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Abstract: 
 During the course of the semester, my goal was to come up with new 

control system for operating the Cornell Ranger. It was to use modular coding 

concepts in order to achieve maximum possible scalability. While I was restricted 

to using C, I was also to take into consideration that we would be switching at 

some point soon to C++, and consequently would want to incorporate object 



oriented programming concepts. Time was also a factor as our goal was the 

make the robot walk robustly within a few months. In the end we were successful 

in using the code to create a fairly robust walking algorithm, although we are now 

designing a larger scale more flexible version which will port well to C++ and be 

able to handle all the foreseeable future operations we are planning.  

Introduction:  

At the beginning of the semester, we started the very ambitious project of 

completely rewriting the code that effectively made the Cornell Ranger walk. In 

order to understand the initial state of the code, it is important to understand 

exactly how it came about. The code for the Ranger was not carefully planned 

from the beginning where everything was placed where it should be according to 

a master plan. It more came about through a kind of natural evolution. It started 

off as a very simple short block of code, and then increased in length as 

necessary to accommodate new controllers and new actions as necessary. This 

is very natural when code is not properly planned out from the beginning.  

 

To illustrate a simple way that this can happen, consider the following 

scenario. Imagine a project where the goal is to model a ball bouncing off a floor. 

If this were all one were concerned about, it would be very simple to write one 

short block of code which handles all the decisions. It would compute where a 

ball should be at any given time and in the case of impact with a floor, remove 

some energy and just reverse the direction the ball was travelling in. However, if 

the project then evolved to take into account an impact with any surface angled 



in any direction relative to the ball, it would be difficult to use the old code. The 

new code would need to be structured very differently to take all these new 

parameters into account.  

 

For instance, it might be useful to write a function which handled impacts 

and took into account the direction, and speed of the ball, along with the angle of 

the wall, and returned the new direction and velocity of the ball. The wrapper 

code would just use the state information about the ball to update its position. 

While this restructuring sounds very simple, in the case of longer code it can be 

much more challenging. The result tends to be leaving the code structure intact 

and trying to make it fit the new goal. This is a lot like the analogy of trying to fit a 

square peg in a round hole. This leads to nested if statements throughout the code 

to try to handle all possible scenarios, which in turn makes the code very difficult 

to read.   

 

The obvious solution to this is of course to plan the code extensively 

before anything is written. There are several components to this planning 

process. To begin with, it is important to take an extensive look at exactly what 

the code is expected to do. For instance, if the programmer in the above example 

had known from the start that the code was eventually going to need to handle 

ball impacts against walls in different directions, it would have made the initial 

solution of just using one block of code seem extremely impractical and he most 

likely would have known to use try the second solution from the start. However, 



all the planning cannot take into account every possible use for the code. It’s very 

likely that somewhere along the line, it will be important for the code to do 

something it wasn’t initially structured for. Sometimes, this is just an unworkable 

scenario and the programmer has no choice but either fit a square peg in a round 

hole, or start over. However, there are numerous steps that can be taken in order 

to reduce the probability of this happening. These steps fall into a general set of 

principles called modular programming.  

 

The premise of modular programming is that code is more flexible the 

more it is reduced into simple independent parts which take specific inputs and 

generate specific outputs irrespective of the surrounding code that they might be 

associated with. To illustrate this simply, consider the following pseudo code 

examples. Both functions calculate baseball statistics, one does so modularly 

while the other does not. In the first example shown below, the information about 

the players is held in global arrays, which are then accessed by both the main 

function and the return BattingAvg function. 

