Progress Report:
Feasibility Study
for a New Robot
Electronic System
Architecture

TAMA492 - Spring 2007
Research Report

Hsiang Wei LEE
hi1336@cornell.edu

Current Address
120 Valentine Place Apt3008
Ithaca, NY 14850, USA

Permanent Address
9 Upper Bukit Timah View #08-04
Singapore 588136, Singapore

Contents Page

1. Introduction 1
2. Motivation 1
3. Network Based Model 3
4. Equipment 5
5. Communications Protocols 8
6. Getting Started 10
7. Results 18
8. References 25

9. Appendix 26

1. Introduction

For this semester, the goal of my project was to conduct a feasibility study for the next robot
that is next built in the lab. In particular, this feasibility study seeks to examine that proposed
electronic system architecture of the robot, learn how to used the various electronic
components, as well as to test electronic components that will be used to implement the
electronic system architecture. This new system is essentially about having in place a “network-

based” model for controlling the robot.

2. Motivation

The motivation for studying the feasibility of the new system is twofold. Firstly, we hope to be
able to implement a modular system of design for the electronic components. From our
previous experiences of designing the Cornell Ranger as well as the Marathon Walker Bot
(MWB), where the electronic components were integrated in a less modular manner, the
programmers often had difficulty finding bugs in the code when a programming error was
suspected. A less modular system also leads to a small group doing most of the code due to the
laborious process of integrating various portions of the code. With a more modular system
design, however, debugging code and testing programs can be simplified as we are able to test
individual components and more people can participate in programming due to the very fact
that it is more modular in nature. The second motivation of studying this new system is that we
hope to find a solution to the massive wiring issues that plague not only the Cornell Ranger but

also the MWB. Figure 1 and Figure 2 shows the wiring problem that has plagued the two robots.

Figure 2: Wiring Problems of the Cornell Ranger

When a robot is in its design phase, it is usually the case that we do not foresee all the
components that are needed to make it walk. As such, when the printed circuit board (PCB) is
designed and manufactured, it is rarely self sufficient and additional components almost
definitely have to be added onto the existing circuitry. With the addition of components
outside of those already on the PCB, it is necessary to connect voltage and ground lines as well
as data cables from the microcontroller to the added on component. This results in not only an
unsightly nest of wires, but also the uncertainty of having a bad connection whenever

something fails to work, instead of knowing that it | a software problem.

3. Network-Based Model

The network-based model that is being studied for the next robot proposes using multiple
microcontrollers to control various parts of the robot. The model consists of the high level
portion, communications level portion and the low level portion. The 3 main portions, as seen
in Figure 3, are the High Level portion, the Communications Level portion and the Low Level

portion.

High Level

Main
Controller

Communications Level

Communications

Controller
Low Level
Low Level | | Low Level | |
Controller Controller
|| Low Level | Low Level
Controller Controller
Low Level | | Low Level | |
Controller Controller
|| Low Level
Controller | Low Level
Controller
Low Level | | Low Level | |
Controller Controller

Figure 3: Overview of the proposed electronic system architecture

3.1 High Level Portion

The high level portion consists of the main controller which will be in charge of the controlling
the robot on the high level. The code is specific to providing instructions to how the robot
should move. Ideally, the code on the main microcontroller is similar to a human-readable list

of instructions of how to get a robot to walk. The main controller communicates with the

communications controller constantly so as to ensure that the information it has about the

robot is up to date.

3.2 Communications Level Portion

The main purpose of the communications level is to act as a bridge between the main controller
in the High Level and the low level microcontrollers in the Low Level. It is responsible for the
data flow between the two other levels. It acts very much like a router, collecting and

redistributing information between all the microcontrollers in the system

3.3 Low Level Portion

In the low level portion, it consists of a number of low level microcontrollers. Each of these
microcontrollers are be responsible for controlling a subset of the sensors and motors based
either on function or location. Connected via a network with the communications controller,
the multiple low level controllers send information collected via the sensors and receive
instructions of what to carry actions to execute, to and from the communications

microcontroller.

4. Equipment

4.1 Main Controller

Figure 4: Functional Board of the LPC3180

For the main controller, the current microcontroller that is being tested and evaluated is the

LPC3180 as shown above in Figure 4. In a strict sense, the LPC3180 is more of a microprocessor

than a microcontroller. Unlike a microcontroller which has its RAM and Flash memory

integrated into the chip, the LPC3180 has its RAM and Flash memory external to the chip. The

LPC3180 has several following key advantages:

Operates with speeds up to 208Mhz

High performance with low power dissipation (Full operating power consumption of
0.4mA/MHz)

Exclusive hardware vector floating point unit

Flexible power management for peak performance

Large Memory Space (32MB RAM and 32MB Flash)

General purpose DMA controller that can be used with the SD card and SPI interfaces, as

well as for memory-to-memory transfers

The LPC3180 was primarily designed as a power embedded systems microcontroller and it is

currently used in the following areas:

e Industrial

e Medical

o Peripheral control: printers, scanners, POS
e Medical devices

e GPS, motors, security devices, servo loops
e Network control

e Embedded Linux

4.2 Communications Controller

For the commutations controller, the current microcontroller that is being tested and evaluated
is the LPC2368 as shown below on the evaluation board in Figure 5. The LPC2368, compared to
the main controller, has significantly less processing power. As its main role is to handle
communications from various parts of the robot, the LPC2368 has processing speeds up to

72MHz, with 58kB of RAM and 512kB of FLASH.

o
CS !IEEIQiWﬂ
EIOESEo I::H:Irs::za::l:a:%%

|
R o

Figure 5: LPC2368 on a Keil Evaluation Board

The LPC2368 seems to be designed largely for communication purposes, with the ability to
support multiple simultaneous communications operations. Its key communication features

include:

Ethernet 10/100 MAC with DMA

e USB 2.0 full-speed device with PHY and DMA
e CAN 2.0B with two channels
e General-purpose DMA controller

o 1%S, three I°C, three SPI/SSP, and four UARTSs

4.3 Low Level Controller

For the low level controller, the current microcontroller that is being tested and evaluated is
the LPC2129 as shown below on the board by New Micros in Figure 6. The LPC2129 is a
comparatively small and low powered processor which is widely used in the industrial control,
automotive and medical industries. The LPC2129 is mainly targeted at general purpose
applications, making it suitable as a low level controller which potentially has to interface with a

wide range of peripherals. The key features of the LPC2129 include:

Multiple 32-bit Timers

e 4 channel 10-bit Analog to Digital Converter
e 2 CAN bus channels

e Pulse Width Modulation channels

e 46 GPIO lines

Figure 6: LPC2129 on a board by New Micros

5. Communications Protocols

To allow for the main controller to have a good estimate of what state the robot is in and to
instruct the various low level controllers to carry out various functions, channels of
communication has to be set up. In specific, communication channels have to be set up
between the main controller and the communications controller as well as between the
communications controller and the low level controllers. One important consideration when
choosing the appropriate protocols is that the protocol should be able to support continuously

transferring a significant amount of data in a fast enough speed.

5.1 Direct Memory Access (DMA)

Direct memory access (DMA) is a feature that allows certain hardware subsystems within the
computer to access system memory for reading and writing independently of the main core of
the processor. DMA channels have the ability to transfer data to and from devices with much

less overhead than microcontrollers without a DMA channel.

Without DMA, the main core of the processor typically has to be occupied for the entire time
it's performing a transfer, while with DMA, the main core initiates the transfer, do other
operations while the transfer is in progress, and receive an interrupt from the DMA controller
once the operation has been done. This is especially useful for our purposes as it reduces the
load on the core of the main controller and free up more resources for the needs of the robot.
Figure 7 below shows the differences between data transfers that use DMA and those that do

not, for data that resides in Memory to the Serial Peripheral Interface (SPI)

For the purposes of this robot, the data transfer between the main controller and the
communications controller will be using the Serial Peripheral Interface (SPI) protocol and it will

utilize DMA and implemented on the two respective controllers.

Data Flow without DMA

Main Core of the

Memory Microcontroller

Direct Memory
Access (DMA)
Controller

Serial Peripheral
Interface (SPI)

Figure 7: Data Flow between DMA enabled and DMA disabled transfers

5.2 Controller Area Network Bus (CAN)

CAN (also referred to as CANbus or CAN bus) is a network used in many every-day products

consisting of multiple microcontrollers that need to communicate with each other. The

Controller Area Network is a broadcast, differential serial bus standard and it is specifically
designed for operation in electromagnetically noisy environments. CAN also features an
automatic 'arbitration free' transmission. A CAN message transmitted with highest priority will
'win' the arbitration, and the node transmitting the lower priority message will sense this and

back off and wait. In addition, CAN provide:

¢ A multi-master hierarchy, which allows building intelligent and redundant systems. If
one network node is defect the network is still able to operate.

e Broadcast communication. A sender of information transmits to all devices on the bus.
All receiving devices read the message and then decide if it is relevant to them. This
guarantees data integrity as all devices in the system use the same information.

e Sophisticated error detecting mechanisms and re-transmission of faulty messages. This

also guarantees data integrity.

Given the above mentioned properties, such a network is suitable for use to transfer data and
information between the communications microcontroller and the numerous low level

controllers.

6. Getting Started

6.1 Equipment and Programs

6.1.1 IAR Embedded Workbench

IAR Embedded Workbench is the program that the lab is currently using to evaluate and
program the various microcontrollers. To obtain the software to start programming the
microcontrollers, proceed to http://supp.iar.com/Download/SW/?item=EWARM-KS32 to obtain
the KickStart version of IAR Embedded Workbench for ARM. The KickStart version of the
software has a code size limit of 32kB, but for our purposes it is more than sufficient.

Following the link, you will be prompted to submit some information. IAR Systems will proceed
to email you a link to obtain the license number, license key as well as to download the
software itself.

If any problems are encountered in the download process, proceed to
http://supp.iar.com/Contact/ to request assistance from IAR Systems.

6.1.2 J-Link

The J-Link is a device that connects to your computer via USB and it is used by IAR Embedded
Workbench to program the microcontroller via JTAG. To install the drivers to your computer,
proceed to http://www.iar.com/jlinkarm and the drivers can be downloaded from the “product

updates” in the “downloads” column. Once the driver has been installed, you will just need to
plug it into your computer and to the microcontroller via JTAG and you are able to program the
microcontroller

6.2 Evaluation Boards

6.2.1 LPC2368 Keil Evaluation Board

For the LPC268 Keil evaluation board, the key components of the evaluation board are listed in
Figure 8 below. The evaluation board is powered via a USB cable to your computer and it is
programmed via JTAG using the J-Link.

