria

The eigenvalues of the Jacobian of the map have the following interpretations:

e g9 = 0 and o1 = 1 for reasons discussed in Section 4.5.
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Figure 4.9: The modulus of the eigenvalues |o| of the Jacobian evaluated at the limit cycle fixed
point are shown for different n, with @ = 2/n, and the arbitrarily chosen values A = 2/3, and
¢ = 7/10. The zero eigenvalue is not shown.

Table 4.2: Comparison of the numerical and perturbation estimates of the limit cycle eigenvalues
for the case presented in Section 4.8.1 where 2J = 0.5, n = 16, a = 2/n, and ¢§ = 7/10. Better
agreement is found for larger n (see Figure 4.9).

oo | 01 09 03,4 05
Numerical 0 | 1 |0.9011 | 0.9884 ¢*0-398% | 9613
Asymptotic || 0 | 1 | 0.8972 | 0.9930 ¢*0-423%¢ | 0.9612
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e 0y ~ 1 — (4X27?)¢% < 1 comes from the 2D motion. In fact, oo is exactly p?, where u =
14 A*(cos 2% — 1).

e |03.4] <1 and |os| < 1 determine necessary and sufficient conditions for asymptotic stability.

For asymptotic stability of steady planar rolling in 3D (for a wheel of many spokes on a small slope
a and effective slope v ~ O(()), from Equations (4.69) we may conclude the following,.

1. If By is real, then one of o3 4 is greater than 1 by an amount O(¢). On the other hand, if fy is
imaginary, then the magnitudes of of o3 4 as well as o5 are 1 + O(¢?) (|os.a| &~ 1 +1/2(281 +
|B0]?)¢?). Therefore, for stability to O(¢) we require mA? — 25 < 0, or

5 > wA%)2. (4.70)

2. For stability to O(¢?) we require both (i) 82 > 0 and (ii) 28; + |5]* < 0. Condition (i) is
satisfied if ¥ > wA? /(14+)?). Note that in this case even Equation (4.70) above is automatically
satisfied since A2 = 1/(2J + 1) < 1. Finally, given ¥ > 7A2/(1 + A?), condition (ii) is
automatically satisfied. Therefore, condition (i) is both necessary and sufficient to ensure
stability, to O(¢?).

So, the asymptotic analysis estimates the condition for asymptotic stability of the planar limit cycle
to be
7> 72/ (1+ 2%). (4.71)

Since 6*, the limit cycle pitch rate or rolling speed, is known in terms of v = (%, the stability
results may be expressed in terms of this pitch rate (to lowest order). In terms of limit cycle pitch
rate, the two stability criteria (4.70) and (4.71) reduce to

. 22
0*)* > 5+ and (4.72)
. A2
(6*)% > T3 (4.73)

where, for 0 < A2 < 1, criterion (4.73) is more stringent than (4.72) but (4.72) turns out to be
important as discussed below.

Comparison to a Rolling Disk

The criterion on the forward speed for neutral stability of a uniform disk with polar moment of inertia
2.J rolling in a vertical plane is (§*)% > A\?/2, where A> = 1/(2J + 1) (see e.g., Greenwood, 1965 [6]).
This criterion is the same as the O(() stability criterion (4.72) above, i.e., By being imaginary. That
the rolling disk criterion and criterion (4.72) should agree may be seen as follows. If Equation (4.72)
is not met for the rimless wheel, i.e., (§*)% < A\2/2 or 3 is real, then one eigenvalue takes the form

lo| =1+ a(, for some real a > 0. (4.74)
If Equation 4.72 is met, but Equation 4.73 is not necessarily met, then the eigenvalues take the form
lo| = 1+ b¢?, for some real b, positive or negative. (4.75)

As n — oo, the rimless wheel approaches a rolling disk rolling with a constant speed on a level
surface; the speed is decided by 4. In order to compare the rimless wheel and the disk, we examine the
propagation of small disturbances not through one spoke collision but rather through one revolution
of the wheel at some constant limit cycle pitch rate; i.e., we look at the magnitude of ¢}* as n — c.
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In the first case, the eigenvalue iterates through one revolution as

Al

1+al)t. (4.76)

Taking the limit as the number of spokes gets large, we get

a
lim (1 + a¢)¢ = lim [(1 + ag)al—c] _— (4.77)
¢—0 ¢—0
Thus, as the number of spokes approaches infinity and the rimless wheel approaches a disk, small
disturbances to the limit cycle grow exponentially with each revolution of the wheel.
In the second case, the eigenvalue iterates through one revolution as

(1+ b(2)% . (4.78)

Taking the limit as the number of spokes gets large, we get

. 2 % — [ 2 %] b 1 b _

ég% (1+56¢%) ghg%) (1+56¢%) éli%e 1. (4.79)
Thus, it is seen that the O(¢?) stability criterion, Equation (4.73) above, becomes irrelevant in the
limit as n — oo and the associated eigenvalue goes to 1 (from above or below). On the other hand,
the O(() stability criterion, Equation (4.72), predicts instability if Gy is real, and neutral stability if
Bo is imaginary in the limit as n — 0o, just like the rolling disk. Therefore, Equation (4.72) governs
the stability of the rimless wheel, as n — oo, and agrees with the stability calculations for a rolling
disk.

In other words, for a large number of spokes but still finite, disturbances grow slowly. Yet, as the
number of spokes approaches infinity and the rimless wheel approaches a disk, small disturbances
neither grow nor decay through each revolution, like the rolling disk. Thus, the necessary condition
for lateral stability of the rimless wheel on small slopes matches that for neutral stability of the
rolling disk on a flat surface as the number of spokes approaches infinity.

4.8.3 Aside: Existence of Other Limit Cycles

In the case of 3D motions, if we vary the slope as a parameter for fixed n, then for some slope
the eigenvalue o5 will be exactly 1. At that particular slope, the eigenvalue 1 has multiplicity two.
Therefore, one might expect that at that slope two limit cycles merge.

We do not believe that there are such limit cycles. Our reasoning is as follows. (a) As n
gets large, the dynamic behavior of the rimless wheel approaches that of a disk on a flat plane (in
a suitably averaged sense). Small deviations from pure rolling, for a disk, are limited to small,
periodic wobbles. These wobbles occur over a time scale of O(1). For the rimless wheel, this means
such wobbles occur over O(n) collisions, which is consistent with the imaginary parts of o34 being
O(1/n). Such ‘long-period’ motions will not be fixed points of the single-spoke-collision return map
we consider. Intuitively, we do not foresee any other types of fixed points of the return map except
the one-parameter family of steady rolling motions we have considered. (b) Note that fixed points
are solutions to the equation f(x) = x, or g(x) := f(x) — x = 0. The Jacobian of the function g(x)
differs from that of £f(x) by the identity, and a double eigenvalue of 1 for f corresponds to a double-
zero eigenvalue for g. However, for another solution branch in addition to the known one-parameter
family to appear at that point, the rank of Dg, the Jacobian of g, should be 4 (2 less than 6). Based
on some numerical checks using the singular value decomposition, we believe that (at least typically)
the rank of Dg is 5 (1 less than 6). In other words, the double eigenvalue has algebraic multiplicity
2 but geometric multiplicity 1. This means that the already known one-parameter family of steady
rolling solutions (i.e., limit cycles) is all there is.
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4.9 Conclusions and Future Work

In this chapter, we have presented an analysis of a 3D dynamic system with intermittent impacts,
that shares some qualitative features with passive dynamic walking machines. A viable computer-
algebra based analytical technique for stability studies of systems with intermittent impacts was
demonstrated for this moderately complex system. In another work, this same approach has been
successfully used to study the stability of a simple walking machine in 2D (Garcia, et. al., 1996[16]).
The rimless wheel behaves like a disk, on O(1) time scales, as the number of spokes get infinitely
large.

We note that the rimless wheel can be stable in 2D on slopes of O(1/n?), essentially due to
the energy dissipation in collisions. However, the 3D system, with more degrees of freedom, is only
stable on slopes of O(1/n). Hence, energy dissipation alone is not sufficient for stability in 3D. The
intermittent collisions are somehow crucial to the asymptotic stability that the rimless wheel has
but that the rolling disk does not have.

A question of general interest to us is the cause of balance stability of ‘passive-dynamic’ walking
machines. Two known mechanisms for asymptotic stability of passive mechanical systems are dis-
sipation and nonholonomic constraints. For the rimless wheel, the natural comparison system is a
rolling disk, a classic nonholonomic system. The rolling disk, due to its symmetry with respect to
motion reversal, is not asymptotically stable. Thus, we do not know of a simple way to explain the
asymptotic balance stability of the system discussed here.

We would like to compare the rimless wheel with crooked masses attached to the disk with crooked
masses in Chapter 3 to show how a nonconservative piecewise holonomic system with asymptotic
stability approaches an asymptotically stable conservative nonholonomic system in the limit as the
number of spokes gets large.

In addition, it would be interesting to search for other stable steady motions besides the planar
limit cycle, like zig-zagging or looping behavior.

Next, Chapter 5 presents an analysis of a planar straight-legged point-foot walker constrained
to move in two dimensions. We find stable 2D limit cycles for this device and use these as starting
points for the 3D analysis in Chapter 6.
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Chapter 5

‘Step Four’: Two-dimensional
Straight-legged Point-foot Walker

In terms of its mechanics, walking is nothing more than a series of stumbles caught in

the nick of time, a continuous, rhythmic loss and recovery of balance. Gravitation, no
less, is the force that we harness to our service when we walk.

A. Sussman and R. Goode, The Magic of Walking, 1967

5.1 Introduction

We now present a study of our first walking model, in 2D. We will use 2D fixed points as ‘seeds’ for
finding fixed points of a 3D version of the 2D model presented here as well as to get a feel for how a
passive point-foot straight-leg model model behaves. We consider a two-dimensional straight-legged
point-foot walking device, one only touched on by McGeer [43], a simplification of his 2D straight-
legged walker with round feet. This is one of the simplest 2D models we can study, with only three
parameters after non-dimensionalization. This model is a slightly more complicated version of the
of the double-pendulum (‘compass-gait’) point-foot models being studied by [45, 81, 82]. The 2D
straight-legged point-foot walking model is shown in Figure 5.1 below to remind the reader of where
it fits into the evolution of models in the research program.

We find stable 2D passive gaits for a variety of parameters. We have also discovered an illustrative
limiting case, a stable one-parameter (slope angle) model, the simplest walking model. This simple
walking model displays stable chaotic walking as well as a case of funny walking (highly-unstable
periodic gait with multiple leg swings between foot collisions). The details of the analysis of this
model are presented in a paper by Garcia, Chatterjee, Ruina, and Coleman [16]. This model is a
limiting case of the the simple straight-legged walkers of [4] and [45, 81, 82]. This model, described
below in Section 5.5, has a special mass distribution that further simplifies the underlying mechanics
and mathematics

5.1.1 Description of the 2D System

The 2D point-foot version of the 3D model is shown in Figure 5.2. It has two identical rigid legs of
length £, mass M, center of mass location (X, Zem) in stance leg frame coordinates, and moment
of inertia with respect to the center of mass I°™. A frictionless hinge at the hip connects the legs.
The system of links moves on a rigid ramp of slope a. As we assumed for a rimless wheel spoke, when
a foot hits the ground (ramp surface) at heel-strike, it has a plastic (no-slip, no bounce) collision
and its velocity jumps to zero. The foot remains on the ground, acting like a hinge joint, until the
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Figure 5.1: The place of the 2D straight-legged point-foot walking model in the passive-dynamic
family tree.

swinging foot reaches heel-strike. During walking, only one foot is in contact with the ground at
any time; double support occurs instantaneously. A 2D cartoon of the model’s motion over one step
is shown in Figure 5.3. Between collisions, the model’s motion is governed by the classical laws of
rigid-body mechanics. We make the non-physical assumption the swing foot can briefly pass through
the ramp surface when the stance leg is near vertical. This concession is made to avoid the inevitable
scuffing problems of straight-legged walkers. This clearance problem, while trivial in theory, can be
solved in practice by providing suitable ‘stepping stones’ for the physical model or by adding knees
or retractable feet (McGeer [4], Mochon [13]).

Configuration and State Spaces

We characterize the configuration of the walker between collisions using the stance and swing leg
angles as shown in Figure 5.2. The stance leg angle 0, is the angle of the stance leg with respect
to the normal to the slope and the swing leg angle 8, is the angle of the swing leg with respect to
the stance leg.

Between collisions, the system is holonomic and position is defined by two generalized coordinates,
the stance and swing leg angles. Globally, the position is described by three generalized coordinates
while the instantaneous velocity space is determined by only two angular rates; in this sense, it is
nonholonomic.

In our stability analysis, we do not keep track of the foot contact position over several foot
collisions; we just keep track of the orientation variables 84 and 6s,,. We use equations of motion for
a double pendulum (holonomic system with two degrees of freedom), and use angular momentum-
balance-deduced jump conditions to map the state variables from just before a foot collision to just
after. Thus, in our analysis, the state space is four dimensional and q, the state vector, is defined
to be

q= {estaasw:ést;ésw}T- (51)
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frame,F ‘ j ///T
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Figure 5.2: The point-foot walking model: parameters and configuration variables. Leg lines are
drawn with different line weights to correspond to the plot of Figure 5.5. The leg mass is designated
by M, the moment of inertia with respect to the center of mass by I°™, the leg length by ¢, the
ramp angle with respect to the horizontal by «, and the acceleration due to gravity by g. The angle
of the stance leg with respect to the slope normal is 65 and the angle of the swing leg relative to
the stance leg is 0,,.
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Figure 5.3: A typical passive walking step. The new stance leg (lighter line) has just made contact
with the ramp in the upper left picture. The old stance leg becomes the new swing leg (heavier
line). The new stance leg swings until the next heel-strike (bottom right picture). At heel-strike,
the new swing leg becomes the newest stance leg.

5.1.2 Indexing Scheme

We have chosen a set of angles to describe the orientation of the walking device between collisions.
We next present an indexing scheme to denote the state of the system just before and after the
collision % of the i;; swing leg. We use the indexing scheme to define a ‘cycle’ of the walker — from
just after a swing leg collision (heel-strike) to just after the next.

The iy, stance and swing legs are so designated after the i, collision. Thus, the names of the
legs are exchanged through a collision. That is, the i, stance leg becomes the ¢ + 14, swing leg and
vice-versa for the iy, swing leg.

Special times of interest are just before and just after collision 4. The minus and plus signs (—)
and (+) are used as the superscripts to denote these times. For instance, ’P;’; is the stance leg angle
just after collision 4 of swing leg 7 — 1.

In defining the orientation of the walking device, we have defined fixed frame F, stance leg frame
ST (fixed to the stance leg), and swing leg frame SW (fixed to the swing leg). The stance leg frame
ST has origin at the tip of the stance leg currently in contact with the ground after collision i. The
swing leg frame ‘SW has origin at the hip joint. The z, and 2, axes are aligned with the stance
and swing legs, respectively.

We move the origin of the stance leg frame instantaneously with each swing leg collision from
the tip of the pre-collision stance leg to the tip of the post-collision stance leg currently in contact
with the ground after collision ¢ + 1. The origin of the swing leg frame remains at the hip joint.

As the origin of stance leg frame 7 is moved to the tip of the colliding leg, however, we not only
translate the stance leg frame but also rotate it by —2 i+163_,5 about the y-axis with respect to the
fixed frame so that the z4-axis of stance leg frame ¢ + 1 is aligned with stance leg ¢ + 1. Thus, the
stance leg angle changes instantaneously from 6y to —0g through a downhill swing leg collision.
Likewise, the swing leg frame rotates by —2 i+195_w about the y axis with respect to the stance leg
frame so that the z,,-axis of the swing leg frame i + 1 is aligned with swing leg ¢ + 1.
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After a collision, then, we redefine the absolute orientation with respect to the fixed frame using
the newly positioned frames. The relationships between frames and their associated bases from
before to after collision i + 1 are

STt # ST, el = Ry(0 = -2 "116;,) “tley, (5.2)
HISWt £ HISW T itled = Ry(0 = -2 14,,) tle,,. (5.3)

5.1.3 Cycle of Motion

A ‘cycle’ of the walking device is the motion from one swing foot collision through the next. A
schematic of one cycle, for downhill walking, is shown in Figure 5.4. As before with the 2D and

(a) just after collision (b) between collisions (c) just before collision+1

1

downslope

(d) collision i+1 (d) just after collision+1

Figure 5.4: Schematic showing: (a) the state of the walking device over one stride just after collision
i of swing leg ¢ with point A, (b) the state of the walking device between collisions, (c) the state
of the walking device just before collision i + 1 of swing leg foot ¢ at point B, (d) collision ¢ + 1 of
swing foot ¢ at point B, and (e) the state of the walking device just after collision i + 1 of swing leg
foot i at point B. The stance leg is denoted by the heavy line and the swing leg by the thin line.

3D rimless wheels, we pick as the starting point the instant when the trailing stance leg ¢ leaves
the ground and and the leading swing leg i simultaneously collides with the ground. The walking
device rotates over the stance leg i , as an inverted double pendulum with initial state ‘q*. The
non-collisional portion of the stride ends just before swing leg i strikes the ground at collision i 4 1
instantaneously transferring support from the trailing stance leg to the leading swing leg. The state
of the walker is nowt1q~. After impact, the walking device is now poised for the next start-of-cycle

at state tlqt.

5.2 Governing Equations

Now that we have defined a cycle of motion, we can derive the equations that describe the motion
between collisions and the collision transition rule.
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5.2.1 Equations of Motion between Collisions (During the Swing Phase)

The two coupled second-order differential equations of motion are given below for the swing phase
of the motion, where 8, and 6, are functions of time non-dimensional time 7 = t\/m. These
equations are derived by taking angular momentum balance for (1) the whole mechanism about
the contact point of the stance leg with the ground and for (2) the swing leg about the hip joint.
Appendix B describes this procedure in detail.

2 cos(a + O4)
st

ést 59 sin(a + 05,5) _ 0
Miw) { b } PV P (4G st b1 0,) [T 0 (5-4)
stYsw

sin(a + 85 + Os4)

The matrices in Equation (5.4) are

My Mo
M = .
@=| 3 e (5.5
where
M, = 2 [(1+z2 422 =22+ T+ (1=2) hsy) +2 sﬁgw] ,
1
My = §M11 — 2,
My = M;s, and
Moy = Mz —(1—=2) sy — T 80505 (5.6)
V() =
0 T sy — (1 —2) 8050y —2(x bsyy — (1 — 2) 8054) (5.7)
T sy — (1 — 2) 805 0 0 ’ )
e (1+2) & —(1-2)
| —(1+z2) z —(1-=2
G= [ 0 0 z —(1—2) (58)

Note that ‘/13 = —2‘/12, ‘/21 = ‘/12, G11 = —G13 = —G23, and G14 = G24. These are the
equations of motion for a planar rigid-body double pendulum. In Equations 5.23, we have rescaled
time by /£/g. The moment of inertia, and coordinates of the center of mass are non-dimensionalized

Icm _ Xcm Zcm
as follows: I = U and (z,2) = ( 7 0 )

5.2.2 Collision Transition Conditions
Collision Detection Rule

The collision occurs when the geometric collision condition
re/a -ﬁf = cos(0st + Osy) + cos(bs) = 0. (5.9)

is met. Equation 5.9 describes the values of 6, and 8, for which the swing leg foot is coincident
with the ramp surface. Solving Equation (5.9) for 65 and 6s,, we get an equivalent geometric
collision condition

™= (asw + 205t) =0. (510)

which is easily seen from the collision configuration.
We also impose the additional condition that the stance leg be sufficiently past vertical (Equa-
tion (5.9) is also true at least once when the legs are nearly parallel, but we ignore scuffing).
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Collision Rule for Configuration Variables

At the instant of swing foot collision, the pre-collision stance leg switches to the post-collision swing
leg and vice-versa. So, the stance and swing angle are reset at each swing foot collision as support
is transferred from the stance foot to the swing foot according to the following mapping;:

{ 00; }H{ —_00; } (5.11)

67 0 -1 0
(A os{ 8 Y maes=[ 7 9] 512

Collision Rule for Angular Rates

Thus, we can write

The swing foot contact point receives an impulse at foot-strike (point C'). Due to the swing foot
collision, an impulse is also transmitted to the swing leg at the hip joint (point B). We assume that,
during collision, other smaller forces (e.g., gravity) acting on the system are negligible in comparison
to the collision impulses. We also assume there are no impulsive ground contact torques. At the
instant of collision at the hip, we assume that the former stance leg loses contact with the ground
(at the same instant the swing foot makes contact) and that it has no impulsive reaction with the
ground as it leaves. Based on these assumptions, angular momentum is conserved for the entire
system about the swing foot contact point C during the collision process. Angular momentum is
also conserved for the new swing leg (formerly the stance leg) about the hip joint, point B. These
statements of angular momentum conservation during the collision process yield the transition rules
for velocities from just before to just after foot-strike. Referring to Figure 5.4, we can write these

conservation statements as
H; = HJCC (5.13)
for the whole system and
S'Hy =" HE (5.14)

for the the pre-collision stance leg which becomes the post-collision swing leg. Applying angular
momentum balance as prescribed above through heel-strike gives the following collision rule for
angular rates where the ‘4’ superscript means ‘just after heel-strike’, and the ‘—’ superscript means
‘just before heel-strike’. Appendix B describes this procedure in detail. The jump equations are
non-dimensionalized in the same way as the equations of motion between foot collisions.

. + .
{ :?t+ }:T{ gjt } (5.15)

where the transition matrix T is

1
5| n 610
and its components are

Tin = (1+2)-2*2-2)+2>+2(1+2%)) cos(20};) +

z (I —2(1— 2) + 2?) sin(20;;) + T,
Tio = I(IT+222+(22-1)(2—1)) +2*(2*-32+1) +

22 (2 +3(1-2)) -2,
To1 = [22°(2-2) —22(1+ 2%)I + 2325sin(20};) + 22(1 — 2)cos(26;;)] cos(20};)

-22%(1 - 2) + 22(2> + I),
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Too = ((1—2)I+2*2—2)+2> —2(1+2%)cos(20},) +
(I +2(1—2)+ xZ) sin(26,;) — T2, and
D = (2°+4(1-2)%) cos®(26,;) —z(1 — 2)sin(46,;) +

I(I—I—Z(m —2(1=2)+1))+2° (1 -2)>+22°+1) +
(2 —22+1) — 22+ 1. (5.17)

The jump equations are non-dimensionalized in the same way as the equations of motion between
foot collisions.

Total Collision Rule

Finally, we can merge the transition rules for the orientation variables and their rates into one map
from the state of the system just before a collision to just after:

05 0
o 6
gt =L Gw b, where L= [ 5 ] . (5.18)
0%, 05

We can rewrite this collision law that maps the state of the walker just before to just after a collision
as

q" =h(q7)=L(q7)q" (5.19)

where the matrix [L(q )] depends only on the orientation variables and not their rates.

5.3 2D Return Map, Fixed Points and Stability of Walking
Motions

This time, the straight-legged point-foot walker constrained to move in two dimensions has an four-
dimensional phase space with coordinates {6s¢, 85y, 0;t, Gs.w}T. Again, a natural place to sample this
space is at the points of discontinuity, the collisions. We construct a map f that takes the state of
the walker just after a collision to just after the next. The map from one state to the next can be
written as before as q — f(q) or

Hlgt =f('q"), (5.20)

where f is the return map and ‘q™" is the state vector of the system at the start of a cycle, just after
the iy, collision.

Since we know the relationship of the stance leg angle to the swing leg angle on the Poincaré
section(see Equation (5.10)), the map can be reduced to three dimensions. When making stability
calculations in practice, as we did with the 3D rimless wheel in Chapter 4 (see note on page 98),
we keep all four dimensions which always yields one eigenvalue of the Jacobian evaluated at a fixed
point exactly zero.

Again, the map f may be looked upon as a composition of two maps f = (hod); here, d governs
the motion from just after heel-strike i to just before heel-strike i + 1, obtained by integrating the
equations of motion between collisions, and h governs support transfer, from just before to just after
heel-strike ¢ + 1.

For periodic or steady motion, we must again find fixed points of the return map,

q" =1f(q"). (5.21)
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5.4 Numerical Simulations and Results

5.4.1 Steady Motions and Stability

We integrated the fully nonlinear equations of motion using int_henon2D.m, a version of MATLAB®’s
ode45.m ( a 4th-5th order automatic step-sizing routine) modified to detect spoke collisions using
Henon’s [62] method. This routine is identical in nature to the 3D version int_henon3D_temp.m
(see Appendix A). We used an integration tolerance 10~8 in the automatic step-sizing routine. A
typical plot of 85 and 6, over one step is shown in Figure 5.5. We found fixed points and the

0-25 T T T T T T
0.2+ . . /
swing leg anglef, (1)+05(1)-Tt
0.15¢ ]
swing foot scuffs
= 0.1t
c
0 0.05}
Q
S
@
o
L£-0.05
-0.1+
-0.15 .
stance leg angl®g(1)
-0.2
0253 35 4 45 5 55 6 65
_ T, non-dimensional time _
foot-strike foot-strike

Figure 5.5: The 2D point-foot leg angles over one step at a gait cycle for a = 0.0090, I = 0.0827, x =
0.0000, z = 0.8780. At a gait cycle, heel-strike returns the system to its initial conditions. The swing
leg angle is more usefully plotted as measured from the vertical to the slope or 0%, (1) + 6%,(7) — «.
The stable fixed point for this case is q* = {—0.1847,3.5110,0.2080, —0.0220}7; the maximum
eigenvalue i8 |opmqz| = 0.1611 and the non-dimensional step period is 7% = 3.278. The stance
leg curve is denoted by the heavy line and the swing leg curve by the thin line corresponding to
Figure 5.2.

Jacobian eigenvalues using a MATLAB® routine newton_2D.m. THis routine is identical in nature
to newton 3D.m (see Appendix A). The finite difference step size used to compute the Jacobian
numerically was 10~* and error tolerance for the fixed point search was 10~%. The eigenvalues and
eigenvectors for a particular case are shown in Table 5.1. Similar stability results are found over a
wide range of parameter variations.
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Table 5.1: Eigenvalues and eigenvectors for a stable periodic walking motion with a = 355, I =
0.0827, x = —0.001, and z = 0.8780.
Eigenvalues
g1 g2 g3

0.2482 | -0.0099 | -.9607

Eigenvector
e 1 1 1
(e -1.0143 | -0.95 | -0.7955
0%, 0.3837 | -1.0581 | 0.3008

5.4.2 Effects of Parameters Variations on Steady Motions and Stability

We show how the step period 7*, modulus of the maximum eigenvalue |0, 42|, and fixed point stance
angle @7, vary with each parameter while the others are held constant. No attempt is made here to
exhaustively search the huge parameter space for stable periodic motions.

Leg Inertia, I

Increasing the non-dimensional leg inertia I (radius of gyration squared) increases the maximum
eigenvalue, the step period, and the stance leg angle (as well as the inter-leg angle), as shown in
Figure 5.6. Increasing the leg inertia lengthens the pendulum period of the swing leg and also slows
the characteristic time of falling of the stance leg thereby decreasing the characteristic frequency of
walking. Though lowering the leg inertia decreases the efficiency, according to Equation (2.8) for a
comparable 2D rimless wheel, this does not make the walker unstable.

Mass Center Height along Leg, 2

Raising z, the center of mass height along the leg, at first stabilizes walking, then destabilizes it as
it nears the hip, and then stabilizes it again as it gets very close to the hip, as shown in Figure 5.7.

Mass Center Offset, x

As the center of mass is offset in either the fore or aft directions, the maximum eigenvalue increases
while the periodic stance leg angle decreases; the step period decreases if the mass is moved forward
and increases if it is moved backward (see Figure 5.8). A typical root-locus plot for the three return
map eigenvalues are shown in Figure 5.9 for —0.001 < z < 0.001.

Slope Angle

The maximum eigenvalue, step period, and stance angle increase with increasing slope angle, as
shown in Figure 5.10. No attempt is made here to estimate the basins of attraction for the stable
periodic motions or the boundaries in parameters space that define the existence or non-existence
of periodic motions.

Funny Walking

A typical plot of 8,4 and 6, over one step for stable double-swing walking gait is shown in Figure 5.11
for @ = 0.009. (There are, in fact, an infinite number of solutions of n leg oscillations between leg
foot collisions (see, Garcia, et. al. [16]).
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Figure 5.11: Point-foot leg angles for a double-swing gait mode over one step. for a = 0.0090,
I = 0.0001922, z = 0.0000, z = 0.9980. Again, the swing leg angle is more usefully plotted as
measured from the vertical to the slope or 8},,(7) + 0%,(7) — 7. The stable fixed point for this case
is q* = {—0.1924,0.2043, 3.5264, —0.3061}"; the maximum eigenvalue is |omaz| = 0.3503; and the
non-dimensional step period is 7* = 4.0059. The stance leg curve is denoted by the heavy line and
the swing leg curve by the thin line corresponding to Figure 5.2. It is interesting to compare the
double swing characteristics with those for the single swing with the same parameters: the stable
fixed point for this case is q* = {—0.1255,0.2615,3.393, —0.1641}7; the maximum eigenvalue is
|Gmaz| = 0.8668; and the non-dimensional step period is 7* = 1.0271. Surprisingly, the double-wing
mode is more stable.
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5.5 2D Special Case: The Simplest Walking Model

A simple case of the walking model above is one with point masses at the hip and foot, m; and my,
as shown in Figure 5.12. We assume that one-half of the hip mass is associated with one leg such

— 1

hinge

l«——

Figure 5.12: The simplest 2D point-foot walking model. Leg lines are drawn with different line
weights to correspond to the plot of Figure 5.13.