 

Baseball.c 
 
int teamAtBats[9]; 
int teamHits[9]; 
 
 
int main (void) 
{ 
  
 //--------------------------------------------------------------------------------- 
 //populate arrays with each player’s number of at bats and number of hits 
 
 //--------------------------------------------------------------------------------- 
 
 //print out the scores using the function 



 for (int i = 0; i<9; i++) 
 { 
  printf("player ".i." has a batting average of: ".returnBattingAvg(i)); 
 } 
 
} 
 
double returnBattingAvg(int player) 
{ 
 return double(teamAtBats[player]/teamHits[player]); 
} 
 

 This code might have a sound structure and be well planned; however its 

weakness is due to its lack of modularity. Consider a second implementation of 

this code Baseball2.c: 

 

 Baseball2.c 
 
int main (void) 
{ 
 int teamAtBats[9]; 
 int teamHits[9]; 
 //--------------------------------------------------------------------------------- 
 //populate arrays with each player’s number of at bats and number of hits 
 
 //--------------------------------------------------------------------------------- 
 
 //print out the scores using the function 
 for (int i = 0; i<9; i++) 
 { 
  printf("player "); 
  printf(i); 
  printf(" has a batting average of: "); 
  printf(returnBattingAvg(teamAtBats[i], teamHits[i]); 
 
 } 
 
} 
 
double returnBattingAvg(int AtBats, int hits) 
{ 
 return double(hits/AtBats); 
} 
 

 



In this scenario, it is hard to see how one of these programs is much better than 

the other. They both accomplish the same thing, and realistically, Baseball.c 

actually needs less overheard than baseball2.c. However it is important to note 

that in the case of Baseball.c, the returnBattingAvg makes several implicit 

assumptions about the rest of the code. Namely, that all the information it needs 

will be stored in the global variables teamAtBats and teamHits with each player’s 

information associated with a certain number in both arrays.  Consider the 

realistic scenario where it becomes beneficial to store this information a bit 

differently. Namely, imagine if it became easier to store this information in a 

single struct, and use an array of these structs. Consider the program Baseball3.c 

shown below.  

 
Baseball3.c 
  
struct baseballPlayer 
{ 
 String Name; 
 int AtBats; 
 int Hits; 
} 
 
 
int main (void) 
{ 
 baseballPlayer Players[9]; 
 //--------------------------------------------------------------------------------- 
 //populate array with each player’s number of at bats and number of hits 
 
 //--------------------------------------------------------------------------------- 
 
 //print out the scores using the function 
 for (int i = 0; i<9; i++) 
 { 
  printf("player "); 
  printf(Players[i].Name); 
  printf(" has a batting average of: "); 
  printf(returnBattingAvg(Players[i].AtBats, Players[i].Hits); 
 } 
 
} 



 
double returnBattingAvg(int AtBats, int hits) 
{ 
 return double(hits/AtBats); 
} 
 
 

 There are numerous reasons to make such a change. A simple one is that 

structs often allow for easier information passing and storage. This will be a 

discussed in more detail later on. Baseball3.c is a very simple extension from 

Baseball2.c. It is very significant to note that there were no changes required to 

the function returnBattingAvg between Baseball2.c and Baseball3.c.  This is 

because the returnBattingAvg function did not make any assumptions about the 

code it was contained within. On the other hand, upgrading Baseball.c to use the 

struct from Baseball3.c would require changing the returnBattingAvg function to 

match the new code. This may seem insignificant from this small example, 

however, when the size of the program scales, the amount of work that goes into 

making a seemingly small change like this goes up dramatically. This can lead to 

many problems. For instance, if a programmer attempts to make a change like 

this in code that isn’t modular, it may become unreliable. In the case of robot 

control code, there may be a function that no longer works properly, but is rarely 

called, which could result in a bug that is very difficult to find. Perhaps even more 

disturbingly, the programmer may attempt to add functionality to the code without 

changing the structure at all. In this case, that might mean not adding the struct 

and just trying to keep track of all the information by hand. This can, and has in 

the past with the Ranger code led to “spaghetti”. It is a clear example of trying to 

fit a square peg into a round hole because making the peg round becomes too 



tedious. This problem tends to compound itself as this new version of the code is 

even more difficult to modify and may eventually need to be scrapped and 

started over. This is a short example of modular code and how, in combination 

with proper planning, it can dramatically decrease future workload. 