USB Power CAN BUS Ports JTAG Programming
Connection

X0 0 N O O 00

g % X E I AR DR R R

LPC 2368 Microcontroller
Figure 8: Key Components of the LPC2368 Evaluation Board

11

6.2.2 LPC3180 Phytec Evaluation Board

For the LPC3180 Phytec evaluation board, the key components of the evaluation board are
listed in Figure 9 below. The evaluation board is powered via a 5 Volt DC adapter and it is
programmed via JTAG using the J-Link.

Power Connection

|.\:s;_nl{m-f-_.

Microprocessor
Functional Board

JTAG Connection

Serial Peripheral
Interface Connection

Figure 9: Key Components of the LPC3180 Evaluation Board

6.3. Coding

The program structure in the example code differs significantly between the LPC2368 and
LPC3180. Hence, care has to be taken to prevent the confusion between the two different
implementation styles in C.

12

6.3.1 LPC3180
Using the Example Code

The example code for the LPC3180 can be obtained from the following web address:
http://www.phytec.com/zip/Demos PCM-031 l.zip. After unzipping the file to the folder of
your choice, open the project in IAR Embedded Workbench by double clicking on
GettingStarted.ewp in the “Gettingstarted” folder or opening it through IAR workbench itself.

Updating the IAR Workbench Software

There is an update available for the IAR Workbench software that is needed to program the
LPC3180. In the CD that is provided in this report, in the software folder, using from the file:

FlashPhytecLPC3180 — Software Update.zip

Unpack the files in the .zip folder into your Embedded Workbench ARM (EWARM) installation
directory. This is necessary as there is a minor bug in some of the files that is provided by the
installation software.

Programming to FLASH

The example code at the current point of time is configured to program to RAM. However to
program to FLASH, you have to switch configurations by changing the configurations under the
workspace sub window, to “LPC3180 Ext NAND Flash”, as shown in Figure 10

A IAR Embedded Workbench IDE

File Edit “iew Project Tools ‘Window Help

0= L |

WWaorkspace

|LPC3180 Ext NAND Flash =

LPCHE0 Int RaM
LPC3180 Ext SDRAM

Elragg_ _

= 3 Startup *
B main.c *
L@ 3 Output

Figure 10: Changing the Configuration to Program to Flash

13

In a case were the project does not have to configurations as described above, proceed with
the following steps to setup a new configuration.

1. Proceed to : Project > Edit Configurations > New...

Mew Configuration f$__<|
Hlime:
. |F'mglam to Flash
Configurations for “Example® Tool chai ﬂ
A oal chair:
Configurations: K. |,f_-._F|M L]

Bazed on configuration:

: |<N|:|ne> Li
Remaove

i~ Factory settings
+ Debug

" Releaze

Figure 11 : Stepl Figure 12 : Step 2

2. Name the configuration, i.e. “Flash” and set it be base on “<None>" and click “OK”

3. Proceed to : Project> Options while the Program to Flash configuration is selected under

the workspace sub window.
4. Under General Options, in the Target tab, (see Figure 13)
a. setthe device to LPC3180
b. setthe FPU to VFP9-S

c. set Processor Mode to “Arm mode

14

Options for node “Example™

Categony:
C/C++ Compiler Target] Dutput] Library Configuration | Library options | MISRA C
assemblon Processor variant
Custom Build
Build Actions " Care
Linker
Diebugger & Device [N<PLPCHE0 e
Simulator |
Angel
14F ROM-monitor kel
J-LinkA)-Trace YFP3-5 ¥
LMI FTDI .
Macraigor [Generate jnterwork code
RDI Processor mode—— — Endian mode- Stack align
Third-Party Driver & Litle & 4 bytes
" Big " 8 hytes

ak | Cancel
Figure 13: General Options (Step 4)

5. Under the “Linker” option, in the “Output” tab, make sure that the following options are
checked:

a. “Debuginformation for C-SPY”
b. “With runtime modules”
c. “With I/O emulation modules”

d. “Allow C-SPY specific extra output file”

Options for node "GettingStarted™

] QOptions for node “GettingStarted™” @
Eategory: Factory Settings I Catanay, Factary Settings
General Options General Optiong
C/C++ Compiler Dulput] Estra Dutpuli ﬂdef\na* Diiagnostics | List Config 1Pruce_ﬂ_’~ C/C++ Compiler Dutput | Extra UU[DUt1 ﬂdEﬁﬂE1 Diagnuslics] List 1 CU““D] PWCE_‘..J_’.
Assembler Linker command file- Sefibler -~ Output fle-
guiﬂz ?u”d ¥ Tiveride defadlt gui:: ?u'ld T~ Overide default Secondary output fils:
uild Actions uild Actions
J$F’F|D.LD|H$\conf\g\LF’C3UUUﬁxHAM sl _J i Gettings barted [None far the selected format)
ﬁ] Command file configuration tool Debugger -~ Format
Simulator : Simulator % Debug infarmation far C-5PY
Angal I~ Dueride detault program entry Angel W With runtime control modules
14 ROM-monitor = Enrylabel 1R ROM-monitor IV With 1/0 emulation modules
J-Link#)-Trace " Defired by applicatio J-Link/-Trace I™ Buffered terminal output
LMl FTDI Search paths: [one per ling] LI FTDI ¥ Allow C5PY-specific extra autput file
Macraigor ATOOLKIT_DIRSALIES baciann: " Other
RDI RDI] 1 Ll _J
Third-Party Driver e Third-Party Driver AR 1 e _J
File: Symbal Segment: Aligr: :
| _] | 1]‘—‘—" Module-ocal symbols: J\nclude all j

oK Cancel

ok Cancel

gure 14: Steps 5 and 6

15

6. Under the “Linker” option, in the “Config” tab, override the default linker file and set it
to the appropriate .XCL file. For LPC3180, it is in the “config” folder in the
GettingStarted directory.

Options for node “GettingStarted™

] Options for node "GettingStarted”

Categony: Factory Settings Category Factary Settings
General Options General Options -

C/C++ Compiler Setup | Download | Extra Options | Plugins | C/C++ Compiler Setup | Download | Eutra Options | Pluains |

Aszembler Aszembler

Custam Build Driver W Runto Custorn Build L jelechEpinan

lEde Actions TLrkATrace - ’maimi iEUILd Actiong [Werifp download
L est K ™ Suppress download
| Debunger Diebugger

Simuilatar Simulatar v Use flash loaderls)

Argel Setup macros Argel

14R ROM-monitor ¥ Use macio fie 14R ROM-marnitor oodefalt, Edt..

9 ik clvene [$FRI0L_DIR$\confighFC3000_FidM. mac J A-Link - Trace

LMIFTDI LMIFTDI

Macraigor Device description file Macrsigor

RODI _ RDI

Third-Party Driver I Qverride default J Third-Party Diriver

Fi
gure 15 : Steps 7 and 8
« ” . . : “«
7. Inthe “Debugger” option, under the Setup tab, make sure that the driver is set to “J
. ” . . .
Link/J Trace” and the appropriate macro file is chosen.

Coding Conventions

In the “Debugger” option, under the Download tab, check the “Use flash loader(s)”
option

The key features in the coding conventions that is unique to the LPC3180 is the way registers

and the bits in the respective registers named and referenced. The naming of the respective
bits in a register is user-defined in the macro file, “iolpc3180.h".

They are named and
referenced to follow the naming conventions as specified in the user manual.

For example, if we wanted to access a hypothetical “Register A” and we like to set the first bit
to zero, the following code is written:

REGISTERA_bit.BITO = 0;

16

Also, if there is a field in the register that spans more than 1 bit, the above convention can be
used to set that particular field, as long as the fields are defined in the macro file. Alternatively,
if there is a need to assign bits to the whole register in a single line, the following code can also
be written, assuming “Register A” is a 32-bit register:

REGISTERA = Ox89ABCDEF;

6.3.2 LPC2368
Using the Example Code

The example code for the LPC2368 can be obtained from the following web address:
http://www.indyelectronics.com/code.lpc23xx.peripherals.iar.zip. After unzipping the file to

the folder of your choice, open the project in IAR Embedded Workbench by double clicking on
the .ewp file or opening it through IAR workbench itself.

In the example code provided in the file above comes with multiple projects which test and use
the various aspects of the LPC2368. To choose the particular project, right click on the
particular project and click on “Set as Active”, as shown in Figure 16.

Wark Space

|3SP - Debug

iElL

Files bt
B @ code.lpc2 3o peripherals.iar

[E]ADC - Debug_Fuhd v
AN - Debug BAM
B DAC - Debug_Ruhd
[T DA - Debug Make

[B]EMAC - Debug_FLASH Campil

[EEXTINT - Dehug_Rah Rebuild &l

[EIGFIO - Debug_ R Clean

[&12C- Debug

[&]125 - Debug

[BMCl - Debug fidd 3
[E]PorLCD - Debug_FLASH
pwm -Debug
[E]P#/Ridan - Debug_FLASH Source Code Contral b
LIRTC- Debug
&SPl - Debug

Options...

Rermone

File Properties. ..

[L|SSP - Debug Set as Active

[Tirmer - Debug_RA

[UART - Debug_RaA v
EWDT - Dehug v

Overview |ADC | CaN_ | DAC | DMa | EMAC| EXTINT | GF | |

Figure 16: Choosing a project in the example code

17

To just browse through the other projects without selecting them, click on the tabs at the
bottom of the workspace. Do note that you can, as mentioned previously with the LPC3180, set
the configurations for this project. The example code, however, has a bug in its configuration
files, hence, we are unable to program to Flash at the moment.

Coding Conventions

The coding convention of the files on the LPC2368 was originally different as compared to the
files for the LPC3180. However, the code was revised and rewritten so that both the
microcontrollers share the same coding conventions.

7. Preliminary Results

7.1 Standardizing Coding Conventions for LPC2368 and LPC3180

The main motivation for standardizing the coding conventions is that the styles of the example
code differ greatly between that provided with the LPC3180 and the LPC2368. | decided to
rewrite the LPC2368 to match that of the LPC3180 as the coding convention of the LPC3180 was
more user-friendly and it supported the code convention of LPC2368 as well. To achieve this, |
had to study the structure of the macro files that is used by the LPC3180 example and replicate
it with the LPC2368.

To replicate the similar code structure, it requires defining the registers and their respective
bits in the macro file. First, it is necessary to define the contents in the register — what bit fields
the register contains, and secondly, the register needs to be defined and linked with the
memory address the values reside in.

Bit Symbol Description Reset
value
] FLLE PLL Enable. When ane, and after a valid PLL feed, this bt will 0
actwate the PLL and allow it to lock to the reguested frequency. See

PLLSTAT register, Table 4-37.
1 PLLC PLL Connect. Having both PLLC and PLLE set to one follomed bya 0
valid PLL feed sequence, the PLL becomes the clock source for the
CPU, as we' as the USB subsystem and. Otherwise, the clock
selected by the Clock Source Selection Multiplexer is used direcily
by the LPCZ300. See PLLSTAT register, Table 4-27.
Reserved, user software should mot write ones to reserved bits. The NA
value read from a reserved bit is not defined.