1 1
that M = my + 2Mh- In this case, the center of mass lies on the leg (z = 0) and z = 17 where
n

the mass ratio is = 2ﬂ Each leg has non-dimensional moment of inertia I = Ic—lm =

mp (m F+ 5mh)€2

1 2 n 2 n
1+77(1 2+ 1+n° (1+4mn)
model in which the hip mass is much greater than the foot mass (my > my), implying in the limit
as the hip mass becomes infinitely large that n — 0, 2 — 1, and I — 0. This model is studied in
detail in Garcia, Chatterjee, Ruina, and Coleman [16]. The two coupled second-order differential
equations of motion are given below for the swing phase of the motion for the simple model described

5- In particular, we study the simplest passive-dynamic walking
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above.

[ 2(1+7n(1 +cosbsy)) n(1+ cosbsy) ] { 05t }

n(1 + cosbsy) n Osw
62,
+ 7sinfgy, [ (1) _01 _02 ] 62,
estgsw
—@2+n) - sin(a + 0,t) _Jo
* [ 0 - |\ sin(@+0u+0) [0 (5.22)

Setting n = 0 (the limit as hip mass dominates foot mass) in the first equation of motion and dividing
through by 7 in the second yields two simpler equations.

gst - sin(a + Hst) =
0,0 + <0§t —cos(a + 05,5)) sin O, + sin(a + 65) =

o

(5.23)
(5.24)

e

The equations describe an inverted simple pendulum (the stance leg) whose motion is totally de-
coupled from the the motion of the swing leg. The swing leg, on the other hand, is a driven simple
pendulum whose support motion at the hip is determined completely by the motion of the stance
leg. Note that there is only one free parameter in Equations (5.23) and (5.24): the ramp slope a.

5.5.1 Collision Rule

The collision detection rule is unchanged. The collision rule for angular rates for the case of point

foot and hip masses is
. + .
05t 0,
8 =T . st 2
{ Bos } { Oz } (52)

where the transition matrix T is

T

1 2cos(260;;) 8‘ ] (5.26)

T 21 psin’(26,) [ 2 cos(20;;)(cos(20;;) — 1)

Setting n = 0 in Equation (5.26) yields the collision rule for angular rates
-+ _ .
Ost _ cos(263;) 0 05 (5.27)
0., [ | cos(207;) (cos(265;) —1) 0 o [ )

5.5.2 Numerical Simulations

A typical plot of 5 and 65, over one step is shown in Figure 5.13 for a = 0.009.

Dependence of Fixed Points and Stability on Slope Angle a

An in-depth stability analysis and of the simplest walking model can be found in Garcia, et. al. [16];
they show the existence of 2-cycle (or ‘limping’ gaits) and 4-cycle gaits and higher (‘staggering
gaits’).
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Figure 5.13: The simplest 2D point-foot walker leg angles over one step at a gait cycle for a = 0.009
radians. The swing leg angle is more usefully plotted as measured from the vertical to the slope
or 0%,(1) + 0%,(t) — 7. The fixed point for this case is q* = {—0.1999,0.2002, 3.5414, —0.0158}7;
the maximum eigenvalue iS |0y,4.| = 0.5182 and the non-dimensional step period is 7* = 3.7987.

The line weights correspond to those of Figure 5.12. The asterisks in the superscripts indicate fixed
points and their corresponding leg angle trajectories.
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5.6 Conclusions

For the two-dimensional four-parameter straight-legged point-footed walking mo-

del, we have found stable walking for a variety of parameters. Parameter studies turned up that a
small polar moment of inertia I and high center of mass location z for the legs are good for stability
but that fore/aft displacement of the center of mass is destabilizing. But, will the same be true for
3D versions of this model?

We also discovered an elegant one-parameter simplification of our model that has a huge hip
mass and tiny point feet that has stable motions. Extensive investigations of this model can be
found in Garcia, et. al. [16].

Finally, the 2D studies have provided a good starting point for our investigations into 3D passive-
dynamic walking. We will first use the 2D numerical routines two search for 2D fixed points that
will then serve as the initial guesses for the 3D fixed point searches, the subject of the next and final
chapter.



Chapter 6

‘Step Five’: Three-dimensional
Straight-legged Point-foot Walker

That’s one small step for man . . . one giant leap for mankind.
Neil Armstrong first step on moon, 10:56:15 p.m. EDT, July 20, 1969

6.1 Introduction

We begin this final chapter with a review of McGeer’s [4] 3D passive-dynamic walking model and
his numerical results; unless noted otherwise, all of the references to McGeer in this section refer to
this citation.

We then describe our 3D model and present the results. Almost by accident, we built a simple
two-leg toy that can walk stably in 3D with no control system (see Coleman and Ruina [14] and
[15]). It walks downhill powered only by gravity. It seems be the first McGeer-like passive-dynamic
walker that is statically unstable in all standing positions, yet is stable in motion. It is one of few
known mechanical devices that are stable near a statically unstable configuration but do not depend
on spinning parts. Its design is loosely based on our 3D model simulations which do not predict its
observed stability. We describe it later in this chapter.

6.1.1 McGeer’s 3D Passive-Dynamic Biped Model

To evolve his understanding and models into the three-dimensional world,
McGeer [4] first pondered the idea of a planar biped free to move in three dimensions. Planar
means that the biped would have no lateral thickness (no out-of-plane mass distribution). It would
have two straight legs connected by a hinge whose axis of rotation is parallel to the plane of the
biped. The biped can thus swing its legs past each other in the plane of the hinge. The biped’s
steady two-dimensional motions are also steady three-dimensional motions. The question arises as
for the planar rimless wheel, however, whether stable steady gait in 2D is stable in 3D or can be
stabilized if it is not. That is, can the biped demonstrate lateral stability since, when standing still
or walking slowly, it acts essentially as an inverted pendulum? McGeer [4] noted that, for a given
mass distribution, thin (planar) rolling disks owe their lateral stability entirely to spin (about the
axis through the center of mass and normal to the disk); thus, he reasoned that, since a planar biped
does not have the necessary store of angular momentum due to the counter-oscillation of its legs, it
would be probably not be laterally stable. Like the side-ways inverted pendulum instability of the
biped in three-dimensions, the biped confined to two dimensions also exhibits inverted pendulum
behavior in the plane of progression (saggital plane) but it manages to stabilize itself through the
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periodic exchange of support between its legs and repeated collisions. Based on this observation of
stable 2D walking, McGeer envisioned lateral leg spacing (or hip width) to enable sideways falling-
and-catching, or ‘waddling’, as a possible lateral stability mechanism for the 3D biped.

A schematic shows the configuration variables and parameters in Figure 6.1 of McGeer’s 3D biped
model with hip spacing. The model has nine parameters (center of mass position (3), principal radii

Figure 6.1: McGeer’s 3D passive-dynamic walking model: parameters and configuration variables.
Like McGeer’s[4] 2D straight-legged model, it has two identical straight legs and semi-circular feet.
Orientation of the stance leg relative to the ground frame is determined by the heading(¢), bank(v)),
and pitch(f) sequence of rotations about the axes indicated. The swing and stance legs have the
same heading and roll angles, but can pitch independently. The leg mass is m; and has location
Az, Ay, and ¢ (with respect to the stance leg frame) and the leg coordinates are aligned with its
principal moments of inertia. The radii of gyration are gy, , 7gyr,, and ryy,.. The hip has only a
point mass, mr. The radius of curvature of the feet is R.

of gyration (3), foot radius, hip mass, and leg mass) and eight state variables (heading (¢), bank
(¢), stance pitch(s;), swing pitch (0s,) and their rates). The leg coordinates shown in Figure 6.1
are aligned with its principal moments of inertia.

Stride Function, Periodic Gaits, and Stability

Using the fully non-linear dynamics, McGeer [4] composed the stride function from equations of
motion generated using the Awutolev program and from collision conditions derived by hand. He
then encoded it in FORTRAN and wrapped it in a multi-dimensional Newton’s method fixed point
search procedure.

To find fixed points of with McGeer’s 3D model over one step, the search algorithm must look for
initial conditions which do not repeat after each foot collision but instead produce a mirror image.
Heading and bank in fixed point motions must switch sign from collision to collision. Likewise, the
algorithm could search for fixed points over two collisions which repeat but with a proper exchange
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of leg parameters after the first collision.

McGeer’s search procedure found unstable periodic motions with both long and short step pe-
riods. Figure 6.2 shows plots of the stance and swing leg pitch angles, heading and bank angles,
the foot paths viewed from above, and the swing foot height above the ground for a typical steady
motion. The longitudinal motion of the 3D periodic gait is qualitatively the same as for the 2D case.
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Figure 6.2: Three-dimensional passive cycle, as calculated for a straight-legged biped having legs
separated by 15% of leg length. The slope is 3.2%. (Reprinted with permission from McGeer [4])

Figure 6.3 shows the variation of step periods, equilibrium slopes, and the modulus of dominant
eigenvalues with hip width for fixed hip-to-leg mass ratio, foot radius, leg center-of-mass position,
and principal radii of gyration. Note the existence in the plots of long and short period solutions.

Stability and Parameter Variation

As with McGeer’s 2D models, McGeer [4] found fore/aft offset in the leg’s center of mass a powerful
parameter for modulating gait; putting it slightly aft of the leg axis permitted gaits with substantially
wider hips than if the offset were zero.

As noted before, the static planar biped has a strong inverted pendulum instability. One would
hope that the moving biped could be at least more stable than simply falling over sideways. In other
words, if you perturb a steady gait cycle laterally and do the same to the standing biped, in which
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Figure 6.3: Step periods, equilibrium slopes, and dominant eigenvalues calculated for 3D passive
bipeds walking with a stride of about 0.6 leg length (initial 8¢ = —0.3). |z1]| and |22| are the
dominant eigenvalues. Results for both short- and long-period cycles are plotted against hip width.
(Reprinted with permission from McGeer [4])
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case would the biped fall over less during one gait period? McGeer [4] investigated the pendulum
instability of the biped model as follows. Neglecting the coupling of the lateral to longitudinal motion,
the equation of motion governing perturbations ¢ in bank angle for small motions is (normalized by

g/t)

Y —pY =0 (6.1)
where p is the inverted pendulum frequency given by
2mye4c + mr
= . . 6.2
p \/Zmleg (2 + rjyry) + mr (62)

Given a small initial lateral disturbance, the dominant term in the banking solution is

) =~ PoePT. (6.3)

Similarly, for the full model, the map governing the evolution of a perturbation in the bank eigen-
direction over one gait period is given by

i = oo (6.4)

where ¢ is the eigenvalue, whose corresponding eigenvector corresponds to perturbation in the bank
angle, of the Jacobian evaluated at a fixed point. Thus, comparing the lateral instability of the biped
in a steady gait to its inverted pendulum instability can be made by comparing o to eP™ where 79
is the gait period.

In the example reprinted from McGeer [4] in Figure 6.3, the inverted pendulum frequency is
p = 1.10 and eP™ = 9.96 for the short-period gait and eP™ = 20.1 for long period gait. From
Figure 6.3, the corresponding return map eigenvalues are ¢ = 16 and o = 24, respectively. This
data is summarized in Table 6.1. So, looking at the ratios in the third column of Table 6.1, we

Table 6.1: Comparison between falling-over-sideways eigenvalues for the McGeer 3D walker (1)
standing still and (2) in a gait cycle. The data comes from Figure 6.3.

Lateral Stability Eigenvalues
Standing Walking Ratio
eP7o o o /ep‘ro
short period gait 9.96 16 1.61
long period gait 20.1 24 1.19

see that walking makes it harder to stay upright than just standing still; i.e., for the configuration
examined, a sideways perturbation to the McGeer 3D walker while walking unstably grows more over
a gait period than the same disturbance applied to the walker over the same period while standing
still unstably in a vertical position. Specifically, for the short period gait, a lateral perturbation
applied at the beginning of a step grows approximately 1.61 times as much as the same disturbance
applied to the walker standing still grows over the step period.

In the best case, obtained again from the example reprinted from Mceer’s [4] plots reprinted in
Figure 6.3, for long period gait at wpsp ~ 0.42, eP™ = 6.8 and o ~ 5; and for short period gait at
Whip ~ 0.32, e?™ = 7.65 and o ~ 3. So, though in best case reported here (the short period gait
above) the walker is unstable, it still beats falling over sideways from a standstill, if only by a little
(o/eP™ = 0.39)! Further searches through parameter space failed to yield much improvement in
stability.
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McGeer’s Observations

McGeer observes that the bank to heading amplitude ratio is very small, the heading motions much
to large by human standards. McGeer suggested the following change in the model construction to
reduce large changes in heading. Based on human construction, replace the hinges at the hips with
roll joints to add a rolling degree of freedom which can be used to reduce lateral leg separation and
thus eliminate most of the rolling torque; to keep the model from collapsing as soon as the swing
leg is unsupported, stiff torsional springs would have to be added at the roll joint.

McGeer had no further suggestions for passive 3D gait stabilization. He proposed actively stabi-
lizing the model with roll joints at the hips by varying the equilibrium positions of the roll springs
and suggested a control law algorithm to do so. As far as this author knows, McGeer did not pursue
this work further.

6.1.2 Our 3D Passive Dynamic Gait Model

With the proper combination of gyroscopic coupling, due to mass distribution or mechanical devices,
and the dissipative foot collisions, alternative methods to hip spacing might exist to stabilize the
planar 3D biped in ways that bicycles, skate-boards, skates, and other are self-stabilizing, both with
and without dissipation. For instance, a 3D planar biped might be stabilized in the way that the 3D
rimless wheel and the 3D rolling disk are more stable than a uniform rolling disk, due to dissipative
spoke collisions and asymmetric mass distribution, respectively, and in both cases due perhaps, in
some way, to the the nonholonomic motion constraints.

So, we study a planar 3D model with two straight legs, point feet (ball joint contact with the
ground between collisions), and a hinge joint at the hip. We lose complexity in the foot design
but gain greater flexibility by allowing non-axisymmetric leg mass distributions. In simplifying the
model by making point foot contact and removing the hip axle, we have hoped that more basic and
more deeply insightful mechanics interpretations of 3D motions and mechanisms for stability (or
instability) would be more readily available to us. The 3D straight-legged point-foot walking model
is shown in Figure 6.4 below to remind the reader of where it fits into the evolution of models in the
research program.

To date, we have not found stable 3D passive gaits. We have only slightly improved upon
McGeer’s stability results and discovered an illustrative limiting case: a ‘tight-rope walking’ 3D
model that is neutrally stable in the limit as the length of the ‘balance bar’ goes to infinity. Like the
3D rimless wheel, there exists a one parameter family of fixed points, where we think of the heading
as the parameter.

6.2 Description of System

The 3D point-foot model is shown in Figure 6.5 and Figure 6.6. It has two symmetric rigid legs
of length ¢, mass M, symmetrically located center of mass locations ( (Xcm,Yem,Zem) in stance leg
frame coordinates), and mirror-symmetry related moments of inertia with respect to the center of
mass I¢"*. A frictionless hinge at the hip connects the legs and has orientation i normal to the
symmetry plane of the legs. Each of the two legs can make point contact with the ground (slope
= a) with no contact couples. The gravitational acceleration is g.

As we assumed for a rimless wheel spoke, when a foot hits the ground (ramp surface) at heel-
strike, it has a plastic (no-slip, no bounce) collision and its velocity jumps to zero. The foot remains
on the ground, acting like a ball-and-socket joint, until the swinging foot reaches heel-strike. During
walking, only one foot is in contact with the ground at any time; double support occurs instanta-
neously.

Between collisions, the model’s motion is governed by the classical laws of rigid-body mechanics.
As with the 2D walker, we make the non-physical assumption the swing foot can briefly pass through
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Figure 6.4: The place of the 3D straight-legged point-foot walking model in the passive-dynamic
family tree.

the ramp surface when the stance leg is near vertical.

6.2.1 Configuration, State Space, and Nonholonomic Constraints

We characterize the configuration of the stance leg between collisions using 3-1-2 Euler angles as
shown in Figure 6.21, the same angles we used to describe the orientation of the 3D rimless wheel
in Chapter 4. The heading angle is the rotation ¢ about the original z axis, the bank angle is the
rotation ¢ about the new x axis, and the stance-leg pitch angle is the rotation 8, about the newest
y axis. The Euler angles are described in detail in Appendix D. The stance leg angle 6 is the
angle of the stance leg with respect to the normal to the slope. Due to the hinge at the hip, the
swing leg has the same heading and bank as the stance leg — it can only change its pitch relative to
the stance leg. The the swing leg angle 8, is the pitch angle of the swing leg with measured with
respect to the stance leg. The absolute position of the walker on the plane does not enter into the
governing equations.
Between collisions, the (reduced) state space is eight dimensional and q, the state vector, is

q= {¢7 ¢, 681‘}7 eswad)a ¢7éstaésw}T- (65)

The unreduced accessible configuration space is six-dimensional (the above Euler angles plus
position on the slope) whereas at any instant in time the accessible velocity space is four-dimensional
(the four dynamical state variables). Hence the overall nonholonomicity (6 > 4) of this system which
is smooth and holonomic between instants of collision.

6.2.2 Indexing Scheme

We have chosen a set of angles to describe the orientation of the walking device between collisions.
We next present an indexing scheme to denote the state of the system just before and after the



142

Dimensional and Mass Parameters
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downslope
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joint
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swing frameSW  (Xgy» ysw,zw) Yan =Yen = -Yon
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Figure 6.5: The 3D point-foot walking model parameters. The leg mass is designated by M, the
moment of inertia with respect to the center of mass by I¢", the leg length by ¢, the ramp angle
with respect to the horizontal by a, and the acceleration due to gravity by g.
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Orientation Variables

—_rotated stance
frame configuration

stance leg

swing leg

fixed frame, F X Ve Z6)
K Xgr stance frameST (g Y Zor)
swing frameSW  (Xgu Yo Zsn)

Figure 6.6: The 3D point-foot walking model configuration variables. The heading angle is the
rotation ¢ about the original z axis, the bank angle is the rotation 1 about the new z axis, and the
stance-leg pitch angle is the rotation 65 about the newest y axis. The stance leg angle ,; is the
angle of the stance leg with respect to the normal to the slope. The the swing leg angle 6, is the
pitch angle of the swing leg measured with respect to the stance leg.
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collision ¢ of the i;, swing leg. We use the indexing scheme to define a ‘cycle’ of the walker — from
just after a swing leg collision (heel-strike) to just after the next. The indexing scheme presented
here is identical to the one presented for the 2D walker but is repeated here for clarity.

The iy, stance and swing legs are so designated after the iy, collision. Thus, the names of the
legs are exchanged through a collision. That is, the 4;; stance leg becomes the ¢ + 14, swing leg and
vice-versa for the iy, swing leg.

Special times of interest are just before and just after collision 4. The minus and plus signs (—)
and (+) are used as the superscripts to denote these times. For instance, ‘47, is the stance leg angle
just after collision i of swing leg 7 — 1.

In defining the orientation of the walking device, we have defined fixed frame F, stance leg frame
ST (fixed to the stance leg), and swing leg frame SW (fixed to the swing leg). The stance leg frame
ST has origin at the tip of the stance leg currently in contact with the ground after collision i. The
swing leg frame ‘SW has origin at the hip joint. The z, and z, axes are aligned with the stance
and swing legs, respectively.

We move the origin of the stance leg frame instantaneously with each swing leg collision from
the tip of the pre-collision stance leg to the tip of the post-collision stance leg currently in contact
with the ground after collision 7 + 1. The origin of the swing leg frame remains at the hip joint.

As the origin of stance leg frame 4 is moved to the tip of the colliding leg, however, we not only
translate the stance leg frame but also rotate it by —2 i+168_t about the y-axis with respect to the
fixed frame so that the z4-axis of stance leg frame ¢ + 1 is aligned with stance leg ¢ + 1. Thus, the
stance leg angle changes instantaneously from 6g to —04; through a downhill swing leg collision.
Likewise, the swing leg frame rotates by —2 “'6_ about the y axis with respect to the stance leg
frame so that the z,,-axis of the swing leg frame 7 + 1 is aligned with swing leg ¢ + 1.

After a collision, then, we redefine the absolute orientation with respect to the fixed frame using
the newly positioned frames. The relationships between frames and their associated bases from
before to after collision ¢ + 1 are

HIST £ ST, ey = Ra(d = =2 7163 ey, (6.6)
HISW £ ISW, ey, = Ra(6 = —2 716,) leq. (6.7)

At at a swing foot collision, in addition to updating the state of the system, we must also be careful
to update the leg parameters to take into account the reflection symmetry of the legs. When the
swing leg collides with the ground and becomes the new stance leg, its y center of mass position is
different from that of the previous stance leg:

y+— —yor iyt = iy (6.8)

Recall that, in between collisions, the inertia matrices for the stance and swing legs are the same.
In between collisions, the z and y coordinates of the center of mass of each leg are opposite in sign
but only the y coordinate for each changes sign through a collision.

6.2.3 Cycle of Motions

A ‘cycle’ of the walking device is the motion from one swing foot collision through the next. A
schematic of one cycle, for downhill walking, is shown in Figure 6.7. As before with the 2D and 3D
rimless wheels and the 2D walker, we pick as the starting point the instant when the trailing stance
leg i leaves the ground and and the leading swing leg ¢ simultaneously collides with the ground.
The walking device rotates over the stance leg i , as an inverted double pendulum with initial state
iqt. The non-collisional portion of the stride ends just before swing leg i strikes the ground at
collision ¢ + 1 instantaneously transferring support from the trailing stance leg to the leading swing
leg. The state of the walker is now *1q~. After impact, the walking device is now poised for the

next start-of-cycle at state “Hlqt.
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(a) just after collision (b) between collisions (c) just before collision+1
B B B i+1q-
q(t)
— —
A A
A
%Wnslope c
B B 'i+1q+

—
A
C
(d) collision i+1 (d) just after collision+1

Figure 6.7: Schematic showing: (a) the state of the walking device over one stride just after collision
i of swing leg ¢ with point A, (b) the state of the walking device just before collision i + 1 of swing
leg foot i at point B, (c)collision 7 + 1 of swing foot i at point B, and (d) the state of the walking
device just after collision i + 1 of swing leg foot i at point B. The stance leg is denoted by the heavy
line and the swing leg by the thin line.
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6.3 Governing Equations

Now that we have defined a cycle of motion, we can derive the equations that describe the motion
between collisions and the collision transition rule. We present the details of the methodology to
derive the governing equations in Appendix B.

6.3.1 Equations of Motion between Collisions (During the Swing Phase)

The four coupled second-order differential equations of motion are given below for the swing phase
of the motion, where 8, and 6, are functions of time non-dimensional time 7 = t\/m. These
equations are derived exactly as for the 2D version of this 3D model by taking angular momentum
balance for (1) the whole mechanism about the contact point of the stance leg with the ground and
for (2) the swing leg about the hip joint hinge axis.

( d')2 \

+ V(q) < ad » +G(a) =

OO OO

For brevity, we do not include the full equations here since they are too long and would not add
to the clarity of the text. We do, however, include in Appendix B the Maple® code used to derive
the governing equations. The moment of inertia, and coordinates of the center of mass are non-

I X, Y, Z
dimensionalized as follows: I = % and (z,y,2) = ( Em, Zm, zm>

6.3.2 Collision Transition Conditions
Collision Detection Rule

The collision occurs when the geometric collision condition
ro/A -ﬁf = cos(fst + Os0) + cos(bs:) = 0. (6.10)

is met. Equation (6.10) describes the values of 65, and 8,; for which the swing leg foot is coincident
with the ramp surface. Solving Equation (6.10) for 65 and 6, we get an equivalent geometric
collision condition

T — (5w + 205:) = 0. (6.11)

which is easily seen from the collision configuration.
We also impose the additional condition that the stance leg be sufficiently past vertical (Equa-
tion (6.10) is also true at least once when the legs are nearly parallel, but we ignore scuffing).

Collision Rule for Configuration Variables

At the instant of swing foot collision, the pre-collision stance leg switches to the post-collision swing
leg and vice-versa. The heading and bank angles remain the same through collision. So, the stance
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and swing angle are reset at each swing foot collision as support is transferred from the stance foot
to the swing foot according to the following mapping;:

{ g; }H{ —_g; } (6.12)

Thus, we can write

ot ¢ 10 0 0
T - o1 0o o
o =S o , where S = 00 -1 0 (6.13)
o7, 0., 00 0 -1

Collision Rule for Angular Rates

The swing foot contact point receives an impulse at foot-strike (point C'). Due to the swing foot
collision, an impulse is also transmitted to the swing leg at the hip joint (point B). We assume that,
during collision, other smaller forces (e.g., gravity) acting on the system are negligible in comparison
to the collision impulses. We also assume there are no impulsive ground contact torques. At the
instant of collision at the hip, we assume that the former stance leg loses contact with the ground
(at the same instant the swing foot makes contact) and that it has no impulsive reaction with the
ground as it leaves. Based on these assumptions, angular momentum is conserved for the entire
system about the swing foot contact point C' during the collision process. Angular momentum is
also conserved for the new swing leg (formerly the stance leg) about the hip joint hinge axis. These
statements of angular momentum conservation during the collision process yield the transition rules
for velocities from just before to just after foot-strike. Referring to Figure 6.7, we can write these
conservation statements as

H; =H} (6.14)

for the whole system and

SH,, =5 H}; (6.15)

for the the pre-collision stance leg which becomes the post-collision swing leg. The quantity H
is angular momentum. Applying angular momentum balance as prescribed above through heel-
strike gives the following collision rule for angular rates where the ‘+’ superscript means ‘just after
heel-strike’, and the ‘—’ superscript means ‘just before heel-strike’. The jump equations are non-
dimensionalized in the same way as the equations of motion between foot collisions.

Collision Rule for Parameters

While the parameters for the walker are not changed by the collision dynamics, they are changed in
the collision bookkeeping. When a stance leg becomes a swing leg and vice-versa, they must each
remain a left or right leg due to their mirror reflection symmetry. What this amounts to is only a
sign change in the c.o.m. y coordinate. All other parameters, including the inertia matrix, remain
the same.



148

Total Collision Rule

Finally, we can merge the transition rules for the orientation variables and their rates into one map
from the state of the system just before a collision to just after:

( ¢+ 3 ( ¢— 3
Yt (U
03 05
Ow | _ 1) O hereL— | S 0 6.16
ﬁ¢?+>—<¢?_ >, where L = 0T | (6.16)
Yt ('
03 0
\ H.j_w J \ s_w 7

We can rewrite this collision law that maps the state of the walker just before to just after a collision
as

qt* =h(q7)=L(q)q" (6.17)

where the matrix L(q ) depends only on the orientation variables and not their rates. We do not
include the collision rule here for brevity’s sake but, again, we include in Appendix B the Maple®
code used to derive the collision rule.

6.4 Return Map, Fixed Points and Stability of Walking Mo-
tions

The straight-legged point-foot walker free to move in three dimensions has an eight-dimensional
phase space with coordinates {¢, 1,84, 050, b, 1, 0s¢, 050} . Ag-

, a natural place to sample this space is at the points of discontinuity, the collisions. Because of the
reflection symmetry of the legs about the x — z plane, however, we construct a map f that takes the
state of the walker just after a collision to just after the two successive collisions; i.e., through two
cycles as defined above. Thus, the section of interest is taken after every two cycles of motion. The
map from one state to the next can be written then as q — f(q) or

gt =f('q"), (6.18)

where f is the return map and ‘q™" is the state vector of the system at the start of a cycle, just after
the iz, collision.

Since we know the relationship of the stance leg angle to the swing leg angle on the Poincaré
section (see Equation (6.11)), the map can be reduced to seven dimensions. In practice, when
making stability calculations, we keep all eight dimensions which always yields one eigenvalue of the
Jacobian evaluated at a fixed point exactly zero.

Again, the map f may be looked upon as a composition of two maps, but this time applied twice,
f = (hod)?; here, d governs the motion from just after heel-strike i to just before heel-strike i + 1,
obtained by integrating the equations of motion between collisions, and h governs support transfer,
from just before to just after heel-strike i + 1.

For periodic or steady motion, we must again find fixed points of the return map,

q" = f(q). (6.19)

We will use 2D fixed points as ‘seeds’ for finding 3D fixed points.
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6.5 Re-parameterization of the Inertia Matrix

The inertia matrix for a rigid body must satisfy the following criteria:
1. all its eigenvalues are positive and

2. the sum of any two eigenvalues must be greater than or equal to the third; i.e., they must
satisfy the triangle inequality.

In parameter studies, various components of the inertia matrix for the legs are varied. To guarantee
that the components are varied in a way such that the inertia matrix satisfies the above constraints,
we re-parameterize the inertia matrix in the following way.

Let the arrangement of six masses of mass M/6 at the ends of rigid massless rods as shown in
Figure 6.8 represent the distribution of leg mass where M is the leg mass. In the configuration
shown, the axes are aligned with the principal directions of the moment of inertia matrix for the
arrangement. Suppose the principal moment of inertia matrix for each leg is

L 0 0
I=| 0 I, 0 (6.20)
0 0 I

where, I, I, and I3 are positive and I} < Io + I3, I» < I} + I3, and I3 < I} + I>. Then, we
can re-parameterize the inertia matrix in terms of the locations of the six masses, d;, ds, and ds as
follows:

L, = (d2 + d%)/3,
I, = (& +d3)/3, and
L = (di+d3))/3 (6.21)

where the inertia terms have been non-dimensionalized with respect to M¢2. This re-parameterization
ensures that the eigenvalues of the inertia matrix are positive since dy, dz, and d3 are positive. (Even
if any of the di, ds, and d3 are negative, the eigenvalues will still be positive since the squares of
each are taken in Equations (6.21)).

In terms of the inertia quantities, the distances can be found as

3
d = \/5(—11 + I + I3),
3
dy = 5([1 — I +Ig), and
3
ds 5([1 + Iy — 13) (622)

Since, I, I, and I3 satisfy the triangle inequality, d;, ds, and dz are guaranteed to be positive.
Thus far, given any d;, ds, and d3, we obtain a legitimate diagonal inertia matrix.

