The Fast Floating-Point Library

By
Andrew Mui
axm2@cornell.edu

Autonomous Walking Robots Team
School of Engineering
Cornell University

May 21, 2007

Faculty Advisor: Professor Andy Ruina,
Theoretical & Applied Mechanics

Credit Option: 3 Credits for Fall 2006
Also for fulfillment of technical writing requirement

Acknowledgements

I would like to thank Professor Andy Ruina for having me as a member of the Autonomous
Walking Robots Team. In one semester, | was given the opportunity to test motors, write Matlab
programs to analyze the measured data, develop programs in assembly language, work with a
microcontroller, and be a part of history by helping to create a robot that set a world record for
greatest distance walked. | would also like to thank Jason Cortell for helping me develop the
FFloat library, as well as helping me learn assembly programming. Finally, | would like to thank
Daniel Karssen for all that he has contributed to the success of the Cornell Ranger. Though he
was only in our lab for three months (he is a graduate student from the Netherlands), we would
not have been able to create a record-breaking robot without his help.

3.1
3.2
3.3

4

4.1
4.2
4.3

5
6

7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23

8

TABLE OF CONTENTS

REVISION HISTORY oottt ettt ettt ettt ettt r ettt et e e et e e ea st et s e eerenes 3
INTRODUCTION . ..ottt et ettt 4
N N OS] = = = 07N TR 5
AN OVERVIEW OF FFLOAT NUMBERSottt e e n e e e 6
FORMAT FOR FFLOAT NUMBERS .. citiit ittt ettt e et et et et et e e e e et s et e et e e e e ee e e e ean e raa e e e e aans 6
HANDLING EXCEPTIONAL VALUES . .oneit ettt et e et e e 6
USING FLOAT NUMBERS «.ctuiititttitetett e et et sttt eeees e ettt e et s e ee e eaeseeaa e ea st re e reeaeeanerrarerarerans 7
3.3.1 Declaring and Initializing FFloat numbers in Ccccoooveieiieii e, 7
3.3.2 Performing Operations on FFIoat NUMDEIS...........ccoiiiiiiieiiie e 8
THE FELOAT LIBRARY ittt ettt ettt et e et et e e et e e ea et et s e et reea s eeaeeaneranraen 8
DEVELOPMENT OF THE FFELOAT LIBRARY . .nentiie ettt e et e et 8
FFLOAT LIBRARY FUNCTIONS ...iuiie ettt et et e 9
CYCLE COUNT DATA FOR FFLOAT LIBRARY FUNCTIONS ... cuiitiitieeeeeieeie et e e eseieeneenseneeneees 10
SUMMARY AND CONCLUSION ..ot 11
APPENDIX A: TWO'S COMPLEMENT ..o et 11
APPENDIX B: CODE FOR FFLOAT LIBRARY FUNCTIONS ... 12
ol oY) 3 12
R SUB ..o e 13
o 1] T 15
o LY 2T 17
S IN e e e s 19
R OS . oe e i s 20
a0 7Y 21
| 3 TR 22
| 1 =TT TTRT 24
ol ol C 1 174 25
ol ot T 26
[T 1 =TT 28
ool ot T 172 29
e e =L 7 30
S L BINT 2 L O AT ettt et ettt et ettt e e 30
S 2N T 2 L O AT et ettt e e e 31
L 1 N 24 e T 31
[l IO I N 22 K T 32
L OA T TRUNC 2SS LBINT «eeeee ettt et e e et ettt e e e et e e e e e e e e e e e e e e e e e eennns 33
L 2 ot 1 - 33
FRLOATZIEEE oot et e et e e et et et sttt e e et et s e e e e e e e e eaeraas 35
[] =T TR 36
R A B S oo 37
L (O T 39

0 Revision History

Date Revision(s)
12/13/2006 Finished first final copy of report
5/14/2007 Added U32int2FFloat function

1 Introduction

The goal of our project was to create an efficient (low-power), robust, versatile, and autonomous
walking quadruped (four-legged) robot. A walking robot that mimics the human gait has
important applications in the field of medicine. For example, if a walking robot can be designed,
a “wheelchair” that has legs instead of wheels can be designed. Such a device would enable the
handicapped to travel up and down stairs, eliminating the need for wheelchair ramps. Someday,
we might be able to replace prosthetics with powered robotic legs for people who have lost the
ability to walk.

The most efficient robots, also known as passive-dynamic robots, walk by mimicking the human
gait, and use gravity to travel down a slope. However, they cannot walk on flat ground, and will
topple even if the surface beneath them is only slightly uneven, making them neither versatile
nor robust. Our robot, the Cornell Ranger, uses a microcontroller to monitor and guide its
motions. It has an outer pair and an inner pair of legs, and each leg has a movable ankle, whose
motion is controlled by foot sensors. The robot walks by lowering the ankles on its front pair of
legs when its front feet are near the ground, pushing off the ground with the heels of its front
feet, and using its own momentum to swing the back pair of legs forward. Whenever the back
pair of legs is swinging forward, the ankles are raised to prevent the feet from dragging on the
ground.

The microcontroller* monitors each part of the robot’s walk, and provides extra power to the
ankles during push-off of the foot. This enables the robot to walk on flat ground (and even uphill
on shallow slopes), and increases the robot’s stability as well (even though the feet on our robot
were less than an inch wide, our robot was able to walk on an indoor track, which does not have
a smooth surface). But since the microcontroller needs to be powered, our robot uses more
power than gravity-based passive-dynamic robots.

Our microcontroller is designed to execute a list-of commands once every millisecond. These
commands include determining hip and feet angles, and position of the feet relative to the
ground, among other things. Therefore, our Digital Signal Processing (DSP) unit?, which
handles all of the calculations, must be able to quickly and accurately handle large ranges of
numbers with relatively high precision. In addition, basic arithmetic operations, such as
addition, subtraction, multiplication, division, and comparisons, must be done quickly.

This is where the FFloat (fast floating-point) numbers come in. This report will describe what
FFloat numbers are, why we used them in the software of our robot, and how we developed the
FFloat library of functions. A brief description of each of the functions in the FFloat library will
then be given along with runtime (cycle count) data for all of the FFloat functions. Appendix A
presents an overview of two’s complement and Appendix B contains the source code for the
FFloat functions the author developed. Hopefully, the functions we wrote for the FFloat library,
as well as the methods we used to develop the library, will be useful in future research and
development where efficient and accurate data processing is critical.

! The MC56F8347, made by Freescale Semiconductor, is a 16-bit hybrid controller with an integrated 16-bit DSP
chip (the DSP56800E) [1].
2, The DSP56800E, also made by Freescale Semiconductor. It is a low-power, fast 16-bit DSP [2].

4

2 Why Use FFloat?

This section will attempt to motivate the decision to use FFloat numbers as the standard
numerical type for performing calculations in the Cornell Ranger. The FFloat numerical type is
a very non-intuitive, and non-standard way to represent numbers, but as we will see shortly, it
was our best option.

There are two other numerical types that could have been used in place of FFloat: IEEE floating-
point and fixed-point. IEEE floating-point is implemented into the C programming language as
the float type. Fixed-point type uses scaled, or normalized, integers to represent fractional
values.

The most important factor in deciding which numerical type to use was speed. Our
microcontroller is designed to run its code indefinitely through a 1-millisecond loop, and our
microprocessor only allows for 60000 cycles per loop. Therefore, our functions needed to be
fast, requiring as few cycles as possible. With this in mind, we decided that IEEE-float was too
slow for use in our microprocessor. For example, an arithmetic operation as simple as addition
takes 250 cycles, which means that with IEEE-float, each loop will only be, at best, capable of
performing 240 additions. IEEE-float also has many features that we did not need, such as error
handling for NaN (not a number) and representation for positive and negative infinity. These
cases would have to be handled in all IEEE floating-point functions, greatly increasing the
number of cycles needed to run the functions.

Fixed-point notation, on the other hand, is fast because it uses integers instead of floating-point
values. The problem with fixed-point, however, is that many digits are required in order to
accurately represent numbers that require several decimal places. If too few digits are used, the
precision of the resulting number will be too poor to use, and if too many digits are used, the
number could overflow, giving clipped data, which would give a completely incorrect result.

In addition, fixed-point numbers must be scaled properly in order for fixed-point operations to
work properly. Trying to figure out the scaling for every parameter during software
development is time-consuming and prone to error. With floating-point numbers, the exponent
automatically takes care of the scaling. This eliminates the need to manually scale floating-point
numbers, reducing development time, as well as the time needed to fix bugs caused by
incorrectly scaling numbers.

In short, FFloat numbers surpass IEEE floating-point in speed and fixed-point in precision and
ease-of-use. Part of the reason that IEEE floating-point was so slow was that our DSP chip did
not have a floating-point co-processor. For our next robot, we will be using a DSP chip with a
floating-point co-processor, which will probably reduce code development time significantly.

3 An Overview of FFloat Numbers

3.1 Format for FFloat Numbers

FFloat numbers are 32-bit* binary numbers. They are represented by a mantissa (a fractional
value) multiplied by a base number raised to an exponent (an integral value).

The mantissa is a signed two’s complement* 16-bit binary number, and is represented by the
rightmost 16 bits of the FFloat number. It has a range between -2*° (-32768, 0x8000)° and 2'>-1
(32767, OXTFFF), but is interpreted as a fractional value between -1 (inclusive) and 1 (exclusive).
To get the real fractional value, divide the FFloat mantissa value by 2*.