[%]

Figure 17:

For example, given the register in Figure 17 above, as obtained from the datasheet, we need to
make the following definitions.

Defining the contents in the register:

/*PLL Control register*/
typedef struct{

_ REG8 PLLE t1;
_ REG8 PLLC t1;
___REG8 : 6;

} _pllcon_bits;

Defining the register itself and setting the address that it resides in memory

__10_REG8_BIT(PLLCFG, OXEO1FC084, READ WRITE, pllcfg_bits);

The definitions of the registers are contained in iolpc2368.h and it can be found as Appendix X.
At the current point of time, not all the registers are defined in the macro file. Only those
pertaining to the System Control Block, Clocking and Power Control, Vectored Interrupt
Controller, Pin Connect Block, SSP Interface and the DMA Interface are implemented in the
macro file.

7.2 Controller Area Network (CAN) Self Test on LPC2368

The Controller Area Network (CAN) Self Test was carried out using the example code provided.
The purpose of this test was to try out the CAN protocol and to attempt to determine the data
transfer limits with respect to the reliability of the protocol. The CAN protocol however, has
not been tested with multiple microcontrollers as there is currently only the LPC2368 that has
the CAN protocol. The LPC2129 could not be used at the current point of time due to faulty
products provided by the manufacturer.

In getting the CAN protocol to work, it was found that the example code provided had a bug
and it, causing the example code not to work. The bug was found and the code with the bug
removed is contained in “Canbus.zip”. The main file, cantest.c, which contains the updated
changes, can be found in Appendix X.

7.3 Serial Peripheral Interface (SPI) and DMA Self Test on LPC2368

7.3.1 Getting SPI to Work

For getting the SPI protocol to work, the following registers have to be initialized.

e Power Control for Peripherals Register (PCONP)

e Pin Function Select Register (PSELn)

e Serial Peripheral Interface Clock Prescale Register (SSPnCPSR)

e Serial Peripheral Interface Control Register 0 and 1 (SSPnCRO and SSPnCR1)

After setting up the registers as mentioned above, there is a need to clear the receive buffers so
as to ensure no garbage data remains in the buffers. The initialization sequence code can be
seen in Appendix X.

7.3.2 Determining Possible Speeds for SPI

The transfer speeds for the SPI are dependent on the following 3 values:

1. Peripheral Clock Rate (PCLK)
2. SSP Clock Prescaler (SSPnCPSR)
3. Serial Clock Rate (SCR)

And the actual rate is determined by the following relation:

PCLK

SPI Transfer Rate =
55PnCPSR = (SCR+ 1)

According to the datasheet the maximum SPI Transfer Rate is 6MHz. With:

POLK = 7:ZMH:=
S5PnCPSR =12
S5CR=1

Since the PCLK is running at its maximum speed, the only way to increase the transfer rate is to
decrease the SSPnCPSR. Testing the SPI connection by lowering this value, | found that the
value of SSPnCPSR can be lowered to 6 and it still functions reliably. This implies that the
maximum possible SPI Transfer Rate is 12MHz.

7.3.3 Enabling Direct Memory Access (DMA) with SPI

The setting up of the DMA on the LPC2368 was significantly more time consuming and tricky
due to the poor documentation provided by the user manual.

The first important point that should be noted is that for the LPC2368, the DMA source and
destination registers can only be pointing to locations in the USB RAM. Setting the pointers to
other memory locations will not work.

The second important point is that the Source Burst and Destination Burst Sizes in the SPI
Channel Control Register have to be set to 4. Attempting to set up the DMA transfers, at least
for the self test, with other values will cause the DMA to transmit and receive erroneous data.

The initialization routines for the DMA Controller on the LPC2368 is attached as appendix X

7.4 SPl and DMA Self Test on LPC3180

7.4.1 Getting SPI to Work

For getting the SPI protocol to work on the LPC3180, the following registers have to be
initialized.

e SPI Block Control register (SPI_CTRL)

e SPIn Global Control register (SPIn_GLOBAL)
e SPIn Control register (SPIn_CON)

e SPIn Frame Count register (SPIn_FRM)

e Various Interrupt Registers

As the SPI interface on the LPC3180 has in built buffers — 56 entries for receive, 8 entries for

transmit, to enable the buffers, the respective bits have to be set in the SPIn Control Register.

After setting up the registers as mentioned above, to send data via the SPI, pass the data into
the SPIn Data Buffer register (SPIn_DAT).

//5end Data via SPI1
SP11 _DAT=0x01;

And to receive data from SPI, just read the data from the Data Buffer Register

//Receive Data from SPI1
temp = SPI1_DAT;

7.4.1 Setting up DMA on LPC3180

Setting up the DMA Self Test on the LPC3180, the sequence of setting the registers are
paramount in getting the DMA to work.

Setting the appropriate transfer size and enabling the Transfer Counter (TC) interrupt, it is
possible to let the DMA operate in the background until the given number of transfers is
completed. After which, the DMA can be reinitialized to repeat the same transfer of data.

The DMA initialization sequence for the LPC3180 can be found in Appendix X

7.5 SPI Communication between LPC2368 and LPC3180

After getting the LPC2368 and LPC3180 each to communicate with itself, the next step would
naturally be getting both of them to communicate with each other.

7.5.1 Timing Problem

One of the issues that had to be considered in getting the two microcontrollers to communicate
is the difference in speeds between them.

The LPC2368 has a 12MHz crystal as its main oscillator and its CPU speed can be set based on
the following calculations, with a maximum of 72MHz:

FOCO
CPU Clock = ————
CLESEL
2 = .'Il"f = Fr'!l'_-
where FOCO — T

Finhas to be in the range of 32kHz to 50Mhz and FCCO in the range of 260MHz and 290MHz.
(Note: the range of values for FCCO differs from that mentioned in the user manual and the
change can be found in the erratum issued by NXP)

The LPC3180 however, uses a 13MHz crystal as its main oscillator and there are multiple modes
of setting the CPU Clock. However, in order to not deviate too far away from the maximum
possible CPU Clock of 208MHz, the CPU Clock is a multiple of 13MHz

In order to fit both the microcontrollers such that they have a common rate of transfer over the
SPI, it was decided to lower the CPU Clock for the LPC2368 from 72MHz to 65MHz, thereby
allowing the SPI transfer rate to be that of 6.5MHz. The clock initialization settings for the
LPC2368 and LPC3180 can be found in Appendix X and X respectively.

7.5.1 Compatibility Problem

While attempting to get both microcontrollers to communicate via SPI with each other, |
realized that there were key differences between their implementation resulting in two main
compatibility problems.

The first compatibility problem is the design of SPI interface of the two microcontrollers. The
LPC2368 has a SPI interface consisting of 4 wires:

Serial Clock

Slave Select

Data In (Master Out Slave In)
Data Out (Master In Slave Out)

S

However the LPC3180 only has the following 3 wires, lacking the Slave Select:

1. Serial Clock
2. Data In (Master In Slave Out)
3. Data Out (Master Out Slave In)

The Slave Select on the SPI is a standard line where it is necessary to indicate to the
communicating devices, the intended recipient of the transferred data. The function of the
Slave Select can be further explained in Figure X below:

. — ™
acK 1w 0 \ \
2ZEL _"L)I,_
moat A e L] X =)
MEag JL 2B }f H }Ilr :{ L3B){i}—
| i |
- £ to 16 bits

&. Single transfer with CPOL=0 and CPHA=D

BCK r_lll__, ’_‘l_‘u_)r_ ! | _"I'._l '_"'._H_Jr _‘I'"{_‘-_
s

BBL_‘l’- e J . . e

wes——(Cuee Y[, T X e) o i)

migo " yag }(:|:I }(_?5 B 4 wmes I :: " I L?E ::I:Qi
4% 16 bk - snicb————

b. Contmucus fransfer with CPOL=0 and CPHA=0

Figure X

This problem is currently being worked on by using a series of inverting buffers to generate the

Slave Select signals, based on the serial clock signal.

24

8. References

CAN in Automation (CiA). (2004, May 26). Controller Area Network. Retrieved April 23, 2007, from CAN
in Automation (CiA): http://www.can-cia.org/can/

Embedded Microprocessor Benchmark Corporation. (2006, November 8). EEMBC® Scores for NXP’s
ARM7-Based LPC2129 . Retrieved April 23, 2007, from Embedded Microprocessor Benchmark
Corporation: http://www.eembc.org/Press/PressRelease/061108.htm

Future Electronics. (2006, June). 90nm ARM9™-based Microcontroller with Hardware Floating Point and
USB OTG. Retrieved April 23, 2007, from Future Electronics Technology Magazine: http://www.future-
mag.com/0610/061032.asp

NXP. (2005, September 25). NXP Semiconductors unveils industry's first ARM7 microcontrollers with dual
high-speed buses. Retrieved April 23, 2007, from NXP Semiconductors:
http://www.standardics.nxp.com/news/lpc23xx.lpc24xx/~LPC2368/

9 Appendices

/ __REG8 EINT1 o 1;

el __REG8 EINT2 :1;
el This file defines the Special Function Registers for __REG8 EINT3 :1;
*x NXP LPC2368 _ REG8 45
*x } __extint_bits;
*x Done By : Hsiang Wei LEE
el Cornell University /* External Interupt Resgister */
*x Biorobotics and Locomotion Lab typedef struct{
*x _ REG8 EXTMODEO : 1;
*x Last Updated : 3 May 2007 _ REG8 EXTMODE1 : 1;
/ _ REG8 EXTMODE2 : 1;

__ REG8 EXTMODE3 : 1;
#ifndef ___I0LPC2368_H __REG8 T 4;
#define __ 10LPC2368_H } __extmode_bits;
#if ((C_TID__ >> 8) & Ox7F) != 0x4F) /* Ox4F = 79 dec */ /* External Interupt Polarity Resgister */
#error This file should only be compiled by ARM IAR compiler and assembler typedef struct{
#endif _ REG8 EXTPOLARO : 1;

_ REG8 EXTPOLARL : 1;
#include "io_macros.h" __ REG8 EXTPOLAR2 : 1;

__REG8 EXTPOLAR3 : 1;
/ __REG8 : 4,
il LPC3180 SPECIAL FUNCTION REGISTERS } _ extpolar_bits;

/

/* System Control and Status Resgister */
/* C-compiler specific declarations / typedef struct{

_ REG32 GPIOM :1;
#ifdef _ IAR_SYSTEMS_ICC__ __REG32 EMC o 1;