 

 Of course, the question still remains of how this applies to the actual 

Ranger code. Initially, all the code was built into one long file called mainV2A.c, 

which was about 5000 lines long. While this code originally was written to be 

fairly modular, it had evolved over time into “spaghetti”.  This was primarily due to 

undisciplined programming practice during the evolution of the code. The specific 

weakness in the code that certainly contributed to this was the lack of protection. 

While the original code had started with a very discrete layering separating high 

level instructions and low level ones, the line had since been blurred.  

 

In many ways this is a weakness inherent in using C instead of C++. C++ 

provides built in protection in the form of private variables and functions. This 

enforces modular coding practices and helps to prevent programmers from 

blurring the lines of high level and low level code. On the other hand, C does not 

have such a feature, and hence it is very tempting for a programmer to solve 

problems using hacks and “spaghetti” code which may be easier in the short run, 

but also make the code much more difficult to understand.  

 



This is exactly what had happened to the previous ranger code, such that 

by the beginning of the semester it was very difficult to read and even more 

difficult to change. It quickly became apparent that the majority of the code would 

need to be scrapped and started over in order to bring it into line with the 

concepts of modularization. This was the control team’s goal for the semester. 

 

 

Methods and Results: 
 

Splitting the code up 
 
 With the basic goals outlined, the control team set about implementing 

these changes. This began with a series of many meetings to decide exactly how 

to change the code. The team quickly found an initial goal of breaking the giant 

code into smaller pieces that could be changed independently. Actually doing this 

proved to be extremely time consuming, if not particularly difficult. During this 

stage, it should be stressed that there were no changes made to the code itself, it 

was all just moved around. For a complete listing of each block of code and its 

associated function, please see appendix A.  

First Attempt at Modularization 

  
 Once this was completed, we began to look at what changes needed to be 

made to the actual code. The first target for restructuring was the actual walk 

controller. This was all located in the walkcontroller.c file and was a very clear 



case of code that had turned into spaghetti. The code itself was about 1000 lines 

long and ran once per millisecond. Initially it would check the mode variable. This 

variable determined whether or not the walkcontroller was being run for the first 

time since entering walk mode or not. If it was being run for the first time, it would 

run all initialization commands and then end. Otherwise it would run the actual 

walk controller code. The real problems began once the robot started walking. 

The entire structure of the code was a large series of nested if statements 

checking to see if certain conditions were met under certain circumstances and 

then reacting based on them. The code used a loosely defined state machine. 

Each state in fact had numerous sub states which were checked using nested 

conditionals. These nested conditionals that broke up the states were exactly 

what led to the “spaghetti”.   

 

Additionally, the state machine was not linear, which further complicated 

things. This is to say that the sequence of states that the robot entered was not 

always the same. During our meetings at the beginning of the semester, we had 

decided that always going through the same sequence of states was important to 

the robustness of the robot. It makes debugging significantly easier as any 

missed states inherently mean something has gone wrong. On the other hand, if 

the sequence is not the same, a missed state probably won’t mean anything. 

Thus, when something does go wrong, it is much harder to pin down the problem 

quickly.  



 Initially, we thought the code for the walk controller could be salvaged and 

just converted into a more usable and flexible version. Andrey Turovsky and I set 

about trying to reorganize the walk controller into more modular sections that did 

not rely on the other sections of the code and could be easily read and changed. 

After about 20 hours of work though, we were forced to accept that the code 

needed to be done over.  

On the surface it might seem like this work was wasted, but in reality it 

was actually very instructive. By spending so much time using and reorganizing 

the old code, we had a much deeper understanding of exactly what it was doing, 

and more importantly were able to come up with a structure that could handle the 

fairly complex decision making process while keeping it quite modular.  

The Structure of the New Code 
 

The structure we came up with relied on breaking the walk controller into 

three main sections: an actions section, a set section, and a transitions section. 

Furthermore, the code would make decisions using three independent state 

machines: one for the hip, one for the inner feet, and one for the outer feet. The 

actual structure of the walk controller was then fairly simple.  The portion of the 

code that does the bulk of the work can be seen below in walkcontroller.c.  