The exponent is also a signed two’s complement 16-bit binary number, and is represented by the
leftmost 16 bits of the FFloat number. Though we have 16 bits to work with, we will only be
using the bottom 8 bits to represent the exponent value, which means that the range of the
exponent is between —2' (-128, 0xFF80) and 27-1 (127, 0x007F). The top 8 bits of the exponent
are sign bits: all ones for negative values, and all zeros for nonnegative values.

To get the real floating-point numerical value, we take the real fractional value of the FFloat
mantissa and multiply it by 2 raised to the exponent of the FFloat number:

numerical value = (FFloat mantissa/2'®) x 2°(FFloat exponent).

Even though we are only using 8 bits to represent the exponent, we can represent numbers
between 27128 (2.93 x 10%) and 2" (1.70 x 10%), which is more than sufficient for our
calculations.

For convenience, we will represent FFloat numbers in hexadecimal rather than in binary, so that
only 8 digits, instead of 32, are needed (a hexadecimal number can be represented by a 4-bit
binary number).

3.2 Handling Exceptional Values

For FFloat numbers, there are three types of values that must be handled in a special manner:
zero, overflow values, and underflow values.

Zero: We have decided to set zero equal to 0OXFF800000. The mantissa is zero, and the exponent
is set to its most negative value (-2). It was determined that if zero is defined this way, our
FFloat addition and subtraction functions could be written without special exception handling for
adding or subtracting zero, thereby saving processing time.

Overflow: Occurs if the magnitude of an FFloat number is larger than 0x007F7FFF (for positive
values) or 0x007F8000 (for negative values). To check for overflow, the exponent of the FFloat
number is compared to the value 0x007F (2°-1) ®. If the FFloat number is determined to be too

® AbitisalorO.

* See Appendix A (Section 6) for a more in-depth discussion on two’s complement.

® By convention, hexadecimal numbers are preceded by the characters Ox.

® We used the built-in assembly instruction cmp.w, which compares two 16-bit words.

6

large in magnitude, the sign of the overflow (positive or negative) is then determined by
comparing the FFloat number’s mantissa value to the mantissa values 0x7FFF and 0x8000 .
The overflow number is then set to the maximum positive or negative number as appropriate.

Underflow: Occurs if the magnitude of an FFloat number is smaller than OxFF804000 (for
positive values) or OxFF8OBFFF (for negative values). To check for underflow, the exponent of
the FFloat number is compared to the value OXFF80 (-2°). If the FFloat number is determined to
be too small in magnitude, the sign of the overflow (positive or negative) is then determined by
comparing the FFloat number’s mantissa value to the mantissa values 0x4000 and OxBFFF. The
underflow number is then set to the minimum positive or negative number as appropriate.

Overflow range: less than 0x007F8000 (-2*%") or greater than 0X007F7FFF (.99997 x 2'%")
Underflow range: between OXFF80BFFF (-.50003 x 22%) and 0xFF804000 (.5 x 27%%)

In our FFloat library functions, the Zero case is handled before the Underflow case so that the
underflow check does not throw out an input of zero.

3.3 Using FFloat Numbers

3.3.1 Declaring and Initializing FFloat numbers in C

Since the ffloat® type is not defined in C, any program that uses ffloat numbers must include the
following type definition statement:

typedef long unsigned int ffloat;
There are two ways to initialize an FFloat number. The first is to initialize it directly, by setting

the variable equal to a hexadecimal number. For example, to initialize the ffloat variable
ffnumA to zero, use the following statement:

ffloat finumA = 0xFF800000;

The second way is to use one of the two integer-to-FFloat conversion functions, both of which
are part of the FFloat library. To initialize ffnumA to zero using the functions, use the following
statement:

ffloat ffnumA = S16int2FFloat(0);
S16int2FFloat and S32int2FFloat are the two integer-to-FFloat conversion functions, and

IEEE2FFloat is the standard float-to-FFloat conversion function. They will be discussed in
greater detail in Section 4, along with the other FFloat library functions.

"We used the built-in assembly instruction tst.w, which compares a 16-bit word to zero.
8 ffloat is the type definition for FFloat that was used in our C code.

7

3.3.2 Performing Operations on FFloat Numbers

Since FFloat numbers are not standard numerical types in C, there are no operators in C defined
for FFloat numbers. Therefore, you must replace the arithmetic operators (+, -, x, +) and the
comparison operators (>, <, >, <, =) with the appropriate function in the FFloat library.

Use of the trigonometric, conversion, and absolute value functions is similar to that in IEEE
floating-point.

4 The FFloat Library

4.1 Development of the FFloat Library

After deciding to use FFloat numbers, we had to decide which functions we needed for the
FFloat library. A disadvantage of FFloat numbers is that they are not a standard type in C.
Therefore, we had to write functions for the basic arithmetic operators (+, -, x, +) and
comparison operators (>, <, >, <, =), and use these functions in place of the operators. The
trigonometric functions were developed because we needed a way to determine hip and foot
angles in order to detect, for example, when the foot was about to touch the ground. Most of the
other functions, such as taking the negative of a number and finding the absolute value of a
number, were developed for use in the trigonometric functions and in the main C code.

In developing the FFloat library, we used CodeWarrior, a product of Metrowerks. We chose
CodeWarrior for two main reasons: 1) it allowed us to write assembly code and C code in the
same file (functions written in assembly code always start with the keyword asm), and 2) it
supports the DSP56800, the DSP chip used in our microcontroller. As an added feature,
CodeWarrior has a built-in DSP56800 simulator, which allowed us to measure the number of
cycles and instructions required by the DSP56800 to execute a specific block of code (we
designated this block of code using breakpoints).

The S16int2FFloat, S32int2FFloat, and IEEE2FFloat conversion functions (see Section 4.2) were
the first to be developed. These functions were verified by calculating the expected FFloat value
by hand, then printing out the output of the function to see if it matched our prediction. Once
these three functions were written, checking the output of all the other FFloat functions was easy.
As an example, here is how FFadd would have been verified:

1. Define ffloatA = S16int2FFloat(a) and ffloatB = S16int2FFloat(b), where a and b are 16-
bit integers (short int). S32int2FFloat or IEEE2FFloat could also be used, based on the
range of numbers that needed to be added.

2. Run FFadd(ffloatA, ffloatB) and print out the output.

3. Print out the value S16int2FFloat(a+b) and see if it matched the output given by FFadd.

4. Test all possible branches of FFadd, including exception cases such as overflow.

To reduce the cycle count, we wrote all of our functions in assembly (the trigonometric functions
were written in C, however, because they were too complex to program in assembly).

Since we spent less than a month working on the FFloat library, we did not have time to optimize
the assembly code that we wrote. However, our cycle count data will be useful in determining

which functions need to be optimized, and optimization of our functions in the future, when we
have more time, is something that should be considered.

4.2 FFloat Library Functions

This section lists all the functions in the FFloat library by their function headers, and gives a
brief description of what the functions return.

Standard arithmetic operations

asm ffloat FFadd(register ffloat ffnuml, register ffloat ffnum2) — returns ffnum1+ffnum2.
asm ffloat FFsub(register ffloat ffnum1, register ffloat ffnum2) — returns ffnum1-ffnum2
asm ffloat FFmult(register ffloat ffnum1, register ffloat ffnum2) — returns finum1xffnumz2.
asm ffloat FFdiv(register ffloat ffnum1, register ffloat ffnum2) — returns ffnum1/ffnum2.

Trigonometric functions

ffloat FFsin(ffloat xin) — returns the sine of xin.

ffloat FFcos(ffloat xin) — returns the cosine of xin.
ffloat FFatan(ffloat xin) — returns the arctangent of xin.

Comparison functions

asm bool® FFgt(register ffloat ffnum1, register ffloat ffnum2) — returns true iff ffnum1>ffnuma2.
asm bool FFgte(register ffloat ffnum1, register ffloat ffnum2) — returns true iff ffnum1>ffnum2.
asm bool FFgtz(register ffloat ffnum) — returns true iff ffnum>0.

asm bool FFlt(register ffloat ffnum1, register ffloat ffnum2) — returns true iff finumi1<ffnum2.
asm bool FFlte(register ffloat ffnum1, register ffloat ffnum2) — returns true iff ffnum1<ffnum2.
asm bool FFltz(register ffloat ffnum) — returns true iff finum<0.

asm bool FFeqz(register ffloat ffnum) — returns true iff finum=0.

Conversion functions

asm ffloat S16int2FFloat(register short int inum) — returns the ffloat equivalent of inum.

asm short int FFloatRnd2S16int(register ffloat ffnum) — returns the int16 equivalent of ffnum
rounded up to the nearest integer.

asm short int FFloatTrunc2S16int(register ffloat ffnum) — returns the int16 equivalent of ffnum
truncated (fractional part of ffnum cut out).

asm ffloat S32int2FFloat(register long int inum) — returns the ffloat equivalent of inum.

asm ffloat U32int2FFloat(register long unsigned int unum) — returns ffloat equivalent of unum
asm ffloat IEEE2FFloat(register float fnum) — returns the ffloat equivalent of fnum.

float FFloat2IEEE(ffloat ffnum) — returns the IEEE floating-point equivalent of ffnum.