_ REG32 o 1;
/* Reset Source ldentification Register */ __REG32 MCIPWR :1;
typedef struct{ _ REG32 MCIRANGE : 1;
__REG8 POR :1; __ REG32 OSCEN :1;
_ REG8 EXTR D 1; _ REG32 OSCSTAT : 1;
_ REG8 WDTR o 1; _ REG32 : 25;
__ REG8 BODR :1; } _ scs_bits;
_ REG8 4
} __rsir_bits; /*AHB Arbiter Configuration register 1*/

typedef struct{
/* External Interupt Resgister */ _ REG32 SCHEDULIZER :1;
typedef struct{ __REG32 BREAK_BURST :2;
__REG8 EINTO :1; __REG32 QUANTUM_TYPE 1 1;

Appendix1-1

_ REG32 QUANTUM_SIZE :4;
_ REG32 DEFAULT_MASTER : 4; /*PLL Status register*/
_ REG32 EP1 : 4 typedef struct{
_ REG32 EP2 4 _ REG32 MSEL : 15;
__REG32 EP3 :4; __REG32 :1;
_ REG32 EP4 :4; __ REG32 NSEL : 8;
_ REG32 :4; _ REG32 PLLE :1;
} __ahbcfgl_bits; __REG32 PLLC 1;
__REG32 PLOCK : 1;
/*AHB Arbiter Configuration register 1*/ _ REG32 : 5;
typedef struct{ } __pllistat_bits;
__ REG32 SCHEDULIZER 1 1;
__REG32 BREAK_BURST :2; /*USB Clock Configuration register*/
_ REG32 QUANTUM_TYPE :1; typedef struct{
__REG32 QUANTUM_SIZE :4; __REG8 USBSEL : 4;
__ REG32 DEFAULT_MASTER : 4; __REG8 :4;
_ REG32 EP1 :4; } __usbclkcfg_bits;
_ REG32 EP2 :4;
_ REG32 t12; /*Peripheral Clock Selection register 0*/
} __ahbcfg2_bits; typedef struct{
_ REG32 PCLK_WDT :2;
/*Clock Source Select register*/ _ REG32 PCLK_TIMERO : 2;
typedef struct{ _ REG32 PCLK_TIMER1 : 2;
_ REG8 CLKSRC : 2; _ REG32 PCLK_UARTO : 2;
__REG8 : 6; __REG32 PCLK_UART1 : 2;
} _ _clksrcsel_bits; __ REG32 PCLK_PWMO :2;
_ REG32 PCLK_PwM1 :2;
/*PLL Control register*/ _ REG32 PCLK_12CO :2;
typedef struct{ _ REG32 PCLK_SP1 :2;
__REG8 PLLE :1; __REG32 PCLK_RTC :2;
_ REG8 PLLC t1; __ REG32 PCLK_SSP1 :2;
__REG8 :6; _ REG32 PCLK_DAC :2;
} __pllcon_bits; __REG32 PCLK_ADC :2;
_ REG32 PCLK_CAN1 23
/*PLL Configuration register*/ _ REG32 PCLK_CAN2 :2;
typedef struct{ __ REG32 PCLK_ACF :2;
__ REG32 MSEL : 15; } __pclkselO_bits;
_ REG32 o 1;
_ REG32 NSEL : 8; /*Peripheral Clock Selection register 1*/
_ REG32 : 8; typedef struct{
} __pllcfg_bits; _ REG32 PCLK_BAT_RAM: 2;

Appendix 1 -2

_ REG32 PCLK_GPI0 :2; } _ _pcon_bits;
__REG32 PCLK_PCB :2;

_ REG32 PCLK_12C1 :2; /*Power Control for Peripherals register*/
_ REG32 :2; typedef struct{
__REG32 PCLK_SSPO :2; __REG32 t1;
_ REG32 PCLK_TIMER2 : 2; __REG32 PCTIMO :1;
_ REG32 PCLK_TIMER3 : 2; _ _REG32 PCTIM1 1;
_ REG32 PCLK_UART2 : 2; _ REG32 PCUARTO D 1;
_ REG32 PCLK_UART3 : 2; _ REG32 PCUART1 o 1;
__REG32 PCLK_l2C2 :2; __REG32 PCPWMO :1;
_ REG32 PCLK_12S :2; __REG32 PCPWM1 :1;
_ REG32 PCLK_MCI :2; _ _REG32 PCI2CO :1;
_ REG32 :2; _ REG32 PCSPI o 1;
_ REG32 PCLK_SYSCON : 2; __REG32 PCRTC :1;
__REG32 :2; __REG32 PCSSP1 :1;
} __pclksell_bits; _ REG32 PCEMC :1;
__REG32 PCAD 1;
/*Interrupt Wakeup Register*/ _ REG32 PCAN1 :1;
typedef struct{ _ REG32 PCAN2 :1;
__REG16 EXTWAKEO :1; __REG32 PCl2C1 : 4;
__ REG16 EXTWAKE1 :1; __REG32 :1;
__ REG16 EXTWAKE2 :1; __REG32 PCSSPO :1;
_ REG16 EXTWAKE3 o 1; _ REG32 PCTIM2 o 1;
_ REG16 ETHWAKE D 1; _ REG32 PCTIM3 :1;
__REG16 USBWAKE :1; __REG32 PCUART2 :1;
__ _REG16 CANWAKE :1; _ REG32 PCUART3 :1;
__REG16 GPIOWAKE :1; _ _REG32 PCl2C2 :1;
_ REG16 1 63 _ REG32 PCI2S o 1;
_ REG16 BODWAKE o 1; _ REG32 PCsDC D 1;
__REG16 RTCWAKE :1; __REG32 PCGPDMA :1;
} __intwake_bits; _ REG32 PCENET :1;
__REG32 PCUSB 1;
/*Power Mode Control register*/ } __pconp_bits;

typedef struct{

__REG8 PMO :1; /*Vector Interupts*/
__REG8 PM1 :1; typedef struct{

__REG8 BODPDM :1; __REG32 INTO :1;
__ REG8 BOGD :1; _ _REG32 INT1 o 1;
_ REG8 BORD :1; _ REG32 INT2 o 1;
__REG8 T 2; _ REG32 INT3 :1;
__REG8 PM2 :1; _ _REG32 INT4 :1;

Appendix 1-3

__REG32 INT5 D 1;
__REG32 INT6 D 1;
__REG32 INT7 t1;
__REG32 INT8 t1;
__REG32 INT9 T 1
__REG32 INT10 D13
__REG32 INT11 D 1;
__REG32 INT12 t1;
__REG32 INT13 t1;
__REG32 INT14 T 1
__REG32 INT15 D 1;
__REG32 INT16 D 1;
__REG32 INT17 t1;
__REG32 INT18 t1;
__REG32 INT19 Tl
__REG32 INT20 D 1;
__REG32 INT21 D 1;
__REG32 INT22 t1;
__REG32 INT23 D 1;
__REG32 INT24 T 1
__REG32 INT25 D 1;
__REG32 INT26 D 1;
__REG32 INT27 D 1;
__REG32 INT28 t1;
__REG32 INT29 T 1
__REG32 INT30 D 1;
__REG32 INT31 D 1;

} __vic_bits;

/*VIC SW Priority Register*/

typedef struct{

_ REG32 PriorityMask: 16;
__REG32 - 16;
} __vicswpriority_bits;

/*VIC Protection Register*/

typedef struct{
_ REG32 VIC_access : 1;
_ REG32 : 31;

} __vicprotection_bits;

/*Pin Select Register 0*/

typedef

__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32

} __pinselA_bits;

struct{
PO
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15

2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;

/*Pin Select Register 1*/

typedef

__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32
__REG32

} __pinselB_bits;

struct{
P16
P17
P18
P19
P20
P21
p22
P23
P24
P25
P26
P27
P28
P29
P30
P31

2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;
2;

/*Pin Select Register 10*/

Appendix1-4

typedef struct{

__REG32 : 3;
__REG32 TRACE :1;
__REG32 : 28;

}__pinsellO_bits;

/*Pin Mode Register */
typedef struct{

__REG32 POOMODE 25
__REG32 o 28;
__REG32 P15MODE :2;

}__pinmodeA_bits;
typedef struct{

__REG32 P16MODE 25
__REG32 o 28;
__REG32 P31MODE :2;

}__pinmodeB_bits;
typedef struct{

__REG32 P16MODE 25
__REG32 o 28;
__REG32 P26MODE :2;

}__pinmodeC_bits;

/*SSPn Control Register 0*/
typedef struct{

__REG16 DSS D 4;
__REG16 FRF 1 2;
__REG16 SPO T 1;
__REG16 SPH D1
__REG16 SCR : 8;

}__sspcrO_bits;

/*SSPn Control Register 1*/
typedef struct{

__REG8 LBM :1;
__REG8 SSE :1;
__REG8 MS t1;
__REG8 SOD :1;
__ REG8 : 4

}__sspcrl_bits;

/*SSPn Status Register*/

typedef struct{
__REG8 TFE
__REG8 TNF
__REG8 RNE
__REG8 RNF
__REG8 BSY
__REG8
}__sspstat_bits;

/*SSPn Interrupt
typedef struct{
__REG8 ROR
__REG8 RT
__REG8 RX
__REG8 TX
__REG8
}__sspir_bits;

o 1;
o 1;
b e
o 1;
o 1;
:3;

register*/

/*SSPn Interrupt Clear register*/

typedef struct{
__REG8 RORIC
__REG8 RTIC
__REG8
}__sspicr_bits;

/*SSPn DMAControl
typedef struct{
_ REG16 RXDMAE

__ REG16 TXDMAE
__REG16

}_ _sspdma_bits;

o 1;
o 1;
- 5;

register*/

#endif /* __IAR_SYSTEMS_ICC__ */

/* Declarations common to compiler and assembler

/

System Control Block

//Reset, reset source identification

Appendix1-5

__10_REG8_BIT(RSIR,
//External Interrupts
__10_REG8_BIT(EXTINT,
__10_REG8_BIT(EXTMODE,
__10_REG8_BIT(EXTPOLAR,
___10_REG16_BIT(INTWAKE,

//Code Security Protection Register

__10_REG32(CPSR,

OXEO1FC180, READ_WRITE, _rsir_bits);

OXEO1FC140,__READ_WRITE,__extint_bits);
OxEO01FC148,__ READ_WRITE,
OXEO1FC14C,__ READ_WRITE,__extpolar_bits);
OXEO1FC144,_ READ_WRITE,__intwake_bits);

extmode_bits);

OxXEO1FC184,_ READ_WRITE);

__10_REG32_BIT(VICIRQStatus,
__I0_REG32_BIT(VICFIQStatus,
__10_REG32_BIT(VICRawintr,

__10_REG32_BIT(VICIntSelect,
__10_REG32_BIT(VICIntEnable,

__10_REG32_BIT(VICIntEnClear,

__10_REG32_BIT(VICSoftint,

OXFFFFF000,_READ,_ vic_bits);
OXFFFFF004, READ,_vic_bits);