 

WalkController.c 

if (decisions(Walk) != 0) 
{ 
 set(&Walk); 
} 
actions(&Walk);  
 



 
 This is of course not all of the code in the file, just the relevant part. Every 

time walkcontroller.c runs (once per millisecond), it first calls the decisions 

function. It passes it the walk struct which will be discussed in more detail shortly. 

The decisions function examines the present state of each state machine, and 

also examines all of the other state variables associated with the robot. If any of 

the state machines need to change states, the decisions function will return a non-

zero value. If no state machine transitions, it will return a zero. The value that is 

returned from the decisions function is then used to determine whether or not the 

set function needs to be run at all. In the event that decisions returns a zero (no 

state transitions), set will not run. If decisions returns a non-zero value, set will 

run. The set function itself is used to set all variables required for walking within 

any given state. This is similar to setting initial conditions for each state. Finally, 

the actions function actually looked at the present states of all three state 

machines and decided exactly what to do with each motor associated with each 

state machine.  

New Information Passing Method 
 
 While this structure was very helpful for making the code more readable, it 

was only a portion of what made it more flexible.  The other significant change 

that increased the modularity of the code was adding a struct which contained all 

the information that needed to be passed back and forth between the actions, set 

and decisions functions. A struct is just a bundle of variables which can be easily 

passed around. This was the basic approach we used to solve the issue of 



interdependent data. It allows the data to be passed in a simple, concise manner 

between the functions. The real benefit is that it dramatically reduces the number 

of global variables, and makes the entire structure of the walk controller less 

interdependent. Previously, if a programmer wanted to add a new variable to be 

passed between the three main functions, they would need to add an extern line 

at the top of every function that needed to be used and just as importantly, they 

would need to make sure that the variable name they picked was not used locally 

in any of the other modules associated with the entire robot code. This could 

become an enormous problem very quickly because, while the program will still 

compile, there will be variables all over it that don’t necessarily contain the data 

the programmer expects because they have been changed elsewhere. This 

becomes an even larger problem as more people work on the code. Any 

identically-named variables would have immediately become a liability that would 

generate difficult-to-locate errors. By keeping as much information local as 

possible, it prevents this from becoming an issue and decreases the levels of 

interconnectedness across the entire structure of the program.  

 

 With the struct system of passing information that is effectively local, any 

changes a programmer needs to make to information being passed only need to 

be made once and pose no risk of accidentally conflicting with other variables. 

There are some small drawbacks associated with using it. To begin with, it 

requires a deeper understanding of programming than just using a global 

variable. This is true both at the obvious level of needing to understand how to 



use a struct in general, and at a somewhat deeper level. To use a struct like this 

requires that the user have some understanding of the difference between 

passing by value and passing by reference. Ordinarily when a function receives 

an argument, it is actually only receiving a copy of the value. Any changes made 

to this new variable will not actually affect the original variable. This is called 

passing by value. On the other hand, passing by reference actually passes the 

variable itself to the function. Consequently, any changes made to the variable 

within the function are reflected everywhere in the code. To actually understand 

the implementation, the programmer must understand the premise of pointers 

which are a fairly challenging subject. Fortunately, it is not necessary to 

understand pointers in order to actually use this method. All that is necessary is 

following the correct syntax depending on if the programmer wants to pass by 

reference or pass by value. The differences in syntax are fairly simple and 

discussed in appendix B.  

Results 

 The results seem to speak for themselves. When the robot was setting the 

record, it was using this new structure of the code. While this is clearly an 

indicator that the new code was successful, it only tells a part of the story. Before 

the final walk that broke the record, there was of course fairly extensive testing. 

During this time, it was extremely beneficial to have all of the state machines 

explicitly defined. This allowed us to print them on the screen and figure out 

exactly what states were causing the robot to fall, or more commonly, what states 

were accidentally being skipped. In the previous version of the code this would 



have been very difficult. Since the sequence of states wasn’t always the same, a 

skipped state did not automatically tell the debugger where the error was. 