Other FFloat functions
asm ffloat FFneg(register ffloat ffnum) — returns the negative of ffnum.
asm ffloat FFabs(register ffloat ffnum) — returns the absolute value of ffnum.

°In C, bool is not a standard type. We defined it as an unsigned char with 1 being true and 0 being false.

9

4.3 Cycle Count Data for FFloat Library Functions

This section lists all the functions in the FFloat Library, along with their runtimes (measured in
clock cycles). Worst-case values are used (i.e. the maximum number of cycles needed to execute
a function). For comparison, we calculated the runtimes for the equivalent IEEE floating-point
and integer operations as well (i.e. for FFadd, we calculated the runtime for a+b twice, once
when a and b were IEEE floating-point numbers, and once when a and b were integers).

The trigonometric functions (FFsin, FFcos, and FFatan) were written in C, and called other
FFloat functions, so cycle counts for those functions is much higher than the cycle counts for the
other functions (which were written in assembly). In addition, the FFloat2IEEE function was not
tested, because it was never used in the main code (though it was used frequently during
development so that we could quickly and accurately calculate the FFloat values for all our

parameters).

Function Name Cycle Count float cycle count int cycle count
FFadd 53 254 6
FFsub 64 264 6
FFmult 41 230 8
FFdiv 87 335 40
FFsin 1061
FFcos 1050
FFatan 808

FFgt 46 157 18

FFgte 46 141 12
FFgtz 22

FFIt 46 164 12

FFlte 46 148 12
FFltz 22
FFeqz 21
S16int2FFloat 22
FFloatRnd2S16int 29
FFloatTrunc2S16int 29
S32int2FFloat 25
U32int2FFloat 27
IEEE2FFloat 50
FFneg 35
FFabs 35

Table 1 Cycle Count data for FFloat library functions

The other FFloat functions are not supported by IEEE floating-point or integers in C (though the
trigonometric functions are supported by IEEE floating-point numbers in C++). As shown from
Table 1 above, FFloat is, on average, five times faster than IEEE floating-point, and four times
slower than integers. Therefore, int operations are the fastest; however, the benefits gained from
their speed is offset by the trouble needed to scale them properly.

10

5 Summary and Conclusion

We chose to use the FFloat (fast floating-point) numbers in the Autonomous Walking Robots
project to achieve high data processing speed, wide dynamic range, and ease of software
development. FFloat numbers allow us to complete a multiply operation in 41 cycles, making
FFloat numbers more than ten times faster than IEEE floating-point numbers on our
microprocessor. In addition, they give us an incredible 77 orders of magnitude to work with'°.
At the same time, FFloat numbers do not need to be scaled — the exponent part of the number
takes care of scaling.

In the end, the Cornell Ranger managed to walk 1003 meters (just over a kilometer) on an indoor
track unassisted (with the exception of occasional steering done remotely to prevent it from
hitting the building walls. As far as we know, this is a world record for farthest distance a robot
has walked on its own. The success of the Cornell Ranger could not have been realized without
the use of a fast and accurate number type like FFloat.

Next semester, our team will be designing a biped (two-legged) robot. For that robot, we will be
using a DSP chip with a built-in high-speed floating-point coprocessor. Therefore, we probably
will not be using our FFloat library for our next robot. However, if the FFloat functions prove to
be better than implementing floating-point functions on the new DSP chip, it would be
worthwhile to devote more time and effort to improving the functionality and efficiency of the
functions in the FFloat library.

6 Appendix A: Two’s Complement

Two’s Complement is a way of representing negative values in binary. Instead of representing a
power of two, the top bit in a two’s complement binary number is a sign bit, with 0 representing
a positive number and 1 representing a negative number. Two’s complement is used because it
handles overflow errors without the need for special exception cases, decreasing processing
times.

To find the negative of a number, we must invert all the bits in that number and add one to the
result [3]. For example, starting from the 8-bit representation of 21,

0001 0101,

you can get the 8-bit representation of -21 by first inverting all the bits, as shown:
1110 1010,

then adding one to the result. The 8-bit representation of -21 would look like this:
1110 1011.

Since this process finds the two’s complement (negative) of a binary number, this process works
in reverse as well (going from negative to positive numbers).

10 Exponent can represent values between 2% (2.93 x 10*%) and 2% (1.70 x 10*). Mantissa can represent values
between -1 and 1.

11

7 Appendix B: Code for FFloat library functions
This section provides source code for all the FFloat functions. | wrote most of the comparison
functions (FFgt, FFgte, FFIt, FFlte, and FFeqz') as well as a couple of the conversion functions
(S16int2FFloat and S32int2FFloat). The other functions were written by Jason Cortell.

asm ffloat FFadd(register ffloat ffnuml,register ffloat ffnum2)

7.1 FFadd
{
move.w
move.w
move.w
sub

AO, X0
BO,YO

Al,Y1
B,Y1

//Store ffnuml mantissa temporarily in X0
//Store ffnum2 mantissa temporarily in YO

//Put ffnuml exponent (expl) in Y1
//Y1 = expl - exp2

//Setup: Larger ffnum exponent goes in YO; mantissa to be shifted goes in Bl;
//mantissa to stay the same goes in Al; abs exp difference goes in Y1l

tit
tit

tge

abs
cmp.w
Jjot
move . w
move . w
asrac
asr

clb
asll.1

tst.w
Jjeq

sub
inc.w

clb
cmp.w
jlt

Continue:

B,A
X0,B

Y0,B

Y1
#15,Y1
Neglect
Al1,YO0
AO,A
B1,Y1,A
A

A, X0
X0, A

Al
Zero

X0,YO
YO

Y0, X0
#8,X0
Exp_Err

//Move ffnum2 (mantissa and exp) to A (not
//shifted) if Y1 neg

//Move ffnuml mantissa to Bl for shifting if Y1
//neg

//Move ffnum2 mantissa to Bl for shifting if Y1
//not negative

//positive shift values

//More than 15-bit shift (ASRAC only works to
//15 bits)?

//1f yes, an input ffnum will go to zero if
//shifted

//Move larger exp to YO for shifting
//Move mantissa AO to Al for adding

//Extend Bl to 36 bits, shift right by
//Y1, and add to A
//shift right to prevent overflow of CLB (hext)

//Count sign bits
//Normalize

//Check if relevant part of result is zero
//Result is zero

//Adjust exponent of expl
//Return to normal scale

//check number of sign bits in exponent
//1f less than 8 (exp > 8 bits),
//jump to exponent exception handler

1 This function was originally FFeq. It was later modified to become FFeqz, FFltz, and FFgtz.

12

//round to 16 bits in Al

//delayed return from subroutine

//Move mantissa of sum to lower word of ffnuml
//(return value)

//Move exponent to upper word of ffnuml (return
//value)

//Sign-extend A to 36 bits

//Delayed return from subroutine - will execute
//next three words

//Set exp of sum to minimum

//Set mantissa of sum to O

//1f not overflow, go to underflow check
//Positive or negative overflow?

//1f negative, go to negative handler

//Max out exponent

//Delayed return from subroutine - will execute
//next three words

//Max out mantissa

//Delay slot filler

//Max out exponent

//Delayed return from subroutine - will execute
//next three cycles

//Most negative mantissa

//Delay slot filler

//Check for underflow

//Not an error

//Positive or negative underflow?
//1f negative, go to negative handler
//Minimum exponent

//Minimum normalized positive mantissa
//Filler for third delay slot

//Minimum exponent

//Delayed return from subroutine - will execute
//next three words

//Minimum (abs) normalized negative mantissa
//Tiller for third delay slot

//The input with the larger exp becomes the
//output

rnd A
rtsd
move .w A,A0
move.w YO,Al
sxt.1 A
//end of main add function
Zero:
rtsd
move .w #$FF80,A
clr.w AO
//end of zero handler
Exp_Err:
cmp.w #$007F, Y0
jle Underflow
tst.w Al
jlt NegO
move.w #$007F , A
rtsd
move .w #$7FFF,AOQ
nop
//end
NegO:
move .w #$007F ,A
rtsd
move.w #$8000,A0
nop
//end
Underflow:
cmp.w #$FF80,Y0
joe Continue
tst.w Al
jit NegU
move .w #$FF80,A
rtsd
move.w #$4000,A0
nop
//end
NegU:
move.w #$FF80,A
rtsd
move .w #$BFFF,AOQ
nop
//end of E_Err
Neglect:
rts
b
7.2 FFsub

asm ffloat FFsub(register ffloat ffnuml,register ffloat ffnum2)

{

13

move.w
move.w

move.w
asr
inc.w
neg
clb
asll.1
sub
move.
move.
move.