OxFFFFFO08,__READ,

OxFFFFFOOC,__READ_WRITE,
OxFFFFF010,__READ_WRITE,

vic_bits);

vic_bits);

vic_bits);

OXFFFFF014,_WRITE,_ vic_bits);
OXFFFFFO18, READ_WRITE, vic_bits);

//AHB configuration
__10_REG32_BIT(AHBCFG1,
__10_REG32_BIT(AHBCFG2,

__10_REG32_BIT(VICSoftIntClear, OxXFFFFFO1C,__ WRITE,__vic_bits);
__10_REG32_BIT(VICProtection, OxFFFFF020,__ READ_WRITE,
__10_REG32_BIT(VICSWPriorityMask,OxFFFFF024,__ READ_WRITE,

OxEO1FC188,__READ_WRITE,
OxXEO1FC18C,__READ_WRITE,

ahbcfgl_bits);
ahbcfg2_bits);

vicprotection_bits);

vicswpriority_bits);

//System Controls and Status
__10_REG32_BIT(SCS,

OXEOLFC1A0, READ WRITE, scs bits);

/

Clocking and Power Control

//Clock source selection

__10_REG8_BIT(CLKSRCSEL,

//Phase Locked Loop (PLL)
__ 10_REG8_BIT(PLLCON,

__ 10_REG8_BIT(PLLCFG,

OXEO1FC10C,_ READ_WRITE,_ clksrcsel_bits);

OXEO1FC080,_ READ_WRITE,_pllcon_bits);
OXEO1FC084, READ_WRITE, pllcfg_bits);

__10_REG32_BIT(VICVectAddro,
__10_REG32_BIT(VICVectAddri,
__10_REG32_BIT(VICVectAddr2,
__10_REG32_BIT(VICVectAddr3,
__10_REG32_BIT(VICVectAddr4,
__10_REG32_BIT(VICVectAddr5,
__10_REG32_BIT(VICVectAddr6,
__10_REG32_BIT(VICVectAddr7,
__10_REG32_BIT(VICVectAddrs,
__10_REG32_BIT(VICVectAddr9,

OXFFFFF100,_READ_WRITE,_ vic_bits);

OxFFFFF104,__ READ_WRITE,

vic_bits);

OXFFFFF108,_ READ_WRITE,_ vic_bits);

OxFFFFF10C,__READ_WRITE,
OxFFFFF110,__ READ_WRITE,

vic_bits);

vic_bits);

OXFFFFF114,_ READ_WRITE, vic_bits);
OXFFFFF118, READ_WRITE, vic_bits);

OxFFFFF11C,__READ_WRITE,
OxFFFFF120,__READ_WRITE,

vic_bits);

vic_bits);

OXFFFFF124, READ_WRITE, vic_bits);

_ 10_REG32_BIT(PLLSTAT,
__10_REG8(PLLFEED,
//Clock Divider
__10_REG8(CCLKCFG,

__ 10_REG8_BIT(USBCLKCFG,
__10_REG32_BIT(PCLKSELO,
__10_REG32_BIT(PCLKSEL1,
//Power Control

__ 10_REG8_BIT(PCON,

__ 10_REG32_BIT(PCONP,

OXEO1FC088,__READ ,__plistat_bits);
OXEO1FCO8C,_ WRITE);

__10_REG32_BIT(VICVectAddrio,
__10_REG32_BIT(VICVectAddril,
__10_REG32_BIT(VICVectAddri2,
__10_REG32_BIT(VICVectAddri3,
__10_REG32_BIT(VICVectAddrid,
__10_REG32_BIT(VICVectAddri5,
__10_REG32_BIT(VICVectAddri6,
__10_REG32_BIT(VICVectAddri7,
__10_REG32_BIT(VICVectAddris,
__10_REG32_BIT(VICVectAddrio,

OXFFFFF128,_ READ_WRITE,_ vic_bits);
OXFFFFF12C,_ READ_WRITE,
OXFFFFF130,_ READ_WRITE,
OXFFFFF134,_ READ_WRITE,_ vic_bits);
OXFFFFF138,_ READ_WRITE,_ vic_bits);
OXFFFFF13C,_ READ_WRITE,_ vic_bits);
OXFFFFF140,_ READ_WRITE,
OXFFFFF144, READ_WRITE,_ vic_bits);
OXFFFFF148,_ READ_WRITE,
OXFFFFF14C,_ READ_WRITE,

vic_bits);

vic_bits);

OXEO1FC104,_ READ_WRITE);

OXEO01FC108,__ READ_WRITE,__ usbclkcfg_bits);
OXEO1FC1A8,_ READ_WRITE,_ pclkselO_bits);
OXEO1FC1AC,__READ_WRITE,_ pclksell_bits);

vic_bits);

OxXEO1FCOCO,__READ_WRITE,
OXEO1FCOC4,__ READ_WRITE,

pcon_bits); vic_bits);

pconp_bits); vic_bits);

/ __10_REG32_BIT(VICVectAddr20, OxFFFFF150,__READ_WRITE,__vic_bits);
External Memory Controller __I10_REG32_BIT(VICVectAddr21, OxFFFFF154,_ READ_WRITE,__vic_bits);

/ __10_REG32_BIT(VICVectAddr22, OXFFFFF158,_ READ_WRITE,_ vic_bits);
//Not Implemented Yet _ 10_REG32_BIT(VICVectAddr23, OXFFFFF15C,__ READ_WRITE,__vic_bits);
/ __10_REG32_BIT(VICVectAddr24, OXFFFFF160,__ READ_WRITE,__vic_bits);
Memory Acceleration Module (MAM) __ 10_REG32_BIT(VICVectAddr25, OxFFFFF164,_ READ_WRITE,__vic_bits);

/ __10_REG32_BIT(VICVectAddr26, OXFFFFF168,_ READ_WRITE,_ vic_bits);
//Not Implemented Yet __10_REG32_BIT(VICVectAddr27, OXFFFFF16C,_ READ_WRITE,_ vic_bits);
/ __10_REG32_BIT(VICVectAddr28, OXFFFFF170,__ READ_WRITE,__vic_bits);

Vectored Interrupt Controller (VIC) _ 10_REG32_BIT(VICVectAddr29, OXFFFFF174,_ READ_WRITE,__ vic_bits);

Appendix1-6

__10_REG32_BIT(VICVectAddr30,
__10_REG32_BIT(VICVectAddr31,
__10_REG32_BIT(VICVectPriority0,
__I10_REG32_BIT(VICVectPriorityl,
__10_REG32_BIT(VICVectPriority2,
__10_REG32_BIT(VICVectPriority3,
__10_REG32_BIT(VICVectPriority4,
__10_REG32_BIT(VICVectPriority5,
__I0_REG32_BIT(VICVectPriority6,
__10_REG32_BIT(VICVectPriority7,
__10_REG32_BIT(VICVectPrioritys,
__10_REG32_BIT(VICVectPriority9,
__10_REG32_BIT(VICVectPrioritylo,
__I10_REG32_BIT(VICVectPriorityll,
__10_REG32_BIT(VICVectPriorityl2,
__10_REG32_BIT(VICVectPriorityl3,
__10_REG32_BIT(VICVectPriorityl4,
__10_REG32_BIT(VICVectPriorityl5,
__10_REG32_BIT(VICVectPriorityl6,
__10_REG32_BIT(VICVectPriorityl7,
__10_REG32_BIT(VICVectPriorityl8,
__10_REG32_BIT(VICVectPriorityl9,
__10_REG32_BIT(VICVectPriority20,
__10_REG32_BIT(VICVectPriority2?1,
__10_REG32_BIT(VICVectPriority22,
__10_REG32_BIT(VICVectPriority23,
__10_REG32_BIT(VICVectPriority24,
__10_REG32_BIT(VICVectPriority25,
__10_REG32_BIT(VICVectPriority26,
__10_REG32_BIT(VICVectPriority27,
__10_REG32_BIT(VICVectPriority28,
__10_REG32_BIT(VICVectPriority29,
__10_REG32_BIT(VICVectPriority30,

OxFFFFF178,

READ_WRITE,

vic_bits);

OXFFFFF17C,_ READ_WRITE,_vic_bits);
OXFFFFF200, READ_WRITE, _vic_bits);

OXFFFFF204,
OXFFFFF208,
OXFFFFF20C,

OXFFFFF214,
OXFFFFF218,
OXFFFFF21C,
OXFFFFF220,

READ_WRITE,
READ_WRITE,

vic_bits);

vic_bits);

READ_WRITE,__vic_bits);
OxFFFFF210,_ READ_WRITE,_ vic_bits);

READ_WRITE,
READ_WRITE,

vic_bits);
vic_bits);

READ_WRITE,__vic_bits);

READ_WRITE,

vic_bits);

OXFFFFF224, READ_WRITE,_ vic_bits);

OxFFFFF228,

READ_WRITE,

vic_bits);

OXFFFFF22C,_ READ_WRITE,_ vic_bits);

OXFFFFF230,
OXFFFFF234,

READ_WRITE,
READ_WRITE,

vic_bits);
vic_bits);

OXFFFFF238,_ READ_WRITE,_ vic_bits);
OXFFFFF23C,_ READ_WRITE, vic_bits);

OXFFFFF240,
OXFFFFF244,
OXFFFFF248,

OxFFFFF250,
OxFFFFF254,
OxFFFFF258,
OxFFFFF25C,

READ_WRITE,
READ_WRITE,

vic_bits);

vic_bits);

READ_WRITE,__vic_bits);
OXFFFFF24C,_ READ_WRITE,_ vic_bits);

READ_WRITE,
READ_WRITE,

vic_bits);
vic_bits);

READ_WRITE,__vic_bits);

READ_WRITE,

vic_bits);

OXFFFFF260,_READ_WRITE,_ vic_bits);

OXFFFFF264,

READ_WRITE,

vic_bits);

OXFFFFF268,_READ_WRITE,_ vic_bits);

OxFFFFF26C,
OxFFFFF270,

READ_WRITE,
READ_WRITE,

vic_bits);
vic_bits);

OXFFFFF274,_ READ_WRITE,__vic_bits);
OXFFFFF278, READ_WRITE, vic_bits);

/

__10_REG32_BIT(VICVectPriority31, OxXFFFFF27C,__READ_WRITE,__vic_bits);
__10_REG32_BIT(VICVectAddr, OXFFFFFFOO,__ READ_WRITE,__vic_bits);

Pin connect block

__10_REG32_BIT(PINSELO, OxE002C000,__READ_WRITE,_ pinselA_bits);
_ _10_REG32_BIT(PINSEL1, 0xXE002C004,__READ_WRITE,__ pinselB_bits);
__10_REG32_BIT(PINSEL2, 0xE002C008,__READ_WRITE,__ pinselA_bits);