To obtain a more general matrix with product of inertia terms we simply find the components
of the inertia matrix in the same coordinate system for an arbitrary rotation of the body about the
origin. In terms of a rotation matrix R and the principal inertia matrix I, the inertia matrix I' for
the body rotated from its initial configuration relative to the coordinate axes is given by

I'=RTIR, (6.23)

where we use the 3-1-2 Euler angles x, v and p to form the rotation matrix (see Appendix D). In
numerical simulations, locations d;, d2, and ds and the rotation angles k, v and p are used rather
than the moment of inertia matrix components themselves.
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M/6

M/6

M/6

O M/6

Figure 6.8: Re-parameterization of the leg moment of inertia matrix by making the transforming
the leg into the equivalent structure shown in the figure: six equal masses M /6 with each pair of
masses arranged symmetrically along each axis at the distances dy, da, and ds.
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6.6 Numerical Simulations and Results

6.6.1 Steady Motions and Stability

We integrated the fully nonlinear equations of motion using int henon temp_3D.m, a version of
MATLAB®’s ode45.m ( a 4th-5th order automatic step-sizing routine) modified to detect spoke
collisions using Henon’s [62] method(see Appendix A). We used an integration tolerance 10~% in
the automatic step-sizing routine.

Because there exists a family of periodic solutions at each heading angle for the planar 3D walker,
we constrain the heading angle to return to where it started after the two collisions of each map
iteration so that we may find 3D fixed points; otherwise, the Newton’s method search will not
converge on any particular member of the family of solutions. For simplicity, we look for solutions
at zero heading. This does not mean, however, that the walker walks in a straight line — only that
it points in the same heading after two steps.

A typical plot of the state of the 3D walker over two steps (one map iteration) is shown in Fig-
ure 6.9. We found fixed points and the Jacobian eigenvalues using a MATLAB® routine newton_3D.m
(see Appendix A). We use the same routines in Chapters 5 and 6. The finite difference step size used
to compute the Jacobian numerically was 10~ and error tolerance for the fixed point search was
10—, The eigenvalues and eigenvectors for a particular case are shown in Table 6.2. The maximum
eigenvalue is associated with falling over laterally or in the bank direction. Figure 6.10 shows the

Table 6.2: Eigenvalues and eigenvectors for the case plotted in Figure 6.9.

Eigenvalues
o1 02 03 [ o5 06 o7 o8
2.5827 | 0.3871 0.1289 0.8992 0.8495 1.0000 | 0.9904 | 0.0000
Eigenvector

P* 0.0006 | 0.0004 | -0.0045 | 0.00037 | 0.0002 1.0000 1.0000 | 0.0038
P* -0.7833 | -0.7750 | 0.0008 0.0000 0.0000 | -0.0037 | -0.0022 | -0.0001
0% -0.0087 | -0.0233 | 0.1379 | -0.0125 | -0.0060 | 0.0000 | -0.0001 | -0.0535
[ 0.0174 | 0.0466 | -0.2759 | 0.0251 0.0129 | 0.0001 0.0001 0.2442
P* 0.0043 | 0.0056 | -0.0147 | -0.0154 | -0.0154 | 0.0000 -0.008 0.0153
P* -0.6190 | 0.6122 | -0.0014 | 0.0003 0.0002 | 0.0000 | 0.0003 | 0.0000
0% -0.0047 | 0.0016 | -0.0801 | -0.0006 | -0.0228 | 0.0000 | 0.0001 0.0569
0% 0.0525 | 0.1473 | -0.9477 | -0.9995 | -0.9995 | -0.0011 | -0.0011 | 0.9664

leg angles; comparison of the heading and bank angles; swing leg height; and swing foot and hip
paths over two foot collisions.

6.6.2 Dynamic Stability versus Falling Over: A Criteria For ‘Goodness’
of Instability

In terms of our model parameters, the inverted pendulum frequency Equation (6.2) discussed in the
chapter introduction is given by

z
Loz +y? +2%)°

To reiterate, comparing the lateral instability of the biped in a steady gait to its inverted pendulum
instability can be made by comparing o to eP"® where ¢ is the gait period.

p= (6.24)

6.6.3 Effects of Parameters Variations on Steady Motions and Stability

We show how the step period 7*, modulus of the maximum eigenvalue |0yq4|, fixed point stance

angle 07%,, and the ratio of return map to falling-over-eigenvalue vary with each parameter while the
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Figure 6.9: The state of the 3D walker over two steps in a periodic motion for I, = 0.5577,
I, = 0.00021, I,, = 0.5579, I,, = 0.0000, I,, = 0.0000, I,, = 0.0000, « = 0.0037,
z = 0.0, y = 0.2706, and z = 0.9270. In a periodic motion, every other foot-strike re-
turns the system to its initial conditions. The swing leg angle is more usefully plotted as mea-
sured from the vertical to the slope or 6%,(7) + 6% (1) — 7. The fixed point for this case is
q* = {0.0000 0.000008 — 0.0597 3.2610 — 0.0132 0.00051 0.1866 — 0.8523}7; the maximum eigen-
value is |omqz| = 2.58 and the non-dimensional step period is 7* = 1.2031.
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Figure 6.10: Typical periodic gait cycle behavior over two steps for I,, = 0.5577,
r,, = 0.00021, I,, = 0.5579, I, = 0.0000, I,, = 0.0000, I,, = 0.0000, o =

0.0037,z = 0.0, y = 0.2706, and z = 0.9270. The fixed point for this case is q* =
{0.0000 0.000008 — 0.0597 3.2610 — 0.0132 0.00051 0.1866 — 0.8523}%; the maximum eigenvalue
iS |omaee| = 2.58 and the non-dimensional step period is 7* = 1.2031. (a) The periodic gait cycle
leg angles are very similar to those for 2D walking. The stance leg curve is denoted by the heavy
line and the swing leg curve by the thin line corresponding to Figure 6.21. (b) The plots show how
the swing foot passes through the floor momentarily between collisions. (c) The plots show the
relationship of the heading and the bank angle of the walker over two steps. (d) The plots show the
path of the hip joint and the swing foot viewed from above over two steps.
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others are held constant. No attempt is made here to exhaustively search the huge parameter space
for stable periodic motions.

Leg Moment of Inertia Matrix, I¢™

The effect of varying the components of the inertia matrix of the legs is shown in Figures 6.11-6.14.
We vary the re-parameterization quantities d;, ds, ds3, &, v, and p instead of the inertia components
themselves.

Increasing the distribution of mass in the fore and aft directions, by increasing dy, destabilizes the
walker and increases its step period and stance leg angle. Note in Figure 6.11 that double solutions
exist for the same values of d; in the range d; =0.016 to 0.025 that are much less stable and have
much longer step periods and step lengths. In light of the results in Garcia et al. [3] showing that,
even for the one-parameter 2D straight-legged point-foot walking model (see Section 5.5), multiple
solutions at the same slope angle exist, such behavior most certainly exists for the 3D straight-legged
point-foot model, but we did not investigate this possibility further. McGeer [4] also found short and
long period solutions for the zero hip spacing (see Figure 6.3). Increasing the mass distribution of the
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Figure 6.11: The variation of maximum eigenvalue, step period, stance angle, and the ratio of return
map to falling-over-eigenvalue with non-dimensional inertia parameter d; for steady gait while the
other parameters are held constant at do = 1.2935, d3 = 0.00006, Kk = 0, v =0, p =0, z = 0,
y = 0.2706, z = 0.9270, and o = 0.0038.

legs in the lateral (y) direction by increasing ds has a strong effect on the stability and motion of the
walker — the maximum eigenvalue decreases fairly rapidly and the step period and stance leg angles
increase. Increasing the distribution of mass in the vertical (z) direction by increasing dz rapidly
destabilizes the walker and increases its step period while at first increasing its stance leg angle and
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Figure 6.12: The variation of maximum eigenvalue, step period, stance angle, and the ratio of return
map to falling-over-eigenvalue with non-dimensional inertia parameter d, for steady gait while the
other parameters are held constant at d; = 0.025, d3 = 0.00006, kK = 0, v =0, p =0, z = 0,
y = 0.2706, z = 0.9270, and a = 0.0038.
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then finally decreasing it. That increasing di and dy destabilizes the 3D walker corresponds to the
instability of the 2D walker due to increasing its polar moment of inertia.
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Figure 6.13: The variation of maximum eigenvalue, step period, stance angle, and the ratio of return
map to falling-over-eigenvalue with non-dimensional inertia parameter ds for steady gait while the
other parameters are held constant at d; = 0.025, do = 1.2935, k = 0, v =0, p =0, z = 0,
y = 0.2706, z = 0.9270, and o = 0.0038.

We found no fixed points for £ > 0.00000001 or v > 0.00000001. Chatterjee [83] suggested
the following strategy for checking that this result makes sense. First, to make sure this was not
a numerical artifact, we checked that the Newton’s method error calculation was the same as we
decreased the integration tolerance while holding all other parameters constant. Then, we checked to
see that the condition number of the Newton’s method Jacobian matrix was not too large (cond(J)<
10%). Finally, we checked to see that as we let x and v go to zero, that cond(J) remained nearly
constant. So, it seems that no walking solutions may exist for non-zero I, and I,., at least for the
parameter set considered here.

As the distribution of mass of the leg is rotated in the zz-plane of the walker about its y-axis
by an amount p, the maximum eigenvalue decreases, increasing stability, just as crooked masses
in the plane of a rolling disk enhance its stability (see Figure 6.14). But, the changes in stability,
step period, and stance leg angle are small despite the wide variation in values for p because the
distribution of mass in the z-direction and z-direction for the given parameter set, controlled by d;
and ds, is small.

Center of Mass Position

The effect of varying the coordinates of the center of mass of the legs is shown in Figures 6.15-6.16.
As the center of mass is offset in the forward directions, the maximum eigenvalue decreases while
the periodic stance leg angle decreases, just the opposite of the 2D model! The step period decreases
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Figure 6.14: The variation of maximum eigenvalue, step period, stance angle, and the ratio of return
map to falling-over-eigenvalue with non-dimensional inertia parameter p for steady gait while the
other parameters are held constant at d; = 0.025, dy = 1.2935, d3 = 0.00006, kK =0, v =0, x =0,
y = 0.2706, z = 0.9270, and a = 0.0038.
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if the mass is moved forward. Like increasing ds, increasing the y offset of the walker has a powerful
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Figure 6.15: The variation of maximum eigenvalue, step period, stance angle, and the ratio of return
map to falling-over-eigenvalue with non-dimensional coordinate of the center of mass x for steady
gait while the other parameters are held constant at d; = 0.025, d2 = 1.2935, d3 = 0.00006, x = 0,
v=20,p=0,y=0.2706, z = 0.9270, and a = 0.0038.

effect on its steady motions and their stability — the maximum eigenvalue decreases. At first, as
the y offset is increased, the maximum eigenvalue drops off rapidly and then decrease gradually as
y gets large. But, while squeezing mass out along the y axis increases the step period and stance
leg angle, sliding the center of mass out along the y axis decreases both. Raising z, the center of
mass height along the leg, at first destabilizes walking, then stabilizes it as it nears the hip, also
just the opposite of the effect of increasing z for the 2D walker with the same planar properties (see
Figure 5.7 in Chapter 5)! In addition, as the center of mass gets very close to the hip, there is a
sharp decrease in stability and increase in step period.

Slope Angle
The maximum eigenvalue, step period, and stance angle increase with increasing slope angle, are
shown in Figure 6.18.

3D Special Case: Tight-rope Walking with a Balance Bar

For the case of large ds or y the 3D walker legs essentially have a mass distribution corresponding
to laterally extended balance bars like what might be used for walking on a tight-rope. From
Figures 6.12 and 6.16, it seems that, in the limit as dz or y get very large, the modulus of the
maximum eigenvalue asymptotically approaches one, or neutral lateral stability, from above.



g 3
©
=
S 25
(@)
‘O
5 2
o
e
X 15
_£
2
-0.03
Q
2 .0.04
c
3
e -0.05
8
o
5 008
-0.07

0 0.5 1 15 2

y

eigenvalue rati@/erto

T*, step period
H

14
1.2

0.8
0.6
0.4

1.0006

1.0004

1.0002

0.9998

A

M el

0

0.5

1
y

15

2

159

Figure 6.16: The variation of maximum eigenvalue, step period, stance angle, and the ratio of return
map to falling-over-eigenvalue with non-dimensional coordinate of the center of mass y for steady
gait while the other parameters are held constant at d; = 0.025, dy = 1.2935, d3 = 0.00006, x = 0,

v=0,p=0,z=0,z=0.9270, and a = 0.0038.
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z = 0.9270.
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6.6.4 An Uncontrolled Walking Toy that Cannot Stand Still

As a non-working demonstration of the kinematics and mass distributions in our simulations, and
not for walking experiments, we assembled a device similar to the one shown in Figure 6.19 (see
Coleman and Ruina [14]). It has two straight legs, separated by simple hinges at the hips, laterally
extending balance mass rods, and rounded feet. Playing, with no hopes of success, we placed the
toy on a ramp. Surprisingly, it took a few serendipitous, if not very steady or stable, steps. After
some non-quantifiable tinkering, we arrived at the functioning device shown in the photograph in
Figure 6.19 and with more construction detail in Figure 6.20. Our physical model is constructed

Figure 6.19: The 3D Tinkertoy® walking model shown out for a stroll in the lab.

from a popular American child’s construction toy, brass strips to round the feet bottoms, and various
steel nuts for balance masses. The walking ramp has about a 4.5 degree slope and is narrow enough
to avoid making contact with the balance masses as the walker rocks side-to-side. Another more
complex assembly of similar toy parts (not described here) walks on a wide ramp.

Construction Details

The device is built using the Playskool® Tinkertoy® Construction System: Colossal ConstructionsTM,

1991 set. One leg is made from a yellow spool, a light green rod, and a dark green hinge (plus ‘+’
shaped) glued together. Then, we slid the legs onto a red rod (loose fit) which acts as an axle. The
green hinges are separated and kept from sliding apart by three orange washers friction-fit to the
red axle. The legs and red axle can rotate independently.

To support the side weights, we glued a yellow spool rigidly to the end of a red rod and inserted
the other end into the side of a yellow foot with a friction fit to allow for rotational adjustment.

We assembled each balance mass from two stacked steel nuts held together between two washers
by a nut and bolt. Each nut assembly has a mass of about 50 grams. Then, each balance mass
assembly was located on the yellow spools at the end of the balance rods and held in place with
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Figure 6.20: The 3D Tinkertoy® walking model with hardware description and dimensions (in

centimeters, not drawn to scale). The balance masses and the brass strips are fastened with black
electrical tape (not shown).

=~ spool center
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vinyl electrical tape. The balance mass assembly is tilted behind the leg. As a result, the legs
have low mass centers located laterally at a distance comparable to the leg length, above the center
of curvature of the feet, and just behind the leg axes. The mass of the fully assembled walking
device is about 120 grams, only 20 grams more than the two balance masses. When the toy is in its
unstable-equilibrium standing position the nominally-vertical legs are approximately orthogonal to
the ramp.

Because a yellow spool has holes located radially around its circumference to accept rods, a
small flat section is on the bottom at the foot contact point. To ensure that the walker is statically
unstable (cannot stand on the flat sections or in any other way), a small (0.50 cm wide) strip of thin
(0.013 cm) brass shim stock material was fastened over the flat section contacting the floor so as to
restore its curvature there.

6.6.5 Observed motion.

Because the center of mass is above the center of curvature of the round feet, we cannot stably stand
this device with parallel or with splayed legs. When placed aiming downhill on a ramp, tipped to
one side, and released, the device rocks side-to-side and, coupled with swinging of the legs, takes
tiny steps. When a foot hits the ground, it sticks and then rolls, until the swinging foot next collides
with the ground. Except at the moment of foot collision, only one foot is in contact with the ground
at any time. When the swinging foot collides with the ground, the trailing leg leaves the ground.
The gait is more-or-less steady; after small disturbances the toy either falls or stumbles a few steps
while returning to near-periodic gait. At a slope of 4.5 degrees, it takes a step about every 0.47
seconds and advances forward about 1.3 cm per step, where a step is measured from a foot collision
to the next collision of that same foot. The side-to-side tilt is about 4 degrees, there is no visible
variation in ¢ during a step, but there is slight directional drift (one way or another) over many
steps. The rounded metal strips at the feet bottom deform during foot collision in a way that may
or may not be essential; we do not know yet.

6.7 Conclusions and Future Work

The most stable case to date has maximum eigenvalue |0|mqe, = 1.145257 with d; = 0.025000,
d» = 1.293532, d3 = 0.00006, k = 0, v =0, p =0, z = 0, y = 0.8706, z = 0.0290, and a =
0.0037. (The moments and products of inertia are I, = 0.557742, I,, = 0.000208, I, = 0.557950,
I, =0, 1I,, =0, and I,, = 0.) For these parameters, the ratio of the return map eigenvalue
to the falling-over eigenvalue for the walker, however, is p & 1. The fixed point for this case is
q* = {0.000000, 0.000012, — 0.004765, 3.151124, — 0.001196, 0.002499, 0.818076,

— 0.003722}T The best ratio of map to falling-over eigenvalue is just less than one for any of the
parameter ranges investigated here.

We have by no means exhausted the search through parameter space for stable walking and plan
to continue searching with this model and more complicated ones as described below.

We have constructed a device which can balance while walking but cannot stand in any con-
figuration. Although our new machine does not have a very human-like mass distribution, it does
highlight the possibility that uncontrolled dynamics may not just contribute to fore-aft walking bal-
ance, as indicated by previous McGeer models, but also to side-to-side balance. The mechanism
joins a small collection of statically unstable devices which dynamically balance without any rapidly
spinning parts.

Our too-simple mathematical/computational model does not explain this behavior. We do not
yet know what key modeling features need be included to predict the observed dynamic stability.
Figure 6.21 shows a 3D model which probably captures the essential geometric and mass-distribution
features of the physical model presented here, one we would like to study. The additions to the model
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are hip spacing and now each of the two legs can make rolling and collisional contact with the ground
(slope = ) with no contact couples. Based on McGeer’s numerical 3D results, our 3D numerical
results, and our physical 3D model, it seems a good place to continue would be a 3D straight-legged
point-foot walker with hip spacing and balance bars.

g <2
P ml@/ z;
1G1

_—
y

swing leg
(leg 2)

—

stance leg
(leg 1)

Figure 6.21: A more complicated rigid body model of the simple walker. The device, at least at the
level of approximation which we believe is appropriate, is a pair of symmetric rigid bodies (leg 1 =
stance leg, leg 2 = swing leg) that have mass m, symmetrically located (in the rest state) centers
of mass G1,2, and mirror-symmetry related moment of inertia matrices with respect to the center
of mass I 2. The legs are connected by a frictionless hinge at the hip with center point H and
orientation n normal to the symmetry plane of the legs. Each of the two legs can make rolling
and collisional contact with the ground (slope = «) with no contact couples. The gravitational
acceleration is g. The model we studied is a simpler version of the one shown here: it had no hip
spacing (w = 0) and point-feet (r; = ro = 0).

An open and possibly unanswerable question is whether the stability of this intermittently dis-
sipative system can be explained, in part, by the fact that its piecewise holonomic constraints act
somewhat like nonholonomic constraints.
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Appendix A

Description of the Analysis,
Numerical, and Simulation
Procedures

Here we describe the gait analysis procedures using mathematical notation and the numerical sim-
ulation routines.

A.1 Return Map and Poincaré Section

Mathematically, a non-linear function or map is used to describe one stride of a walking device. This
function can be written as q — f(q,p) or

Hlqt =£('q",p) (A1)

where ‘qt is a state vector describing the system at the start of a stride, say, the i, just after the
last foot collision and p is a vector of geometric and inertia parameters. For instance, one component
of q could be the angle of a leg measured with respect to the vertical and one element of p could be
leg length. The mathematical description of the return map, fixed points, and stability is depicted
in a phase space schematic (Figure A.1).

The definite ‘point’ at which the state of the system is sampled, just after a foot collision, is
called the Poincaré section (typically denoted by ¥) and McGeer’s stride function f is called a
Poincaré map. The return map is a function of q € ¥, given by Equation (A.1). For any trajectory
of the system, given an initial intersection with the Poincaré section, qg, the return map generates
a sequence of iterates, qi,q2,qs,---. The sequence of iterates on the section are called orbits.

The map f can be looked at as a composition of two maps, f = h o d, which is convenient for
analysis:

1. d, which governs motion from just after collision ¢ to just before collision 7 4+ 1, obtained by
integrating the equation of motion g between collisions, and

2. h, which governs support transfer, from just before to just after collision ¢ + 1.

For more on the dynamics of maps see Hale and Kocak [84], Drazin [85], Devaney [86], and
Guckenheimer and Holmes [51].

Numerically, f can cast as a subroutine incorporating integration of the nonlinear equations
represented by g, recognition of end-of-step contact, indexing of configuration variables and/or
parameters at support transfer, and calculation of velocity changes due to the impulse at foot strike
using h.
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Figure A.1: Schematic of the stride function, fixed points, and stability in the phase space. The
stride function takes as input the state of a system just after a collision, integrates forward in time
along the phase space trajectory, detects a foot collision, determines the discontinuity in the state of
the system due to the foot collision and returns as output the state of the system just after the next
collision. When the output of the function equals the input, the state of the system is a fixed point
of the stride map. If the moduli of the eigenvalues of the Jacobian of the stride function evaluated
at a fixed point are all less than one, then the fixed point and its associated limit cycle motion are
asymptotically stable.
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Numerical Integration of the Equations of Motion and Collision Detection

We integrate the equations using a 4th-5th order automated step-sizing Runge-Kutta routine from
MATLAB® modified to detect collisions. We detect collisions numerically using a method developed
by Henon [62]. In Henon’s method, the equations of motion between collisions g(q) are integrated
until a collision detection inequality is violated (foot passes through the floor). Then, the equations
of motion are recast in terms of the collision detection function (height of foot off of the floor) as
the independent variable rather than time. Starting with the last integration step just before the
foot passes through the floor, the equations are then integrated until the height of the foot off of the
floor is zero to the Runge-Kutta tolerance.

The Henon algorithm is summarized as follows. First, we define a scalar collision detection
function ‘r’ such that a collision occurs when

r(q) = 0. (A.2)

This function determines the surface of section. To the n state variables, we add an additional
variable

nt1 =1(q) (A.3)

and to the n dimensional system of differential equations of motion, ¢ = g(q), we add the additional
equation

(jn+1 = gn+1 (q) (A4)

where
gny1(q) = Vr-g. (A.5)

Next, we divide the first n equations by the last (n + 1), one and inverting the last one to obtain

dqy _ g1
dn+1 gn+1
: (A.6)
dgn _ gn
dn+1 In+1
d 1
T o= _ (A7)
dn+1 In+1

In this way, time 7 has now become a dependent variable and the collision detection function ¢, 11 =
is now the independent variable.
In practice, we integrate g with respect to time 7 until

Int1 =7(q) <0 (A.8)

and then switch to system (A.7). Using either the last computed point or the one before that,
we integrate system (A.7) with respect to the new independent variable ¢,4+1 = r using the usual
Runge-Kutta algorithm until the collision detection function is zeroed to the integration tolerance.
The modified MATLAB® routine is called int_henon3D_temp.m and is displayed below. The routine
also animates as it integrates; it calls draw_walker3D, for instance, to draw the 3D walker to the
screen at each integration step. We have used this integration routine (as well as others using linear
interpolation methods, e.g., method of false position) for simulating motions of the rimless wheels
(Chapters 2 and 4), and the 2D and 3D walkers (Chapters 5 and 6). We show only the routines for
the 3D walker below since the methods are the same for the others and the 2D walker is a special
case of the 3D walker.
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h
)
%
%

%

A modified 4th/5th order runge-kutta integrator based on the

MATLAB function ode45. This integrator integrates up until the
collision condition is met. It stores the results in a matrix

yout which has n columns for the Euler angles and their rates.

Modified by Mike Coleman

'/,***************************************************************

function [tout,yout,falls]=int_henon3D_temp(FunFcn,t0,tf,y0,...
contact,par,parl,trace);

=

ST ST S ST e e e s

B I I I T T B I I

)
)
h

This program is a modified version of ODE45. 0DE45 is described
below.

ODE45 has been modified to end when a collision detection
function of the dependent variables reaches a desired final
value, zero, within the integration tolerance tol. The program
uses the automatic step size until the detection function becomes
negative. The program then uses the Henon method to determine
the state of the system at the collision, in several Runga-Kutta
integration steps! Henceforward, we will denote the collision
detection function as s(x) and the collision detection condition
as s(x)=0. In simple terms, the collision detection function is
elevation of the tip of the swing leg above the ground.

ODE45 Integrate a system of ordinary differential equations using
4th and 5th order Runge-Kutta formulas. See also ODE23 and
ODEDEMO.M.

[T,Y] = ODE45(’yprime’, TO, Tfinal, Y0) integrates the system

of ordinary differential equations described by the M-file
YPRIME.M over the interval TO to Tfinal and using initial
conditions YO.

[T, Y] = ODE45(F, TO, Tfinal, YO, TOL, 1) uses tolerance TOL

and displays status while the integration proceeds.

INPUT:
F - String containing name of user-supplied problem description.
Call: yprime = fun(t,y) where F = ’fun’.
t - Time (scalar).
y - Solution column-vector.
yprime - Returned derivative column-vector;
yprime (i) = dy(i)/dt.
t0 - Initial value of t.
tf- Final value of t.
yo - Initial value column-vector.
tol - The desired accuracy. (Default: tol = 1.e-6).

trace - If nonzero, each step is printed. (Default: trace = 0).

QUTPUT:
T - Returned integration time points (row-vector).
Y - Returned solution, one solution column-vector per tout-value.

The result can be displayed by: plot(tout, yout).

C.B. Moler, 3-25-87.
Copyright (c) 1987 by the MathWorks, Inc.
All rights reserved.

%reset flops to zero



%£1ops (0)

% The Fehlberg coefficients:
alpha = [1/4 3/8 12/13 1 1/2]’°;

beta = [ [ 1 0 0 0 0 01/4
[ 3 9 0 0 0 0]/32
[ 1932 =7200 7296 0 0 01/2197
[ 8341 -32832 29440 -845 0 0]/4104

[-6080 41040 -28352 9295 -5643 0]1/20520 1°;
gamma =[[902880 0 3953664 3855735 -1371249 277020]1/7618050
[ -2090 0 22528 21970 -15048 -27360]/752400 ]°’;
pow = 1/5;
if nargin < 6, trace = 0; end
if nargin < 5, tol = 1.e-6; end

% Initialization

1=1;

t = t0;

hmax = (tf - t)/5;
hmin = (tf - t)/20000;
h = (tf - t£)/100;

tol=pari(2);

y = yo(:);
ycheck=y;
f = y*zeros(1,6);

tout=t;
yout = y.’;
tau = tol * max(norm(y, ’inf’), 1);

if trace
clc, t, h, y
end

done = 0;

cnt=0;
cntr=0;

keep_going=0;
henon_const=1;

anim=pari(1);

bbb bbb bbb bbb bbb bbb b bl T e oo T e T T o o o To o o o o o o o o o o o o o o o T e o T o T

FhDhhhDAhhDAh DA A% NhAh%%%% DRAWING INITIALIZATION %%%%%hA%AAAAAA

Db DAl bbb hh bbb htots bl oo toto oo loToto o oo T to ot oo e o o To o o T e o o o o o

if (anim==0) % If anim = 0, then do animation
draw_flag = 0;
[stanceleg,stancefoot,swingleg,swingfoot,hinge]=...
draw_walker3D(y,draw_flag,contact);

end; % end conditional for animation

TRl b bbb oot o oo oo o toto o o T T To o o 1o T o To 0o o o o T T o o o o T T 0o 0 o o o 0 2o o o

bbb bbb bbb bbb bbb bbb b bbbl el e oo e e T o o o o o o o o o o o o o o o o o o o T e o T o T

RSS2 ST ST HTHTHTHTHTHT ST ST HTSTS TS ST PTITITI TS TS TS TS TS LS L2

%% BEGIN MAIN INTEGRATION AND COLLISION DETECTION ROUTINE %%

FRSZSTSTSTHT ST TS STS TS TSI ST ST STSTPTITITITI TS TS TSP TS TP

TRl h bbbttt oo o toto o o T To oo o o T T To 0o o o T To o o o o T T 0o 0 o o 0 2 o o o

while done “= 1 % main while loop

htotototolo oo to o to toTo T to o o 1o 1o T o oo o oo o 1o o T To T o o o o o oo o o oo o o o o oo oo o oo o o o o o o
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"ttt totolototohetotototo ety COMPUTE SLOPES %%t ttetototstototslototstototstots oo tototste
TRttt to o totoTo oo to oo toToTo oo o oo o o o 2o o 1o 1o T To T o o oo o o oo o o o o o o o o oo o o o o

% Compute the slopes

if henon_const== % If henon_const == 1, foot
% not passed through
% the ground yet.

keep_going=0;

temp = feval(FunFcn,yout(size(yout,1),:),par);

£(:,1) = temp(:);

for j = 1:5

temp=feval(FunFcn,yout(size(yout,1),:)’+h*f*beta(:,j),par);

£(:,j+1) = temp(:);
end
Estimate the error and the acceptable error

==

delta = norm(h*f*gamma(:,2),’inf’);
% tau = tol*max(norm(y,’inf’),1.0);
tau = tol*max(norm(yout(size(yout,1),:),’inf’),1.0);
Y%error_crit=tau-delta
else

% If foot passes through the ground, back up
% and detect the collision corresponding state
% using the Henon method.