= = =

move .w
sub

A0, X0
B1,Y1

BO,B
B

Y1l

B

B,YO
Y0,B
Y0, Y1
B1,Y0
Y1,B
YO0,BO

Al,Y1
B,Y1

//Store ffnuml mantissa temporarily in XO
//Store ffnum2 mantissa temporarily in Y1

//Prepare to negate B
//Prevent overflow
//Adjust exponent
//Negate

//Count leading bits
//rescale

//adjust exponent

//Put ffnuml exponent (expl) in Y1
//Y1 = expl - exp2

//Setup: Larger ffnum exponent goes in YO; mantissa to be shifted goes in B1;
//mantissa to stay the same goes in Al; abs exp difference goes in Y1

tit
tit

tge

move.w
move.w

asrac
asr

clb
asll.|1

tst.w

Jeq
sub
inc.w

clb
cmp.w
jlt

Continue:
rnd
rtsd

B.,A
X0,B

YO0,B

Y1
#15,Y1
Neglect
Al1,Y0
AO,A
B1,Y1,A
A

A, X0
X0,A

Al
Zero

X0,Y0
YO

YO, X0
#8,X0
Exp_Err

//Move ffnum2 (mantissa and exp) to A (not
//shifted) if Y1 neg

//Move ffnuml mantissa to Bl for shifting if Y1
//neg

//Move ffnum2 mantissa to B1 for shifting if Y1
//not negative

//positive shift values

//More than 15-bit shift (ASRAC only works to
//15 bits)?

//1f yes, an input ffnum will go to zero if
//shifted

//Move larger exp to YO for shifting
//Move mantissa AO to Al for adding

//Extend Bl to 36 bits, shift right by Y1, and
//add to A
//shift right to prevent overflow of CLB (next)

//Count sign bits
//Normalize

//Check if relevant part of result is zero
//Result is zero

//Adjust exponent of expl
//Return to normal scale

//check size of exponent word

//Round to 16 bits
//delayed return from subroutine

14

move.w

move.w

sxt. 1

A,AO
YO0,Al

A

//Move mantissa of sum to lower word of ffnuml
//(return value)

//Move exponent to upper word of ffnuml (return
//value)

//Sign-extend A to 36 bits

//end of main add function

Zero:
rtsd

move.w
clr.w

#$FF80, A
AO

//end of zero handler

Exp_Err:

cmp.w #$007F,YO0

jle
tst.w
jlt
move.w
rtsd

move.w
nop
//end
NegO:
move.w
rtsd

move.w
nop
//end

Underflow:
cmp.w
Jge
tst.w
jit
move.w
rtsd

move .w

nop

//end
NegU:

move .w

rtsd

move .w
nop

Underflow
Al

NegO
#$007F,A

#$7FFF,AO

#$007F, A

#$8000,A0

#$FF80, YO
Continue
Al

NegU
#$FF80,A

#$4000,A0

#$FF80,A

#$BFFF,AO

//end of E_Err

Neglect:
rts

b
7.3 FFmult

//Delayed return from subroutine - will
//execute next three inst.

//Set exp of sum to minimum

//Set mantissa of sum to O

//1f not overflow, go to underflow check
//Positive or negative overflow?

//1T negative, go to negative handler

//Max out exponent

//Delayed return from subroutine - will execute
//next three words

//Max out mantissa

//filler for third delay slot

//Max out exponent

//Delayed return from subroutine - will
//execute next three words

//Most negative mantissa

//filler for third delay slot

//Check for underflow

//Not an error

//Positive or negative underflow?

//1f negative, go to negative handler
//Minimum exponent

//Delayed return from subroutine - will execute
//next three inst.

//Minimum normalized positive mantissa
//Filler for third delay slot

//Minimum exponent

//Delayed return from subroutine - will execute
//next three inst.

//Minimum (abs) normalized negative mantissa
//Tiller for third delay slot

//The input with the larger exp becomes the
//output

asm ffloat FFmult(register ffloat ffnuml, register ffloat ffnum2)

{

move.w

B1,Y1

//This is to save exp2, use B for mult, and
//prepare for exp add

15

move .w A0, X0
move .w BO,YO
mpyr X0,Y0,B
asr B
clb B, X0
asll.1 X0,B
tst.w Bl
jeq Zero
add A,Y1l
sub X0,Y1
inc.w Y1
clb Y1,YO
cmp.w #8,Y0
jit Exp_Err
Continue:
rtsd
move.w Y1,A
rnd B
move .w B1,A0
//end of mult routine
Zero:
rtsd
move.w #$FF80,A
clr.w AO
//end of zero handler
Exp_Err:
cmp.w #$007F, VY1
jle Underflow
tst.w Bl
jlt NegO
move .w #$7FFF,AOQ
rtsd
nop
//end
NegO:
move.w #$007F ,A
rtsd
move .w #$8000,A0
nop
//end
Underflow:
cmp.w #$FF80,Y1
jge Continue
tst.w Bl
jlt NegU
move.w #$FF80,A
rtsd
move .w #$4000,A0
nop
//end
NegU:
move .w #$FF80,A
rtsd

//Can"t multiply AO0,BO directly

//Multiply with round; result unlikely to
//differ from mpy, since truncated later

//shift right, so CLB can give correct count

//Count sign bits for normalization
//Normalize

//Check 1T relevant part of result is zero
//Go to zero handler

//add Al to Y1

//Update exponent after normalization
//Return to normal scale

//count sign bits in exponent word

//1Ff <8 (exp > 8 bits),

//jump to exponent exception handler

//return with 3-cyle delay
//Put exp iIn return register
//Round to 16 bits in Bl
//Move mantissa to AO

//return with 3-cyle delay
//Set exp of sum to minimum
//Set mantissa of sum to O

//Check for overflow

//1f not overflow, go to underflow check
//Positive or negative overflow?

//1f negative, go to negative handler
//Max out mantissa

//Delayed return - will execute next three
//words

//Filler for third delay slot

//Max out exponent

//Delayed return - will execute next three
//words

//Most negative mantissa

//Filler for third delay slot

//Check for underflow

//Not an error - continue normal code
//Positive or negative overflow?

//1f negative, go to negative handler
//Minimum exponent

//Delayed return - will execute next three
//words

//Minimum normalized positive mantissa
//Filler for third delay slot

//Minimum exponent
//Delayed return - will execute next three

16

//words

move .w #$BFFF,A0 //Minimum (abs) normalized negative mantissa
nop //Filler for third delay slot
//end of Exp_Err

}

7.4 FFdiv

asm ffloat FFdiv(register ffloat ffnuml, register ffloat ffnum2)
{

move . w Al,X0 //Move exponent of ffnuml to XO
move . w B1,Y0 //Move exponent of ffnum2 to YO
move .w AO,Y1 //NMove mantissa of ffnuml to Y1 for sign check
move .w AO,A //Nove mantissa of ffnuml to Al
move .w BO,B //Nove mantissa of ffnum2 to Bl
eor.w B,Y1 //Calculate sign of final result
//(sign bit of result will be 1=negative if
//inputs signs differ)
abs A
abs B
jeq DivZero //ffnum2 cannot be zero
L1:
cmp A,B //Check result of B - A
bgt L2 //Ready to divide
brad L1 //Recheck (delayed branch)
asr A //Reduce ffnuml mantissa by factor of 2
inc.w XO //1Increase ffnuml exponent by one
//end
L2:
//Division of Positive Fractional Data (A1:A0 / Bl)
BFCLR #$0001,SR //Clear carry bit: required for 1st DIV
instruction
//REP #16
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
DIV B1,A //Form positive quotient in AO
move . w AO,A //Move A0 to Al
tst.w Y1 //Check sign needed for final result
BGE L3 //Branch if final sign is non-neg
NEG A //Negate mantissa if result is neg
L3:
clb A,Y1 //Count sign bits

17

asll.1 Y1,A //Normalize

tst A //Check if relevant part of result is zero
jeq Zero //Result is zero
sub Y0, X0 //Adjust exponent of expl
sub Y1,X0
clb X0,Y0 //check size of exponent word
cmp.w #8,Y0
jlt Exp_Err
Continue:
RTSD
MOVE . W A,AO0
MOVE . W X0,A1
sxt.l A //Sign-extend A to 36 bits
//END
DivZero:
//Call error handler here
MOVE . W #$007F,A //Needs work here
RTSD
MOVE . W #$7FFF,AO
NOP
//END
Zero:
RTSD
MOVE . W #$FF80,A
CLR.W AO
//END
Exp_Err:
cmp.w #$007F, X0
jle Underflow //1f not overflow, go to underflow check
tst.w Al //Positive or negative overflow?
jit NegO //1f negative, go to negative handler
move . w #$007F, A //Max out exponent
rtsd //Delayed return from subroutine - will
//execute next three words
move .w #$7FFF,AQ //Max out mantissa
nop
//end
NegO:
move .w #$007F,A //Max out exponent
rtsd //Delayed return from subroutine - will
//execute next three words
move .w #$8000,A0 //Most negative mantissa
nop //filler for third delay slot
//end
Underflow:
cmp.w #$FF80, X0 //Check for underflow
joe Continue //Not an error
tst.w Al //Positive or negative underflow?
jit NegU //1f negative, go to negative handler
move .w #$FF80,A //Minimum exponent
rtsd //Delayed return from subroutine - will
//execute next three words
move .w #$4000,A0 //Minimum normalized positive mantissa
nop //Filler for third delay slot