Secondly, once the problem state was identified, the debugger also had to 

identify which sub state was causing trouble. Both of these processes required 

walking through all of the code and keeping track of all the variables at all times, 

which is of course a difficult and tedious process.  While it is possible to debug 

like this, it is much easier to when you can immediately narrow the problem down 

to three or four lines.  Much credit here needs to be given to Stephane 

Constantin whose matlab data display program was invaluable in the debugging 

process. This program enabled us to make full use of the new structure in the 

debugging process.  

 

 Between the new structure and the new debugging tools at our disposal, it 

was actually a fairly straightforward process to determine exactly what happened 

any time the Ranger fell. This enabled us to quickly eliminate any logic errors in 

the code and identify if the code was at fault or not when the robot fell.  

 

After the robot broke the record, there were numerous attempts to make it 

do various other “behaviors”. These included walking backwards, and coming to 

a stop. In order to quickly facilitate this, I reworked the decisions, set, and actions 

functions in a few weeks in order to allow a selector to choose a set of actions, 

decisions, and set functions to match each behavior. This allowed a programmer 

to make a new behavior and use it by pressing a different button on the back of 



the robot. Unfortunately this is not a long term solution since it still does not allow 

the robot to switch in the middle of one behavior to another, nor does it allow the 

robot to have a list of behaviors that it executes in order. Both of these are 

eventual goals and will require a lot of work in order to implement in a way that 

still fits the general premises of modular code. 

 

Discussion: 
 
 Since the robot successfully broke the distance walking record, the control 

team has been hard at work planning the next generation of the code. The goal 

has been to come up with a new structure which will hopefully allow for as much 

flexibility as possible. We started by trying to define a language for talking about 

all the elements of the code. We found that it was actually quite difficult to talk 

about different approaches to the structure without making sure everyone knew 

exactly what an action was as opposed to a behavior. This often led to 

miscommunication and was in general an annoyance. We cleared that up fairly 

quickly by spending some time discussing exactly what each term meant. The 

actual names are not important so long as everyone working on the code knows 

exactly what each one means before trying to exchange ideas about them.  

 

 Once this was done, we set about planning a new structure for the code. 

One that would hopefully take advantage of the eventual move to C++, and 

would also allow for all the flexibility we would need. These new design goals we 

have been planning for include allowing the robot to switch seamlessly from one 



control structure to another. This is critical if we want the robot to be able to do 

things like walk forward, come to a stop and start walking backwards all by itself. 

 

 Another goal we are working on it to have all behaviors control all the 

motors by just using a single library of possible actions.  This library of actions 

would include things like swinging the leg forward, allowing it to swing freely etc. 

Each state should then have single action it calls from this library for any given 

motor. Hopefully this will increase the amount of the code that gets reused and in 

doing so, will increase the reliability of the robot.   

 

 While nothing is final presently, we do have a basic structure for the future 

implementation of the code that hopefully accommodates all of these constraints. 

We define a behavior as a coordinated sequence of motions from the robot. 

Behaviors include walking forward, walking backwards, running etc. These 

individual behaviors will run using the same type of state machines currently 

employed on the robot. These state machines will rely on a library of actions. 

Actions are similar to behaviors, but on a smaller scale. Actions will include such 

motions as swinging the leg forward with certain target speeds, positions etc. 

Finally, these actions will all operate using a series of micropolicies. These 

micropolicies are just simple linear controls dedicated to each motor. They will 

receive simple inputs like torque, or PWMs for their motor and convert this to an 

actual output to the motor. A graphical representation of the top two levels of the 

state machine is shown below in Figure 1.  



 

 

 

 

Figure 1 

 

 In Figure 1, the large dashed circles represent the top level of the state 

machine, while the gray circles represent the state machines within each 

behavior. It also demonstrates how we could presumably move from one 

behavior to another seamlessly. There will be a transition behavior (possibly 



several), and each behavior will be responsible for both getting from the 

transition behavior and going back to the transition behavior. Each behavior then 

uses its own state machine to select from a library of actions, which then set the 

appropriate micropolicies for each motor.  