Tl totoTololototototoToTo o oo to o ToToTo oo o oo o o o o 1o 1o oo To oo o o o o o oo o fo o o o o o o o o oo o o
WhULAALA%A%A% HENON METHOD - INNER WHILE LOOP YA%AALAALAALS AN
Tl tototoTololototo o 1o To oo oo to o 1o ToTo oo o oo o o o o 1o 1o o o T o o o o o o o o fo o fo o o o o o o oo Fofo o o

% The collision detection function s(x), up until now a

% DEPENDENT variable, becomes instead the INDEPENDENT variable.
% Time, on the other hand, becomes a DEPENDENT variable. Now

% that we have entered this loop, we stay in it until the

% collision is detected. Then we exit and make a final update
% to the time and state vector output arrays.

% Initialization for the inner Henon loop

tt = coll_critO; % Now, in the standard Runga-Kutta routine,
% s(x) has become the "time variable", "t".

hhmax = (coll_critf - tt);
hh = hhmax;

f = zeros(length(y),6);
k=1;

touth(k) = tt;

youth(k,:) = y.’;

% The inner Henon while loop
while (tt > coll_critf) & (tt + hh < tt)
if tt + hh < coll_critf,
hh = coll_critf-tt;

end

% Compute the slopes

temp = feval(FunFcn,y,par); % compute regular derivatives with

% time as independent variable at
% the current state.

henon_const=temp(9) ; % compute s’(x).

temp = temp/henon_const; % convert the derivatives to



% functions of the collision

% detection function as
% the independent variable

£(:,1) = temp(:);
for j = 1:5
temp = feval(FunFcn, y+hh*f*beta(:,j),par);
henon_const=temp(9) ;
temp = temp/henon_const;
£(:,j+1) = temp(:);
end

% Estimate the error and the acceptable error

delta = norm(hh*fxgamma(:,2),’inf’);
tau = tol*max(norm(y,’inf’),1.0);

% Update the solution only if the error is acceptable

if delta <= tau
tt = tt + hh;

y = y + hhxf*gamma(:,1);
k = k+1;
touth(k) tt

= tt;
youth(k,:) = y.’;
end
if trace
home, tt, hh, y
end
% Update the step size
if delta "= 0.0
hh = max(hhmax, 0.8+*hh*(tau/delta) pow);

end

end;

bbb Tl otoTola oo To o oo 1o T oo 1o To oo 1o 1o T o oo 1o T oo oo 1o o o oo 1o o oo o o oo o 1 o o oo o o
Wb hhAA%R%%%% END INNER HENON WHILE LOOP %%%%hA%hALASAKAAAL
Tl tototo 1o ToTo o oo to o 1o o To o oo oo oo To oo o oo o oo 1o o o 1o o o o o o o o oo 1o 1o o o o o o o o o o o

if y(5)>tol & y(7)<pi-tol

done=1; % done is set to one after the Henon loop is done
% to signal the main while loop to end once the

% Henon calculation is done.
else
keep_going=1;
henon_const=1;
start_check=0;
yout(last+1,:)=y’;
tout(last+1)=youth(k,10);
end
if (t < coll_critf)
disp(’Singularity likely.’)
t
end
end; % end conditional loop for entering into the Henon
% calculation.

bbbl o o toto oo oo oo 1o To o To o o o o o o o o 1o To T o oo o oo o o o o o o o o o o o 2o o
%hhhhhhhh% DECIDE IF READY TO CHECK FOR COLLISION  %%%h%hkh%hh%hh%
htotototolo oo to o to toTo T to oo ot oo oo o oo o o o T To T o o o o o oo o 1o oo o o o o oo oo o oo o o o o o o
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if keep_going == 0 & done "= 1
% Calculate new time and state

tcheck
ycheck

tout(length(tout)) + h;
yout(size(yout,1),:)’ + h*fxgamma(:,1);

% Check to see if walker falls over

if delta<=tau & abs(ycheck(5))>pi/4 | abs(ycheck(1))>pi/4 |...

abs(ycheck(3))>pi/4
done=1;
disp(’falls over’)
falls=1;
else
falls=0;

end; % End falling over check.

% If stance and swing angles are appropriate, start to look
% for collisionms.

if (delta <= tau) & (ycheck(5)>tol) & (ycheck(7)< pi - tol)
start_check = 1;
end
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As we integrate the equations of motion, we are also updating
the collision detection function. We seek to find when it
passes through zero; i.e., when s(x) < 0. In the derivative
file, the collision detection function is the ninth state
variable (y(9)) and the tenth is time.

B I

% As long as the collision detection function is > O,
% we proceed with the usual Runga-Kutta routine.

if start_check ==1 & done”=1 J, Solution is already acceptable,
% delta <= tau.
last=size(yout,1);

if pi-ycheck(7)-(2*ycheck(5)) >tol

tout = [tout; tcheck]; % Usual Runge-Kutta solution
% update.

yout = [yout; ycheck.’];

% If the collision detection function becomes less than
% zero, we stop with the usual routine and branch

% to the Henon loop, as long as we’ve taken a FORWARD

% step (y(8)>0) & (y(7)<pi).

elseif pi-(2*yout(last,5))-yout(last,7)>tol

% If s(x) becomes < 0, (y(9) <0), we stop with the usual
% routine and branch to the Henon loop --- as long as
% we’ve taken a FORWARD step (y(5)>0) & (y(7)<pi) and
% the in the last integration step, s(x)>0! That is,
% after we are ready to check for a collision, the foot
% has to be above the ground.
y=yout(last,:)’;
temp = feval(FunFcn,y,par);
henon_const= temp(9);



We set the henon_const to be the to be the value of s’(x) at
the state of the walker at the the last step BEFORE s(x)<O0.
% The current value of s(x) BEFORE s(x) < O.

N =

coll_critO=pi-(2*y(5))-y(7);
coll_critf=0.0; % The desired value of s(x).
else

% If start_check = 1 but the foot was not above the ground
% at the last integration step we record the current time
% and state here.

tout = [tout; tcheck];
yout = [yout; ycheck.’];
end; % Ends checking for forward collision.
elseif (delta <= tau)

% If start_check "= 1, then we update.

tout = [tout; tcheck];
yout = [yout; ycheck.’];

end; % Ends loop for collision detection and Runge-Kutta
% solution update.

% Update the step size

if (delta "= 0.0)
h=0.8%h*(tau/delta) “pow;
end

if trace
home, h, y

end
end;
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if (anim==0) % do animation if anim = 0.

if (delta<=tau) & henon_const == 1 ¥ draw walker pre-Henon

% method loop.

draw_flag=1;
draw_walker3D(yout(size(yout,1),:),draw_flag,contact,...
stanceleg,stancefoot,swingleg,swingfoot,hinge);

else % draw walker post- Henon method loop.
draw_flag=1;
draw_walker3D(y,draw_flag,contact,stanceleg,stancefoot,...
swingleg,swingfoot,hinge);
end;
end;
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end; % end main while loop
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%%% END MAIN INTEGRATION AND COLLISION DETECTION ROUTINE %%
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if done==1 & henon_const™=1

% Catenate post- Henon method solutions to pre-Hemon method
% solutions.

tout = [tout; youth(2:k,10)];
yout [yout; youth(2:k,:)];

end

TRl bbb ot to oo to o o totoTo oo T o o T o oo o7 1o T T o o oo o oo o T o o o o o o o oo 2o o o
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function [stanceleg,stancefoot,swingleg,swingfoot,hinge]=
draw_walker3D(y,draw_flag,contact,handl,hand2,hand3,hand4,...
hand5) ;

Wbl hhhhththtethtohtlelete BEGIN DRAWING INITIALIZATION %%%%A%K%NA
% Draw walker in initial state

leg=1;
stancepoints=[0,0,leg]’; % define stance leg
swingpoints=[0,0,1legl’; % define swing leg

%y (1)=20%y(1);
%y (3)=20%y(3);
%y (5)=3*y(5);
%y (7)=15%y(7);

%h<><><><><><><>THE ROTATION MATRICES><><><><><>L>L>LOLIOL>LOLD>
% Define the rotation matrices with the current state from
% int_henon3D_temp.m

rotist=[1,0,0;0,cos(y(3)),sin(y(3));0,-sin(y(3)),cos(y(3))];
rot2st=[cos(y(5)),0,-sin(y(5));0,1,0;sin(y(5)),0,cos(y(5))];
rot3st=[cos(y(1)),sin(y(1)),0;-sin(y(1)),cos(y(1)),0;0,0,1];
rot_st=rot2st*(rotist*rot3st);

rotthetasw = [cos(y(7)),0,-sin(y(7)); 0,1,0;
sin(y(7)), 0,cos(y(7))];

rotationmatrix_sw= rot_st*rotthetasw;

Y
% Find coordinates of stance and swing legs at current state

rotstance=rot_st’*stancepoints;
rotswing_st= rotthetasw’*swingpoints;
swingpoint_st=rotswing_st+stancepoints;
swingpoint=rot_st’*swingpoint_st;

contactpoint=contact’;
hingepoint=rotstance+contactpoint;
swingpoint=swingpoint + contactpoint ;
%
% Draw the walker in initial configuration using the line
%command of Matlab’s HandleGraphics.

if draw_flag ==



view([1 1 1]);
axis([-1 1 -1 1 -1 1]);
axis equal

ylabel(’y’)

xlabel(’x’)

zlabel(’z’)

ground_line=...

line(’color’,’y’,’linestyle’,’~.’, erase’,’none’, ...

’xdata’,[-1 1],...
’ydata’, [0 0],...
’zdata’, [0 0]);

stanceleg=...

line(’color’,’y’,’linestyle’,’-’, ’erase’, ’background’, ...

’xdata’, [contactpoint(1),hingepoint(1)],...
’ydata’, [contactpoint(2),hingepoint(2)],...

’zdata’, [contactpoint(3),hingepoint(3)]);
stancefoot=...
line(’color’,’y’,’linestyle’,’o’,’erase’, ’background’, ...

’xdata’,contactpoint(1),...

’ydata’,contactpoint(2),...

’zdata’,contactpoint(3));

swingleg=...
line(’color’,’y’,’linestyle’,’:’,’erase’, ’background’,...
’xdata’, [hingepoint (1) ,swingpoint(1)],...
’ydata’, [hingepoint(2),swingpoint(2)],...
’zdata’, [hingepoint(3),swingpoint(3)]);
% ’linewidth’,[2.5],...
swingfoot=...
line(’color’,’y’,’linestyle’,’o0’, ’erase’, ’background’, ...
’xdata’,swingpoint(1),...
’ydata’,swingpoint(2),...
’zdata’,swingpoint(3));
hinge=...
line(’color’,’y’,’linestyle’,’.’,’erase’, ’background’,...
‘markersize’, [36],...
’xdata’ ,hingepoint(1),...
’ydata’,hingepoint(2),...
’zdata’ ,hingepoint(3));

else % if in midst of integration, reset the line data at
%each step.

set(handl, ’xdata’, [contactpoint (1) ,hingepoint(1)],...

’ydata’, [contactpoint(2),hingepoint(2)],...

’zdata’, [contactpoint (3) ,hingepoint(3)]);
set (hand2, ’xdata’,contactpoint(1),...

’ydata’,contactpoint(2),...

’zdata’,contactpoint(3));

set (hand3, ’xdata’, [hingepoint (1) ,swingpoint(1)],...
’ydata’, [hingepoint(2),swingpoint(2)],...
’zdata’, [hingepoint(3) ,swingpoint(3)]);

set (hand4, ’xdata’,swingpoint(1),...
’ydata’,swingpoint(2),...
’zdata’,swingpoint(3));

set (handb, ’xdata’ ,hingepoint(1),...
’ydata’,hingepoint(2),...
’zdata’ ,hingepoint(3));
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drawnow; redraw to the screen with new data.

end
BhhhhhhhhhAh%% END DRAWING INITIALIZATION %%hhUhhAhhA%hALAAAS LSS

A.2 Fixed points and Periodic Motions

For cyclic or period-k gait, we must find solutions to Equation (A.1) g* which map to themselves
after k steps

q* =f*(q*,p). (A9)

A period-one gait cycle (k = 1) corresponds to a state that returns to itself after one step and is
called a fized point of . For a period-two gait cycle (k = 2), the state after a collision repeats itself
after two steps, and so on. Henceforward, when we use the term gait cycle we mean period-one gait
cycle.

On a Poincaré section, periodic motions appear as fixed points; thus a k parameter family of
periodic motions appears as a k dimensional hypersurface or manifold on the Poincaré section.

We can fail to find walking solutions in numerical investigations (searches for fixed points of the
stride map f) if (1) the Jacobian becomes singular; (2) the initial guess for the Newton’s method
search is not good enough to converge to a limit cycle motion; and (3) no periodic motions exist for
the given parameters [3].

Using the Newton-Raphson Method for Finding Fixed Points

Numerical procedures such as Newton’s multi-dimensional root finding method, which we describe
here, may be invoked to find fixed points numerically.

First, introduce a new function S(q) = f(q) — q. Then, fixed points of f are roots of S(q) = 0.
Let g be an initial guess at state of the system that is not a fixed point of f. Then S(qx) =
f(ar) — ar # 0. We would like to find corrections Ag such that, for qrr1 = ar + Agk, S(Qr+1)
converges to 0 as k — 0o. To a linear approximation, S can expanded in a neighborhood of q as

S(dk+1) = S(qx) + DS(ar) Agx (A.10)

where DS(qy) is the Jacobian of S evaluated at qi. Setting S(qg+1) = 0, we obtain a set of linear
equations that can be solved for the corrections Agy,

Agp = — [DS(qk)]’l S(ar)- (A.11)

In terms of the original function f, Agy is
Agy = — [Df(qe) =T (F(ax) — ax)- (A12)

The corrections Agy are added to the previous estimate of the root and the process is iterated to
convergence. In practice, the iteration process terminates when the norm of S is less than some
tolerance. In cases where the Jacobian of the function whose zeroes are to be found cannot be
evaluated explicitly, it must be found numerically, using a finite difference approach, for instance.
Section A.3.2 describes such a procedure. The Newton’s method routine we use to study the 3D
walker, newton _3D.m, is displayed below. In it is nested a Newton’s method routine used to first
find a 2D fixed point for a 3D walker constrained to planar walking. This fixed point is used as a
starting point for the 3D fixed point search. This approach saves considerable computation effort.
The routine finds roots of g(x) = 0 where g(z) = f(z) —z and f(z) is one evaluation of the return
map. g(z) is returned by driver fixedpt3D.m which integrates the equations of motion and applies
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the collision rules. driver fixedpt3D.m calls int_henon3D _temp.m (described above) which in turn
calls the derivative file derivs_3D.m. derivs_3D.m returns the derivative vector; it evaluates the
derivatives using a *.mex file called deriv_stuff3D test.mex4. The *.mex file was created from
the *.c file called deriv_stuff3D_test.c. The collision rule is applied by calling jump_walker3D.
Each of these routines is displayed below as well (except for the deriv_stuff3D_test.mex4 which is
not human-readable). We show only the routines for the 3D walker since 2D walker is a special case
of the 3D walker and we did not search for fixed points for the 3D rimless wheel. The driver and
collision rule routines are representative of those used for any other numerical simulations carried
out in this dissertation.

O ks ok ks ok ok sk ko ok sk ok ok sk ok ok o sk ook ok ok ks sk ok ok o ok sk ook ok ok ok sk ook ok ok ok ko sk ok ok ok
FRSZ SIS SIS THT ST ST ST ST ST 4 newton_3D.m L9192 019291010119 2d
Sk kKo Kok Kok Kok Kok ok ok ok ok ok ok ok ook oK ok ok ok ok Kok ok ook o ok ok ok ok Kok ok ok K ok
function [max_eig,fixed_pt,eigs,eigvs,t_final,falls]=...
newton_3D(fun,init,par)

%This is a program used to solve g(x)=0, for non-linear vector
%function g of several variables using Newton’s method. fun
% generates g(x).

x=init;

%First, search for 2D fixed point with given parameters and
%intial state.

x2D=init(5:8);

subset2D=[2 7 8 9 11];

par2D=par (subset2D) ;
[max_eig2D,fpt2D,eigs2D,eigvs2D,tf2D,falls]=...
newton_2D(’driver_fixedpt2D’,x2D,par2D)

%If find 2D fixed point, start search for 3D fixed point
%or else quit.

if falls == % else, branch to end, no output.

x=[0 0 0 O, fpt2D’]’;

XX=X;

jac_iter0=0;
scale_factor=(le-4*max(1,norm(x)));
length_x=length(x);
pert=eye(length_x)*scale_factor;
newt_incr=0;

newt_max=100;

delta_x=0;

% Make first 3D function evaluation, g(x0).

[eval_fun,tf,falls,t_step]=feval(fun,x,par);
% gives g(x) incl. constraint on heading

if falls ==
% mapstr=[’one map iteration completed’];
% disp(mapstr);

elseif falls ==
mapstr=[’one map iteration not completed’];
disp(mapstr);
newt_incr=newt_max+1;

end

% Remember, the function we are finding the solution
%to is g(x)=0 so that when g(x)[eval_fun(x)] < epsilon
Jwhere epsilon is << 1, we have found a fixed point of



180

%g(x)=0 which is a solution to f(x)=x.

if falls==
norm_gO=norm(eval_fun)
end

if norm_g0 <= 1.e-8 & falls ==
disp(’no search needed’)

while jac_iterO<length_x
jac_iterO=jac_iterO+1;
[eval_funi,tfl,falls,t_stepl=...
feval(fun,x+pert(:,jac_iter0),par);
jacobian_g(:,jac_iter0)=...
(eval_funi(l:length_x)-eval_fun(l:length_x))/scale_factor;
if falls ==
% mapstr=...
[’map iteration ’,num2str(jac_iter0),’ completed’];
% disp(mapstr);
elseif falls ==
mapstr=...
[’map iteration ’,num2str(jac_iter0),’ not completed’];
disp(mapstr);
jac_iterO=length_x+1;
end
end
end

if falls==
jacobian_f=jacobian_g+eye(length_x);
fixed_pt=x; Vstore fixed points;
[v,D]=eig(jacobian_f);
eigs=diag(D);
eigvs=v;
max_eig=max(abs(diag(D)));
t_final=tf;

end

norm_g_rec=norm_g0;

while (norm(eval_fun)>1.e-8)&(newt_incr<newt_max)

newt_incr=newt_incr+l ¥ update while loop counter

norm_g=norm(eval_fun)
norm_g_rec=[norm_g_rec,norm_g] ;
save norm_stuff norm_g_rec

% Calculate Jacobian of function numerically
jac_iter=0;
while jac_iter<length_x
jac_iter=jac_iter+1;
[eval_funi,tfl,falls,t_stepl=feval(fun,x+pert(:,jac_iter),par);
jacobian_g(:,jac_iter)=...
(eval_funi(i:length_x)-eval_fun(l:length_x))/scale_factor;

if falls ==
% mapstr=[’map iteration ’,num2str(jac_iter),’ completed’];
% disp(mapstr);

elseif falls ==
mapstr=[’map iteration ’,num2str(jac_iter),’ not completed’];
disp(mapstr);
jac_iter=length_x+1;

end

end
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% Compute new estimate of x.

if jac_iter==length_x
jacobian_aug=[jacobian_g;eye(1,length_x)];
end % Jacobian is augmented with another row to account
% for heading constraint

if falls ==

cond(jacobian_aug)
delta_x=(jacobian_aug\eval_fun)
x=x-delta_x;

xx=[xx,x];

% Evaluate function at newest x for next iteration
[eval_fun,tf,falls,t_step]l=feval(fun,x,par);

elseif delta_x"=0
x=xx(:,size(xx,2)-1);
damping=0.5
delta_x=damping*delta_x;
x_falls=x-delta_x;

% Evaluate function at newest x for next iteration
[eval_fun,tf,falls,t_step]l=feval(fun,x_falls,par);

else newt_incr=newt_max+1;

end

end

if falls==0 & newt_incr <newt_max
jacobian_f=jacobian_g+eye(length_x);

fixed_pt=x; Ystore fixed points
[v,D]=eig(jacobian_f);
eigs=diag(D);
eigvs=v;
max_eig=max(abs(diag(D)))
t_final=tf;
end
% Display to screen if method does not converge on a root.
if newt_incr >= newt_max | falls ==
disp(’did not converge’)
falls=1;
end
else

falls=1

disp(’Cannot step 2D, did not converge3D’)

T Tt b oo o Tt Tt Toto Tt o Tt oo Tt Tt o o oo oo T o oo T o o 1 o T oo o
end
HLOLILILILILICIIIIIIILIOLOLOLIIIOOOOIOOOOONKL
bbb hhhhlhhhhhhhhht driver_fixedpt3D.m  Lhhhhhhbhhhbhhhhhhh
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% A program that takes initial conditions for the walker and
runs thru the equations of motion integrating until it
detects a collision. The integration routine is the file
"int_henon3D_temp.m". At collision, the program takes the
last state values and applies the "jump condition" whose
equations are in the file "jump_walker3D.m". After applying
the jump condition we start with a new set of initial
conditions to begin the integration again. We repeat this
process for two collisions. This file is called by the
Newton_Raphson routine for finding 3D fixed points.

ST e e
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The output of the function is g (the difference between the
state of the system after two collisions and the initial
state), t_final (the elapsed time over two steps = one map
iteration), and falls (flag to indicate the walker has
fallen over).

B I

At the end of the program there are small calculations for
potential, kinetic and total energy for the entire time of
simulation.

B

#Written by Mike Coleman

Sk ok ok ok ok ok ok ook ok ok ok Kok K ok Kok ok ok ook ok Kok K KR Kok ok ok ok kR K ok K ok ok ok ok kKRR ok K ok ok
function [g,t_final,falls,t_stepl=driver_fixedpt3D(x,params)
Sk ok ok sk ok ok sk ok ok ok ok sk ok ok ok ook ok ok sk sk ook ok ok sk o sk ok ok ko sk ok ok o sk ook ok ok ok ko sk ok ok ook ook
input=x;

% Reset the integration start time to zero.

t_initial=0;
t_final=0.1;

% Define initial input for use with Henon method which makes
% the collision detection funtion the (N+1)th state variable
% and time the (N+2)th state variable

x0_9=pi- (2*x(5))-x(7);

initial=[input’,x0_9,t_initiall;

anim=1; % If anim=0, then animation is turned on.
do_energy=1; % If do_energy=0, then do energy
% calculations and plots.
do_state=0; % If do_state=0, then do state variable
% plots.
if anim==
clf reset
end
tol = 1.e-8; % tolerances for integration;
collisions= 2 ; % number of collisions to simulate
falls = 0; % falling over flag initialized at 0

% for not falling over.
%Initialize position of current spoke on the ground.

contact=[0 0 0]; % Initialize position of current spoke
% on the ground.

paramsi=[anim tol];
h<>LOLOLOLOLOLOLOLOLOLOLO><><>C The Main Loop 2L LOLOKL

% Here is the algorithm...

for inc=1:collisions
t_init=t_initial;
if falls ==
% Integrate with the current initial conditions using
% derivs_3D.m. The integration stops at a collision.
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[t,x,falls]=int_henon3D_temp(’derivs_3D’,t_initial,...
t_final+t_initial,initial,contact,params,paramsi,0);

length_x=size(x,1);
t_step=t(length(t))-t_init;

if do_energy ==0 | do_state ==

length_t=length(t);

time=[time;t];

output=_[output;x];

length_trec=[length_trec,length_t];

end

#%Display collision to screen

if falls==
collisionstr=[’collision ’,num2str(inc),’ detected’];
%disp(collisionstr);
else
collisionstr=[’collision ’,num2str(inc),’ not detected’];
disp(collisionstr);
end

%APPLICATION of the JUMP CONDITION
[newconsts3D,angdotp]l=jump_walker3D(x,params);

xplus=[x(length_x,1) angdotp(1) x(length_x,3) angdotp(2) .
-x(length_x,5) angdotp(3) pi+2*x(length_x,5) angdotp(4)];

params=[newconsts3D,params(length(params))]’;
params_rec=[params_rec,params] ;

t_initial=x(length_x,10);

x0_9=x(length_x,9);
initial=[xplus,x0_9,t_initiall;

x1=x(length_x,1);
x3=x(length_x,3);
x5=x(length_x,5);
x7=x(length_x,7);

% Compute new x-y position of foot after a collision

deltax=sin(x5)*cos(x1)+cos(x5)*sin(x3)*sin(x1)+sin(x7)*...
cos(x5)*cos(x1)-sin(x7)*sin(x5) *sin(x3)*sin(x1)+cos(x7)*...
sin(x5)*cos(x1)+cos(x7)*cos(x5)*sin(x3)*sin(x1);

deltay=sin(x5)*sin(x1)-cos(x5)*sin(x3)*cos(x1)+sin(x7)*...
cos(x5)*sin(x1)+sin(x7)*sin(x5) *sin(x3)*cos(x1)+cos(x7)*...

sin(x5)*sin(x1)-cos(x7)*cos(x5)*sin(x3)*cos(x1);

contact=contact+[deltax deltay 0];
end; % end falling over conditional loop

end % end for loop to integrate over k collisions
g=xplus(1:8)-input(1:8)’;

g=[g’; input (1)-params(length(params))];
t_final=t_initial;

% Compute total energy

if do_energy ==
time=output(:,10);
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[pot,kin,tot]=energy_try(length_trec(l),params,...
output (1:length_trec(1),:));

[pot1,kinl,totl]=...
energy_try(size(output,1),params_rec(:,1),...
output (length_trec(1)+1:sum(length_trec),:));

energy_data=[pot,kin,tot;poti,kinl,totl];

eplot=energy_plots(time,energy_data(:,1),...
energy_data(:,2),energy_data(:,3));

end

if do_state ==

time=output(:,10);
plot(time,output(:,5),time,output(:,7)+output(:,5)-pi)
plot(time,output(:,1),time,output(:,3))
splot=state_var_plots(input,time,output);
end
Dl o oo toTototo oot ToTo ToToTo 1o 1o o To To To o 1o o o To To 1o 1o o oo To 1o 1o 1o o o o 1o 1o 1o o T Fo o o o o o
R R W
h<>LOLOLOLOLOLOLOLEOLD derivs _3D.m K>>I
Dl Tototo oot ToToToToto o 1o o To To To o 1o o o To To 1o o o o To 0o 1o 1o o o o 2o 1o 1o o T Fo o o o o o
%This file outputs the derivative vector for the 3D walker.

function xdot=derivs_3D(x,constants)
xdot=zeros(1,10);

coef_matrix=deriv_stuff3D_test(x(8),x,constants)’;
% the mex-file called here computes a
% coef_matrix matrix and a right hand side
% of a linear equation to be solved for the
% second derivatives.

mass_matrix=coef_matrix(2:5,2:5);

rhs=coef_matrix(2:5,6);

ddot=(mass_matrix\rhs)’; % Using backslash to solve
% to solve for 2nd derivs.

% The first order system of equations of motion for the
% 3D walker with point feet.

xdot (1)=x(2);
xdot (2)=ddot (1) ;
xdot (3)=x(4);
xdot (4)=ddot(2);
xdot (5)=x(6);
xdot (6)=ddot(3);
xdot (7)=x(8);
xdot (8)=ddot (4);
Tt toTolo ol Tl T T T T o T o T o o o o o T o o T T T 0 2 1 o o o o o 2o o o o o o T Tl T T T T o o o
%%h%% Additional Derivatives for the Henon Method %%%%%%%h%hhhhT
BTl I Tt loto o o Toto T To e oo e o T o T o o o o o o To o e T o o T o o T o o o T o o
funs=xdot(1:8);% This is a vector containing the 8 first order
% derivatives of the system of equations of
% motion.

% Below is the gradient of the collision detection function.
grad_coll_crit=[0 0 0 0 -2 0 -1 0];

xdot(9)= funs*grad_coll_crit’;

% The derivative of the collision detection

% function, with respect to the state
% variables, is equal to the dot product of
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% its gradient with their derivatives.

xdot (10)=1; % The tenth "state variable" is time which
% 1is updated here as well as in the
% Runge-Kutta routine that calls this file.
Db h bt bt tohotolotolotolototoToto totototototo o to o o o e o o o oo T o o Tl o T T T T 1 o1 2 o o o o
VEIRSZOTSTHTSITHITHITHITHTHTHITHITITST SIS TS TS TS TS TS LTSS ST STV
/*
DERIV_STUFF3D_TEST.C .MEX file corresponding to
DERIVS_WALKER3D.M

The calling syntax is:

[coef_matrix] = deriv_stuff3D_test(t,q,constants)

*/

#include <math.h>
#include "mex.h"

/* Input Arguments */

#define T_IN prhs[0]
#define Q_IN prhs[1]
#define P_IN prhs[2]

/* Output Arguments */
#define COEF_MATRIX_QUT plhs[0]

#define max(A, B) ((A) > (B) 7 (A) : (B))
#define min(A, B) ((A) < (B) 7 (A) : (B))

#define pi 3.14159265
double constants[];

static
#ifdef __STDC__
void deriv_stuff3D(
double coef_matrix[5][6],
double *t,
double q[],
double constants[]
)
#else
deriv_stuff3D(coef_matrix,t,q,constants)
double coef_matrix[5][6];
double *t,q[],constants[];
#endif
{
double vel_matrix[5][11];
double vel_terms[11];
double applmom_vect[5];
double vel_vect[5];
int i,j;

double Ill=constants[0];
double I22=constants[1];
double I33=constants[2];
double I12=constants[3];
double I13=constants[4];
double I23=constants[5];
double m=constants[6];
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double alpha=constants[7];
double x=constants[8];
double y=constants[9];
double z=constants[10];

double x1=q[0];
double q2=q[1];
double x3=q[2];
double q4=q[3];
double x5=q[4];
double q8=q[5];
double x7=q[6];
double q8=q[7];

double sxi=sin(x1);
double cxil=cos(xl);
double sx3=sin(x3);
double cx3=cos(x3);
double sxb=sin(x5);
double cxb5=cos(x5);
double sx7=sin(x7);
double cx7=cos(x7);
double ca=cos(alpha);
double sa=sin(alpha);

/*  clsg=clxcl;
slsq=si*s1;
c3sq=c3*c3;
s3sq=s3*s3;
cbsq=cb*ch;
sbsq=sb*sb;
c7sq=c7*c7;
s7sq=sT*s7; */

double xsqQ=x*x;
double ysq=y*y;
double zsq=z*z;

(For the sake of brevity, we do not include the

intermediate variables or the definitions of the

M(q), V(q), and G(q) matrices. They are

produced as output of Maple$~{\circledR}$ in optimized format
and are too long to be useful to reproduce here.