/

__10_REG32_BIT(PINSEL3,
__10_REG32_BIT(PINSEL4,
__10_REG32_BIT(PINSEL5,
__10_REG32_BIT(PINSEL6,
__10_REG32_BIT(PINSEL7,
__10_REG32_BIT(PINSELS,
__10_REG32_BIT(PINSELY,
__10_REG32_BIT(PINSEL10,
__10_REG32_BIT(PINMODEO,
__10_REG32_BIT(PINMODE1,
__10_REG32_BIT(PINMODE2,
__10_REG32_BIT(PINMODE3,
__10_REG32_BIT(PINMODE4,
__10_REG32_BIT(PINMODES,
__10_REG32_BIT(PINMODEG,
__10_REG32_BIT(PINMODE7,
__10_REG32_BIT(PINMODES,
__10_REG32_BIT(PINMODE9,

0xE002C00C,__READ_WRITE,

pinselB_bits);

0xE002C010,__READ_WRITE,__pinselA_bits);
OxE002C014,__ READ_WRITE,_ pinselB_bits);

OxE002C018,__READ_WRITE,
OxE002C01C,__READ_WRITE,
0xE002C020,__READ_WRITE,

pinselA_bits);

pinselB_bits);

pinselA_bits);

0XE002C024,__READ_WRITE,_ pinselB_bits);

OxE002C028,__READ_WRITE,
OxE002C040,__READ_WRITE,
OxE002C044,__ READ_WRITE,

pinsell0_bits);

pinmodeA_bits);

pinmodeC_bits);

OXE002C048,__ READ_WRITE,__ pinmodeA_bits);
0XE002C04C,_ READ_WRITE,__pinmodeB_bits);

OxE002C050,__READ_WRITE,

pinmodeA_bits);

OxXE002C054,__ READ_WRITE,___pinmodeB_bits);
OXE002C058,__ READ_WRITE,___pinmodeA_bits);
OXE002C05C,__ READ_WRITE,__pinmodeB_bits);
OxE002C060,__READ_WRITE,__pinmodeA_bits);
OxE002C064,__ READ_WRITE,_ pinmodeC_bits);

/

General Purpose Input/Output ports (GP10)

/

/

/

/

/

/
//Not Implemented Yet
Ethernet controller

/
//Not Implemented Yet
CAN controller

/
//Not Implemented Yet
USB device controller

/
//Not Implemented Yet
Universal Asynchronous Receiver Transmitter 0,2,3

/
//Not Implemented Yet
Universal Asynchronous Receiver Transmitter 1

/

Appendix1-7

//Not Implemented Yet Timer0, 1, 2, 3

/

SPI interface SPI0 //Not Implemented Yet
/ /
//Not Implemented Yet Watchdog Timer (WDT)
/
SSP Interface //Not Implemented Yet
/ /
_ 10_REG16_BIT(SSPOCRO, OXxE0068000,__ READ_WRITE,__ sspcrO_bits); Pulse Width Modulator (PWM)
__10_REG8_BIT(SSPOCR1, OxE0068004,__ READ_WRITE,__sspcril_bits);
__10_REG16(SSPODR, OxXE0068008,__READ_WRITE); //Not Implemented Yet
__10_REG8_BIT(SSPOSTAT, OxXE006800C,__READ,__sspstat_bits); /
__10_REG8(SSPOCPSR, OxE0068010,__ READ_WRITE); Analog-to-Digital Converter (ADC)
__10_REG8_BIT(SSPOIMSC, OXE0068014, READ_WRITE,_sspir_bits);
__ 10_REG8_BIT(SSPORIS, OxE0068018,__ READ_WRITE,__sspir_bits); //Not Implemented Yet
__10_REG8_BIT(SSPOMIS, OxXE006801C,__ READ_WRITE,__sspir_bits); /
__ 10_REG8_BIT(SSPOICR, OxE0068020,__ READ_WRITE,__sspicr_bits); Digital-to-Analog Converter (DAC)
__10_REG16_BIT(SSPODMACR, O0xE0068024, READ_WRITE,__sspdma_bits);
_ 10_REG16_BIT(SSP1CRO, OxE0030000,__ READ_WRITE,__ sspcrO_bits); //Not Implemented Yet
__10_REG8_BIT(SSP1CR1, OxXE0030004,__ READ_WRITE,__sspcril_bits);
__10_REG16(SSP1DR, 0xXE0030008,__READ_WRITE); /
__10_REG8_BIT(SSP1STAT, OxXE003000C,__READ,__sspstat_bits); Real Time Clock (RTC) and battery RAM
__10_REG8(SSP1CPSR, 0xE0030010,__READ_WRITE);
__10_REG8_BIT(SSP1IMSC, O0xE0030014,_ READ_WRITE,_ _sspir_bits); //Not Implemented Yet
__10_REG8_BIT(SSP1RIS, OxE0030018,__ READ_WRITE,__sspir_bits); /
_ 10_REG8_BIT(SSP1MIS, OXE003001C,__ READ_WRITE,__sspir_bits); General Purpose DMA controller (GPDMA)
__ 10_REG8_BIT(SSP1ICR, OxE0030020,__ READ_WRITE,__sspicr_bits);
__10_REG16_BIT(SSP1DMACR, O0xE0030024, READ_WRITE,_sspdma_bits); //Not Implemented Yet
/ /
SD_MMC card interface ** Assembler-specific declarations
/
//Not Implemented Yet
/ #ifdef _ IAR_SYSTEMS_ASM__
12C interfaces 12C0, 12C1, 12C2 #endif /* __IAR_SYSTEMS_ASM__ */
/ /
//Not Implemented Yet *x
/ ** Interrupt vector table
125 bkl
/
//Not Implemented Yet #endif /* __I0LPC3180_H */

/

Appendix1-8

** SPIO Initialize

void SPI0Init(void){ //Transmit TX
PCONP |= (1 << 21);
/* Pin Select for MISOO, MOSIO, SSELO, SCKO */
PINSELO |= 0x80000000;
PINSEL1]= O0x0000002A;

/* Set DSS data to 8-bit, Frame format SPI, CPOL = 0, CPHA = 0, and SCR is 15 */
SSPOCRO = 0x0087; //Resets CRO Register

/* SSPCPSR clock prescale register, master mode, minimum divisor is 0x02 */
SSPOCPSR = 10;

/* Device select as master, SSP Enabled, loopback operational mode */
SSPOCR1 = 0x02;
//while(SSPOCR1 &= 0x02);

for (1 =0; 1 < 20; i++)
{
Dummy = SSPODR; /* clear the RxFIFO */

}
SSPODMACR=0x02; //TX Only

Appendix 2 - 1

/**

** DMAInit
**/
void DMA_Init(Q)
{

//Power Up GPDMA

PCONP |= (1<<29);

//Clear Interupts
GPDMA_INT_TCCLR = 0x03;
GPDMA_INT_ERR_CLR = 0x03;

//DMA Channel 0
GPDMA_CHO_SRC = DMA_SRC;
GPDMA_CHO_DEST DMA_SSPODR;

GPDMA_CHO_CTRL

) | (Ox01 << 12) | (Ox01 << 15)
| (1 << 26) | 0x80000000;
GPDMA_CONFIG = 0x01; // Enable DMA channels, little endian
whille ("(GPDMA_CONFIG & 0Ox01));

GPDMA_CHO_CFG |= 0x08001 | (Ox00 << 8) | (0x01 << 11);

//DMA Channel 1
GPDMA_CH1_SRC = DMA_SSP1DR;
GPDMA_CH1 DEST = DMA DST;

GPDMA_CH1_CTRL = (3) | (0Ox01 << 12) | (0x01 << 15)
| (1 << 27)] 0x80000000;
GPDMA_CONFIG = 0x01; // Enable DMA channels, little endian
while (!'(GPDMA_CONFIG & 0x01));
GPDMA_CH1_CFG]= 0x08001 | (0Ox03 << 1) | (0x02 << 11);

Appendix 3 -1

/**

*

* cantest.c: CAN test module Ffile for NXP LPC23xx Family Microprocessors
*

* Copyright(C) 2006, NXP Semiconductor

* All rights reserved.

*

* History

* 2006.09.13 ver 1.00 Prelimnary version, First Release

*

* Revised by: Sam LEE

* Cornell University

* Biorobotics and Locomotion Lab

* 3 May 2007
**/
#include "LPC23xx.h" /* LPC23xx definitions */

#include "type.h"
#include "irq.-h"
#include "target.h"
#include "can.h"
#include "fio.h"

CAN_MSG MsgBuf _TX1, MsgBuf _TX2; // TX and RX Buffers for CAN message
CAN_MSG MsgBuf _RX1, MsgBuf RX2; // TX and RX Buffers for CAN message

volatile DWORD CAN1RxDone, CAN2RxDone;

int main(void)

{
unsigned int track = 0x01,tt,counter,temp=0x00Fff;
CAN_Init(BITRATEL100K28 8MHZ);

// Initialize MsgBuf
MsgBuf TX1.Frame = 0x80080000; // 29-bit, no RTR, DLC is 8 bytes
MsgBuf_TX1.MsglD = 0x00012345; // CAN ID

MsgBuf_TX1.DataA = O0x3C3C3C3C;
MsgBuf_TX1.DataB = OxC3C3C3C3;
MsgBuf RX2.Frame = 0xO;
MsgBuf RX2._.MsglD = 0xO;
MsgBuf_RX2._.DataA = 0xO;
MsgBuf_RX2._.DataB = 0xO;

CAN_SetACCF(ACCF_BYPASS);
IENABLE; //This Line Added to the Example Code to Make it Work
while(1){

while ('(CANIGSR & (1 << 3))==1 << 3));

while (CAN1_SendMessage(&MsgBuf TX1) == FALSE);

iT (CAN2RxDone == TRUE)

CAN2RxDone = FALSE;

Appendix 4 - 1

if (MsgBuf RX2_Frame & (1 << 10)) /* by pass mode */
MsgBuf _RX2_.Frame &= ~(1 << 10);

3}
if ((MsgBuf _TX1.Frame !'= MsgBuf RX2_.Frame) ||
(MsgBuf _TX1.MsglD 1= MsgBuf RX2_MsglD) ||
(MsgBuf_TX1.DataA '= MsgBuf _RX2.DataA) ||
(MsgBuf_TX1.DataB != MsgBuf RX2_DataB))
{
while (1){
Ffor(tt=0;tt<8;tt++){
FI02CLR = 0Ox000000FF;
FI02SET = track;
for(counter=0;counter<1000000;counter++);
FI02CLR = track;
track= track<<l;

track=0x01;

}
}

// Everything is correct, reset buffer

MsgBuf RX2.Frame = 0xO;
MsgBuf_RX2_MsglID = 0xO;
MsgBuf_RX2._.DataA = 0xO;
MsgBuf_RX2_DataB = 0x0;
temp=0x0F;