 

Conclusion: 

 

While there was clearly a lot of progress made this semester, it was still 

limited due to certain constraints. The biggest constraint we had to deal with was 

the use of C instead of C++. In general, object orientation naturally lends itself to 

encapsulation. It is possible to use good programming practice to simulate the 

natural encapsulation that comes from using objects, but it can quickly become 

tedious. There were numerous occasions while we were writing this code that we 

thought of easy ways to implement something in C++ that turned out to be quite 

challenging in C.  

 

 The basic conclusion from this semester is that as the robots get more 

complicated with more sensors and more information to process, it is vital that 

the code be very well planned. If the code is properly planned, it will be as 

flexible as possible and hopefully will evolve in a way that does not become 

unwieldy and unchangeable.  

 



 At the same time though, after a whole semester of hard work, the code 

has made undeniable improvements. It is easier to both debug and evolve. 

Perhaps more importantly, we have developed a frame work for both short term 

evolution and the long term changes that we eventually plan on making. This will 

hopefully go a long way towards preventing the code from turning into “spaghetti” 

as it changes in the future.  
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Appendix: 
 It should also be noted that I spent a solid two weeks working on just 

debugging the robot in preparation for breaking the record. During this time I 

helped Bram with debugging code, and debugging electronics in order to ensure 

that the robot successfully walked before he left.  

Appendix A: 
Button.c: Handles the button presses from the back of the robot 
CAN.c : Handles CAN bus to satellite processors 
Encoder.c :Handles all the encoders for the hip  



Foot.c:  Handles low level control of the feet 
LCD.c: Controls the LCD display screen 
PWM.c: Low Level motor control 
Sensor.c: Low Level Sensor control 
TMRC0_Main_Loop_interrupt.c: The main loop, runs once per millisecond to control 
almost all robot operations 
WalkController.c: Wrapper for the walk controller 
Actions.c: Makes motor decisions based on present state of state machines 
Set.c: Set initial values on transition 
Decisions.c: Determines when state machine needs to transition 
 
 

Appendix B: 
 
 The pointer syntax is fairly straightforward. In the function declaration, the 

user will need to include the pointer symbol. For instance, in the case of the set 

function, the declaration would look like this: void set(struct WalkVars*); In this case, 

the struct we have defined is called the WalkVars struct. The only difference 

between the pointer version of the declaration and the regular declaration is the 

asterisk.  

 

 In the function call, the syntax is again a bit different for pointers than it is 

for regular calls. The call to the set function would look like this: set(&Walk); The 

difference between using the pointer and not being the amperstand. 

 

 In the function definition itself, there are two more syntax changes to keep 

in mind. The first is in the first line of the definition. In the case of the set function, 

the first line looks like this: void set(struct WalkVars *Walk) , with the only difference 

being the asterisk. Finally, any time the programmer wishes to access an 



element from the Walk struct, it must be accessed using an arrow like this: 

 Walk->I.  

 

 By using these simple changes in syntax, the programmer can pass by 

reference instead of by value. This enables him or her to change the actual 

values within the original struct, rather than changing the values of a copied 

version of it.   

 

Appendix C: 
 

WalkController.h 
 
//checks to make sure this is only defined one time 
#ifndef ALREADY_WALK_CONTROLLER_H 
#define ALREADY_WALK_CONTROLLER_H 
 // Hip states 
 #define MC_HIP_SWING_INNER  ONEFF 
 #define MC_HIP_FREESWING_INNER TWOFF 
 #define MC_HIP_EMERGENCY_INNER THREEFF 
 #define MC_HIP_SWING_OUTER  FOURFF 
 #define MC_HIP_FREESWING_OUTER FIVEFF 
 #define MC_HIP_EMERGENCY_OUTER SIXFF 
 