We do, however, show how the data is stored in

coef_matrix to prepare it for derivs_3D.m)

/* Coefficient Matrix Intermediate Variables */
/* Velocity Terms Matrix Intermediate Variables */
/* Applied Moment Vector Intermediate Variables */

/* Coefficient Matrix */
/* Velocity Terms Matrix */
/* Applied Moment Vector */

vel_terms[1]=q2%q2;
vel_terms[2]=q4+*q4;
vel_terms[3]=q6%*q6;
vel_terms[4]=q8%q8;
vel_terms[5]=q2*q4;
vel_terms[6]=g2%*q6;
vel_terms[7]=q2%q8;
vel_terms[8]=q4*q6;
vel_terms [9]=q4%q8;
vel_terms[10]=q6%q8;



for(i=1; i<5;i++){
vel_vect[i]=0.;
for(j=1;j<11;j++)
vel_vect[i]=vel_vect[i]+vel_matrix[i] [jl*vel_terms[j];

}

coef_matrix[1] [6]=vel_vect[1]+applmom_vect[1];
coef_matrix[2] [6]=vel_vect[2]+applmom_vect[2];
coef_matrix[3] [6]=vel_vect[3]+applmom_vect[3];
coef_matrix[4] [6]=vel_vect[4]+applmom_vect[4];

return;

}

#ifdef __STDC__

void mexFunction(

int nlhs,

Matrix *plhs[],

int nrhs,

Matrix *prhs[]

)

#else

mexFunction(nlhs, plhs, nrhs, prhs)
int nlhs, nrhs;

Matrix *plhs[], *prhs[];
#endif

{

double *coef_matrix;
double *t,*q,*constants;
unsigned int m,n;

m=6;
n=5;

/* Create a matrix for the return argument */
COEF_MATRIX_0UT = mxCreateFull(m,n,REAL);
/* Assign pointers to the various parameters */
coef_matrix=mxGetPr (COEF_MATRIX_Q0UT);
= mxGetPr(T_IN);

mxGetPr(Q_IN);
constants = mxGetPr(P_IN);

Qo
|

/* Do the actual computations in a subroutine */

deriv_stuff3D(coef_matrix,t,q,constants);

return;

}
VEIRSZOTSTHTITHITHITHITHTHTHITHITITST SIS TSTS TS TS TS LTSS ST STV

RS2 9292 P2 L TOT LTSI PLETPL TS TITOIITSTIT ST TI TSI L ST T 24
DDA AARLLhhhAAANYS  jump_walker3 hhhhhhhhhhhhhhhhhhhhhhhhsh
function [newconsts3D,angdotp]=jump_walker3D(q,constants)
Tt Tt T o o Toto o Toto 1o Tto 1o o 1o oo o oo To o T Yot o To oo o oo o o o ot o oo o o oot oo o o
%This routine applies the collision rule for the angular
%rates for the 3D walker including required updates in the
%parameters. It is called by driver_fixedpt3D.m which
%integrates the equations of motion between collisions. The
%output is newconstants3D (theupdated parameters) and angdotp
%(the vector of the three updated Euler angle rates). The
%update of the Euler angles is taken care of in
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%#driver_fixedpt3D.m. The pre- and post- collision matrices
%were derived using the Maple$~{\circledR}$ batch codes jump3D_ff_minus
%and jump3D_ff_plus.

last=size(q,1); Y%size of the input state vector.
% inertia matrix parameters

Ill=constants(1);
I22=constants(2);
I33=constants(3);
I12=constants(4);
I13=constants(5);
I23=constants(6);

%mass
m=constants(7);
%slope angle
alpha=constants(8);
% c.o.m. position

x=constants(9);
y=constants(10);
z=constants(11);

% pre-collision and post-collision states needed to compute
% collision matrices

PHIm=q(last,1);
PSIm=q(last,3);
THETASTm=q(last,5);
THETASWm=q (last,7);
THETASWp=pi+2*THETASTm;

phi_dot_m=q(last,2);
psi_dot_m=q(last,4);
thetast_dot_m=q(last,6);
thetasw_dot_m=q(last,8);

%trig substitutions

s1=sin(PHIm) ;
cl=cos(PHIm);

s3=sin(PSIm);
c3=cos(PSIm);

sbm=sin (THETASTm) ;
sbp=-sbm;
cbm=cos (THETASTm) ;
c5p=cbm;

s7m=sin (THETASWm) ;

s7p=sin(pi+2*THETASTm) ;

c7m=cos (THETASWm) ;

c7p=cos (pi+2*THETASTm) ;

TotototoloTo o To T To T T o T o o o T o o o o o o o o o T T o o o 1o 1o 1o 1o 1o 1o o o o oo o oo o o oo T To T T o o o o o

%components of the pre-collision matrix called coef_matrixm

(The components are omitted in this appendix for the sake



of brevity.)

%pre-collision matrix

coef_matrixm=[mmii mmi2 mmi13 mmi4;
mm21 mm22 mm23 mm24;
mm31 mm32 mm33 mm34;
mm41 mm42 mm43 mmé44];

J%components of the post-collision matrix called coef_matrixp

(Again, the components are omitted in this appendix for the
sake of brevity)

%post-collision matrix

coef_matrixp=[mpil mpl2 mpl3 mpi4;

mp21 mp22 mp23 mp24;

mp31 mp32 mp33 mp34;

mp41 mp42 mp43 mp44];
Tttt toto 1o 1o Toto o to o o 1o 1o to oo to o to oo oo o oo o oo 1o 1o 1o 1o To T o o o o o o oo fo o o o o o o o o o o o o
%post-collision Euler angle rates by solving
%coef_matrixp*angdotp = coef_matrixm*angdotm for angdotp.

% angdotp is vector of post-collision Euler angle rates.

angdotp=coef_matrixp\(coef_matrixm*...
[phi_dot_m psi_dot_m thetast_dot_m thetasw_dot_m]’);
%jumpmat=inv(coef_matrixp)*coef_matrixm

phi_dot_p=angdotp(1);
psi_dot_p=angdotp(2);
thetast_dot_p=angdotp(3);
thetasw_dot_p=angdotp(4);

%parameter up-date. Only change is in c.o.m. y coordinate.

Ill=constants(1);
I22=constants(2);
I33=constants(3);
I12=constants(4);
I13=constants(5);
I23=constants(6);

m=constants(7);

alpha=constants(8);

x=constants(9);

y=-constants(10); %ONLY CHANGE

z=constants(11);

% newconsts3D is the vector of 11 updated parameters.
Tttt i1 2 3 4 5 6 7 8 91011

newconsts3D=[I11 I22 I33 I12 I13 I23 m alpha x y z ];
DhhhhhhAIAIAIAIAIAhAhAhAhhhh bk bbb kb hhhhhhhhhhhhhhhhhhhhhh
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A.3 Fixed Point Stability

We use the following definitions of stability. Let q € ¥ be a fixed point. The fixed point q is
stable if, for any € > 0, there exists 6 > 0 such that whenever |qo — q| < 4, |g, —q| < € for all
positive n. The fixed point q is asymptotically stable if, in particular, there exists § > 0 such that
whenever |qo — q| < d, |a, — q| < € for all positive n and "11_{20 qa, = y exists. Note that we do

not insist that y = q, only that |y — q| < €; therefore, our use of the term asymptotic stability is
less restrictive than usual. Clearly, if y exists, it must be a fixed point. Thus, we call a periodic
motion asymptotically stable if, when slightly disturbed from this motion, the system asymptotically
approaches some ‘nearby’ periodic motion. This is the strongest type of stability possible when there
is a family of periodic motions, since the perturbed point qo could just as well be a perturbation of
y as a perturbation of q.

Stability of periodic motions can be investigated by linearizing the return map about the fixed
point q* and studying the evolution of small disturbances from the fixed point. The linearization of
f near q* is given by

q" + Af = f(q" + Aq,p) ~ f(q",p) + Df(q*,p)Aq (A.13)

where Df(q", p) is the Jacobian matrix, J, called the linearization of the map f at the fixed point

q* whose components are 6—fl . Since g* = f(q*, p), we obtain

J
Atlgt = Af ~ JAiqH, (A.14)

a set of linear difference equations which govern the evolution of the perturbation Aq from the fixed
point g*.

If the eigenvalues o; of the Jacobian of the map evaluated at a fixed point have magnitudes less
than one, |o;| < 1, then small perturbations to the limit cycle state vector at the start of a step will
decay to 0 and we say the fixed point is asymptotically stable. If at least one eigenvalue is outside
the unit circle, |o;| > 1, then any perturbation along the corresponding eigenvector will bump the
system off of the limit cycle and we say the system is unstable. If the eigenvalues are of magnitude
less than or equal to one, |o;| < 1, then the limit cycle is neutrally stable for tiny perturbations along
the eigenvectors for which |o;| = 1; such perturbations will neither grow nor die.

We get the Jacobian of the return map evaluated at a fixed point as a ‘free’ by-product of the fixed
point search since the Jacobian is evaluated at each Newton iteration. Once we find a fixed point,
we find the the eigenvalues of the last Newton step Jacobian iteration. So, we use the MATLAB®
routine newton_3D.m above to numerically calculate the map eigenvalues.

A.3.1 Eigenvaules of the Jacobian of the Map Evaluated at the Fixed
Point

Why do the moduli of the eigenvalues of the Jacobian matrix J representing the linearization of f
near the fixed points q* have to be to be less than one for the fixed points to be asymptotically
stable? The reasoning is as follows. After & collisions, an initial perturbation Aqg becomes

Ag, = I (I Aqo)). (A.15)
——
k
Assume J has n eigenvectors, v!,...,v? and n eigenvalues, 01, ...,0,. Then, we have

vl = vt IV = gyvi IV = o, v (A.16)
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Now, we may write the initial perturbation as a linear combination of the eigenvectors
Aqo = Clvl + -+ C,v™ (A].?)
For, say, k =1,

Aq: = JAqo (A.18)
= J{Cv' +---+Cpv™}
= C v+ 4+ CIV"
= Ciovi 4+ -+ Cropv™.

By induction, then, for any k,
Aqy, = Cyotvl + -+ + Crofvm. (A.19)

If any |o;| > 1, |o;|* blows up as k — oo which implies that Aqy, and Aqq blow up as well. Therefore,
q* is unstable to small perturbations if any |o;| > 1.

If there is known to be a one-parameter family of steady rolling or periodic motions, and if only
one eigenvalue is exactly equal to one while the others have magnitude less than one, then we call the
periodic motion asymptotically stable in the sense described above. That is, the slightly disturbed
system exponentially converges to a nearby periodic motion. This stability is not as strong as the
usual definition of asymptotic stability.

A.3.2 Stability Calculations

Here, we describe numerical and analytical procedures for evaluating the Jacobian of a return map
at a fixed point.

Numerical approximation to the Jacobian

We numerically approximate the Jacobian of the stride map evaluated at a fixed point using a
finite-difference approach. For an n-dimensional state space, the linearization of the map f at the
fixed points g* can be obtained numerically by starting with n initial state vectors {Aqg}m, in the
neighborhood of q*, with perturbations in only one state variable at a time, say, the myp,, Agm,
while the others are kept fixed at zero in each of the n vectors,

(0 )
0
0

{Ado}m = ¢ A; S om=1,...,n. (A.20)

The subscript m outside the square brackets indicates an initial state vector with a non-zero myy
component. Numerically integrating the equations of motion for each of the n initial state vectors
and applying the collision transition function, we can obtain n final state vectors {qi }.m,

{ql }m = f(q" + {AqO}map)
f(q*) + J{Aqo}m, m=1,...,n. (A.21)

1R
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Subtracting the cyclic term f(q*) from both sides and letting {q1 }m — q* = {Ad1 }m, we get

{Adi}m = J{Ado}m
~  Agp(‘mgn column of J). (A.22)

Thus, the difference between the output vector and the fixed point, {Aq1}m, is a numerical
approximation, scaled by Ag,,, to the my, column of the Jacobian matrix J of f evaluated at the
fixed point. After n numerical integrations of the n initial perturbation vectors, we can then assemble
all of the columns of an approximation to J. The stability of the fixed points is determined by the
eigenvalues of J.

Analytical Approximation to the Jacobian

An analytical approximation to the Jacobian of the return map can be obtained as follows. Recall
that we have the differential equation of motion between collisions

q=g(aq), (A.23)

subject to the initial condition q(0) = ‘q*.
We also have the collision transition rule

‘qa" =h(q")=L('a")‘qa". (A.24)
We define a collision detection function ‘r’ such that a collision occurs when
r(q ) =0. (A.25)
For example, the collision detection function for the 2D or 3D rimless wheel is

r(@ ) =60- % (A.26)

Assume a fixed point q* of the system exists with corresponding limit cycle trajectory
q* (7). (A.27)

The pre-collision state vector is

Ham = a'(r7), (A.28)

where 7% is the limit cycle time between collisions. So, the collision detection and transition rules
give

r(@*(7*)) = 0, and (A.29)
h(q*(7*)) = q". (A.30)

For a particular system, we need to find the limit cycle trajectory q*(7) and the time 7* between
collisions in the limit cycle. See figure A.2 for a schematic illustration of the limit cycle time history.

We wish to study the evolution of a perturbation from the fixed point, just after collision 4,
Aq = €, where € is small. Henceforth, we shall use a ‘hat’ ( * ) to denote perturbed quantities.
So, just after a collision, say the i;;, the perturbed state of the wheel is

iqt = qf +edo = qf +e('gH). (A.31)

The perturbed solution to the differential equation between collisions with this perturbed initial
condition, then, is
q(r) = q*(1) + €q(7). (A.32)
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Figure A.2: Schematic of the perturbed limit cycle.

As a result of perturbing the fixed point, the limit cycle time between collisions is also perturbed.
Tr=7"+ AT =7" + €. (A.33)

See figure A.2 for a schematic illustration of the perturbed limit cycle time history.

We summarize the derivation of an analytical approximation to the map governing the evolution
of the perturbations from just after one collision to just after the next as follows. We substitute
the perturbed quantities into the governing equation of motion, the collision detection function, and
the collision transition rule. We then expand and truncate the resulting expressions to first order in
epsilon. We obtain:

1. an expression governing the evolution of a perturbation to the limit cycle from just after a
collision to just before the next, (a linear non-autonomous system)

a(r) = Dg(q*(7))a(r), (A.34)
2. an expression for the perturbation to the time between collisions 7,
. _Dr@(m)a (")
T~ — - , and A.35
Dr(a* ()4 () (4.3

3. an expression for relating the perturbation to the limit cycle just before collision to just after,
q*(r") - Dr(q* ("))
Dr(q*(t*)) - q*(7*)
Putting these expressions together, we obtain an analytical approximation to the linear map govern-
ing the evolution of perturbations from collision to collision as a product of three special matrices

i+14+ ~ BDE ‘g* (A.37)
A

i+lg+ ~ Dh(q*(+*)) |1 — q(r*). (A.36)

where

B = Dh(q*(r")),
q*(,r*) ) DT(q*
Dr(q*(7*)) -4

ET* ) and (A.38)

D = I- )
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E can be obtained by integrating Equation (A.34) with arbitrary initial condition ‘g™ forward up
to time 7%, '
a(t*) ~E ‘q". (A.39)

We can calculate analytical expressions for the eigenvalues of the approximation to the Jacobian
A ~ J as functions of the rimless wheel parameters, or power series in (.

The three matrices comprising the approximation to the Jacobian, A = BDE, have the following
interpretations. Matrix B represents an approximation to the collision transition map. Matrix D
represents a correction to the perturbation map to account for the perturbed time between collisions.
Matrix E represents the map of the perturbations just after a collision to just before the next.

In order to obtain this approximate Jacobian, we need to find the limit cycle trajectory q*(7)
and the limit cycle time between collisions 7*. If we do not have explicit solutions for these two
quantities, then we must use approximate methods to obtain them, guided by intuition and numerics.

If we know (1) the limit cycle trajectory (q*(7)) , (2) the corresponding time between collisions
(%) , and (3) the map of the perturbations to the limit cycle just after a collision to just before the
next (represented by the matrix E) explicitly, then the matrix A is exactly equal to the Jacobian of
the map f evaluated at the fixed point q*(7). This is true even though we may not know the full
return map f explicitly.

We carried out a analytical stability analysis, as decribed above, of the 3D rimless wheel in
Chapter 4. The Maple® codes used for the analysis are displayed in Appendix E.



Appendix B

Derivation of the Governing
Equations for the 3D
Passive-Dynamic Walking
Mechanism

In this appendix, we derive the equations of motion between foot collisions and the collision transition
rules for the 3D straight-legged point foot walker.

B.1 Derivation of the Equations of Motion between Colli-

sions

We derive the equations of motion for the 3D walker between collisions by writing angular momentum
balance for the entire device about the contact point of the stance leg and also for the swing leg
about the hinge joint axis at the hip.

B.1.1 Notation description

First, we define the following terms used to specify position, orientation, mass, and inertia quantities
for a body b:

1.
2.

3.

A body frame is denoted by a number b.

A coordinate system a is rigidly attached to frame b with origin a.

A standard basis (Xg, Yg, Zg) is associated with frame b, aligned with coordinate system b,

and written in basis c¢. (We use this notation to avoid confusion of the basis vectors with the
indices 4, j, and k and the moment of inertia matrix designation I or J.)

The axis of rotation of a hinge (or revolute joint) b is aligned with Y.

dy /e is the position vector of the center of mass of body b with respect to the origin of coordinate
system ¢ written in the basis of frame e.

ry /e is the position vector of the origin of coordinate system b with respect to the origin of
coordinate system ¢ written in the basis of frame e.

195
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7. af is the absolute acceleration of the center of mass of body b written in the basis of frame c.

8. Rj is the rotation matrix that transforms the components of a vector in frame b to its compo-
nents in frame c.

9. wy /e is the angular velocity of body b with respect to body ¢ written in the basis of frame e.
10. my is the mass of body b.

11. °I’ is the moment of inertia matrix for body b with respect to its center of mass and calculated
with respect to frame c.

12. Hjb is the absolute rate of change of angular momentum of body b about its center of mass
written in the basis of frame c.

. [
13. (H’/’C) is the absolute rate of change of angular momentum of body b about the origin of
frame c¢ written in the basis of frame e.

[
14. (M’}c) is the applied moment acting on body b about the origin of frame ¢ written in the
basis of frame e.

15. Sub-system b of an interconnected system of n bodies is the collection of n — b 4+ 1 bodies
numbered from b to n.

. [
16. Y0, (Hjc) is absolute rate of change of angular momentum of sub-system b about the origin
of frame ¢ written in the basis of frame e.

e
17. >0, (Mjc) is the applied moment on subs-system b about the origin of frame ¢ written in
the basis of frame e.

e . e
18. 30, (Mjc) =30 (Hjc) is the equation of angular momentum balance for subs-system
b about the origin of frame ¢ written in the basis of frame e.

B.1.2 Equations of Angular Momentum Balance

The equations of angular momentum balance about the contact point of the stance leg for the 3D
walker system are

4

3 (ZM%)

4
E H% or
s=3 §=3

MY, + XM}, = Hi, +Hj,. (B.1)

The equation of angular momentum balance of the swing leg about the axis of rotation of the hinge
joint at the hip is

{EM‘}4 - H‘}4} Yy (B.2)

Below, we lay out the quantities needed to expand these equations.

B.1.3 Frame Kinematics

Referring to Figure B.1, we define the following kinematic quantities for the 3D walker needed to
write the equations of angular momentum. We write all of the vector components in the fixed frame
coordinates using appropriate transformations.
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Y4

'ys  stance leg

stance leg

m49/

a  swing
leg

3D walker swing leg
free body diagram free body diagram

Figure B.1: Frame 0 is fixed frame F, frame 1 is heading frame #, frame 2 is bank frame B, frame
3 is stance frame ST, and frame 3 is swing frame SW. The walking device makes ball-and-socket
contact with the ground at point 3 which is physically coincident with points 0, 1, and 2 since, for
the 3-1-2 Euler angle frames, r3/; = ry;; = ry0 = 0. The leg length is £, g is the acceleration due
to gravity, and « is the slope angle
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Rotation Matrices

First, the rotation matrices between frames are:

cp sp 0]
R(1)(¢) = _8¢ C¢ 0 )
| 0 0 1|
1 0 0 ]
Ri(y) = |0 e sy |,
| 0 —s¢ co |
[ cﬁst 0 —393,5
R3(0s) = 0 1 0 , and (B.3)
| 50375 0 cﬂst
[l 0 —50su
R3(0s0) = 0 1 0 : (B.4)
| $0sw 0 clsw
(B.5)
Then, the rotation matrices between each intermediate frame and the fixed frame are
R; = R{-Ry, (B.6)
R} = R3-R?-R{, and (B.7)
R; = Rj}-R3-R?-R{. (B.8)
Angular Velocity
The relative angular velocities between each successive frame are
w(l)/o = (;528,
wé/l = ¢X},
w§/2 = O;tYS, and
wis = 0.Y5. (B.9)
The absolute angular velocity of the stance and swing legs written in the fixed frame basis are
Wi = Wi+ wh, +wy, and (B.10)
where
""(1]/0 = w(1)/07
‘-'-’g/1 = [R(I)]T'wé/la
‘*’g/2 = [R§]" -w§/2, and
w2/3 = [R3]" -w2/3. (B.12)

Center of Mass Position and Absolute Acceleration

The stance and swing leg center of mass positions with respect to the stance and swing frame origins
are

dg/3 = X3 +yY3 + 273 and
di,, = —2Xi-yYi+(-2)Zi. (B.13)
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The position of the hip relative to the stance foot is
r}, =023 (B.14)

The stance and swing center of mass positions with respect to the origin of the fixed frame written
in the fixed frame basis are

dg/o = dg/3+rg/0

0
/—’H

[R] d3/3 + Z Toi1/s

R3] - 3/3 and

d2/0 = d2/4+r2/0
[Rg] " ria
I'2/3
/—H
= [Rg]" 4/4+er+1/s
= [Rg]"- 4/4+[R] I'4/3- (B.15)

The accelerations of the center of mass of the stance and swing legs written in the fixed frame basis
are, respectively,

a) = —d2 d?%, and

3 de2 3/0

0 d? 0

a4 = Wd‘l/o- (B16)

B.1.4 Moment of Inertia Matrices

The moment of inertia matrices for the stance and swing legs calculated with respect to the fixed
frame are, respectively

' = [R3T- *®- [R]] and
o = [RFY- Tt [RY] (B.17)

where the inertia matrices calculated for each leg in the leg frames are identical

Iwz Ia:y I:cz
S =1 =1=| 1, I, I, |. (B.18)
Iwz Iyz Izz

B.1.5 Rate of Change of Angular Momentum

The rate of change of angular momentum for the stance leg about the origin of the fixed frame
written in the fixed frame basis is

( %) = HY, + dfo x m3 a (B.19)
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where
Hj, = - wj,, and
. d
H), = ZHJ,. (B.20)

The rate of change of angular momentum for the swing leg about the origin of the fixed frame
written in the fixed frame basis is

(k1) = 1%, + a9 x ma (B.21)
where
H(/)4 = 1. wg/o, and
H), = %H%. (B.22)

The component along the hinge axis at the hip of the rate of change of angular momentum for the
swing leg about the origin of the swing frame, written in the fixed frame basis, is

. 0 . N
{ (H‘}4) = HY, +df, x ag} Y9 (B.23)

where
Y = [RYT - Y5 (B.24)

B.1.6 Applied Moments

Referring to the free body diagrams in Figure B.1, the applied moments acting on the stance and
swing legs about the contact point of the stance frame written in the fixed frame basis are, respec-
tively

0
(M?O) = dg/o x m3g’, and
0
(M‘}O) = d2/0 X mag’ (B.25)
where g is the gravity vector
gl=y sina XY — cosa Z3). B.26
0 0

The component along the hinge axis at the hip of the applied moments acting on the swing leg about
the origin of the swing frame, written in the fixed frame basis, is

0 ~
{(M‘}4) = dJ, x m4g0} Y9, (B.27)

B.1.7 Assembling the Equations of Motion

The two equations for angular momentum balance above yield four equations of motion. Collection
terms appropriately, we can assemble three matrices M(q), V(q), and G(q) of Equation (6.9) in
Chapter 6. The Maple® codes for generating these matrices are included in the next pages.
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#eqns3D_£ff

#eqns3D_ff derives the four equations of motion from angular
#momentum balance. The output is:

#HOdot_0, the rate of change of angular momemtum about point
$0$(3x1 vector);

#MOdot_0, the applied moment about point $0$ due to
gravity(3x1l vector);

#H4dot_0, the rate of change of angular momemtum about point $4$
dotted with the hinge axis(scalar);

#MOdot_0, the applied moment about point $4$ due to
gravity dotted with the hinge axis(scalar).

#The output is stored in eqns3D_ff.m

#The three matrices M(q), V(q), and G(q) are extracted in
#the files arrange_mass_ff, arrange_vel_ff, and
#arrange_applmom_ff, respectively.

#Invoke linear algebra package
with(linalg):

#Kinematics

#Rotation Matrices

rot_0_1l:=matrix([[cos(phi(t)),sin(phi(t)),0],
[-sin(phi(t)),cos(phi(t)),0],
[0,0,11]1):
rot_1_2:=matrix([[1,0,0],
[0,cos(psi(t)),sin(psi(t))],
[0,-sin(psi(t)),cos(psi(t))]]):
rot_2_3:=matrix([[cos(thetast(t)),0,-sin(thetast(t))],
[0,1,0],
[sin(thetast(t)),0,cos(thetast(t))]]):
rot_3_4:=matrix([[cos(thetasw(t)),0,-sin(thetasw(t))],
[0,1,0],
[sin(thetasw(t)),0,cos(thetasw(t))]]):
rot_0_2:=multiply(rot_1_2,rot_0_1):
rot_0_3:=multiply(rot_2_3,multiply(rot_1_2,rot_0_1)):
rot_0_4:=multiply(rot_3_4,multiply(rot_2_3,
multiply(rot_1_2,rot_0_1))):

#Angular velocity

w3_0_0:=add (array([0,0,diff(phi(t),t)]),
add(multiply(transpose(rot_0_1),
array([diff(psi(t),t),0,01)),
multiply(transpose(rot_0_2),
array([0,diff(thetast(t),t),0]1)))):

w4_0_0:=add(w3_0_0,multiply(transpose(rot_0_3),
array([0,diff(thetasw(t),t),0]1))):

#Position Vectors

=multiply(transpose(rot_0_3),array([x,y,z])):

=add (multiply(transpose(rot_0_3),array([0,0,1])),
multiply(transpose(rot_0_4),array([-x,-y,1-z]))):

d4_4_0:=multiply(transpose(rot_0_4),array([-x,-y,1-z])):

d3_0_0:
d4_0_0:

#Rate of change of angular momenta
#Moment of Inertia Matrices
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#w.r.t d3

Id3_3:=matrix([[I11,I12,I13],
[112,122,123],
[113,123,133]]):

#w.r.t d4
Id4_4:=matrix([[I11,I12,113],
[112,122,123],

[113,123,133]]):
#About point O...
HOdot_0:=add(
add (
map(diff,multiply(

multiply(transpose(rot_0_3),
multiply(Id3_3,rot_0_3)),
w3_0_0),t),
crossprod(d3_0_0,evalm(m*map(diff,d3_0_0,t$2)))),

add (
map(diff,multiply(
multiply(transpose(rot_0_4),
multiply(Id4_4,rot_0_4)),
w4_0_0),t),
crossprod(d4_0_0,evalm(m*map(diff,d4_0_0,t$2))))):

#About point 4...

H4dot_0:=innerprod(

add(

map(diff,multiply(

multiply(transpose(rot_0_4),
multiply(Id4_4,rot_0_4)),
w4_0_0),t),

crossprod(d4_4_0,evalm(m*map(diff,d4_0_0,t$2)))),

multiply(transpose(rot_0_4),array([0,1,0]1))):

#gravity vector

grav_0:=array([sin(alpha),0,-cos(alpha)]):

#Appied moments About point O...

MO_0:=add(
crossprod(d3_0_0,evalm(m*grav_0)),
crossprod(d4_0_0,evalm(m*grav_0))):

#about point 4...