18

//end

NegU:
move . w #$FF80,A //Minimum exponent
rtsd //Delayed return from subroutine - will
//execute next three words
move.w #$BFFF,AO //Minimum (abs) normalized negative mantissa
nop //Tiller for third delay slot
//end of E_Err
}
7.5 FFsin
ffloat FFsin(ffloat xin)
{

int k,klo,khi;

ffloat xdiff0, xdiffl;

ffloat x=xin;
static ffloat xlo = 0x00029b78;
static ffloat xhi = 0x00026487;
static ffloat ya[31] = {Oxffccb968, OxFfFfe958c, OxFFFf97e0, 0x0000b4c3,
0x0000a0e0, 0x00009126, 0x00008643, 0x000080b3, 0x000080b3, 0x00008643,
0x00009126, 0x0000a0e0, 0x0000b4c3, OxFFFF97e0, OxFffe958c, OxFF300000,
Oxfffe6a73, OxFFFF681F, 0x00004b3c, 0x00005fF1f, 0x00006ed9, 0x000079bc,
0x00007f4c, 0x00007f4c, 0x000079bc, 0x00006ed9, 0x00005F1f, 0x00004b3c,
OxFFFF681F, Oxfffe6ar3, OxFfcc4698%};

static ffloat y2a[31] = {Oxff800000, OxFffd6aOf, OxFffe67be, OxFfff4af6,
OxFfff5ec6, OxFFff6e72, OxFFfFf794a, Oxffff7ed5, Oxffff7ed5, OxFFff794a,
OxfFfffee72, OxfFff5ec6, OxFfFff4af6, OxfFffe67be, OxFffd6aOf, OxFF800000,
OxFFFd95f0, OxFffe9841, OxFFFfb509, OxfFFffal39, OxFFFfo918d, OxFFff86b5,
OxFFFf812a, OxFFff812a, OxFFFF86b5, OxFFFF918d, OxFFffal39, OxFFFfb509,
OxFffe9841, OxFFFd95f0, OxFFFd95f0};

static int numpoints = 31;
static ffloat h = OxFffe6b3b;
static ffloat hinv = 0x00034c64;
static ffloat pi2=0x00036487;
static ffloat pi2inv=0xfffe517c;

ifT(FFIt(xin,x10)){
x=FFadd(
xin,
FFmult(
S16int2FFloat(
FFloatTrunc2S16int(
FFmult(
FFsub(xhi,xin),
pi2inv
)
)
)

)

):
}else if(FFgt(xin,xhi)){
x=FFsub(
xin,
FFmult(

pi2

19

S16int2FFloat(

FFloatTrunc2S16int(
FFmult(
FFsub(xin,xlo),
pi2inv
)
)
),
pi2
)
)E
}
klo = FFloatTrunc2S16int(FFmult(FFsub(x,x10),hinv));
khi=klo+1;
xdiffO0 = FFsub(x, FFadd(xlo, FFmult(h,S16int2FFloat(klo))));
xdiffl = FFsub(xdiff0, h);
return (FFadd(ya[klo], FFadd(FFmult(FFmult(FFsub(ya[khi],ya[klo]),
hinv), xdiff0), FFmult(FFmult(y2a[khi], xdiff0), xdiffl))));
}
7.6 FFcos

ffloat FFcos(ffloat xin)

int k,klo,khi;

ffloat xdiff0, xdiffl;

ffloat x=xin;
static ffloat xlo 0x00029b78;
static ffloat xhi 0x00026487 ;
static ffloat ya[31] = {0x00008000, 0x000082cc, 0x00008b10, 0x00009872,
0x0000aa59, OxFFFF8000, OxFFFfbOed, OxFFFd94f6, OxFFFd6b09, OxFFFf4flb,
0x00004000, 0x000055a6, 0x0000678d, 0x000074ef, 0x00007d33, 0x00014000,
0x00007d33, 0x000074ef, 0x0000678d, 0x000055a6, 0x00004000, OxFFfff4filb,
OxFFfdeb09, OxFFfdo4fe, OxFFFfbOed, OxFFFFS8000, 0x0000aa59, 0x00009872,
0x00008b10, 0x000082cc, 0x00008000};

static ffloat y2a[31] = {Oxff800000, OxFfff7cbe, OxFFFF7481, OxFfFff672d,
OxFFFF5556, Oxfffe7f88, Oxfffededl, OxfFffcb6aa5, OxFffc955a, OxfFffebl2e,
OxFffe8077, Oxffffaaa9, OxFFFf98d2, OxFFff8b7e, OxFFFf8341, OxFFFf8077,
OxFFff8341, OxfFff8b7e, OxFFFF98d2, Oxffffaaa9, OxFffe8077, Oxfffebl2e,
OxfFffco955a, OxfFffc6aab, Oxfffededl, OxFFfe7f88, OxFFFF5556, OxFFFf672d,
OxFFFF7481, OxfFfff7cbe, OxFFFf7cbe};

static int numpoints = 31;
static ffloat h = OxFffe6b3b;
static ffloat hinv = 0x00034c64;
static ffloat pi2=0x00036487;
static ffloat pi2inv=0xfffe517c;

ifT(FFIt(xin,x10)){
x=FFadd(
xin,
FFmult(
S16int2FFloat(
FFloatTrunc2S16int(
FFmult(
FFsub(xhi,xin),
pi2inv

20

)

)
)
Yelse ifT(FFgt(xin,xhi)){
x=FFsub(
xin,
FFmult(
S16int2FFloat(
FFloatTrunc2S16int(
FFmult(
FFsub(xin,xlo),
pi2inv
)
)

pi2

)

)
);

klo = FFloatTrunc2S16int(FFmult(FFsub(x,x10),hinv));

khi=klo+1;

xdiffO0 = FFsub(x, FFadd(xlo, FFmult(h,S16int2FFloat(klo))));

xdiffl = FFsub(xdiff0, h);

return (FFadd(ya[klo], FFadd(FFmult(FFmult(FFsub(ya[khi],ya[klo]),
hinv), xdiff0), FFmult(FFmult(y2a[khi], xdiff0), xdiffl))));

pi2

7.7 FFatan

ffloat FFatan(ffloat xin)
{

int k,klo,khi;

ffloat xdiff0, xdiffl;

ffloat x=xin;
static ffloat xlo 0x0005b000;
static ffloat xhi 0x00055000;
static ffloat ya[151] = {0Ox00019eaa, 0x00019eb5, 0x00019ec0O, 0x00019ecc,
0x00019ed8, 0x00019ee4, 0x00019efl, 0x00019efe, 0x00019f0c, 0x00019f19,
0x00019f28, 0x00019f36, 0x00019f46, 0x00019f55, 0x00019f66, 0x00019f76,
0x00019f88, 0x00019f99, 0x00019fac, 0x00019fbf, 0x00019fd3, 0x00019fe8,
0x00019ffd, 0x0001a013, 0x000l1la02a, 0x0001a042, 0x000l1a05b, 0x0001a075,
0x0001a090, 0x000l1aOac, 0x000laOca, 0x0001a0e9, 0x0001al09, 0x000l1al2?b,
0x000l1al4e, 0x0001al73, 0x000l1lal9a, 0x000lalc3, 0x000lalee, 0x000l1la2ic,
0x0001a24c, 0x0001a27f, 0x0001a2b5, 0x000la2ef, 0x0001a32c, 0x0001a36d,
0x0001a3b3, 0x0001a3fd, 0x000la44d, 0x000lad4a?2, 0x000ladff, 0x0001a563,
0x0001a5d0, 0x0001a646, 0x000la6c7, 0x0001la754, 0x000l1la7f0, 0x0001a89d,
0x0001a95d, 0x0001aa33, 0x000l1lab25, 0x000lac37, 0x000lad71l, 0x000laeda,
0x0001b07f, 0x0001b26e, 0x0001b4bc, 0x0001b785, 0x000l1bafl, O0x0001bf38,
0x0000894e, 0x00009757, 0x0000a9a2, OxFFFF8292, OxFFFfbd49, OxFF300000,
OxFfFff42b6, OxFFFF7d6d, 0x0000565d, 0x000068a8, 0x000076bl, 0x000140c7,
0x0001450e, 0x0001487a, 0x00014b43, 0x00014d91, 0x00014f80, 0x00015125,
0x0001528e, 0x000153c8, 0x000154da, 0x000155cc, 0x000156a2, 0x00015762,
0x0001580f, 0x000158ab, 0x00015938, 0x000159b9, 0x00015a2f, 0x00015a9c,
0x00015b00, 0x00015b5d, 0x00015bb2, 0x00015c02, 0x00015c4c, 0x00015c92,
0x00015cd3, 0x00015d10, 0x00015d4a, 0x00015d80, 0x00015db3, 0x00015de3,