} /7 Message on CAN 2 received

}

/**

*x

**x End OFf File

**/

Appendix 4 - 2

/**

*x

Function name: ConfigurePLL

Descriptions: Configure PLL switching to main OSC instead of IRC

at power up and wake up from power down.
This routine is used iIn TargetResetlnit()
and those examples using power down and
wake up such as USB suspend to resume,
ethernet WOL and power management example

xx

*/
__arm void ConfigurePLL (void)
{
DWORD MValue, NValue;
if (PLLSTAT & (1 << 25))
{
PLLCON = 1; /* Enable PLL, disconnected */
PLLFEED = Oxaa;
PLLFEED = 0x55;
3
PLLCON = O; /* Disable PLL, disconnected */
PLLFEED = Oxaa;
PLLFEED = 0x55;
SCS |= 0x20; /* Enable main 0SC */
while(I'(SCS & 0x40)); /* Wait until main OSC is usable */
CLKSRCSEL = Ox1; /* select main 0SC, 12MHz, as the PLL clock
source */
PLLCFG = PLL MValue | (PLL _NValue << 16);
PLLFEED = Oxaa;
PLLFEED = 0x55;
PLLCON = 1; /* Enable PLL, disconnected */
PLLFEED = Oxaa;
PLLFEED = 0x55;
CCLKCFG = CCLKDivValue; /* Set clock divider */
USBCLKCFG = USBCLKDivValue; /* usbclk = 288 MHz/6 = 48 MHz */
while (((PLLSTAT & (1 << 26)) == 0)); /* Check lock bit status */
PLLCON = 3; /* enable and connect */
PLLFEED = Oxaa;
PLLFEED = 0x55;
while (((PLLSTAT & (1 << 25)) == 0)); /* Check connect bit status
*/
return;
3

Appendix 5 -1

/***

* CLOCK INITHIALIZATION ek

**/

void Clocklnit (void)

{
// Set Clk dividers
HCLKDIV_CTRL bit.HCLK = 2-1; // 1/2 PIll_clk out
HCLKDIV_CTRL bit.PERIPH CLK = 16-1; // 1/16 PIll_clk out
// PLL Init - OSC * 16 = 208MHz

HCLKPLL_CTRL_bit.BYPASS = 0; // 0OSC connected to PLL input
HCLKPLL_CTRL bit.DIRECT = 1; // CCO connected to PLL _Clk output
HCLKPLL_CTRL bit.FEEDBACK = 0; // CCO connected to N divider input
HCLKPLL_CTRL_bit.N = 0; // set divide

HCLKPLL_CTRL_bit.M = 16-1; // set multiplier

HCLKPLL_CTRL_bit.POWER DOWN = 1; // Enable P11
// Wait until PLL lock
while(YHCLKPLL_CTRL_bit.PLL_LOCK);

// Connect PIl _clk out

PWR_CTRL_bit.RUN_MODE = 1;

Appendix 6 - 1

/***

* SPIL INITHALIZATION ek e ek

**/

void SPI1Init(void){

START_ER PIN_bit.SPI1 _DATIN 1; //Power up Pin

//Set SP1 Control Register

SPI_CTRL_bit.SPI11 _CLK ENA = 1;

SPI_CTRL_bit.SPI11 PIN SEL = 1;

SPI_CTRL_bit.SPI11_CLK OUT = 1;

SPI_CTRL_bit.SPI11_DATIO = 1;

SPI1_GLOBAL = 0; // disable SPI11

SP11_FRM =1; //1 Frame per transmission
//SP1 Control Register

SPI1 _CON = 0; // reset SPI11_CON register
//SP11_CON_bit._unidir =1; // Unidirectional Pins
SP11_CON_bit.rxtx =1; // transmit
SP11_CON_bit.thr =1; // FIFO treshold enabled
SPI1 CON_bit.shift off = 0; // Enable clock generation
SPI1 _CON_bit.bitnum =7; // 8bits to be tx or rx
SPI1_CON_bit.ms = 1; // SP1 operating as a master

SP11_CON_bit.rate SP1_RATE;// SPI transfer rate

//SP1 Interrupt Enable Reglster

SP11_I1ER bit.inteot =1; // End of Transfer Int Enabled
SPI1_IER_bit.intthr 1; // Threshold Int Enabled

//Enable Interrupts on Sub Interrupt Controller 1

SIC1_APR bit.SPI1_INT =1; // Int on high or rising edge
SIC1 ATR bit.SPI1_INT = 0; // Interrupt is level sensitive
SICL_ITR_bit_.SPI1_INT = 0; // Interrupt is routed to the
SIC1_ER bit.SPI1_INT =1; // SPI1 Interupt Enable
SP11_GLOBAL bit.enable =1; // Enable SPI1

while (I(SP11_GLOBAL bit.enable));

Appendix 7 - 1

/***

* DMA INITHALIZATION ekt

**/

void DMAInit(void){
DMACLK_CTRL_bit.DMA_CLK_ENA =

//Clear Channel Error Interrupts
DMACIntErrClr_bit_.DMA_CHO
DMACINtErrClr_bit.DMA CH1
DMACINntTCClear_bit.DMA_CHO
DMACINntTCClear_bit.DMA_CH1

//Source and Destination Register
DMACCOSrcAddr =
DMACCODestAddr
DMACC1SrcAddr
DMACC1DestAddr

//Disable Linked List Item
DMACCOLLI
DMACCILLI

//DNMA ChO Control Register
DMACCOControl_bit.1
DMACCOControl _bit.Prot3
DMACCOControl_bit.Prot2
DMACCOControl_bit.Protl
DMACCOControl_bit.DI
incremented
DMACCOControl_bit.Sl
DMACCOControl_bit.D
DMACCOControl_bit.S
DMACCOControl _bit.DWidth
DMACCOControl_bit.SWidth
DMACCOControl_bit.DBSize
DMACCOControl_bit.SBSize
DMACCOControl_bit.TransferSize

//DNMA Chl Control Register
DMACC1Control _bit.1
DMACCl1Control_bit.Prot3
DMACCl1Control_bit.Prot2
DMACC1Control_bit.Protl
DMACC1Control_bit.DI
DMACC1Control _bit.Sl
DMACCl1Control _bit.D
DMACC1Control_bit.S
DMACC1Control_bit.DWidth
DMACC1Control_bit.SWidth
DMACC1Control _bit.DBSize
DMACCl1lControl_bit.SBSize
DMACC1Control_bit.TransferSize

//DNMA ChO Configuration Register

1;

S

//A1l1 Clocks to DMA enabled

(long)&tx[0];
(volatile)&SPI1 _DAT;
(volatile)&SPI12_DAT;

(long)é&rx[0];

0;

0;

1; //Terminal Count Interupt disabled
1; //Access Cacheable

1; //Access Bufferable

1; //Access Privileged Mode

0; //Destination Address not

1; //Source Address incremented

0; //AHB Master O for destination tfr
0; //AHB Master O for source tfr

0; //8bits

0; //8bits

O0; //Burst Size 1

0; //Burst Size 1

3; //TransferSize

0; //Terminal Count Interupt disabled
1; //Access Cacheable

1; //Access Bufferable

1; //Access Privileged Mode

1; //Destination Address incremented
0; //Source Address not incremented
0; //AHB Master O for destination tfr
0; //AHB Master 0 for source tfr

0; //8bits

0; //8bits

0; //Burst Size 1

0; //Burst Size 1

3; //TransferSize

Appendix 8 - 1

DMACCOConfig_bit.H
DMACCOConfig_bit.ITC
DMACCOConTig_bit.IE
DMACCOConfig_bit_FlowCntrl
DMACCOConfig_bit.DestPeripheral
DMACCOConfig_bit.SrcPeripheral
DMACCOConTfig_bit.E

//DMA Chl Configuration Register
DMACC1Config_bit.H
DMACC1Config_bit.ITC
DMACC1ConTfig_bit.IE
DMACC1Config_bit_FlowCntrl
DMACC1Config_bit._DestPeripheral
DMACC1Config_bit.SrcPeripheral
DMACC1Config _bit.E

DMACConfig_bit.E

//Enable DMA requests
//Disable Terminal Count Int.
//Disable Error Int.
//Memory to Peripheral
//Destination Peropheral
//Source Peripheral

//Enable ChO

//Enable DMA requests
//Disable Terminal Count Int.
//Disable Error Int.
//Peripheral to Memory
//Destination Peropheral
//Source Peripheral

//Enable Chl

1; //DMA Controller Enable

Appendix 8 - 2

/**

* INCLUDE FILES ***ddkdkhddddhhtbdddddtddddddttdddddttddddddtdddddtttddtx
***/
#include <inarm.h>

#include <iolpc3180.h>

#include "arm926ej cpl5 drv.h"

#include "ttbl.h"

/ xxxxxxxxxxxxxxxxxxxxx
* DEFINITIONS ***sssrxx
xxxxxxxxxxxxxxxxxxxx /
#define 0SC (13000000UL) // System 0SC 13MHz
#define CORE_CLK (0SC*16) // ARM_CLK 208MHz
#define AHB_CLK (CORE_CLK/2) // HCLK 104MHz
#define PER_CLK (CORE_CLK/16) // PER_CLK 13MHz
#define RTC_CLK (32768UL) // RTC_CLK

#define LED_D400 (1UL << 2)
#define LED_D401 (1UL << 3)
#define LED_D402 (UL << 7)
#define LED_D403 (1UL << 6)

#define button (UL << 7)

#define SPI_RATE 0x07 // 6.5Mhz
/*********************7\-***
* VARIABLES ek

**/

unsigned char ledstatus=0;

unsigned int test,time,blah0,blahl;
unsigned char tx[60];

unsigned char rx[60];

unsigned char i;
unsigned char temp=0;

/ xxxxxxxxxxxxxxx
* MS INTERUPT HANDLER okt

void mstimerinterupt(void){
MSTIM_INT_bit.MATCHO_INT=1; //Clears interupt flag
if(ledstatus==0){
PI10_OUTP_SET = LED_D400 | LED_D401 | LED_D402 | LED_D403;
ledstatus=1;

b

else{
PI10_OUTP_CLR = LED_D400 | LED D401 | LED D402 | LED_D403;
ledstatus=0;

s

*

* N

ek /
__irg __arm void irqg_handler (void){

iF(MIC_SR_bit.MSTIMER_INT){
mstimerinterupt();

}
if(SIC1_SR bit.SPI1_INT){

}
}

Appendix 9 -1

/***

* CLOCK INITHIALIZATIQN sskddksdohsdsbohsodkdodsbohoddodkdoddohodododdodddokododkodododdokododododokodokokodokox

