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1. Introduction

Human locomotion is a complicated process, controlled and actuated by the
neuro-muscular system. Tad McGeer [8], however, studied bipedal walking
and completely neglected the neuro-muscular system in his models. Some
of his machines, powered only by gravity, can walk stably and somewhat
anthropomorphically down shallow slopes. We have continued study of the
dynamics of McGeer-like physical and mathematical biped models that
have little or no actuation or control. This paper summarizes some of our
results.

These passive-dynamic walking mechanisms are built of hinged bodies
that make collisional and rolling contact with the ground at the foot. In
models with knees, the lower leg, or shank, is prevented from hyperextend-
ing (swinging too far ahead of the upper leg, or thigh) by means of angular
stops at the knees. Thus, the kneed walkers have an internal rotational col-
lision. In our modeling, we assume that all collisions are instantaneous and
non-bouncing (plastic).

Following McGeer, our analysis is built around simulation of a single
walking step. One step, or cycle of motion, starts at an arbitrary point,
say just after a foot collision. A cycle then includes the motion between
foot collisions, as well as the discontinuities at the next foot collision. The
cycle of motion is represented mathematically by a return map, termed
the ‘stride-function’ by McGeer, that maps the state of the system from
just after one heel-strike to just after the next. Fixed points of the map
correspond to period-one motion cycles, or period-one ‘gaits’ of the model.
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Gait stability can be determined by calculating (most often numerically)
the eigenvalues of the linearization of the map at the fixed points (see [3]
for a detailed description of the modeling and analysis procedures).
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Figure 1. The parameters and orientation variables for (a) a uniform rolling disk with
oblique masses added and (b) a rimless spoked wheel.

Using this scheme, we have studied several passive-dynamic models of
increasing complexity, progressing from rolling wheels to 2D straight-legged
and kneed models to 3D straight-legged models, each of which is described
below. We also describe a simple barely-controlled powering scheme for a
2D straight-leg walker, which produces stable gait on level ground.

2. Rolling Wheels in 2D and 3D

Perhaps the simplest passive-dynamic system to study, that has some fea-
tures in common with walking, is the rimless spoked wheel, or rolling poly-
gon, confined to 2D [8]. The 2D rimless wheel has a stable limit cycle motion
whose eigenvalues and associated global basins of attraction we have com-
pletely determined analytically [3]. The primary lesson of the rimless wheel
in 2D is that speed regulation comes from a balance of collisional dissipa-
tion, which is proportional to speed squared, and gravitational work, which
is proportional to speed.

Next, we studied a 3D rolling disk with oblique masses added [3] (see
Figure 1). The masses can bank and steer with the disk but cannot roll (or
pitch) with it. The purpose of this investigation was to study the effects
of mass distribution on stability. The oblique masses, if adjusted properly,
change the stability of the uniform rolling disk, a conservative nonholo-
nomic system, from neutrally stable to asymptotically stable [10]. This re-
sult suggests that mass distribution may affect side-to-side balance in more
complicated walking models.

Finally, we studied the 3D rimless wheel (see Figure 1) and found an-
alytically, for many spokes and small slope angles, the stability eigenval-
ues for steady ‘rolling’ motions [1]. The 3D rimless wheel is a piecewise-
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conservative-holonomic (but globally non-conservative and nonholonomic)
system with intermittent, dissipative impacts – features that are shared by
some more realistic human walking models. The rolling rimless wheel can
also exhibit asymptotic stability when perturbed from a downhill limit cy-
cle, even when its mass distribution corresponds to that of a disk that does
not have asymptotic stability. Thus, the intermittent collisions can play a
role in side-to-side balance.

Despite the useful lessons from rolling models, they are not anthropo-
morphic walkers. They cannot fall down forwards or backwards, and they
lack swinging legs.

3. Straight-Legged 2D Walkers

The next-simplest class of models live in 2D and consist of two linked swing-
ing legs and point-feet [8, 6, 3, 5]. Asymptotically-stable walking motions
of these models exist for a variety of parameters. The simplest such ‘point-
foot’ straight-legged model has a huge hip mass and tiny masses (relatively
infinitesimal) at its point-feet (see Figure 2).

A typical plot of the stance-leg and swing-leg angles is shown over one
stable step in Figure 2. This model exhibits two steady walking motions,
or period-one gaits, all the way to γ → 0+ as shown in Figure 3. At these
gaits, the stance angle (and step length) are proportional to γ1/3. Figure 4
shows how stable limping (period-two) and apparently-chaotic ‘staggering’
gaits appear as the slope angle is increased.

That this machine can walk on arbitrarily small slopes means that,
by some reasonable measures, it is capable of near-perfectly-efficient gait
(zero+ energy cost per unit distance of transport). At small slopes, the
gravitational power used by this model in downhill walking is proportional
to the fourth power of the walking speed. This result gives insight into
achieving similar efficiency in more complicated models (e.g. models with
knees, circular feet, and/or more general mass distribution). The power
scaling depends, in part, on the infinitesimally small feet. With finite-mass
feet, there are two modes of energy loss at heelstrike: one due to deflection
of the hip mass, and one due to dissipation of the foot’s kinetic energy in a
plastic collision with the ground. Preliminary studies of point-foot models
with finite foot mass show that the long-period gaits retain the same scaling
laws at small slopes, while the short-period gaits do not.