21

0x00015e11, 0x00015e3c, 0x00015e65, 0x00015e8c, 0x00015ebl, 0x00015ed4,
0x00015ef6, 0x00015f16, O0x00015Ff35, 0x00015f53, 0x00015f6F, 0x00015f8a,
0x00015fa4, 0x00015fbd, 0x00015fd5, 0x00015fec, 0x00016002, 0x00016017,
0x0001602c, 0x00016040, 0x00016053, 0x00016066, 0x00016077, 0x00016089,
0x00016099, 0x000160aa, 0x000160b9, 0x000160c9, 0x000160d7, 0x000160e6,
0x000160f3, 0x00016101, 0x0001610e, 0x0001611b, 0x00016127, 0x00016133,
0x0001613f, 0x0001614a, 0x00016155}%;

static ffloat y2a[151] = {Oxff800000, OxFff443ed4, OxFff446b6, OxFFF449b0,
Oxfff44cd5, OxFFf45029, OxFff453af, OxfFff4576a, OxFFF45b5f, OxFFf451f92,
OxFFf46408, OxFFf468c6, OxFff46ddl, OxFFF47331, OxFFF478ec, OxFFF47f0a,
OxFFf542c9, OxFFf54648, OxFff54a06, OxfFff54e0a, OxFFF55259, OxFFf556fa,
OxFFF55bf6, OxFFF56156, OxFFF56722, OxFFF56d66, OxFFF5742fF, OxFFf57b8a,
OxFff641c3, OxFFf6461c, OxFFf64ad8, OxFFf65004, OxfFff655ac, OxFFf65be0,
OxFFf662b0, OxFFf66a30, OxFFf67278, Oxfff67bal, OxFff742e5, OxFFff7488b,
OxFfFf74ed9, OxFFF755e6, OxFFF75dd0, OxFFF766ba, OxFFF770cc, OxFFF77c39,
OxFfFF8449e, OxFFf84cOf, OxFFF8549c, OxFFfF85e7b, OxFFF869ef, OxFFf8774e,
OxFFF9437F, OxFFF94cch, OxFFFI957cc, OxFFFI96504, OxFFF974fc, OxfFffad4439,
OxFffa5032, Oxfffa5fl6, OxfFffa7lcd, OxFffb44d0, OxFffb542e, OxFffb684a,
Oxfffc4182, OxFFfc538F, OxFffc6cs5c, OxFFfd4779, OxFffd5fe2, OxFffe4133,
OxFffe5918, OxFffe77b6, OxFFFF4b62, OxFFFF503a, OxFFfe707d, OxFF300000,
OxFffe8f82, OxfFfffafch, OxFFFfb49d, OxFfFfe8849, Oxfffeabe7, OxFffebecc,
Oxfffda0ld, OxFFFdb886, OxFffc93a3, OxfFffcac70, OxFffcbe7d, OxFFfbo7b5,
Oxfffbabdl, OxfFfbbb2f, OxFfffa8e32, Oxfffaale9, Oxfffaafcd, OxFffabbc6,
OxFFFI98b03, OxFfFf99afb, OxFFFfoa833, OxfFFfob33a, OxFFF9bc80, OxFFF888b1,
OxFFF89610, OxFff8al84, OxFff8abh63, OxFFF8b3f0, OxFFF8bb61, OxFFF783cH,
OxFFF78F33, OxFFF79945, OxFff7a22f, Oxfff7aal9, OxFFf7bl126, OxFFF7b774,
OxFfFf7bdla, OxFFf6845e, OxFFf68d87, OxFFF695cT, OxFFF69d4f, OxFff6a4lf,
Oxfff6aab3, OxffFfoaffb, OxFFf6eb527, OxFFfob9e3, OxFff6be3c, OxFFf58475,
OxFFf58bd0, OxFFf59299, OxFFf598dd, OxfFff59ea9, OxFff5a409, OxFFff5a905,
Oxfff5ada6, OxFFF5b1f5, OxFFF5b5F9, OxFFF5b9b7, OxFFF5bd36, OxFFF480f5,
OxFFF48713, OxFfFf48cce, OxFFf4922e, OxFFF49739, OxFFF49bf7, OxFff4a06d,
Oxfff4ad4a0, OxFFf4a895, OxFff4ac50, OxFfFf4afd6, OxFFf4b32a, OxFFf4b64f,
OxFff4b949, Oxfffdbclb, OxFff4bclb};

static int numpoints = 151;

static ffloat h = Oxffff4444;

static ffloat hinv = 0x00027800;
klo = FFloatTrunc2S16int(FFmult(FFsub(x,xl10),hinv));
khi=klo+1;

iT(FFIt(x,x10)){
return(ya[0]);

}else iT(FFgt(x,xhi)){
return(ya[numpoints-1]);

}
xdiffO0 = FFsub(x, FFadd(xlo, FFmult(h,S16int2FFloat(klo))));
xdiffl = FFsub(xdiff0, h);
return (FFadd(ya[klo], FFadd(FFmult(FFmult(FFsub(ya[khi],ya[klo]),
hinv), xdiff0), FFmult(FFmult(y2a[khi], xdiff0), xdiffl))));
}
7.8 FFgt

//return true if ffnuml>ffnum2, false otherwise
asm bool FFgt(register ffloat ffnuml, register ffloat ffnum2)

//First compare signs of numbers

22

tst.w AO

blt CheckSignANeg

//a is nonnegative

tst.w BO

//Both numbers are nonnegative - nonnegative exponents case
bge CasePNumExp

//1f b is negative, a>b

rtsd

move.w #1,Y0

nop

nop

//a is negative
CheckSignANeg:
tst.w BO
//Both numbers are negative - negative exponents case
blt CaseNNumExp
//1f b is nonnegative, a<b
rtsd
move .w #0,Y0
nop
nop

//1f a and b are positive, go here
//larger exponent = larger #

CasePNumExp:
//move exponent data to X0 and YO registers for comparison
move.w A1,X0
move.w B1,Y0
cmp.w X0,YO0
blt aGTb //if(expB<expA) then a>b
bgt aNotGTb //iT(expB>expA) then !(a>b)
//1f exponents are equal, check mantissas
move .w A0, X0
move .w BO,YO
cmp.w X0,YO0
blt aGTb //if(mantissaB<mantissaA) then a>b
rtsd
move .w #0,Y0
nop
nop

//1f a and b are negative, go here
//larger exponent = smaller #

CaseNNumExp:
//move exponent data to X0 and YO registers for comparison
move.w A1,X0
move.w B1,Y0
cmp.w X0,YO0
bgt aGTb //if(expB>expA) then a>b
blt aNotGTb //if(expB<expA) then !(a>b)
//1f exponents are equal, check mantissas
move .w A0, X0
move .w BO,YO
cmp.w X0,YO0

23

blt aGTb //if(mantissaB<mantissaA) then a>b
rtsd

move .w #0,Y0

nop

nop

//if a>b, go here
aGTb:
rtsd
move .w #1,Y0
nop
nop

//if a<=b, go here

aNotGThb:
rtsd
move .w #0,Y0
nop
nop
}
7.9 FFgte

//return true if a>=b, false otherwise
asm bool FFgte(register ffloat a, register ffloat b)
{

//First compare signs of numbers

tst.w AO

blt CheckSignANeg
//a i1s nonnegative

tst.w BO

//Both numbers are nonnegative - nonnegative exponents case
bge CasePNumExp
//1f b is negative, a>=b
rtsd

move . w #1,Y0

nop

nop

//a is negative
CheckSignANeg:
tst.w BO
//Both numbers are negative - negative exponents case
blt CaseNNumExp
//1f b is nonnegative, a<b
rtsd
move.w #0,Y0
nop
nop

//1f a and b are positive, go here
//larger exponent = larger #

CasePNumExp:
//move exponent data to X0 and YO registers for comparison
move .w Al,X0
move.w B1,Y0

24

cmp.w X0,YO0

blt aGTEb //if(expB<expA) then a>=b
bgt aNotGTEb //if(expB>expA) then !(a>=b)
//1f exponents are equal, check mantissas

move . w A0, X0

move . w BO,YO

cmp.w X0,YO0

ble aGTEb //if(mantissaB<=mantissaA) then a>=b
rtsd

move . w #0,Y0

nop

nop

//1f a and b are negative, go here
//larger exponent = smaller #

CaseNNumExp:
//move exponent data to X0 and YO registers for comparison
move.w A1,X0
move.w B1,Y0
cmp.w X0,YO0
bgt aGTEb //if(expB>expA) then a>b
blt aNotGTEb //if(expB<expA) then !(a>b)
//1f exponents are equal, check mantissas
move .w A0, X0
move .w BO,YO
cmp.w X0,YO0
ble aGTEb //if(mantissaB<=mantissaA) then a>=b
rtsd
move .w #0,Y0
nop
nop

//if a>=b, go here
aGTEb:
rtsd
move .w #1,Y0
nop
nop

//if a<b, go here

aNotGTEb:
rtsd
move .w #0,Y0
nop
nop
3
7.10 FFgtz

asm bool FFgtz(register ffloat ffnum)

//Test ffnum mantissa

tst.w AO
bgt Positive
//ffnum <= 0

25

rtsd //delayed return

clr.w YO //return value 0O
nop //first filler instruction
nop //second filler instruction
//end

Positive:
//ffnum > 0
rtsd //delayed return
move .w #1,Y0 //return value 1
nop //first filler instruction
nop //second filler instruction
//end

}

//return true if ffnum<O, false otherwise
asm bool FFlItz(register ffloat ffnum)

{
//Test ffnum mantissa
tst.w AO
blt Negative
//ffnum >= 0
rtsd //delayed return
clr.w YO //return value 0O
nop //first filler instruction
nop //second filler instruction
//end
Negative:
//ffnum < O
rtsd //delayed return
move .w #1,Y0 //return value 1
nop //first filler instruction
nop //second filler instruction
//end
}
7.11 FFIt

//return true if ffnuml<ffnum2, false otherwise
asm bool FFlt(register ffloat ffnuml, register ffloat ffnum2)