**/
void Clocklnit (void)
{
// Set Clk dividers
HCLKDIV_CTRL_bit_HCLK = 2-1; // 1/2 PI1_clk_out
HCLKDIV_CTRL_bit.PERIPH_CLK = 16-1; // 1/16 P11_clk_out
// PLL Init - 0SC * 16 = 208MHz

HCLKPLL_CTRL_bit.BYPASS = 0O; // 0OSC connected to PLL input
HCLKPLL_CTRL_bit.DIRECT =1; // CCO connected to PLL_CIk output
HCLKPLL_CTRL_bit.FEEDBACK = 0O; // CCO connected to N divider input
HCLKPLL_CTRL_bit.N = O; // set divide

HCLKPLL_CTRL_bit.M = 16-1; // set multiplier

HCLKPLL_CTRL_bit.POWER_DOWN = 1; // Enable PI1
// Wait until PLL lock
while(YHCLKPLL_CTRL_bit.PLL_LOCK);

// Connect PII_clk_out

PWR_CTRL_bit.RUN_MODE = 1;

/***
* MSTIMER INITIALIZATION lalalioiakel

**/

void mstimerlnit(void){
MSTIM_CTRL_bit.COUNT_ ENAB
MSTIM_CTRL_bit.PAUSE_EN

0; // Stop counting
0; //runs in debug mode

//MatchO
MSTIM_MCTRL_bit.MRO_INT
MSTIM_MCTRL_bit.RESET_COUNTO
MSTIM_MCTRL_bit.STOP_COUNTO

1; //Enable Interupt Status Generation MatchO
1; //Enable Reset of Timer Counter on MatchO
0; //Disable Stop Functionality on MatchO

MSTIM_CTRL_bit.RESET_COUNT = 1; // Reset the counter

while(MSTIM_COUNTER);

MSTIM_CTRL_bit.RESET_COUNT = O0; // release reset of the counter

MSTIM_MATCHO = 32768; //Match Value for MatchO

MIC_APR_bit_MSTIMER_INT =1; // Int generated on a high signal or rising edge
MIC_ATR_bit_MSTIMER_INT = 0; // Interrupt is level sensitive
MIC_ITR_bit_MSTIMER_INT = 0; // Int routed to the IRQ

MIC_ER_bit.MSTIMER_INT =1; // Enable Milisecond timer interrupts
MSTIM_CTRL_bit.COUNT_ENAB = 1; // Enable counting

*

* N

/
void SPI1Init(void){

START_ER_PIN_bit.SPI1 DATIN = 1; //Power up Pin

//Set SP1 Control Register

SPI_CTRL_bit.SPI11_CLK ENA = 1;

SPI_CTRL bit.SPI11_PIN SEL = 1;

SPI_CTRL_bit.SP11_CLK OUT = 1;

SP1_CTRL bit.SPI11_DATIO = 1;

SPI1_GLOBAL = 0; // disable SPI1

SP11_FRM =1; //1 Frame per transmission

Appendix 9 - 2

//SP1 Control Register

SP11_CON = 0; // reset SPI11_CON register
//SP11_CON_bit.unidir =1; // Unidirectional Pins
SP11_CON_bit.rxtx =1; // transmit

SP11_CON_bit._thr =1; // FIFO treshold enabled
SP11_CON_bit.shift_off = 0; // Enable clock generation
SP11_CON_bit_bitnum =7; // 8bits to be tx or rx
SPI1_CON_bit.ms =1; // SPIl operating as a master
SPI1_CON_bit.rate = SP1_RATE; // SP1 transfer rate

//SP1 Interupt Enable Register
SPI1_IER_bit.inteot 1; // End of Transfer Int Enabled
SPI1_IER_bit.intthr 1; // Threshold Int Enabled

//Enable Interupts on Sub Interrupt Controller 1

SIC1_APR_bit.SPIL1_INT =1; // Int generated on a high or rising edge
SIC1_ATR bit.SPI1_INT = 0; // Interrupt is level sensitive
SICLI_ITR_bit.SPI1_INT = 0; // The interrupt is routed to the IRQ

SIC1_ER bit.SPI1_INT // SPI1 Interupt Enable

SP11_GLOBAL_bit.enable 1; // Enable SPI12
whille ('(SPI1_GLOBAL_bit.enable));

/***

* SP12 INITIALIZATION Rk

**/

void SPI2Init(void){
START_ER_PIN_bit.SP12_DATIN

1; //Power up Pin

//Set SP1 Control Register

SPI_CTRL_bit.SPI2_CLK_ENA = 1;

SPI_CTRL_bit.SPI2_PIN_SEL = 1;

SPI_CTRL_bit.SPI2_CLK_OUT = 1;

SPI_CTRL_bit.SPI2_DATIO =1;

SPI12_GLOBAL = 0; // disable SPI2

SP12_FRM =1; //1 Frame per transmission
//SP1 Control Register

SP12_CON = 0; // reset SP12_CON register
//SP12_CON_bit.unidir =1; // Unidirectional Pins
SP12_CON_bit.rxtx = 0; // receive

SP12_CON_bit.thr =1; // FIFO treshold enabled
SP12_CON_bit.shift_off = 1; // Disable clock generation
SPI12_CON_bit.bitnum =7; // 8bits to be tx or rx
SP12_CON_bit.ms = 0; // SP1 operating as a master
SPI12_CON_bit.rate = SP1_RATE; // SP1 transfer rate

//SP1 Interupt Enable Register
SP12_I1ER_bit.inteot 1; // End of Transfer Int Enabled
SPI2_IER_bit.intthr 1; // Threshold Int Enabled

//Enable Interupts on Sub Interrupt Controller 1

SIC1_APR_bit.SPI2_INT =1; // Int generated on a high or rising edge
SIC1 ATR_bit.SPI2_INT = 0; // Interrupt is level sensitive
SIC1_ITR_bit.SPI2_INT = 0; // The interrupt is routed to the IRQ
SIC1_ER bit.SPI2_INT =1; // SPI2 Interupt Enable

Appendix 9 - 3

SP12_GLOBAL_bit._enable 1;
whille (1(SPI12_GLOBAL bit.enable))

}

/*************************7\'***********

//Enable SPI2

AEXEAXEAXALAAAXAAXAXAALAAAAAXAAAXAAAXAAAAAXhX

* DMA INITIALIZATION

AAAXAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK

void DMAInit(void){
DMACLK_CTRL_bit.DMA_CLK_ENA

//Clear Channel Error Interrupts
DMACINntErrClr_bit.DMA_CHO
DMACINtErrClr_bit.DVMA_CH1
DMACIntTCClear_bit_.DMA_CHO
DMACINntTCClear_bit.DMA_CH1

//Source and Destination Regist
DMACCOSrcAddr
DMACCODestAddr
DMACC1SrcAddr
DMACC1DestAddr

er

//Disable Linked List ltem
DMACCOLL1
DMACCILLI

//DMA ChO Control Register
DMACCOControl_bit.1
DMACCOControl_bit.Prot3
DMACCOControl_bit.Prot2
DMACCOControl_bit.Protl
DMACCOControl_bit.DI
DMACCOControl_bit_Sl
DMACCOControl_bit.D
DMACCOControl_bit.S
DMACCOControl_bit.DWidth
DMACCOControl_bit._SWidth
DMACCOControl_bit.DBSize
DMACCOControl_bit_SBSize
DMACCOControl_bit.TransferSize

//DNMA Chl Control Register
DMACC1Control_bit.1
DMACC1Control_bit.Prot3
DMACC1Control_bit.Prot2
DMACC1Control_bit._Protl
DMACC1Control_bit.DI
DMACC1Control_bit.Sl
DMACC1Control _bit.D
DMACC1Control_bit.S
DMACC1Control_bit.DWidth
DMACC1Control_bit.SWidth
DMACC1Control _bit.DBSize
DMACC1Control_bit.SBSize
DMACC1Control_bit.TransferSize

//DMA ChO Configuration Register
DMACCOConfig_bit.H

DMACCOConfig_bit.ITC
DMACCOConfig_bit.I1E

R R R

************************************/

1; //A1l Clocks to DMA enabled

1;
1;
1;
1;

S
(long)&tx[0];
(volatile)&SPI11_DAT;
(volatile)&SPI12_DAT;
(long)é&rx[0];

//Terminal Count Interupt disabled
//Access Cacheable

//Access Bufferable

//Access Privileged Mode

//Source Address incremented

//AHB Master 0 for destination tfr
//AHB Master 0 for source tfr
//8bits

//8bits

//Burst Size 1

//Burst Size 1

//TransferSize

//Terminal Count Interupt disabled
//Access Cacheable

//Access Bufferable

//Access Privileged Mode
//Destination Address incremented
//Source Address not incremented
//AHB Master 0 for destination tfr
//AHB Master 0 for source tfr
//8bits

//8bits

//Burst Size 1

//Burst Size 1

3; //TransferSize

0; //Enable DMA requests
0; //Disable Terminal Count Int.
0; //Disable Error Int.

Appendix 9 -4

//Destination Address not incremented

DMACCOConfig_bit.FlowCntrl
DMACCOConfig_bit.DestPeripheral
DMACCOConfig_bit.SrcPeripheral
DMACCOConfig_bit.E

1; //Memory to Peripheral
11; //Destination Peropheral
1; //Source Peripheral

1; //Enable ChO

//DMA Chl Configuration Register
DMACC1Config_bit.H
DMACC1Config_bit.ITC
DMACC1ConFfig_bit.I1E
DMACC1Config_bit.FlowCntrl
DMACC1Config_bit.DestPeripheral
DMACC1Config_bit.SrcPeripheral

0; //Enable DMA requests

0; //Disable Terminal Count Int.
0; //Disable Error Int.

2; //Peripheral to Memory

1; //Destination Peropheral

3; //Source Peripheral

DMACC1Config_bit.E = 1; //Enable Chl
DMACConfig_bit.E = 1; //DMA Controller Enable
3
/ xxxxxxxxxxxxxxxxxx
* INITIALIZATION ROUTINE
xxxxxxxxxxxxxxxxx /
void initialize(void){
unsigned char *ptrtx = &tx[0];
char i=0;
for(i=0;i1<60;i++){
*ptrtx++ = 0x55;
}
// Disable all interrupts
MIC_ER = 0;
SIC1_ER = 0;
SIC2_ER = 0;
P10_OUTP_CLR = LED D400 | LED_D401 | LED D402 | LED_D403;
TIMCLK_CTRL_bit.WDT_CLK_ENA = 0; // disable watchdog
ClockInitQ);
mstimerInit();
SPI1Init();
SPI2Init();
DMAINit();
P10_OUTP_SET = LED D400 | LED_D401 | LED D402 | LED_D403;
}
/***
* MAIN LOOP

**/
void main(void)

{
initialize();
__enable_interrupt();

while(l)
{
};

} 7/ main(void)

Appendix 9 - 5