4. More General 2D Walkers

We have reproduced and extended McGeer’s results for more general 2D
walkers with knees[8]: Figure 5 shows the state variables and parameters for
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Figure 2. The simplest walking model and one of its typical passive walking steps. The
inset schematic describes the variables and parameters that we use. In the cartoon below
the graph, the new stance leg (lighter line) has just made contact with the ramp (left-most
picture). The swing leg (heavier line) swings until the next heel-strike (right-most pic-
ture). We ignore foot-scuffing of the swing leg, allowing its foot to pass through the floor.
Leg angles versus time are shown over one step at a gait cycle. Leg lines are drawn
with different weights to correspond to heavy-line leg of the cartoon below the graph.
Heelstrike returns the system to its initial conditions. A perturbation analysis predicts
θst
∗ ≈ C1γ

1/3 +C2γ, where θst
∗ is the stance angle at a fixed point (see Garcia,et al. [5]).

the kneed model and Figure 6 shows a typical gait cycle and its qualitative
comparison to experimental data.

Certain conditions on the mass distribution are necessary for general 2D
kneed and straight-legged walkers to achieve walking at arbitrarily small
slope angles. These ‘balanced’ models follow similar scaling laws as their
simpler point-foot, straight-legged cousins. We have also found period dou-
bling and chaos for these kneed walkers.

5. 3D Walking

Finally, we move our point-foot model into 3D [3]. McGeer [9] and Fowble
and Kuo [4] began studies of three-dimensional passive walking mecha-
nisms, finding only unstable periodic motions. We have built a simple two-
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Figure 4. Period doubling of stable walking motions, inset from Figure 3. Period doubling
occurs when one of the map eigenvalues for a period-n walking cycle passes through −1.
Unstable period-one cycles are shown for reference. Dotted lines represent stable cycles
while solid lines represent unstable ones. No persistent walking was found at slopes much
steeper than 0.019 radians.

legged Tinkertoy R© model that walks passively, apparently stably, down
gentle slopes [2] (see Figure 7).



6 M.J. COLEMAN ET AL.

-θstθth

θsh

g
rS , mS cT

lT
rT , mT

wT

wS

cS

lS

γ

εT

R

b) DYNAMIC VARIABLESa) DIMENSIONAL PARAMETERS

εT

εT

εT

Figure 5. McGeer’s kneed walking model. Shown above are (a) model parameters, and
(b) dynamic variables. Radii of gyration and masses of thigh and shank are denoted by
rT ,mT , rS , and mS , respectively. The foot is a circular arc centered at the “+”. εT is
defined to be the angle between the stance thigh and the line connecting the hip to the
foot center. Dynamic variable values θst, θth, and θsh are measured from ground-normal
to lines offset by εT from their respective segments. A stop (not shown) at each knee
prevents hyperextension of either knee.

The configuration and mass distribution of the legs of the Tinkertoy R©
model were suggested by numerical simulations of a simpler 3D model (see
Figure 8) that was predicted to be almost-stable. The model predicts near-
stable steady 3D walking solutions (the maximum return map eigenvalue
is |σ|max ≈ 1.15 with all others σ ≤ 1) for very low center-of-mass and
lateral center-of-mass location comparable to the leg length. As the lateral
center-of-mass position get very large, the model predicts something like
‘tight-rope’ walking with a long balance bar: the step period and length get
very small, and the maximum map eigenvalue modulus approaches 1 (neu-
tral stability) asymptotically from above (see Figure 10). More detailed 3D
modeling is currently in progress. This walking mechanism joins a small
list of passive mechanical devices free to move in three dimensions but
without fast spinning parts, that are statically unstable, yet can be dynam-
ically, asymptotically stable. Figure 9 shows typical 3D periodic behavior
predicted by the model.

6. Powered ‘Passive’ Walking

Once power is added to our passive devices, they are, of course, no longer
uncontrolled in the pure sense. Nevertheless, as shown by McGeer [7], a
stable passive-dynamic model is a good basis for simple ‘open-loop’ pow-
ering schemes. Figure 11 shows the configuration and simulated walking
cycle for a powered 2D point-foot-like model. The torque is provided by a
constant-voltage DC motor at the stance-ankle. The ankle is locked during
the passive mode.
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Figure 6. Simulated gait cycle (ours, similar to McGeer’s). Angles of leg segments are
shown from just before one heelstrike to just after the next heelstrike in a stable gait of
the walker in Figure 5. The heavy line on the graph corresponds to the motion of the
heavy-line leg on the small cartoon under the graph. At the start of the step, this is the
stance leg, but it becomes the swing leg just after the first heelstrike. The strobe-like
picture of the walker on the bottom left, created from the simulated gait cycle in the
graph, shows the anthropomorphic nature of the gait. The stroboscopic picture on the
lower right was generated from experimental data from [11]. The parameters values used,
from a working physical model in our lab, are: lt = 0.35m, wt = 0m, mt = 2.345kg,
rt = 0.099m, ct = 0.091m, ls = 0.46m, ws = 0.025m, ms = 1.013kg, rs = 0.197m,
cs = 0.17m, R = 0.2m, γ = 0.036rad, g = 9.81 m/s2, εT = 0.097rad.

7. Conclusions

The human-like and complicated motions of McGeer-like passive dynamic
devices studied by ourselves and others imply that coordination in locomo-
tion may be largely governed by pure mechanics. It has yet to be determined
whether or not these models have medically-useful lessons to teach us, and
whether or not they are a good spring-board for biomechanical or robotic



8 M.J. COLEMAN ET AL.

brass strips

metal nuts

Figure 7. A drawing of our 3D TinkertoyR© walking model. The center-of-mass of the
device is above the centers of the wheel-like feet and behind the leg axes. The metal
nuts for weight and the brass strips to round the foot bottoms are fastened with black
electrical tape.
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models that incorporate neuro-muscular elements or mechanical actuators.
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