M4_0:=innerprod(

crossprod(d4_4_0,evalm(m*grav_0)),
multiply(transpose(rot_0_4),array([0,1,0]1))):

#arrange_mass_ff

#arrange_mass_ff extracts the matrix M(q) from the equations
#of motion stored in eqns3D_ff.m.
#The output is final_coef_matrix.

with(linalg):
read ‘eqns3D_ff.m‘:



ddot:=array([diff (phi(t),t$2),diff(psi(t),t$2),
diff(thetast(t),t$2), diff(thetasw(t),t$2)]):
Hdot :=array([HOdot_O[1] ,HOdot_0[2] ,HOdot_0[3] ,H4dot_0]):

for i from 1 by 1 to 4 do

for

j from 1 by 1 to 4 do

mp[i,j]:=coeff(expand(Hdot[i]),ddot[j],1):

od:
od:

g:=(i,j) ->mp[i,jl:
coef_matrix:=matrix(4,4,g):

for r from 1 by 1 to 4 do
for s from 1 by 1 to 4 do
Twocoef _matrix[r,s]:=

simplify(subs(phi(t)=x1,psi(t)=x3,thetast(t)=x5,

thetasw(t)=x7, coef_matrix[r,s])):

Threecoef_matrix[r,s]:=

od:
od:

subs(sin(x1)=sx1,sin(x3)=sx3,sin(x5)=sx5,sin(x7)=sx7,

cos(x1)=cx1l,cos(x3)=cx3,cos(x5)=cx5,cos(x7)=cx7,
Twocoef_matrix[r,s]):

gg:=(r,s) ->Threecoef_matrix[r,s]:
temp_matrix:=matrix(4,4,gg):

#interface(screenwidth=60) ;

finalcoef_matrix:=

map(collect,map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,map(collect,

map(collect,map(collect,map(collect, temp_matrix

,sx1),cx1),sx3),cx3),sx5) ,¢cx5),¢cx7),sx7)
»X),¥),2) ,m)
,I111),112),113),122),123),133);

HRBFHBRRR SRR BB REFR R R RRBRRRERREE R B R SRR R RBRRRERR B RR B R BRER RS ERE

#arrange_vel _ff

#arrange_vel_ff extracts the matrix V(q) from the equations of
#motion stored in eqns3D_ff.m. The output is vel_matrix.

#This file calls vel_tot_ff.m and vel_sw_ff.m which
#‘‘preprocesses’’ the equations of motion in order to reduce

#the memory required by this file to complete its computations.
with(linalg):

read ‘vel_tot_ff.m:

read ‘vel_sw_ff.m:

vvil:=coeff(collect(Threebb[1],q2),q92,2):
vvi2:=coeff(collect(Threebb[1],q4),q4,2):
vv13:=coeff(collect(Threebb[1],q6),q96,2):
vvi4:=coeff(collect(Threebb[1],q8),q8,2):
vvib:=coeff(collect(coeff(collect(Threebb[1],q2),q92,1),94),q4,1):
vvi6:=coeff(collect(coeff(collect(Threebb[1],92),q2,1),q6),96,1):
vv17:=coeff(collect(coeff(collect(Threebb[1],92),q2,1),q8),98,1):
vvi8:=coeff(collect(coeff(collect(Threebb[1],q4),q94,1),q6),q96,1):
vv19:=coeff(collect(coeff(collect(Threebb[1],q4),q4,1),08),98,1):

203



204

vv10:=coeff(collect(coeff(collect(Threebb[1],q6),96,1),98),q8,1):

vv21l:=coeff(collect(Threebb[2],q2),92,2):
vv22:=coeff(collect(Threebb[2],q4),q94,2):
vv23:=coeff(collect(Threebb[2],q6),96,2):
vv24:=coeff(collect(Threebb[2],q8),98,2):
vv25:=coeff(collect(coeff(collect(Threebb[2],q2),92,1),q94),94,1):
vv26:=coeff(collect(coeff(collect(Threebb[2],q2),92,1),q96),96,1):
vv27:=coeff(collect(coeff(collect(Threebb[2],q2),92,1),98),q8,1):
vv28:=coeff(collect(coeff(collect(Threebb[2],q4),q94,1),q96),96,1):
vv29:=coeff(collect(coeff(collect(Threebb[2],q4),q94,1),98),q98,1):
vv20:=coeff(collect(coeff(collect(Threebb[2],q6),96,1),98),q8,1):

vv31l:=coeff(collect(Threebb[3],q2),q92,2):
vv32:=coeff(collect(Threebb[3],q4),q4,2):
vv33:=coeff(collect(Threebb[3],q6),96,2):
vv34:=coeff(collect(Threebb[3],q8),98,2):
vv35:=coeff(collect(coeff(collect(Threebb[3],q2),92,1),q94),94,1):
vv36:=coeff(collect(coeff(collect(Threebb[3],q2),92,1),q96),96,1):
vv37:=coeff(collect(coeff(collect(Threebb[3],q2),92,1),q98),q8,1):
vv38:=coeff(collect(coeff(collect(Threebb[3],q4),q94,1),q96),q96,1):
vv39:=coeff(collect(coeff(collect(Threebb[3],q4),94,1),q98),q8,1):
vv30:=coeff(collect(coeff(collect(Threebb[3],q6),96,1),98),q98,1):

vv4l:=coeff(collect(Threedd,q2),q2,2):
vvé42:=coeff(collect(Threedd,q4),q4,2):
vv43:=coeff(collect(Threedd,q6),q6,2):
vv44:=coeff(collect(Threedd,q8),q8,2):
vvé4b:=coeff(collect(coeff(collect(Threedd,q2),q2,1),94),q94,1):
vv46:=coeff(collect(coeff(collect(Threedd,q2),q2,1),q96),96,1):
vvé4T7:=coeff(collect(coeff(collect(Threedd,q2),q2,1),98),q98,1):
vv48:=coeff(collect(coeff(collect(Threedd,q4),q4,1),q96),96,1):
vv49:=coeff(collect(coeff(collect(Threedd,q4),q4,1),q98),q8,1):
vv40:=coeff(collect(coeff(collect(Threedd,q6),q6,1),98),q98,1):

temp_matrix:=
matrix([[vvii,vvi2,vv13,vvi4,vvi5,vvi6,vvi7,vvi8,vvi9,vvi0Q],
[vv21,vv22,vv23,vv24,vv25,vv26,vv27,vv28,vv29,vv20],
[vv31,vv32,vv33,vv34,vv35,vv36,vv37,vv38,vv39,vv30],
[vv4l,vv42,vv43,vvad,vva5,vv4a6,vv4a7 ,vvad8,vv49,vv40]]) :
vel_matrix:=
map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(simplify,
subs(sx1~2=1-cx1"2,sx3"2=1-¢cx3"2,sx5"2=1-¢cx5"2,
sx7"2=1-cx7"2,subs(sx1"3=sx1*(1-cx1"2),
sx1"4=sx1"2*%(1-cx172),sx3"3=sx3*(1-cx3"2),
sx3"4=5x3"2*(1-cx372),sx5"3=sx5*(1-cx572),
sx574=5x5"2*(1-¢cx572),sx7 " 3=sx7*(1-¢cx7"2),
sx7 " 4=sx7"2%(1-cx7"2),subs(s1=sx1,s3=sx3,
sb=sx5,s7=sx7,cl=cx1,c3=cx3,cb=cx5,c7=cx7,
op(1,temp_matrix)))))
,8x1),sx3),sx5),sx7),cx1),cx3),cx5),cx7)
,m),X),y),2)
,111),112),113),122),123),I33);

#interface(screenwidth=60) ;
HRRFHRERR R R R R R R RS R R R R SRR

#vel_tot_£ff
#prepares the equations of motion for arrange_vel_ ff



with(linalg):
read ‘eqns3D_ff.m‘:

bb:= subs(diff(phi(t),t$2)=0,diff(psi(t),t$2)=0,
diff(thetast(t),t$2)=0,diff (thetasw(t),t$2)=0,
evalm(-1%HOdot_0)):

Onebb:=subs(diff(phi(t),t)=q2,diff(psi(t),t)=q4,
diff(thetast(t),t)=q6, diff(thetasw(t),t)=q8,
op(1,bb)):
Twobb:=map(simplify,subs(phi(t)=x1,psi(t)=x3,thetast(t)=x5,
thetasw(t)=x7,o0p(1,0nebb))):

Threebb:= subs(
sin(phi(t)) =sx1, cos(phi(t)) =cx1,

sin(psi(t)) =sx3,
sin(thetast(t))=sx5,
sin(thetasw(t))=sx7,

cos(psi(t)) =cx3,
cos(thetast(t))=cx5,
cos(thetasw(t))=cx7,

op(1,0nebb)):

Threebb:= map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,

subs(sin(x1) =sx1, cos(x1) =cx1,

sin(x3) =sx3, cos(x3) =cx3,
sin(x5) =sxb, cos(x5) =cxb,
sin(x7) =sx7, cos(x7) =cx7,
op(1,0nebb))

,92) ,94),96),98)

,sx1),cx1),sx3),cx3),sx5),cxb),cx7),sx7)

,X),¥),2) ,m)

,111),112),113),122),123),133):

#vel_swing_£ff
#prepares the equations of motion for arrange_vel_ ff

with(linalg):
read ‘eqns3D_ff.m‘:

dd:= subs(diff(phi(t),t$2)=0,diff(psi(t),t$2)=0,
diff(thetast(t),t$2)=0,diff (thetasw(t),t$2)=0,
-1%H4dot _0):

Onedd:=subs (diff(phi(t),t)=q2,diff(psi(t),t)=q4,
diff(thetast(t),t)=q6, diff(thetasw(t),t)=q8,dd):

Threedd:= collect (collect (collect (collect (collect
(collect (collect (collect (collect (collect
(collect (collect (collect (collect (collect
(collect (collect (collect (collect (collect

(collect(collect(
subs(sin(phi(t)) =sx1, cos(phi(t)) =cx1,
sin(psi(t)) =sx3, cos(psi(t)) =cx3,

sin(thetast(t))=sx5, cos(thetast(t))=cx5,
sin(thetasw(t))=sx7, cos(thetasw(t))=cx7,
Onedd)

»X),¥),2) ,m)

,I11),112),113),122),123),133)

,92) ,94),96),98)

,sx1),cx1),sx3),cx3),sx5),cx5),cx7),sx7):

205
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B.2 Energy Calculation
The total kinetic energy of the 3D walking system between collisions is

1 1
013 wg/o -+ —My (Vg . Vg) + 5(.02/0 . 014 . wg/o (B28)

1 1
EK = —ms3 (Vg . Vg) + Ewg/o . 2

2

where the velocities of the center of mass of the stance and swing legs written in the fixed frame
basis are, respectively,

d
vl = adg/o and
d
v = Edg/o. (B.29)

The total potential energy of the 3D walking system between collisions is
Ep=-— (m3 (dg/o . go) + my (dg/o -go)) i (B.30)

The Maple® codes for generating the total energy equation is given below.

with(linalg):
read ‘eqns3D_ff.m‘:

ke_st_cm:=(1/2)*m*innerprod(map(diff,d3_0_0,t),
map(diff,d3_0_0,t)):
ke_st_rot:=(1/2)*innerprod(w3_0_0,
multiply(multiply(transpose(rot_0_3),
multiply(Id3_3,rot_0_3)),w3_0_0)):
ke_sw_cm:=(1/2)*m*innerprod (map(diff,d4_0_0,t),
map(diff,d4_0_0,t)):
ke_sw_rot:=(1/2)*innerprod(w4_0_0,
multiply(multiply(transpose(rot_0_4),
multiply(Id4_4,rot_0_4)),w4_0_0)):

ke_st_cml:=subs(diff (phi(t),t)=q2,diff(psi(t),t)=q4,
diff(thetast(t),t)=q6, diff(thetasw(t),t)=q8,

ke_st_cm):
ke_st_cm2:=
subs (sin(phi(t)) =s1, cos(phi(t)) =ci,
sin(psi(t)) =s3, cos(psi(t)) =c3,

sin(thetast(t))=s5, cos(thetast(t))=c5,
sin(thetasw(t))=s7, cos(thetasw(t))=c7,ke_st_cml):

ke_sw_cml:=subs(diff (phi(t),t)=q2,diff(psi(t),t)=q4,
diff(thetast(t),t)=q6, diff(thetasw(t),t)=q8,

ke_sw_cm) :
ke_sw_cm2:=
subs(sin(phi(t)) =s1, cos(phi(t)) =ci,
sin(psi(t)) =s3, cos(psi(t)) =c3,

sin(thetast(t))=sb, cos(thetast(t))=c5b,
sin(thetasw(t))=s7, cos(thetasw(t))=c7,ke_sw_cml):

ke_st_rotl:=subs(diff(phi(t),t)=q2,diff(psi(t),t)=q4,
diff (thetast(t),t)=q6, diff(thetasw(t),t)=q8,
ke_st_rot):
ke_st_rot2:=
subs (sin(phi(t)) =s1, cos(phi(t)) =ci,
sin(psi(t)) =s3, cos(psi(t)) c3,
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sin(thetast(t))=sb, cos(thetast(t))=cb,
sin(thetasw(t))=s7, cos(thetasw(t))=c7,ke_st_rotl):

ke_sw_rotl:=subs(diff(phi(t),t)=q2,diff(psi(t),t)=q4,
diff(thetast(t),t)=q6, diff(thetasw(t),t)=q8,
ke_sw_rot):
ke_sw_rot2:=
subs(sin(phi(t)) =s1, cos(phi(t)) =ci,
sin(psi(t)) =s3, cos(psi(t)) =c3,
sin(thetast(t))=sb, cos(thetast(t))=cb,
sin(thetasw(t))=s7, cos(thetasw(t))=c7,ke_sw_rotl):

ke:=ke_st_cm2+ke_sw_cm2+ke_st_rot2+ke_sw_rot2:
kel:=
collect(collect(collect(collect(collect(collect(
collect (collect (collect (collect (collect (collect(
collect (collect (collect (collect (collect (collect(
subs(s1°2=1-¢c1°2,s3"2=1-¢3"2,55"2=1-¢5"2,s7"2=1-¢c7"2,
subs(s1°3=s1*(1-c172),s1"4=s1"2*(1-c172),s3"3=53*(1-c372),
s374=s3"2%(1-c372),s5"3=s5%(1-c5"2),s574=s5"2%(1-c572),
s773=s7*(1-¢c7"2) ,s7"4=s7"2%(1-¢c7"2) ,ke))
,sl1),s3),s5),s7),c1),c3),c5),c7)
,m) ,Xx),y),2z)
,111),112),113),122),123),133);

pe:=-1*(m*innerprod(d3_0_0,grav_0)+m*innerprod(d4_0_0,grav_0)):

pel:=subs(sin(phi(t)) =s1, cos(phi(t)) =ci,
sin(psi(t)) =s3, cos(psi(t)) =c3,
sin(thetast(t))=s5, cos(thetast(t))=c5,
sin(thetasw(t))=s7, cos(thetasw(t))=c7,
sin(alpha) =sa,cos(alpha) =ca,pe);

interface(screenwidth=60) ;

B.3 Derivation of the Collision Rules for Angular Rates

To begin, we first state the rules for updating the walking system through a swing foot collision.

B.3.1 Indexing Scheme

We have chosen a set of angles to describe the orientation of the walking device between collisions.
We next present an indexing scheme to denote the state of the system just before and after the
collision 7 of the iy, swing leg. We use the indexing scheme to define a ‘cycle’ of the walker — from
just after a swing leg collision (heel-strike) to just after the next.

The iy, stance and swing legs are so designated after the iy, collision. Thus, the names of the
legs are exchanged through a collision. That is, the iy, stance leg becomes the ¢ + 1;; swing leg and
vice-versa for the 4., swing leg.

Special times of interest are just before and just after collision 7. The minus and plus signs (—)
and (+) are used as the superscripts to denote these times. For instance, ‘9, is the stance leg angle
just after collision ¢ of swing leg i — 1.

In defining the orientation of the walking device, we have defined fixed frame 0, stance leg frame
3 (fixed to the stance leg), and swing leg frame 4 (fixed to the swing leg). The stance leg frame 3
has origin at the tip of the stance leg currently in contact with the ground after collision i. The
swing leg frame 4 has i origin at the hip joint. The z3 and z; axes are aligned with the stance and
swing legs, respectively.
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We move the origin of the stance leg frame instantaneously with each swing leg collision from
the tip of the pre-collision stance leg to the tip of the post-collision stance leg currently in contact
with the ground after collision ¢ + 1. The origin of the swing leg frame remains at the hip joint.

As the origin of stance leg frame 4 is moved to the tip of the colliding leg, however, we not only
translate the stance leg frame but also rotate it by —2 i+19;t about the y-axis with respect to the
fixed frame so that the z3-axis of stance leg frame i + 1 is aligned with stance leg i + 1. Thus, the
stance leg angle changes instantaneously from 6y to —0g; through a downhill swing leg collision.
Likewise, the swing leg frame rotates by —2 z'“0;0 about the y axis with respect to the stance leg
frame so that the z4-axis of the swing leg frame i 4+ 1 is aligned with swing leg ¢ + 1.

After a collision, then, we redefine the absolute orientation with respect to the fixed frame using
the newly positioned frames. The relationships between frames and their associated bases from
before to after collision 7 + 1 are

iy g i3 ey = RY(

R3 —2 7192 Tes, (B.31)
i+14 7£ 14’ i-i—le4 — Ré(

0=
6 =—219 ) ‘ey. (B.32)
At a swing foot collision, in addition to updating the state of the system, we must also be careful
to update the leg parameters to take into account the reflection symmetry of the legs. Just after
collision 7 + 1 of swing leg i when it becomes the new stance leg i 4+ 1 and stance leg ¢ becomes swing
leg ¢ + 1, their center of mass parameters are different from those of the previous stance and swing
legs i. The parameters change as follows:

ty = —(Ty), or (B.33)
tx =z
Ty = C-{ 7y (B.34)
tz —z
where
1 0 0
c=|0 -1 0 (B.35)
0 0 1

Here, + and — refer to the leg parameters just after and just before a collision, respectively. Recall
that, in between collisions, the inertia matrices for the stance and swing legs are the same. In
between collisions, the 2 and y coordinates of the center of mass of each leg are opposite in sign but
only the y coordinate for each changes sign through a collision.

B.3.2 Angular Momentum — Impulse: Conservation of Angular Momen-
tum

Referring to Figure B.2, at the collision of the swing leg with the ground, there is an impulse at the
swing foot contact point (point 57) and, consequently, also on the swing leg at the hip joint (point
4). Point 5~ is coincident with the origin of the origin 0% of the post-collision fixed frame and the
contact point 31 of the post-collision stance leg. We assume that, during collision, other smaller
forces (e.g., gravity) acting on the system are negligible in comparison to the collision impulses. We
also assume there are no impulsive ground contact torques. At the instant of collision at the hip, we
assume that the former stance leg loses contact with the ground (at the same instant the swing foot
makes contact) and that it has no impulsive reaction with the ground as it leaves. Based on these
assumptions, angular momentum is conserved for the entire system about the swing foot contact
point during the collision process. Angular momentum is also conserved for the new swing leg
(formerly the stance leg) about the hip joint hinge axis. We can write these conservation statements
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SW “Va Before Collision

4
re-collision pre-collision
P 7, X stance leg

swing leg

post-collision
stance leg

After Collision

Figure B.2: A schematic showing the pre- and post-collision configurations of the 3D walking mech-
anisms.
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as
4 4
> Hi = 3 Hipor
§=3 s=3
TH+ +T Hjgr = “Hj + Hjp, and
{+H‘}4 = —H‘}4}-Y4. (B.36)

The plus (4) and minus (-) refer to the states of the system just before and just after the i, collision
of the the swing leg with the ground, respectively. Note that ty, = 7Y,

First, we write out the pre-collision (-) quantities and then the post-collision (+) ones needed
for the angular momentum calculations.

B.3.3 Pre-collision Quantities
Rotation Matrices
The heading and bank angles remain the same through collision; i.e.,
¢t = ¢~ =¢and
Pt o= YT =49 (B.37)

Thus, the pre-collision rotation matrices between frames are the same for the heading and bank
frames as previously defined but different for the stance and swing frames as defined below:

by 0 —s6y- ]
“R3(6;) = 0 1 0 , and (B.38)
| s0, 0 b,
[0, 0 —sb, ]
“R3(0,,) = 0 1 0 : (B.39)
| s6 0 by,
(B.40)
Then, the rotation matrices between each intermediate frame and the fixed frame are
RZ = RI-R;, (B.41)
"R} = “R3-R?-R{, and (B.42)
"Ry = “Rj- "R -R?-R{. (B.43)
Angular Velocity
The pre-collision relative angular velocities between each successive frame are
Wiy = T TZ,
7“’%/1 = 71& 7Xi7
—w§/2 = Oy _YA'g, and
“why = TOm TYE (B.44)

The pre-collision absolute angular velocity of the stance and swing legs written in the fixed frame
basis are

*wg/o = *w?/o + 7wg/1 + 7wg/2 and (B.45)

7(4}2/0 = 7(.02/3 + 7(.0(3)/0 (B46)
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where
_w(l)/o = _w(l)/oa
_‘-‘Jg/l = [R(IJ]T : _w%/p
_“-’g/2 = [Rg]"- _w§/2, and
7“’2/3 = [RJ"- 7“’2/3- (B.47)

Center of Mass Position and Absolute Acceleration

The pre-collision stance and swing leg center of mass positions with respect to the pre-collision
stance and swing frame origins are

A}, = 2 X34y Y342z Ziand
“dyy = —o XE-y Y4 (0-2)"ZL (B.48)
The pre-collision position of the center of mass of the stance leg relative to the hip joint is
" =2 X34y YI-(0-2) Z3. (B.49)
The pre-collision position of the center of mass of the swing leg relative to the swing foot is
“dis =z "Xi-y “Yi-2z TZ3 (B.50)
The pre-collision positions of the hip relative to the stance foot and swing foot are, respectively
’ri/3 = ¢ ~Z%and (B.51)
Tris = —0 77y (B.52)

The pre-collision stance and swing center of mass positions with respect to the origin of the pre-
collision fixed frame written in the fixed frame basis are

_dg/o— = _dg/3
= [R§" -~ d3/; and
dg/o— = _d2/4 + _1'2/0—
= [RG]" -~ diu+ [ RY" -l (B.53)

The pre-collision position of center of mass of the stance leg with respect to the point of collision of
the swing foot on the ground (the post-collision origin of the fixed frame,0") written in the basis of
the fixed frame coordinates is

_dg/0+ = _dg/4 + _r2/5. = [_Rg]T o d§/4 + [_Rg]T o I'2/5 = _dg/5- (B.54)

The pre-collision position of center of mass of the swing leg with respect to the point of collision of
the swing foot on the ground, 0T, written in the fixed frame coordinates is

“dj o = dfs =[Rg]" - dis = "dy. (B.55)

The pre-collision velocities of the center of mass of the stance and swing legs written in the fixed
frame basis are, respectively,

R %(_dg/o—) and
v = %(‘dg/o_). (B.56)
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Moment of Inertia Matrices

The pre-collision moment of inertia matrices for the stance and swing legs calculated with respect
to the fixed frame are, respectively

) o=
-pr) =

22
2&

=

(B.57)

B.3.4 Angular Momentum

The pre-collision angular momentum for the stance leg about the origin of the post-collision fixed
frame, 0T written in the fixed frame basis is

0
" (B ) = "HY; + "0 x m3 Vg (B.58)
where
“HY =~ ['P] - ~wd (B.59)

The angular momentum for the swing leg about the origin of the post-collision fixed frame written
in the fixed frame basis is

0
" (Hig) = “HY +dY g0 x my v (B.60)

where

THY = T[T Wi (B.61)
The component along the hinge axis at the hip, of angular momentum about the origin of the swing
frame for the stance leg, written in the fixed frame basis, is

0 ~
{ ()" = A+ g xoma )1 (B.62)
where . .
Y! = "[Ry]T - Y] (B.63)
B.3.5 DPost-collision Quantities
Rotation Matrices

Again, the post-collision rotation matrices between frames for the heading and bank frames are the
same as those for pre-collision but different for the stance and swing frames as defined below:

[ 0 0 —sOy+
TR3(0) = 0 1 0 , and (B.64)
| s6f 0 cfF
[ c0f, 0 —sbt,
tR3(6,) = 0 1 0 ) (B.65)
| s0f, 0 b},
(B.66)
Then, the rotation matrices between each intermediate frame and the fixed frame are
R} = RI-Rj, (B.67)
TR = TR3.-R?.R{, and (B.68)

*R; = TR;- TR3-RI-Rj. (B.69)
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Angular Velocity

The post-collision relative angular velocities between each successive frame are

Jr""?/0 = T +28;

+w%/1 = +Qj} +X%a

+w§/2 = 16, tY2 and

Twiy = Ton TY3 (B.70)

The post-collision absolute angular velocity of the stance and swing legs written in the fixed frame
basis are

Tl = tolg+ Twd, + Twy), and (B.71)
Twiny = twist+ Twi, (B.72)
where
+"-’(1)/0 = +"-’(1)/0:
Twin = Ryl ey,
+‘-"2/2 = [RS]T‘ +w§/2, and
Twip = [RYT- Twis. (B.73)

Center of Mass Position and Absolute Acceleration

The post-collision stance and swing leg center of mass positions with respect to the post-collision
stance and swing frame origins are

+dg/3 = =z +X§ —y +YA'§ +z +Z§ and
tdyy = —o *Xi4y tVE(0-2) +ZL (B.74)
The post-collision position of the hip relative to the stance foot is
e}, =0 TZ3. (B.75)

The post-collision stance and swing center of mass positions with respect to the origin of the post-
collision fixed frame written in the fixed frame basis are

tdg e = tdy
= ['R§"- er3/3 and
d2/0+ = +d2/4++r2/0+
= [*Rg]"- *di,u + R Tri. (B.76)

The post-collision position of the hip relative to the origin of the post-collision fixed frame written
in the fixed frame basis is

+I'2/0+ =[*R3]" - +I'2/3- (B.77)
The post-collision velocities of the center of mass of the stance and swing legs written in the fixed
frame basis are, respectively,

d
vy = 7 (+dg/0+) and
d
+,0 + A0
Vg = a ( d4/0+) . (B78)
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Moment of Inertia Matrices

The post-collision moment of inertia matrices for the stance and swing legs calculated with respect
to the fixed frame are, respectively

T°P] = [*R{"- *I- [*R] and
TP = [PRGT- fI- [PRgl (B.79)

B.3.6 Angular Momentum

The post-collision angular momentum for the stance leg about the origin of the post-collision fixed
frame, 0T written in the fixed frame basis is

0
t(Hor) = YHY + *dj0 x ma g (B.80)

where
JrI'I(/)3 =+ ] Jr“-"g/o- (B.81)

The angular momentum for the swing leg about the origin of the post-collision fixed frame written
in the fixed frame basis is

0
t(Hjos) = TH), +dl00 x my v (B.82)

where

THY, =T ["T1] - Yol (B.83)
The component along the hinge axis at the hip, of angular momentum about the origin of the swing
frame for the swing leg, written in the fixed frame basis, is

0 ~
{+ (H§4) = THY, + Tdj, xmy +V2} Y} (B.84)

where
Y¢ = F[R))T - Y5, (B.85)

B.3.7 The Collision Rule

Once we find the angular momentum quantities for pre- and post- collision we can write the conser-
vation of angular momentum relations as

*é ¢

+A(tH toy tp. F 4 — A~ =y —p. — ~1p

A( &, T, TOs, asw) +0't = A( &, ", "0, osw) _e't - (BSG)
+0‘SU) 70‘8’1[]

where T A and ~A are 4x4 matrices that are functions of the pre- and post- collision configuration
variables.

B.3.8 Assembling the Collision Rule Matrices

The Maple® codes for assembling, tA and ~A, the pre- and post- collision matrices, are given
below.



#jump3D_£ff_minus

#jump3D_ff_minus generates the pre-collision collision-rule
#matrix. The output is minus_matrix.

#Invoke linear algebra package
with(linalg):

#Kinematics

#Rotations Matrices

rot_0_1:=matrix([[cos(phi(t)),sin(phi(t)),0],
[-sin(phi(t)),cos(phi(t)),0],
[0,0,111):
rot_1_2:=matrix([[1,0,0],
[0,cos(psi(t)),sin(psi(t))],
[0,-sin(psi(t)),cos(psi(t))]]):
rot_2_3m:=matrix([[cos(thetastm(t)),0,-sin(thetastm(t))],
[0,1,0]1,
[sin(thetastm(t)),0,cos(thetastm(t))]]):
rot_3_4m:=matrix([[cos(thetaswm(t)),0,-sin(thetaswm(t))],
[0,1,0]1,
[sin(thetaswm(t)),0,cos(thetaswm(t))]]):
rot_0_2:=multiply(rot_1_2,rot_0_1):
rot_0_3m:=multiply(rot_2_3m,multiply(rot_1_2,rot_0_1)):
rot_0_4m:=multiply(rot_3_4m,
multiply(rot_2_3m,
multiply(rot_1_2,rot_0_1))):

#Angular velocity

w3_0_0:=add (array([0,0,diff(phi(t),t)]),
add (multiply(transpose(rot_0_1),
array([diff(psi(t),t),0,0])),
multiply(transpose(rot_0_.2),
array([0,diff (thetastm(t),t),0])))):
w4_0_0:=add(w3_0_0,multiply(transpose(rot_0_3m),
array([0,diff(thetaswm(t),t),0]))):

#Position Vectors

d3_0m_0:= multiply(transpose(rot_0_3m),array([x,y,z])):

d4_Om_0:=add(multiply(transpose(rot_0_3m),array([0,0,1])),
multiply(transpose(rot_0_4m),array([-x,-y,1-z]))):

d4_4_0:= multiply(transpose(rot_0_4m),array([-x,-y,1-z])):

d3_0p_0:=add(
multiply(transpose(rot_0_3m),array([x,y,-(1-2)]1)),
multiply(transpose(rot_0_4m),array([0,0,-11))):

d3_4_0:= multiply(transpose(rot_0_3m),array([x,y,-(1-z)])):

d4_0Op_0:= multiply(transpose(rot_0_4m),array([-x,-y,-z])):

#Angular momenta
#Moment of Inertia Matrices

#w.r.t d3
I1d3_3:=matrix([[I11,I12,113],
[112,122,123],
[113,123,133]11):
#w.r.t d4

Id4_4:=matrix([[I11,I12,113],
[I12,122,123],
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[I13,123,133]]):
#About point O_plus...