{

//First compare signs of numbers

tst.w AO

blt CheckSignANeg
//a is nonnegative

tst.w BO

//Both numbers are nonnegative - nonnegative exponents case
bge CasePNumExp
//1f b is negative, !(a<b)
rtsd

move.w #0,Y0

nop

nop

//a is negative

26

CheckSignANeg:

tst.w BO

//Both numbers are negative - negative exponents case

blt

CaseNNumExp

//1f b is nonnegative, a<b

rtsd
move.w
nop
nop

#1,Y0

//1f a and b are positive, go here

//larger exponent

= larger #

CasePNumExp:
//move exponent data to X0 and YO registers for comparison
move.w A1,X0
move . w B1,Y0
cmp.w X0,YO0
bgt aLTb //if(expB>expA) then a<b
blt aNotLTh //if(expB<expA) then !(a<b)
//1f exponents are equal, check mantissas
move . w A0, X0
move . w BO,YO
cmp.w X0,YO0
bgt aLTb //if(mantissaB>mantissaA) then a<b
rtsd
move . w #0,Y0
nop
nop

//1f a and b are negative, go here

//larger exponent

CaseNNumExp:

= smaller #

//move exponent data to XO and YO registers for comparison

move .w
move . w
cmp.w
blt
bgt

Al,X0

B1,YO

X0,Y0

aLTb //if(expB<expA) then a<b
aNotLTh //if(expB>expA) then !(a<b)

//1f exponents are equal, check mantissas

move.w
move.w
cmp.w
bgt
rtsd
move.w
nop
nop

//if a<b, go here

aLTb:
rtsd
move.w
nop
nop

//if a>=b, go here

A0, X0
BO, YO
X0,Y0
aLTb //if(mantissaB>mantissaA) then a<b

#0,Y0

#1,Y0

27

aNotLThb:

rtsd
move .w #0,YO0
nop
nop
¥
7.12 FFlte

//return true if a<=b, false otherwise
asm bool FFlte(register ffloat a, register ffloat b)
{

//First compare signs of numbers

tst.w AO

blt CheckSignANeg
//a i1s nonnegative

tst.w BO

//Both numbers are nonnegative - nonnegative exponents case
bge CasePNumExp
//1f b is negative, !(a<=b)
rtsd

move .w #0,Y0

nop

nop

//a is negative
CheckSignANeg:
tst.w BO
//Both numbers are negative - negative exponents case
blt CaseNNumExp
//1f b is nonnegative, a<b
rtsd
move.w #1,Y0
nop
nop

//1f a and b are positive, go here
//larger exponent = larger #

CasePNumExp:
//move exponent data to X0 and YO registers for comparison
move.w A1,X0
move.w B1,Y0
cmp.w X0,YO0
bgt aLTEb //if(expB>expA) then a<=b
blt aNotLTEb //if(expB>expA) then !(a<=b)
//1f exponents are equal, check mantissas
move.w A0, X0
move .w BO,YO
cmp.w X0,YO0
bge aLTEb //if(mantissaB>=mantissaA) then a>=b
rtsd
move.w #0,Y0
nop
nop

28

//1f a and b are negative, go here

//larger exponent = smaller #

CaseNNumExp:
//move exponent data to XO and YO registers for comparison

//if(expB<expA) then a<=b
//if(expB>expA) then !(a<=b)

//1f exponents are equal, check mantissas

move .w Al1,X0
move .w B1,YO0
cmp.w X0,YO0
blt aLTEb
bgt aNotLTEb
move .w A0, X0
move .w BO,YO
cmp.-w X0,YO0
bge aLTEb
rtsd

move .w #0,YO0
nop

nop

//if a<=b, go here

aLTEb:

rtsd
move .w #1,Y0
nop
nop

//if a>b, go here
aNotLTEb:

}

rtsd
move .w #0,YO0
nop
nop

7.13 FFltz
asm bool FFlItz(register ffloat ffnum)

{

Negati

//Test ffnum mantissa

tst.w AO

blt Negative

//ffnum >= 0
rtsd

clr.w YO
nop

nop

//end

ve:
//ffnum < O

rtsd

move .w #1,Y0
nop

nop

//end

//if(mantissaB>=mantissaA) then a>=b

//delayed return
//return value 0O
//first filler instruction
//second Ffiller instruction

//delayed return
//return value 1
//First filler instruction
//second filler instruction

29

asm bool FFeqz(register ffloat ffnum)

{
//Test ffnum mantissa
tst.w AO
beq Zero
//ffnum 1= 0
rtsd //delayed return
clr.w YO //return value O
nop //first filler instruction
nop //second filler instruction
//end
Zero:
//ffnum < O
rtsd //delayed return
move .w #1,Y0 //return value 1
nop //first Filler instruction
nop //second filler instruction
//end
}
7.14 FFeqz

//return true if ffnum=0, false otherwise
asm bool FFeqz(register ffloat ffnum)
{

//Test ffnum mantissa

tst.w AO

beq Zero

//ffnum 1= 0
rtsd

clr.w YO

nop

nop

Zero:
//ffnum < O
rtsd
move .w #1,Y0 //return value 1
nop
nop

7.15 S16int2FFloat

//convert an intl6 to an ffloat value
asm ffloat Sl6int2FFloat(register short int inum)
{

tst.w YO

jeq Zero

//inum '= 0

clb YO, X0

asll.1 X0,YO0 //normalize Inum
neg X0 //set exponent
rtsd

30

add.w #15,X0
move .w X0,A //exponent
move .w YO,AO //mantissa

//FFloat zero = OxFF800000

Zero:
rtsd
move.w #$FF80,A
clr.w AO

b

7.16 S32int2FFloat

//convert an int32 to an ffloat value
asm ffloat S32int2FFloat(long int inum)

{
//inum = 0O
tst A
jeq Zero
//inum 1= 0
clb A, X0
asll.1 X0,A //normalize Inum
neg X0 //set exponent
add.w #31,X0
rnd A
rtsd
move .w Al,A0 //mantissa
move .w X0,Al //exponent
sxt.l A //sign-extend A to 36 bits
//FFloat zero = OxFF800000
Zero:
rtsd
move .w #$FF80,A
clr.w AO
3

7.17 U32int2FFloat

//convert an unsigned int32 to an ffloat value
asm ffloat U32int2FFloat(long unsigned int unum)

{
tst A
jeq Zero //unum = 0
jlt LongUnsigned //1F 2731 <= unum <= 2732-1, unum will

//be a negative number

//unum <= 2731 - 1

clb A, X0

asli_1 X0,A //normalize unum

neg X0 //set exponent

add.w #31,X0

rtsd

move .w Al,AO0 //mantissa

move .w X0,Al //exponent

sxt.l A //sign-extend A to 36 bits

31

//FFloat zero = OxFF800000

Zero:

rtsd
move.w
clr.w

#3$FF80,A
AO

//1f unum is between 2731 and 27°32-1

LongUnsigned:

Isr.w
move.w

A
Al,AO

//divide mantissa by 2
//move mantissa to its right place

//divide the mantissa by two and increase the exponent by 1
//this will correct the sign of A while keeping the absolute
//value of a the same

rtsd
move.w
sxt. 1

#32,A1
A

7.18 FFloatRnd2S16int
asm short int FFloatRnd2S16int(register ffloat ffnum)

{

Zero:

Over:

Neg:

move.w
move.w

Al,YO
AO,A

//exponent will always be 32 for this case
//sign-extend A to 36 bits

//Scale so that exponent = 15; converts mantissa to integer scale
//Check if resulting mantissa is in range -32768 to 32767 (16 bit
//signed int)

sub.w
Jjot
cmp.w
jit
rtsd
asll.1
rnd

move.w
//end

rtsd
clr.w
nop
nop
//end

tst
blt
rtsd
move.w
nop
//end

#15,Y0
Over
#-17,Y0
Zero

YO, A
A

Al1,YO

YO

A
Neg

#$7FFF,YO0

//Number is outside range -32768 to 32767
//Number is small and rounds to zero
//Scale to exponent = 15 (one word, two cycles)

//Convergent rounding (round down boundary case
//if even)

//Result is zero

//branch to Neg: if number is below 32768

//Set to most positive 16-bit value
//Filler for third delay slot

32

rtsd
move.w
nop
//end

#$8000, Y0

7.19 FFloatTrunc2S16int
asm short int FFloatTrunc2Sl16int(register ffloat ffnum)

{

//Scale so that exponent = 15

Zero:

Over:

Neg:

7.20 IEEE2FFloat

move.w
move.w

sub.w
Jjgt
cmp.w
jit
rtsd
asll.1
move.w
nop
//end

rtsd
clr.w YO
nop

nop
//end

tst
blt
rtsd
move .w
nop
//end

rtsd
move.w
nop
//end

Al,YO
AO,A

#15,Y0
Over
#-17,Y0
Zero

YO, A
Al,YO

//Set to most negative 16-bit value
//Filler for third delay slot

converts mantissa to integer scale
//Check if resulting mantissa is in range -32768 to 32767 (16 bit signed int)

//Number is outside range -32768 to 32767

//Number is small and rounds to zero

//Scale to exponent =

//Filler

for third delay slot

//Result is zero

A
Neg

#$7FFF, YO

#$8000, Y0

//branch

//Set to
//Filler

//Set to
//Filler

to Neg: if number is

15 (one word, two cycles)

below -32768

most positive 16-bit value

for third delay slot

most negative 16-bit value

for third delay slot

asm ffloat IEEE2FFloat(register float fnum)

{

bftstl
jcs

move.w
bfclr
sxt.1
bfset

#$7F80,A1
Zero

Al,YO
#$FF00,Al
A
#3$0080,A1

//For IEEE, zero is indicated

by zero exp.