HOp_0:=add (
add (
multiply(
multiply(transpose(rot_0_3m),
multiply(Id3_3,rot_0_3m)),
w3_0_0),
crossprod(d3_0p_0,evalm(m*map(diff,d3_0m_0,t)))),
add(
multiply(
multiply(transpose(rot_0_4m),
multiply(Id4_4,rot_0_4m)),
w4_0_0),
crossprod(d4_0p_0,evalm(m*map(diff,d4_Om_0,t))))):

#About point 4...

H4_0:=innerprod(
add(
multiply(
multiply(transpose(rot_0_3m),
multiply(Id3_3,rot_0_3m)),
w3_0_0),
crossprod(d3_4_0,evalm(m*map(diff,d3_0m_0,t)))),
multiply(transpose(rot_0_3m),array([0,1,0]))):

angdot:= array([diff(phi(t),t),diff(psi(t),t),diff(thetastm(t),t),
diff (thetaswm(t),t)]):

Angmom:=array([HOp_0[1] ,HOp_0[2] ,HOp_0[3],H4_0]):

for i from 1 by 1 to 4 do
for j from 1 by 1 to 4 do
mp[i,j]:=coeff(expand(Angmom[i]),angdot[j],1)

od;
od;

g:=(i,3) ->mp[i,jl:

coef _matrix:=matrix(4,4,g):

for r from 1 by 1 to 4 do
for s from 1 by 1 to 4 do
Twocoef _matrix[r,s]:=simplify(subs(phi(t)=x1,psi(t)=x3,
thetastm(t)=x5m,thetaswm(t)=x7m, coef_matrix[r,s])):
Threecoef_matrix[r,s]:=
subs(sin(x1)=s1,sin(x3)=s3,sin(x5m)=s5m,sin(x7m)=s7m,
cos(x1)=cl,cos(x3)=c3,cos(xbm)=cbm,cos(x7m)=c7m,
Twocoef_matrix[r,s]):
od:
od:

gg:=(r,s) ->Threecoef_matrix[r,s]:
temp_matrix:=matrix(4,4,gg):

minus_matrix:=map(collect,map(collect,map(collect,map(collect,

map(collect,
map(collect,map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,temp_matrix



,s1),c1),s3),c3),sbm),cbm),c7m),s7m)
»X),¥),2) ,m)
,I111),112),113),122),123),133):

#interface(screenwidth=60) ;

#jump3D_ff_plus

#jump3D_ff_plus generates the post-collision collision-rule

#matrix. The output is plus_matrix.

#Invoke linear algebra package
with(linalg):

#Kinematics

#Rotations Matrices

rot_0_1l:=matrix([[cos(phi(t)),sin(phi(t)),0],
[-sin(phi(t)),cos(phi(t)),0],
[0,0,11]):
rot_1_2:=matrix([[1,0,0],
[0,cos(psi(t)),sin(psi(t))],
[0,-sin(psi(t)),cos(psi(t))]]):
rot_2_3p:=matrix([[cos(thetastp(t)),0,-sin(thetastp(t))],
[0,1,01,
[sin(thetastp(t)),0,cos(thetastp(t))]]):
rot_3_4p:=matrix([[cos(thetaswp(t)),0,-sin(thetaswp(t))],
[0,1,0],
[sin(thetaswp(t)),0,cos(thetaswp(t))]]):
rot_0_2:=multiply(rot_1_2,rot_0_1):
rot_0_3p:=multiply(rot_2_3p,multiply(rot_1_2,rot_0_1)):
rot_0_4p:=multiply(rot_3_4p,multiply(rot_2_3p,
multiply(rot_1_2,rot_0_1))):

#Angular velocity

w3_0_0:=add(array([0,0,diff(phi(t),t)]),
add(multiply(transpose(rot_0_1),
array([diff(psi(t),t),0,0])),
multiply(transpose(rot_0_2),
array([0,diff (thetastp(t),t),0]1)))):
w4_0_0:=add(w3_0_0,multiply(transpose(rot_0_3p),
array([0,diff(thetaswp(t),t),0]))):

#Position Vectors

d3_0p_0:= multiply(transpose(rot_0_3p),array([x,-y,z])):

d4_Op_0:=add(multiply(transpose(rot_0_3p),array([0,0,1])),

multiply(transpose(rot_0_4p),array([-x,y,1-2]))):
d4_4_0:= multiply(transpose(rot_0_4p),array([-x,y,1-2z])):

#Angular momenta
#Moment of Inertia Matrices

#w.r.t d3

Id3_3:=matrix([[I11,I12,I13],
[I12,122,123],
[113,123,133]]):

#w.r.t d4

Id4_4:=matrix([[I11,I12,I13],
[I12,122,123],
[113,123,133]1):
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#About point O_plus...

HOp_0:=add(
add (
multiply(
multiply(transpose(rot_0_3p),
multiply(Id3_3,rot_0_3p)),
w3_0_0),
crossprod(d3_0p_0,evalm(m*map(diff,d3_0p_0,t)))),

add(
multiply(
multiply(transpose(rot_0_4p),
multiply(Id4_4,rot_0_4p)),
wéd_0_0),
crossprod(d4_Op_0,evalm(m*map(diff,d4_0p_0,t))))):

#About point 4...

H4_0:=innerprod(
add(
multiply(
multiply(transpose(rot_0_4p),
multiply(Id4_4,rot_0_4p)),
w4_0_0),
crossprod(d4_4_0,evalm(m*map(diff,d4_0p_0,t)))),
multiply(transpose(rot_0_4p),array([0,1,0]))):

angdot:= array([diff(phi(t),t),diff(psi(t),t),diff(thetastp(t),t),
diff(thetaswp(t),t)]):

Angmom:=array([HOp_0[1] ,HOp_0[2],HOp_0[3],H4_0]1):

for i from 1 by 1 to 4 do
for j from 1 by 1 to 4 do
mp[i,j]:=coeff(expand(Angmom[i]),angdot[j],1)

od;
od;

g:=(i,j) ->mpli,jl:
coef_matrix:=matrix(4,4,g):

for r from 1 by 1 to 4 do
for s from 1 by 1 to 4 do
Twocoef _matrix[r,s]:=
simplify(subs(phi(t)=x1,psi(t)=x3,thetastp(t)=x5p,
thetaswp(t)=x7p, coef_matrix[r,s])):
Threecoef_matrix[r,s]:=
subs(sin(x1)=s1,sin(x3)=s3,sin(xbp)=sbp,sin(x7p)=s7p,
cos(x1)=cl,cos(x3)=c3,cos(xbp)=cbp,cos(x7p)=cTp,
Twocoef _matrix[r,s]):
od:
od:

gg:=(r,s) ->Threecoef_matrix[r,s]:
temp_matrix:=matrix(4,4,gg):

plus_matrix:=
map(collect,map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,map(collect,map(collect,
map(collect,map(collect,map(collect,temp_matrix
,s1),c1),s3),¢c3),s5p),c5p),c7p),s7p)
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»X),Yy),2),m)
,I111),112),113),122),123),133):

#interface(screenwidth=60);
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Appendix C

Derivation of the Infinite
Sequences of The Measure of

Angular Rate of the 2D Rimless
Wheel

Here, we derive the three very special infinite sequences of the after-collision angular rate that leave
the 2D rimless wheel eventually in the vertical position. Each of the sequences is constructed as
follows. First, we find the first point in the sequence as the measure of angular velocity after one
collision such that, after the next collision, the wheel reaches the vertical in infinite time. Then, we
find the second point as the measure of angular velocity such that the after a collision the wheel
emerges with the measure of angular velocity that is the first point in the sequence and so on up to
the my, measure of angular velocity in the sequence.

For example, consider the first sequence, 9"z, > 9"z. In terms of the map P, the first point in
the sequence, %"z;, the point that gets mapped to "z after one collision, is found by solving

dny = P(™z) or (C.1)
dn
dny = — 2 _4)’sinasin . (C.2)
2
7 n
Then, similarly,
dny = P(%2z) or (C.3)
dnz 1
dngy = N21 — 4)\? sin asin %(1 + F)
dny A T 1
= — = —4)sinasin —(1+ —). (C.4)
(u?)? noop?
Next,
dn
dn z 9 . . T 1 1
23 = ——= — 4N sinasin—(1+ — + ) (C.5)
() AR E
and so on until
dn
J iy g 1 1 1
"Zm = Mz—m — 4 smasmﬁ(l + E + 2 +--+ W)
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dny 9 s i 1

= —— —4)°sinasin— ) ——. (C.6)
p2m n & p2(k=1)

The other two infinite sequences are derived similarly. All three sequences and their conditions

for existence are summarized in detail below. For each of the sequences to exist, the necessary

condition is that a < 7; otherwise, the vertical position does not exist.

e 1. There exists a monotonically increasing infinite sequence of angular velocities after collision,
dng . > 4"g > 0, such that if the wheel starts with any angular velocity in the sequence, the
wheel will eventually stop in the vertical position in the downhill direction after a finite number
of collisions; i.e., each measure of angular velocity z(%"6,,) = "2, > ™z > 0 gets mapped

eventually by the map P to "z in m iterations, P™(%"z,,) = 9"z. The sequence "z, is
dn m
dn < 2 . . 1
Zm = —— — 4\ sinasin — E —. C.7
m = am n & 1 2(k=1) (C.7)
Summing the series yields
dn 2m 2
K4 -1
M = — —4)\?sin asin E%NZ—m (C.8)
I nopt=1p

The existence of this sequence requires that each angular velocity after collision in the sequence
be greater than the angular velocity after collision that is necessary for the wheel to eventually
stop in the vertical position; i.e., the inequality "z, > 2 > 0 holds. This requirement yields
a necessary and sufficient condition for the existence of the sequence,

g(a,X%,n) > 0 or (C.9)

a < o
where the function g and critical angle o, are defined in Equations (2.29) and (2.30).

e 2. There exists a monotonically decreasing sequence of angular velocities after collision, urf <
P < 0, such that if the wheel starts with any angular velocity in the sequence, the wheel will
eventually stop in the vertical position in the uphill direction after a finite number of collisions;
i.e., each measure of angular velocity z(“P8,,) = “Pz,, < “Pz < 0 gets mapped eventually by
the map P to “Pz in m iterations, P™("Pz,,) = “Pz. The sequence “Pz,, is

up M _ 1 2
2; — 4)\%sin asin fﬂflﬁ_ (C.10)
7 nop?—1 pm

The existence of this sequence requires that each angular velocity after collision in the sequence
be greater in magnitude than the angular velocity after collision necessary for the wheel to
eventually stop in the vertical position; i.e., the inequality “Pz,, < *Pz < 0 holds. This
requirement leads to a necessary condition for the existence of the sequence,

+ u?

_NQ

0 7r
1—cos—cosa + sin —sina > 0. (C.11)
n 1 n
This equality holds for any slope angle, 0 < a < 7. But, we already have the more restrictive
condition for the sequence to exist, 0 < a < 7, so that the vertical position is attainable. This
condition is necessary and sufficient.
e 3. First, there exists an angular velocity after collision, “?8 < “Pf < 0, where “P§ = —(#),
such that the wheel fails to make it past the vertical position in the uphill direction, reverses
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direction, makes one collision in the downhill direction and eventually stops in the vertical

position ; i.e., z(*Pf) = vz = —(d:—f), Py < YPz < 0, gets mapped by P in one iteration to

dny If wpg exists, then there exists a monotonically decreasing sequence of angular velocities
after collision, “P6,, < “P@ < 0, such that if the wheel starts with any angular velocity in the
sequence, the wheel will eventually stop in the vertical position in the downbhill direction; i.e.,
each measure of velocity z(“P6,,) = “PZ,, “PZ, < “Pz < 0 gets mapped eventually by P to
Pz in m iterations and then to %"z in one iteration, P+ (*Pz,,) = 9"z. The sequence “PZz,,
is

dn 2

4

TP —1 pu
_H2(m+1)

—4)? sinasin — 21 e (C.12)

The existence of this sequence requires that the inequalities “Pz < “PzZ < 0 and “PZz,,, < "Pz < 0
hold. Both of these inequalities yield the condition

gla,A*,n) < 0 or (C.13)
a > .

Thus, a necessary and sufficient condition for the sequence to exist is that the slope be inter-
mediate in size; i.e., a. <a < I.
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Appendix D

3-1-2 Euler Angles

The rotating frames and their associated bases, coordinates, and angles of rotation used to define
the 3-1-2 Euler angles are summarized in Table D.1. The frames and Euler angles are illustrated in

Table D.1: Description of the Rotating Frames and the 3-1-2 Euler angles.

Bases, Coordinates, and Rotation Angles

| Reference Frames:

Frame Basis Coordinates Euler Angle
F = Fixed Frame er = (g, Jr.ky) | (zf, 9y, 2¢) NA
‘H = Heading Frame | ey = (in, ju,kn) | (@, yn, zn) | Heading Angle, ¢
B = Bank Frame e, = (ip, Jo,kp) (zb, Yb, 2p) Bank Angle, ¢
W = Body Frame | ey = (1w, Ju.Kw) | (Tw, Yw; 2w) Pitch Angle, 6

figure D.1. The heading angle ¢ is a rotation of the heading frame #H with respect to the fixed frame
F about the z; axis; the bank angle ¢ is a rotation of the bank frame B with respect to the heading
frame about the z; axis; and the pitch angle is a rotation of the body frame W with respect to the
bank frame about the y; axis.

The general angular orientation described so far may be represented by a product of three
principal rotation matrices:

where
[ cp sp O
R3 (¢) = _8¢ C¢ 0 )
| 0 0 1
1 0 0
Ri(y) = 0 c sy |, and
0 —s¢ co
cd —s8 0
R:(0) = 0 1 0 (D.2)
s 0 b
(D.3)

The letters ‘¢’ and ‘s’ are shorthand for cosine and sine. So, multiplying the three matrices together,
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Figure D.1: The 3-1-2 Euler angles and associated rotating frames.
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we get
cl cop— sO spsyp O s+ s0 sp cp s cyp
R(¢,9,0) = —cy 5¢ cp cip s |- (D.4)
s6 co sp s —co sy cp cl
Thus, the relationship between the reference frame bases are:
en = Rs(dey
e, = Ri(y)en = Ri(¥)Rs(p)ey
ey = Ry(f)ey = Ry(0)Ri(v)en = R(g,¢,0)ey. (D.5)

There are 12 independent Euler angle sets which is due to the possible combinations of three
different numbers. That is, there are 12 different sequences of rotations about each of the coordinate
axes to describe the same spatial orientation. We have chosen 3-1-2 Euler angles because the heading
and bank angles do not change through a collision. That this so can be shown as follows. Consider
the case of the 3D rimless spoked wheel. (The results are the same for the planar 3D walking
mechanism.)

We move the origins of each of the frames instantaneously with each collision, from the tip of
spoke i to the tip of spoke ¢ + 1 currently in contact with the ground at collision 7 + 1. After a
collision, then, we redefine the wheel orientation with the respect to the newly positioned frames.

As the origins of the various frames i are moved to the tip of the colliding spoke i + 1, however,

2w
we not only translate the wheel frame but also rotate it by —— about the y,-axis with respect to

n
the bank frame so that the z,-axis of the new wheel frame is aligned with spoke i + 1. The spoke
presently on the ground in some sense characterizes the orientation of the wheel frame with respect
to the bank frame. Thus, the pitch angle changes from T o T through a downbhill collision.

n n
The orientation of the wheel basis with respect to the fixed frame basis just before collision i + 1
is given by Equation (D.5)
i+l — i+l — i+l — i+lp— 2m
e, = |R(" g7, TYpT, 0T = ——)| ey. (D.6)
The relationships between the wheel frame and its associated basis from before to after collision
1+ 1 are

n

Hlypt it = itlet — [RQ(G = —2%)] Hle-. (D.7)
The question now is whether the bank or heading frames change their orientation with respect to
the fixed frame through a collision. The answer can be seen as follows.

For each of the 12 Euler angle sets where sequential rotations are around new axes, there are
equivalent sequences of rotations about the fixed frame axes that result in the same final orientation
of a rigid body (e.g., see Craig [87]). For instance, 3-1-2 Euler angles defined with respect to
intermediate moving frames are equivalent to 2-1-3 Euler angles about the fixed frame axes. So, to
answer the above question, we can look at rotations of the wheel in reverse order about the fixed

2
frame axes. If we rotate the wheel frame by 6 = —“T about the fixed frame ys-axis, as we would to

rotate the wheel frame through a collision about tlﬁe intermediate bank frame y, — azis, obviously
no rotations 9 and ¢ are required about the z; or 2y axes, respectively. Thus, if we make a rotation
of the wheel frame about the final y;-axis through a collision, there is no change in the orientation
of the bank and heading frames with respect to the fixed frame.
The relationships of the bank and heading frames and their associated bases from before to after
a collision ¢ + 1 are, thus,
i+1H+ — H_IH_, i+1e;lf— — i+1e;

i+16+ — i+lB_, i+1eb+ — i+1e; (D8)
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D.1 Equivalent Finite Rotations

Here, we show how, for each of the twelve independent Euler angle sets, there exists an equivalent
rotation sequences about the fixed frame axes. To see that this is true, consider a sequence of two
rotations about two axes in the same basis and compare the result to a sequence of rotations about
two axes in different frames that are rotated from each other. Let R! be a rotation about an awis 1
and R? a rotation about an azis 2, R' : R* - Rand R?: R® — R.

D.1.1 Rotations about Fixed Frame Axes

Consider rotation 1 followed by rotation 2, both with respect to the same basis A = e;. Let
v = R!-uand w = R?-R! - u where R! = Rzljez-ej, R? = Rfjeiej, and u, v, w € R%. Also,
R?-R' = R}e;e; - Ry ece, = R}, -R?ke,-ek. Finally,

w = R?le-keiek-ug

= RZR)e;. (D.9)

ij

D.1.2 Rotations about Moving Frame Axes

Next, consider rotation 2 followed by rotation 1 about a new axis in basis B = &; rotated by R?
from the basis A = e;. Note that new azis 1 has the same orientation with respect to B as azis 1
has with respect to A.

Define R! to be a rotation about axis 1 with respect to the basis B = é;

R' = R}&:8; (D.10)
where
él = R2 e
é2 = R2 - €9
é3 = R2 - €3 (D].].)

or

~

ér = R?jeiej-ek
= Rjei. (D.12)

So, in terms of the basis A = e;,

R' = R} Rlex Ries
———

Ry
Let v/ = R?-u and w = R! - R? - u where u, v/, w’ € R® and

R'-R? = R}R}Rlere; R:ee,
R, R} R}, R} ere,
R}jR%i(Sjsekes

= RpRij0jseres

Ry Rj exes. (D.14)
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Finally, then,

/ 2 pl
w =wre, = Rp;R, ere;-uye,

= R:,Rjuey. (D.15)

Equation (D.9) is equivalent to Equation (D.15). Thus, if we rotate a rigid body through some angle
6, about azis 1 and then about azis 2 through an angle 62 (axes 1 and 2 fixed with respect to each
other in a basis A4), then that sequence of rotations is equivalent to rotating the rigid body first
about the same azis 2 in A through an angle 6, followed by rotating it about a new azis 1 fixed in
a basis B through an angle 6,. B is rotated from .4 about azis 2 by an angle 6. The orientation of
the new azis 1 with respect to B is the same as the orientation of azis 1 with respect to A.

D.2 Absolute Angular Velocity and Acceleration

Written in the body frame coordinates, the absolute angular velocity of a rigid body W in terms of
the 3-1-2 Euler angles and their rates is,

Ww/Fr = WyF+wpyt+wWw/s (D.16)
= ¢ky +Pin + 0o (D.17)

= (00 b — 50 e q'5+) fw + (s¢ b+ é) o + (D.18)

<c€ b b+ 50 ¢) k. (D.19)

Again, in body frame coordinates, the absolute angular acceleration of a rigid body W in terms of
the 3-1-2 Euler angles and their rates is,

Fowr = Yowr (D.20)
= [cG(&—cw 0¢) + s6 (¢(s¢ ¢—0) —c qﬁ)z]iw—F
e b+ 59 +8] 5 +
[co (¢ (9 — 89 <z>) e 49) + 50 (& p) 9’¢3)] k. (D.21)

Equation (D.20) says that the absolute rate of change of the absolute angular velocity of body W
(i- e., with respect to fixed frame F) is equal to the rate of change of the angular velocity of body
W with respect to itself.
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Appendix E

Maple® Code for the Perturbation
Analysis of the Stability of the 3D
Rimless Wheel

Presented here are the Maple® codes used to find the analytical approximations to the return map
eigenvalues evaluated at the limit cycle fixed point. There are three files:

1. nonlinegns_rimless3D for_approx (generates the full nonlinear equations of motion of the rim-
less wheel between spoke collisions;

2. approx1 (finds the approximate limit cycle pitch angle ©(T") and period T*);

3. approx2 (finds the matrix that takes the state of the wheel just after a collision to just before
the next (matrix E);

4. approx3 (finds the total collision rule matrix and its approximation, matrix (B));

5. construct_stride (finds the matrix that represents the correction the perturbation map to ac-
count for the perturbed limit cycle period (matrix D), constructs the approximation to the
Jacobian A = BDE, AND finds the approximate eigenvalues.)

#This file generates the nonlineqns of motion of the 3D wheel
#in between collision for use in the approximation scheme in
#file approxl. The equation for angular momentum balance about
#the contact point (A) of the spoke currently on the ground is
#saved in ‘nonlinear_rimless3D_eqnset.m‘ The applied moment

#is save as the vector applmom and the rate of change of angular
# momentum is saved as HadotF.

# Now, we proceed with the equations of motion between collisions.
#Load linear algebra package.

with(linalg);

#Define the 3-1-2 Euler angles phi,psi, and theta as
#functions of time.

PSI:=psi(t);
PHI:=phi(t);
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THETA:=theta(t);

#Define the angular velocity in terms of the heading, bank,
#and pitch rates

wh:=array([0,0,diff(phi(t),t)]); #in fixed frame basis
wb:=array([diff(psi(t),t),0,0]); #in heading frame basis
wp:=array([0,diff(theta(t),t),0]); #in bank frame basis

#Define the rotation matrices

rotl:=matrix([[1,0,0],[0,cos(PSI),sin(PSI)],
[0,-sin(PSI),cos(PSI)]]);
rot2:=matrix([[cos(THETA),0,-sin(THETA)], [0,1,0],
[sin(THETA),0,cos(THETA)]]);
rot3:=matrix([[cos(PHI),sin(PHI),0], [-sin(PHI),cos(PHI),0],
[0,0,111);
rot:=multiply(rot2,multiply(rotl,rot3));

#Define the angular velocity vector in the wheel frame basis
whwheel:=multiply(rot2,multiply(multiply(rotl,rot3),wh));
wpwheel:=multiply(rot2,wp);
wbwheel:=multiply(rot2,multiply(rotl,wb));

w:= add(whwheel,add(wpwheel,wbwheel));

#Define the angular acceleration vector wrto wheel frame
#expressed in wheel frame basis.

wprime:=map(diff,w,t); #;i.e., (wdotW/F)/W.

#Define the moment of inertia matrix with respect to the
#wheel frame at A.

inertia:=matrix([[J+m*1~2,0,0],[0,2*J+m*1"2,0],[0,0,J]]);
#Compute the angular momentum about A in wheel frame.
HA:=multiply(inertia,w);

# (6D (2)

#Now use Hdot/F = (HA)dot/W + wW/F x HA =

#Ix(wdotW/F)/W + wW/F x HA.

#(1)...Compute the rate of change of angular momentum w.r.t.
#the wheel frame.

HdotW:=multiply(inertia,wprime);

# (2)...Compute w cross angular momentum about A.
wcrossHA:=crossprod(w,HA);

#Compute the absolute rate of change of angular momentum
#about A with respect to fixed frame, all in terms of wheel
#frame basis vectors. i.e. just add (1) and (2) from above
#to get (Ha)dot/F.

HadotF:=add (HdotW,wcrossHA) ;
#Define the gravity unit vector in terms of the fixed frame
#F unit vectors. Remember, the fixed frame is tilted an angle

#alpha!!!

gravity:=array([sin(alpha),0,-cos(alpha)]);
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gravity:=evalm(grav*gravity);

#Compute the gravity vector in the the wheel frame coordinates
gravprime:=multiply(rot,gravity);

#Define the vector from A to pt. CM in terms of wheel frame unit
#vectors. Note: disk has sopke-length 1.

rca:=array([0,0,1]);

#This is not part of wheel, it is part of spoked wheel!
#Compute the applied moment due to gravity about pt. A

appliedforce:=evalm(m*gravprime) ;
applmom:=crossprod(rca,appliedforce);

#Form the equations of motion: M=Hdot.

eqnset :={applmom[1]=HadotF[1],applmom[2]=HadotF[2],
applmom[3]=HadotF[3]};

eqnl:=simplify(subs(grav=1,m=1,1=1,applmom[1]=HadotF[1]));
eqn2:=simplify(subs(grav=1,m=1,1=1,applmom[2]=HadotF[2]));
eqn3:=simplify(subs(grav=1,m=1,1=1,applmom[3]=HadotF[3]));

varset:={diff (phi(t),t$2),diff(psi(t),t$2),diff(thetal(t),t$2)};
eqnset:={eqnl, eqn2, eqn3};
SolutionSet:=solve(eqnset,varset);

save SolutionSet, HadotF, applmom,
‘nonlinear_rimless3D_eqnset.m‘;

#approx1

#Aproximation of the the Map representing the motion of the
#Rimless 3D Wheel

#We pursue a perturbation expansion of the map representing
#the motion of the wheel about the limit cycle motion in order
#to determine its stability. We use two smallness parameters:
#DELTA for the the limit cycle motion between #collisions and
#EPSILON for the perturbations from the limit cycle. In this
#way we can distinguish between the size of the perturbations
#and the #size of the small but finite motion between collision.
#DELTA is 0(1/n), where n is the number of spokes

#between #collisions.

#The approximation to the pitch angle is saved as the variable
#final_x and the approximation to the limit cycle period as
#final_T in a file final_x_T.m The second derivatives from the
#equations of motion are saved in the

#We start with the nonlinear equations of motion for the 3D
#rimless wheel between spoke collisions. These equations were
#generated using the MAPLE batch file
#nonlineqns_rimless3D_for_approx and stored in
#nonlinear_rimless3D_eqnset.m

#Read in equations of motion.
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read ‘nonlinear_rimless3D_eqnset.m‘;
#Non-dimensionalization:

# non_dim. time: tau= t*(sqrt(grav/length)
# non_dim. inertia: J=I1/m*1"2 2J=I2/m*1"~2
#NOTE: From here on, tau is ‘t’.

eqni:=simplify(subs(grav=1,m=1,1=1,applmom[1]=HadotF[1]));
eqn2:=simplify(subs(grav=1,m=1,1=1,applmom[2]=HadotF[2]));
eqn3:=simplify(subs(grav=1,m=1,1=1,applmom[3]=HadotF[3]));

#We aproximate the equations of motion near the fixed point
#to first order in EPSILON by substituting p
#hi=phiO+epsilon*phi_hat,

#psi=psi_O+epsilon*psi_hat,

#and theta=theta_O+epsilon*theta_hat.

#First, we define the perturbations as functions of time.

PHI_h:=phi_h(t);
PSI_h:=psi_h(t);
THETA_h:=theta_h(t);
THETA_O:=theta_0(t);

eqnia:=simplify(subs(phi(t)=phi_O+epsilon*phi_h(t),
psi(t)=psi_O+epsilon*psi_h(t),
theta(t)=THETA_O+epsilon*theta_h(t),
eqni));

eqn2a:=simplify(subs(phi(t)=phi_O+epsilon*phi_h(t),
psi(t)=psi_O+epsilon*psi_h(t),
theta(t)=THETA_O+epsilon*theta_h(t),
eqn2));

eqn3a:=simplify(subs(phi(t)=phi_O+epsilon*phi_h(t),
psi(t)=psi_O+epsilon*psi_h(t),
theta(t)=THETA_O+epsilon*theta_h(t),
eqn3));

#Keeping with our strategy, we taylor expand the three
#equations of motion up to O(EPSILON).

linegnsetll:=
convert(taylor(op(2,eqnia)-op(1,eqnia),epsilon=0,2),polynom);

lineqgnset22:=
convert(taylor(op(2,eqn2a)-op(1,eqn2a),epsilon=0,2),polynom) ;

lineqnset33:=
convert(taylor(op(2,eqn3a)-op(1,eqn3a),epsilon=0,2),polynom) ;

#These equations above are the perturbed equations of motion
#up to order EPSILON.

#Now, we proceed to further approximate these three perturbed
#equations by using a second small parameter to expand THETA_O,
#the limit cycle pitch angle as a function of time between
#collisions. To begin, we rescale time in the EPSILON perturbed
#equations.

#First, we rescale nondim. time tau in the perturbed eqns.
#tau=DELTA*taul. tau is 0(1/n) between collisions. Thus, taul
#is 0(1). NOTE: Again, as above, we let ‘t’ be taul.

linl:=simplify(subs(diff(phi_h(t),t$2)=tempphi/delta”2,
diff(psi_h(t),t$2)=temppsi/delta”2,



diff(theta_h(t),t$2)=temptheta/delta”2,
diff (THETA_O,t$2)=tempthetaO/delta”2,lineqnset1l));

lin2:=simplify(subs(diff(phi_h(t),t$2)=tempphi/delta”2,
diff(psi_h(t),t$2)=temppsi/delta2,
diff(theta_h(t),t$2)=temptheta/delta~2,
diff(THETA_O,t$2)=tempthetaO/delta"2,lineqnset22));

1lin3:=simplify(subs(diff (phi_h(t),t$2)=tempphi/delta~2,
diff(psi_h(t),t$2)=temppsi/delta”2,
diff(theta_h(t),t$2)=temptheta/delta”2,
diff(THETA_O,t$2)=tempthetaO/delta"2,lineqnset33));

linll:=simplify(subs(diff(phi_h(t),t)=diff(phi_h(t),t)/delta,
diff(psi_h(t),t)=diff(psi_h(t),t)/delta,
diff(theta_h(t),t)=diff(theta_h(t),t)/delta,
diff (THETA_O,t)=diff (THETA_O,t)/delta,
1lini));

1in22:=simplify(subs(diff(phi_h(t),t)=diff(phi_h(t),t)/delta,
diff(psi_h(t),t)=diff(psi_h(t),t)/delta,
diff (theta_h(t),t)=diff(theta_h(t),t)/delta,
diff(THETA_O,t)=diff (THETA_O,t)/delta,
1in2));

1in33:=simplify(subs(diff(phi_h(t),t)=diff(phi_h(t),t)/delta,
diff(psi_h(t),t)=diff(psi_h(t),t)/delta,
diff (theta_h(t),t)=diff(theta_h(t),t)/delta,
diff (THETA_O,t)=diff (THETA_O,t)/delta,
1in3));

#We now rescale the limit cycle pitch angle between collision,
#theta_O(t)=DELTA*x(t) since theta_0(t) is 0(1/n);thus,
#x(t) is 0(1).

#Rescale slope angle alpha=alphabar*DELTA. alpha is 0(1/n).
#Thus, alphabar is 0(1).

lineqnil:=subs( tempphi=diff(phi_h(t),t$2),
temppsi=diff(psi_h(t),t$2),
temptheta=diff(theta_h(t),t$2),
tempthetaO=diff (THETA_0,t$2),1inl1);

lineqn22:=subs( tempphi=diff(phi_h(t),t$2),
temppsi=diff(psi_h(t),t$2),
temptheta=diff (theta_h(t),t$2),
tempthetaO=diff (THETA_0,t$2),1in22);

lineqn33:=subs( tempphi=diff(phi_h(t),t$2),
temppsi=diff(psi_h(t),t$2),
temptheta=diff (theta_h(t),t$2),
tempthetaO=diff (THETA_0,t$2),1in33);

lineqgni:=
subs (THETA_O=delta*x(t) ,alpha=delta*alphabar,lineqnil);

lineqgn2:=
subs (THETA_O=delta*x(t) ,alpha=delta*alphabar,lineqn22);

lineqn3:=
subs (THETA_O=delta*x(t) ,alpha=delta*alphabar,lineqn33);

#For our limit cycle motion, we have a functional relationship
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#between phi and psi:psi_O=arctan(-sin(phi_0)*tan(DELTA*alphabar)
#So, here we expand psi_O up to O(DELTA"3) to be consistent with

#our approximation strategy.

psi_O_

#From

tay:=convert (
taylor(
arctan(-sin(phi_0)*tan(delta*alphabar)),
delta=0,4),polynom);

this we get psi_O_tay=-alphabar*sin(phi_0)*delta and

#substitute below.

# Now,

we isolate the zeroth and first order terms in

#EPSILON AND expand our equations up to O0(DELTA"2).

linla:=subs(psi_O=psi_O_tay,
expand(delta~2*coeff(collect(lineqnl,epsilon),epsilon,0)));
linlb:=subs(psi_O=psi_O_tay,expand(delta~2*coeff(collect(lineqnl,epsilon),
epsilon,1)));
lin2a:=subs(psi_O=psi_O_tay,expand(delta~2*coeff(collect(lineqn2,epsilon),
epsilon,0)));
1in2b:=subs(psi_0=psi_O_tay,expand(delta~2*coeff (collect(lineqn2,epsilon),
epsilon,1)));
lin3a:=subs(psi_0=psi_O_tay,expand(delta~2*coeff(collect(lineqn3,epsilon),
epsilon,0)));
1in3b:=subs(psi_0=psi_O_tay,expand(delta~2*coeff(collect(lineqn3,epsilon),
epsilon,1)));
linla_taylor:=convert(taylor(linla,delta=0,4),polynom);
linib_taylor:=convert(taylor(linib,delta=0,4),polynom);
lin2a_taylor:=convert(taylor(lin2a,delta=0,6),polynom);
1lin2b_taylor:=convert(taylor(lin2b,delta=0,4),polynom);
lin3a_taylor:=convert(taylor(lin3a,delta=0,4),polynom);

1in3b_

#NOTE:

taylor:=convert(taylor(1lin3b,delta=0,4),polynom);

We expand Lin2a, an equation which is the zeroth

# order term in the second rescaled EPSILON expansion
#equation lineqn2, up to O(DELTA"6). We will need this
#order of approximation in order to solve for the
#expansion coefficients in x(t) up to O(DELTA"2).

#Now,

we solve for x(t), the aproximation to the angle

#between collisions up to order delta™2. We start with
eqn. lin2a_taylor from above.

# Part one: order DELTA

HERB R RRRB LR RR R R R BB R R SRR BB AR BB B BB BB E SRR R BB RS RS R SRR S
#We get the equation for x(t) by picking off the
#coefficient of the DELTA"2 term in lin2a_taylor;

eqn_for_x:=simplify((lambda“2)*

#Now,

subs ((2*J+1)=1/lambda"2,
factor(coeff(lin2a_taylor,delta))+
coeff(lin2a_taylor,delta”~3)*delta”2));
we seek a second order approximation to x(t).

expand_x(t) :=x0(t)+delta"2*x1(t)+delta~4*x2(t);

#Next,

we substitue this approximation into the

#equation for x.



expand_eqn_x:=
collect(expand(subs(x(t)=expand_x(t),eqn_for_x=0)),delta);

#We begin to solve for x0(t) and x1(t) by applying the
#initial condition that x(0)=-Pi;

order_0:=op(4,op(l,expand_eqn_x));
order_2:=coeff(op(3,op(l,expand_eqn_x)),delta,2);
x0_solns:=dsolve(order_0=0,x0(t));
x0_solnss:=subs(_C1=A0, _C2=A1, x0_solns);
x0_soln:=subs(A0=-Pi,op(2,x0_solnss));

order_2s:=subs(x0(t)=x0_soln,order_2);
x1_solns:=dsolve(order_2s=0,x1(t));
x1_soln:=subs(_C2=A2,0p(2,x1_solns)-_C1);

#With x0 and x1 thus far, we can now rewrite our approximation
#to x(t);

expand_x(t) :=x0_soln+delta”2*x1_soln;

#But, to finish, we need to apply the end_of_cycle condition
#and collision condition for the limit cycle to exist:
#(1)x(T)=Pi and (2) mu*xdot(T)=xdot(0). T is the time between
#collisions in the 1lmit cycle motion. We will

#name T ‘T_coll’ here and approximate it up to O(DELTA"2).

#(1)Enforce end_of_cycle angle, x=Pi.

T_co0ll:=TO+delta"2*T1;
x_colls:=collect(expand(subs(t=T_coll,expand_x(t))),delta);
ord_0:=-Pi+A1%TO;

TO_soln:=solve(ord_0=Pi,TO0);

# no use yet: ord_2:=coeff(x_colls,delta"2)

#(2)enforce limit cycle condition
mu_1:=1-((delta"2)*(2*lambda~2*(Pi~2)));

xprime(t) :=diff (expand_x(t),t);
xprime0:=subs(t=0,xprime(t));

xprimeT_colls:=collect(expand(subs(t=T_coll,xprime(t))),delta);

xprimeT_coll:=op(3,xprimeT_colls)+op(4,xprimeT_colls);

limcycle_cond:=collect(expand(
subs (A2=0,mu_1x*

subs(TO=TO_soln,xprimeT_coll)=xprime0)),delta);

#Finally, we solve for remaining coefficients of integration.

constl:=solve(coeff (op(2,0p(1,limcycle_cond)),delta~2)=0,41);
constant_1:=
subs (abs(alphabar)=alphabar, abs(cos(phi_0))=cos(phi_0),
abs(const1[2]));

#And, here are x0(t), x1(t) and TO.
x0last(t) :=subs(Al=constant_1,x0_soln);
x1last(t) :=subs(Al=constant_1,x1_soln);

TOlast:=subs(Al=constant_1,T0O_soln);

#But, we still need T1 and one more constant of integration
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#to completely determine x1(t).

# Part two: order DELTA"2

#The procedure is the same as above except that we keep higher
#order terms to find Tl and the remaining constant of
#integration _C3.

neweqn_for_x:=collect(simplify((lambda~2)*
subs ((2*J+1)=1/lambda"2,
factor(coeff(lin2a_taylor,delta))+
coeff(lin2a_taylor,delta”3)*delta”2+
coeff(lin2a_taylor,delta”5)*delta"4)),delta);
newexpand_x(t) :=x0(t)+delta”2*x1(t)+delta~4*x2(t);
newexpand_eqn_x:=convert(taylor(op(1l,collect (expand(subs(
x(t)=newexpand_x(t) ,neweqn_for_x=0)),delta)),delta=0,6),
polynom) ;

order_4s:=subs(x0(t)=x0last(t),x1(t)=x1last(t),
coeff (newexpand_eqn_x,delta"4));
x2_solns:=dsolve(order_4s=0,x2(t));
x2_soln:=collect(subs(_C2=A3,_C1=0,0p(2,x2_solns)),t);
newest_expandx(t) :=
x0last(t)+(delta~2)*x1last(t)+(delta4)*x2_soln;
newT_coll:=TQ+delta"2xT1+delta~4*T2;
newx_colls:=
collect(expand(subs(t=newT_coll,newest_expandx(t))),delta);
newestx_colls:=subs(T0=T0last,
convert(taylor(newx_colls,delta=0,6),polynom));
neword_2:=coeff(newestx_colls,delta"2);
T1_soln:=solve(neword_2=0,T1);

newmu_1:=1-((delta~2)*(2%lambda~2*(Pi~2)))+
(delta~4*(2/3)*lambda~2*(Pi~4));

newxprime(t) :=diff (newest_expandx(t),t);

newxprime0:=subs (t=0,newxprime(t));

newxprimeT_collss:=
convert(taylor(collect(expand(
subs (t=newT_coll,newxprime(t))),delta),delta=0,6),polynom);

newxprimeT_collsss:=subs(T0=T0last,newxprimeT_collss);

newlimcycle_cond:=
collect(expand(
subs (A3=0,newmu_1*(newxprimeT_collsss)=newxprime0)),
delta);

const2_eqn:=
subs(T1=T1_soln,
coeff(taylor(op(l,newlimcycle_cond),delta=0,6),delta~4)=0);

const2aa:=solve(const2_eqn,A2);
constant_2:=const2aa;

x0final(t) :=x0last(t);

x1final(t) :=collect(subs(A2=constant_2,x1last(t)),t);
TOfinal:=TOlast;

Tifinal:=subs(A2=constant_2,T1_soln);

#This is the approximation to theta_0(t) up to O0(DELTA"2).

final_x:=simplify(collect(x0final(t)+(delta~2)*x1final(t),t));



#This is the approximation to the time between collision in
#the limit cycle up to O0(DELTA"2).

final T:=simplify(TOfinal+delta”2*T1final);

save final_x, final_T, ‘final_x_T.m‘;

#Now, we return to our three perturbed equations of motion and
insert our approximation to x(t). We will work with equations
linia_taylor and linib_taylor, where i=1,2,3. We have already
used lin2a_taylor to get x(t) leaving five equations. Recall,
these six equations linia_taylor and linib_taylor are the
zeroth and first order coefficients,respectively, from our
three perturbed equations of motion( up to O(EPSILON)), linegni,
i=1,2,3..

#First, linla_taylor shows that the zeroth order term in linegni
#has only O(DELTA"3) terms and higher.

#Second, lin2a_taylor gave us x(t) up to 0(delta"2).

#Third, lin3a_taylor gives us that the zeroth order term in
#lineqn3 is identically zero.

#Now, we shall move on to linib_taylor, i=1,2,3, to get
#approximations to the perturbations to the limit cycle motion,
#phi_h(t), psi_h(t), and theta_h(t). To do this, we substitute
#our approximation to x(t), expand, and ......

newlinib:=convert(linib_taylor,polynom);
newlin2b:=convert(lin2b_taylor,polynom);
newlin3b:=convert(lin3b_taylor,polynom);

newerlinlb:=convert(taylor(
subs(x(t)=final_x,newlinlb),delta=0,4),polynom);

newerlin2b:=convert(taylor(newlin2b,delta=0,4),polynom);

newerlin3b:=convert(taylor(
subs(x(t)=final_x,newlin3b),delta=0,4),polynom);

varset :={diff (phi_h(t),t$2),diff(psi_h(t),t$2),

diff (theta_h(t),t$2)};
eqnset :={newerlinib=0,newer1lin2b=0,newerlin3b=0};
Solution:=solve(eqnset,varset);
#Then, by hand, we pick off the second derivative solutions and
#save them as phiddot, psiddot, and thetaddot.

save phiddot, psiddot, thetaddot, ‘double_derivs.m‘;

#Second derivatives solved for and stored in double_derivs.m
#We will solve these equations in a file called approx2.

#approx2

#This batch file finds the matrix that maps the perturbation to
#a limit cycle just after a collision to just before the next
#collision (matrix E), calls it stride3, and saves it in
#finalstride3.m This matrix is loaded into construct_stride.

#First, we read in the second derivatives, final_x, and final_T
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with(linalg);

read ‘double_derivs.m‘;
read ‘final_x_T.m‘;

#Then, we simplify the equations

phi_h_ddot:=
factor(collect(convert(
taylor(phiddot,delta=0,4),polynom),diff(psi_h(t),t)));
psi_h_ddot:=collect(collect(collect(factor(convert(
taylor(psiddot,delta=0,4),polynom)),psi_h(t)),
diff(phi_h(t),t)),phi_h(t));

theta_h_ddot:=convert(taylor(thetaddot,delta=0,5),polynom);

temp_thetahddot:=
collect(collect(collect(theta_h_ddot,diff(psi_h(t),t)),

theta_h(t)),phi_h(t));

phihddot:=subs(J=((1/lambda~2)-1)/2,phi_h_ddot);

psihddotl:=collect(subs(J=((1/lambda~2)-1)/2,
simplify(coeff(psi_h_ddot,diff(phi_h(t),t)))*diff(phi_h(t),t)+
simplify(coeff(psi_h_ddot,psi_h(t)))*psi_h(t)+
simplify(coeff(op(3,psi_h_ddot),phi_h(t)))*phi_h(t)),
diff(phi_h(t),t));

psihddot:=op(1,psihddotl)+simplify(op(2,psihddotl))+
simplify(op(3,psihddotl));

thetahddot :=subs(J=((1/lambda~2)-1)/2,simplify(
coeff (temp_thetahddot,diff (psi_h(t),t)))*diff(psi_h(t),t)+
simplify(coeff(temp_thetahddot,theta_h(t)))*theta_h(t)+
simplify(coeff(temp_thetahddot,phi_h(t)))*phi_h(t));

#Now, we expand the perturbations up to O(DELTA"3)

new_phi_h(t) :=phi_hO0(t)+delta*phi_hl(t)+delta~2*phi_h2(t)+
delta~3*phi_h3(t);
new_psi_h(t):=psi_hO(t)+delta*psi_hl(t)+delta"2*psi_h2(t)+
delta~3+*psi_h3(t);
new_theta_h(t) :=theta_hO(t)+delta*theta_hil(t)+delta~2*theta_h2(t)
+delta~3*theta_h3(t);

new_phihddot:={expand(diff(new_phi_h(t),t$2))=
convert (taylor(expand (subs(
phi_h(t)=new_phi_h(t),psi_h(t)=new_psi_h(t),
theta_h(t)=new_theta_h(t),phihddot)),
delta=0,4),polynom)};
new_psihddot:={expand(diff(new_psi_h(t),t$2))=
convert (taylor(expand (subs(
phi_h(t)=new_phi_h(t),psi_h(t)=new_psi_h(t),
theta_h(t)=new_theta_h(t),psihddot)),
delta=0,4),polynom)};
new_thetahddot:={expand(diff(new_theta_h(t),t$2))=
convert (taylor(expand(subs(
phi_h(t)=new_phi_h(t),psi_h(t)=new_psi_h(t),
theta_h(t)=new_theta_h(t),thetahddot)),
delta=0,6),polynom)};

#Then, we solve for the zeroth-order terms and substitute them
#back into the equatioms.



phih0(t) :=phihp_i+phihdotp_i*t;
psih0(t) :=psihp_i+psihdotp_i*t;
thetahO(t) :=thetahp_i+thetahdotp_i*t;

newer_phihddot :=expand (subs (
theta_h1(t)=0,phi_hO(t)=phih0(t),psi_h0(t)=psih0(t),
theta_hO(t)=thetah0(t),new_phihddot));
newer_psihddot :=expand (subs(
theta_h1(t)=0,phi_h0(t)=phih0(t),psi_h0(t)=psih0(t),
theta_hO(t)=thetah0(t),new_psihddot));
newer_thetahddot :=expand (subs(
theta_h1(t)=0,phi_h0(t)=phih0(t),psi_h0(t)=psih0(t),
theta_hO(t)=thetahO(t),new_thetahddot));
#Next, we solve for the first order terms and substitute them
#into the equations.

soln_phihl(t) :=op(2,subs(_C1=0,_C2=0,dsolve(coeff(
op(1,op(1,newer_phihddot)) ,delta)=
coeff(op(2,0p(1,newer_phihddot)),delta),
phi_h1(t))));

soln_psih1(t) :=op(2,subs(_C1=0,_C2=0,dsolve(coeff(
op(1,op(1,newer_psihddot)) ,delta)=
coeff(op(2,op(1l,newer_psihddot)),delta),
psi_h1(t))));

#soln_thetah1(t)=0;

newest_phihddot:=
expand (subs(phi_h1(t)=soln_phih1(t),psi_hi(t)=soln_psihi(t),
newer_phihddot));
newest_psihddot:=
expand(subs(phi_h1(t)=soln_phih1(t),psi_hi(t)=soln_psihi(t),
newer_psihddot));
newest_thetahddot:=
expand (subs(phi_h1(t)=soln_phih1(t),psi_hi(t)=soln_psihi(t),
newer_thetahddot));

#And, we solve for the second order terms.

soln_phih2(t) :=op(2,subs(_C1=0, _C2=0,dsolve(
coeff(op(1l,op(1l,newest_phihddot)),delta"2)=
coeff(op(2,0p(1l,newest_phihddot)),delta"2),
phi_h2(t))));

soln_psih2(t) :=op(2,subs(_C1=0, _C2=0,dsolve(
coeff(op(l,op(1l,newest_psihddot)),delta"2)=
coeff(op(2,0p(1l,newest_psihddot)),delta"2),
psi_h2(%))));

soln_thetah2(t) :=op(2,subs(_C1=0,_C2=0,dsolve(
coeff(op(1l,op(l,newest_thetahddot)),delta™2)=
coeff(op(2,0p(1l,newest_thetahddot)),delta"2),
theta_h2(t))));

final_phihddot:=
expand (subs(phi_h2(t)=soln_phih2(t),psi_h2(t)=soln_psih2(t),
theta_h2(t)=soln_thetah2(t) ,newest_phihddot));
final_psihddot:=
expand (subs (phi_h2(t)=soln_phih2(t),psi_h2(t)=soln_psih2(t),
theta_h2(t)=soln_thetah2(t) ,newest_psihddot));
final_thetahddot:=
expand (subs(phi_h2(t)=soln_phih2(t),psi_h2(t)=soln_psih2(t),
theta_h2(t)=soln_thetah2(t) ,newest_thetahddot));
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soln_phih3(t) :=op(2,subs(_C1=0,_C2=0,dsolve(
coeff(op(1l,op(1,final_phihddot)),delta”3)=
coeff(op(2,0p(1,final_phihddot)),delta"3),
phi_h3(t))));

soln_psih3(t) :=op(2,subs(_C1=0,_C2=0,dsolve(
coeff(op(1l,op(1,final_psihddot)),delta"3)=
coeff(op(2,0p(1,final_psihddot)),delta"3),
psi_h3(t))));

soln_thetah3(t) :=op(2,subs(_C1=0,_C2=0,dsolve(
coeff(op(1l,op(1,final_thetahddot)),delta"3)=
coeff(op(2,0p(1,final_thetahddot)),delta”3),
theta_h3(t))));

#Finally, we put together our approximations to phi_h, psi_h,
#and theta_h, up to O(DELTA"2).

soln_phih(t) :=phihO(t)+delta*soln_phihil(t)+delta~2*soln_phih2(t)
+delta”3*soln_phih3(t);
soln_psih(t) :=psihO(t)+delta*soln_psihi(t)+delta"2*soln_psih2(t)
+delta”3*soln_psih3(t);
soln_thetah(t):=
thetahO(t)+0+delta”2*soln_thetah2(t)+delta~3*soln_thetah3(t);

diff_phih(t):=diff(soln_phih(t),t);
diff_psih(t):=diff(soln_psih(t),t);
diff_thetah(t):=diff(soln_thetah(t),t);

phihm_iplusi:=convert(taylor(collect (expand(subs(
t=final_T,soln_phih(t))),delta),delta=0,4),polynom);
psihm_iplusl:=convert(taylor(collect (expand(subs(
t=final_T,soln_psih(t))),delta),delta=0,4),polynom);
thetahm_iplusi:=convert(taylor(collect(expand(subs(
t=final_T,soln_thetah(t))),delta),delta=0,4),polynom);
phihdotm_iplusl:=convert(taylor(collect (expand(subs(
t=final_T,diff_phih(t))),delta),delta=0,4),polynom);
psihdotm_iplusl:=convert(taylor(collect(expand(subs(
t=final_T,diff_psih(t))),delta),delta=0,4),polynom);
thetahdotm_iplusl:=convert(taylor(collect (expand (subs(
t=final _T,diff_thetah(t))),delta),delta=0,5),polynom);
statep_i:=array([phihp_i,phihdotp_i,psihp_i,
psihdotp_i,thetahp_i,thetahdotp_i]);
statem_iplusl:= array([phihm_iplusl,phihdotm_iplusi,
psihm_iplusl,psihdotm_iplusi,
thetahm_iplusl,thetahdotm_iplusi]);
for r from 1 by 1 to 6 do
for s from 1 by 1 to 6 do
mm[r,s]:=factor(coeff(expand(statem_iplusi[r]),statep_ils],1));
od;
od;
f:=(r,s) ->mm[r,s];
stride3:=matrix(6,6,f);
#save stride3, ‘finalstride3.m‘;

#construct_stride

fa s s s e s s S s e s s s 2
#This batch file contructs the approximation to the Jacobian
#matrix (J approx. equal B*D*E) at a limit cycle and finds the
#approximate eigenvalues.

with(linalg);
read ‘finalstride3.m‘;
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read ‘jump_mats.m®;

#First, we unscale the stride3 matrix. aa is the unscaling
#matrix.

aa:=diag(1,delta,1,delta,1,delta);
stride3_new:=multiply(inverse(aa),multiply(stride3,(aa)));

#Below, we construct the map matrix representation that takes
#an epsilon perturbation from the limit cycle motion just after
#a collision to just after the next collision. That is, given
#a disturbance to the limit cycle motion after a collision
#multiplied by the matrix, we find what happens to the
#disturbance after the next collision. Then, consistent with
#our approximation scheme, we expand each element of the matrix
#to 0(delta™2).

stride_map:=multiply(jacob_at_limcycle,

multiply(third matrix,stride3_new));
taylor_map:=map(taylor,stride_map,delta=0,3);
new_stride_map:=map(convert,taylor_map,polynom);

#Now, we find the characteristic polynomial of the matrix and
# then proceed to find its eigenvalues.

char_poly:=factor(charpoly(new_stride_map,sigma));

#Happily, we find that the characteristic polynomial factors
#into two roots and a fourth order polynomial. One root is
#sigma0 = 0, and the other is

#sigmal = 1 - 4*delta”2xlambda~2%Pi~2.

#Sigma0 = 0 corresponds to the constraint in the map on the
#‘pitch angle’ theta ALWAYS being fixed just before and after
#each collision, theta = pi/n, whether the wheel is in a limit
#cycle or not. The eigenvalue of zero tells us that if we
#disturb the pitch angle just after a collision, the pitch
#angle returns to theta = pi/n just after the next collision;
#that is, in one iteration of the stride map.

#Sigmal = 1 - 4*delta”2xlambda”2*pi~2 corresponds to the
#two-dimensional limit cycle motion of the wheel; i. e., the
#wheel attaining the same velocity after each collision when
#rolling straight downhill(or at any heading downhill as long
#as the gravity vector lies in the plane of the wheel.) Sigmal
#is an 0(delta"2) approximation to the eigenvalue we obtain
#from the exact 2D nonlinear analysis, sigma = mu"2 =
#(2J+cos(2*pi)/(2J+1))"2 < 1. Clearly, Sigmal < 1, also.

#An eigenvalue less than one tells us that, given a disturbance
#only to the limit cycle pitch angle rate, the wheel will
#asymptotically return to the limit cycle pitch angle rate
#after each collision.So, with our approximation scheme, we
#have found an eigenvalue that corresponds to the 2D limit
#cycle motion.

sigma0:=0;
sigmal:=1- 4*delta”2*lambda”2%Pi~2;

#Now, we obtain the fourth order polynomial left form the
#characteristic polynomial and then proceed to obtain the

#remaining four roots.

newchar_poly0:=factor(char_poly/
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((sigma-1+(4*delta”2+Pi~2*lambda~2))*sigma));
#First, we make a substitution to ease the future calculationms.

newchar_poly:=
expand (subs (alphabar=gamma/cos (phi_0) ,newchar_poly0));

#Now, first let delta=0, which corresponds to n going to infinity.
#This should give four eigenvalues equal to one - coreesponding
#to the rolling disk.

sigma_roots:=solve(subs(delta=0,newchar_poly)=0,sigma);

#This, in fact, gives us sigma =1, 1, 1, 1.

#This tells us that for delta not equal to zero, the eigenvalues
#should be ‘near’ one for small delta. So, to proceed let’s look
#for eigenvalues of the form sigma = 1 + deltaxbeta 0 +
#delta"2*beta_l and see what we get. O0f course we could have
#chosen sigma = beta_O+delta*beta_l+delta”2*beta_2 but

#we would have found beta_0 = 1 anyway.

sigma_approx:=1+delta*beta_O+delta”2*beta_1;

newerchar_poly:=
expand (subs (sigma=sigma_approx,newchar_poly));

rootQ:=solve(coeff(collect(
newerchar_poly,delta),delta,4)=0,beta_0);

rootQa:=root0[1];

rootOb:=simplify(root0[3]);

rootOc:=factor(root0[4]);

#Note: rootOb=-rootlc.

rootla:= simplify(
solve(
subs (beta_0=rootOa,coeff(collect(newerchar_poly,delta),
delta,6)=0),beta_1)[2]);

rootib:=simplify(subs(beta_0=rootOb,
simplify(solve(
coeff(
collect(newerchar_poly,delta),delta,5)
=0,beta_1))));
rootlc:=simplify(subs(beta_0=rootOc,
simplify(solve(
coeff(
collect(newerchar_poly,delta),delta,5)
=0,beta_1))));

#Note: rootlb=rootilc.

#Finally, we get the four remaining eigenvalues

#First, we have the eigenvalue for delta = 0:

sigma2:=1;

#Next, we have the eigenvalue for beta_0=0 and beta_l=rootla;
sigma3:=1+rootOa*deltat+delta™2*rootla;

#Third, we have the eigenvalue for beta_O=root0a and
#beta_l=rootlb=rootic.



sigma4:=1+rootOb*delta+delta”2*rootlb;

#And, last, we have the eigenvalue for beta_O=rootOb and
#beta_1=rootlb=rootic.

sigmab:=1+delta*rootOc+delta™2*rootlic;
#Put the six eigenvalues into a vector.
eigen_roots:=vector([sigma0,sigmal,sigma2,sigma3,sigma4,sigma5]);

#A numerical evaluation using the original polynomial and our
#final e-values for comparision.

solve(
evalf(
subs(
delta=0.01,alphabar=2,lambda=sqrt(2/3),
phi_0=Pi/10,char_poly))=0,sigma);

evalf(
subs (
delta=0.01,lambda=sqrt(2/3),gamma=2*cos(Pi/10),
op(1,eigen_roots)));

#For stability, need pi*lambda”2-2*gamma < O. This gives that
#rootlb=rootlc < 0. This implies that the numerator of
#rootlb=rootlc must be > 0.

#Now, say that for pik*lambda"2-2*gamma<0, that
#rootOb = i*|rootOb| and rootOc = -i*|rootOc|=-rootlc.

#Then, for stability, we want |sigma4|=|sigmab|l < 1. (sigmad
#and sigmab are complex conjugates. This gives the stability
#condition that |rootOb]|~2<-2*rootlb, to 0(delta”2).

abs_rootOb:=2*Pi*sqrt (2) *sqrt ((2*gamma)-
(Pi*lambda~2))/(sqrt(gamma)*sqrt(1+(lambda~2)));
stab_cond:=factor(-abs_root0Ob~2-2*rootib);

#For stab_cond=gamma*lambda”2*(1-lambda~2)>0, we have stability.
#This condition always satisfied if pi*lambda~2 -
#2xgamma < 0, gamma >0, and lambda“2 < 1.

#Now, lets turn to sigma3. For stability, we need rootla < O.
#This gives a stability criterion for the minimum effective

#slope gamma =alphabar*cos(phi_0).

stab_crit_eqn:=collect(numer(
subs (gamma=alphabar*cos (phi_0),rootla)),alphabar);

stab_crit:=s
implify(factor(solve(stab_crit_eqn=0,alphabar))*cos(phi_0));

#Thus, our stability criterion is
#gamma > stab_crit=pi*lambda~2/(1 + lambda~2).

#FINAL NOTE: QOur approximation blows up when 2*gamma=pi*lambda”2!
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