//Sign-extend A to 36 bits

33

brclr

neg
L1:

clb

asll.1

bfclr
Isrr.w
sub.w
sub
clb
cmp.w
jlt
Continue:
rnd
rtsd
move.w
move .w
sxt.l A
//end

Zero:
RTSD
MOVE . W

CLR.W AO

//END

Exp_Err:
cmp.w
jle
tst.w
jlt
move .w
rtsd

move.w
nop
//end
NegO:
move.w
rtsd

move.w
nop
//end

Underflow:
cmp.w
Jge
tst.w
jit
move.w
rtsd

move .w
nop
//end
NegU:
move .w

#$8000,Y0,L1
A

A, X0
X0,A

#$807F, Y0
#7,Y0
#119,Y0
X0,Y0

Y0, X0
#8,X0
Exp_Err

A

A,AO
YO0,Al

#3$FF80,A

#$007F,YO
Underflow
Al

NegO
#$007F,A

#$7FFF,AO

#$007F, A

#$8000,A0

#$FF80, YO
Continue
Al

NegU
#$FF80,A

#3$4000,A0

#$FF80, A

//Branch if sign bit is positive

//Negate mantissa if sign bit is negative

//Normalize mantissa

//FFloat exponent is ready
//Check for overflow/underflow

//Sign-extend A to 36 bits

//1f not overflow, go to underflow check
//Positive or negative overflow?

//1T negative, go to negative handler
//Max out exponent

//Delayed return from subroutine - will
//execute next three words

//Max out mantissa

//Filler for third delay slot

//Max out exponent

//Delayed return from subroutine - will
//execute next three words

//Most negative mantissa

//filler for third delay slot

//Check for underflow
//Not an error
//Positive or negative underflow?

//Minimum exponent

//Delayed return from subroutine - will
//execute next three words

//Minimum normalized positive mantissa
//Filler for third delay slot

//Minimum exponent

34

rtsd //Delayed return from subroutine - will
//execute next three words

move . w #$BFFF,AO //Minimum (abs) normalized negative
//mantissa
nop //filler for third delay slot

//end of E_Err

7.21 FFloat2IEEE
float FFloat2IEEE(ffloat ffnum)

{

float fout = O;

long Int iexp = 0;

long unsigned int tempout = 0, sign = 0, mantissa = 0, exp = 0;
void *VoidPointer;

float *FloatPointer;

long unsigned int *LintPointer;

it (FFnum&OxFFFF) //ffnum is not zero
{
mantissa = ffnum & OxO000FFFF;

exp = FFnum&OxFFFFO000;
iexp = (long int)exp;

iexp += 0x007F0000; //Bias exponent positive by 127

if (iexp < 0x00010000) //Limit exponent size to allowed
//1EEE range
{

iexp = 0x00010000;

else if (iexp > OxO0FEO000)

{
iexp = OxO0FEOO00O0;
}
if (mantissa&0x00008000) //ffnum is negative
{
sign = 0x80000000;
mantissa "= Ox0000FFFF; //Negate
mantissa+t+;
}
while (I(mantissa&0x8000)) //normalize
{
mantissa <<= 1;
iexp -= 0x00010000;
}
if (iexp < 0x00010000) //Limit exponent size to allowed
//1EEE range
{

iexp = 0x00010000;

else if (iexp > OxO0FEO000)

35

{
}

exp = (long unsigned int)iexp;

iexp = OxO0FEOO00O0;

exp <<= 7; //Shift exponent to correct position

mantissa <<= 8; //shift to correct IEEE position
mantissa &= Ox007FFFFF; //Clear leading one

tempout = sign | exp | mantissa;

}
else exp = 0x00000000; //zero
VoidPointer = &(tempout); //obtain pointer to unsigned long
//int tempout
FloatPointer = VoidPointer; //convert to float
fout = *FloatPointer;
return(fout);
}
7.22 FFneg
asm ffloat FFneg(register ffloat ffnum)
{
move . w Al,YO //store ffnum exp in YO
move .w AO,A //A holds mantissa of ffnum
neg A //full 36-bit negate
asr A //shift right to prevent overflow of clb
jeq Zero //Don"t normalize if zero
//ffnum 1= 0
clb A, X0 //Count sign bits
asll.1 X0,A //Normalize
sub X0,Y0 //Adjust exponent
inc.w YO //Return to normal scale
clb Y0, X0 //check number of sign bits in exponent
cmp.w #8,X0 //1f less than 8 (exp > 8 bits),
jlt Exp_Err //jump to exponent exception handler
Continue:
rtsd //delayed return from subroutine
move .w Al,A0 //Move mantissa of sum to lower word of ffnuml
//(return value)
move .w Y0,Al //Move exponent to upper word of ffnuml (return
//value)
sxt.l A //Sign-extend A to 36 bits
//end of main neg function
Zero:
rtsd //Delayed return from subroutine - will
execute next three words
move .w #$FF80,A //Set exp of sum to minimum
clr.w AO //Set mantissa of sum to O

//end of zero handler

36

Exp_Err:
cmp.w
jle
tst.w
jlt
move .w
rtsd

move.w
nop
//end

NegO:
move . w
rtsd

move.w
nop
//end

Underflow:
cmp.w
Jge
tst.w
jlt
move.w
rtsd
move .w
nop
//end

NegU:
move.w
rtsd

move.w

nop

#$007F, YO
Underflow
Al

NegO
#$007F, A

#$7FFF,AO

#$007F, A

#$8000,A0

#$FF80, YO
Continue
Al

NegU
#$FF80,A

#3$4000,A0

#3$FF80,A

#$BFFF,AO

//end of E_Err

b
7.23 FFabs

//1f not overflow, go to unde
//Positive or negative overfl

ow?

//1T negative, go to negative handler

//Max out exponent

//Delayed return from subroutine - will

//execute next three words
//Max out mantissa
//Delay slot filler

//Max out exponent

//Delayed return from subroutine - will

//execute next three cycles
//Most negative mantissa
//Delay slot filler

//Check for underflow
//Not an error

//Positive or negative underflow?

//1T negative, go to negative
//Minimum exponent

//Minimum normalized positive
//Filler for third delay slot

//Minimum exponent

handler

mantissa

//Delayed return from subroutine - will

//execute next three words
//Minimum (abs) normalized ne
//mantissa

//filler for third delay slot

asm ffloat FFabs(register ffloat ffnum)

{

move.w
move.w
abs
asr

Jjeq

//ffnum 1= 0

clb
asll.1

sub
inc.w

Al,YO
AO,A
A

A
Zero

A, X0
X0, A

X0,Y0
YO

//store ffnum exp in YO
//A holds mantissa of ffnum
//full-width absolute value

gative

//shift right to prevent overflow of clb

//Don"t normalize i1f zero

//Count sign bits
//Normalize

//Adjust exponent
//Return to normal scale

37

rflow check

clb YO0, X0

//check number of sign bits in exponent
//1f less than 8 (exp > 8 bits),
//jump to exponent exception handler

//delayed return from subroutine

//Move mantissa of sum to lower word of ffnuml
//(return value)

//Move exponent to upper word of ffnuml (return
//value)

//Sign-extend A to 36 bits

//Delayed return from subroutine - will execute
//next three words

//Set exp of sum to minimum

//Set mantissa of sum to O

//1f not overflow, go to underflow check
//Positive or negative overflow?

//1f negative, go to negative handler

//Max out exponent

//Delayed return from subroutine - will execute
//next three words

//Max out mantissa

//Delay slot filler

//Max out exponent

//Delayed return from subroutine - will execute
//next three cycles

//Most negative mantissa

//Delay slot filler

//Check for underflow

//Not an error

//Positive or negative underflow?
//1f negative, go to negative handler
//Minimum exponent

//Minimum normalized positive mantissa
//Filler for third delay slot

//Minimum exponent

//Delayed return from subroutine - will execute
//next three words

//Minimum (abs) normalized negative mantissa
//filler for third delay slot

cmp.w #8,X0
jlt Exp_Err
Continue:
rtsd
move .w A,A0
move.w YO,Al
sxt.l A
//end of main abs function
Zero:
rtsd
move .w #$FF80, A
clr.w AO
//end of zero handler
Exp_Err:
cmp.w #$007F, Y0
jle Underflow
tst.w Al
jlt NegO
move.w #$007F , A
rtsd
move .w #$7FFF,AOQ
nop
//end
NegO:
move .w #$007F, A
rtsd
move.w #$8000,A0
nop
//end
Underflow:
cmp.w #$FF80,Y0
joe Continue
tst.w Al
jit NegU
move .w #$FF80, A
rtsd
move.w #$4000, A0
nop
//end
NegU:
move .w #$FF80, A
rtsd
move .w #$BFFF,AOQ
nop
//end of E_Err
b

38

8 References

[1] “56F8347 Data Sheet.” 14 December 2006
<http://www.ortodoxism.ro/datasheets2/d/0jayk819f7lua3qy5ayalyjs4x3y.pdf>.

[2] “DSP56800E Reference Manual.” 12 December 2006
<http://www.freescale.com/files/dsp/doc/ref manual/DSP56800ERM.pdf>.

[3] “Two’s Complement.” Wikipedia, the free encyclopedia. 5 December 2006
<http://en.wikipedia.org/wiki/Two%27s complement>.

39