  
 // foot states Inner 
 #define MC_FEET_FLIP_UP  ONEFF 
 #define MC_FEET_LANDING  TWOFF 
 #define MC_FEET_STANCE  THREEFF 
 #define MC_FEET_PUSHOFF  FOURFF 
 #define MC_FEET_STANCELAND  FIVEFF 
   
 struct WalkVars 
 { 
  ffloat HipSwingPWMLevel; 
  unsigned long targettime; 
  ffloat I; 
  ffloat angleland; 
  ffloat LandingAngle; 
  ffloat FeetStanceAngle; 
  ffloat Pushoff; 
  ffloat PushOffStartAngle; 



  ffloat DeltaPushOff; 
  ffloat DecreaseRate; 
  ffloat KpFeetStance; 
  ffloat KpFeetLand; 
   
 };  
 //Walk Controller Function Prototypes 
 void actions(struct WalkVars*); 
 int decisions(struct WalkVars); 
 void reset(struct WalkVars*); 
  
#endif //ALREADY_WALK_CONTROLLER_H 

WalkController.c 
 
#include "headers.h" 
 
extern ffloat GBL_Data[]; 
bool impact; 
struct WalkVars Walk;  
ffloat Prev_Stance_Leg; //= ONEFF; 
ffloat Error, P,I,D,ForcePID; 
 
 
void WalkController(int mode) 
{ 
 GBL_Data[TestOutput7]=mode;  
 if(mode==1) //=====START UP MODE======  
 { 
  // Start up mode runs each time the walk mode is started 
  // This mode sets all static variables to the correct values 
 
  GBL_Data[StanceLeg]  = MC_OUTERLEG; 
  Prev_Stance_Leg   = GBL_Data[StanceLeg]; 
  GBL_Data[WalkHipState]  = MC_HIP_FREESWING_INNER; 
  GBL_Data[FeetStateInner] = MC_FEET_LANDING; 
  GBL_Data[FeetStateOuter] = MC_FEET_PUSHOFF; 
  GBL_Data[TotalWalkedDistance] = ZEROFF; 
  GBL_Data[NumberSteps] = ZEROFF; 
  LCDWrite('5',0); 
  LCDWrite('3',1); 
  Walk.targettime = 0; 
  Walk.Pushoff = TWOFF; 
  Walk.angleland = 0; 
  Walk.LandingAngle = 1.6; 
  I = ZEROFF; 
 } 
 else 
 { 
  if (decisions(Walk) != 0) 
  { 
    
   set(&Walk); 
 
  } 



  actions(&Walk); 
 } 
 
} 

Decisions.c 
 
 
#include "headers.h" 
 
extern ffloat GBL_Data[]; 
extern ffloat GBL_Param[]; 
extern ffloat Prev_Stance_Leg; 
extern unsigned long GBL_Elapsed_mS; 
extern bool impact; 
int Transition; 
extern int counts; 
 
int decisions(struct WalkVars Walk) 
{ 
 Transition = 0; 
  
 //CHECK FOR IMPACT 
 if(GBL_Data[StanceLeg] != Prev_Stance_Leg) 
 { 
  impact = 1; 
  Prev_Stance_Leg = GBL_Data[StanceLeg]; 
 } 
 else 
 { 
  impact = 0; 
 } 
  
 //Detect errors 
 DetectErrors(); 
   
   
   
 switch(GBL_Data[WalkHipState]) 
 { 
  //handle the HIP state machine 
  case MC_HIP_SWING_INNER: 
   if(GBL_Elapsed_mS > Walk.targettime)  
   { 
    GBL_Data[WalkHipState] = MC_HIP_FREESWING_INNER;  
    //Transition to FREESWING_INNER once elapsed time passes target 
time 
    Transition |= 1; 
   } 
   LCDWriteWord("SwingI"); 
    
  break; 
   
  case MC_HIP_FREESWING_INNER: 



   if ((FFlt(GBL_Data[AngleJointHip],GBL_Param[FixAngle]))  &  
(FFltz(GBL_Data[AngleRateEncoderHip])) & (FFgtz(GBL_Data[AbsAngleInnerLeg]))) 
   { 
    GBL_Data[WalkHipState] = MC_HIP_EMERGENCY_INNER; 
    //Switch state to Emergency Inner 
    Transition |= 1; 
   } 
    
   if (impact) 
   { 
    GBL_Data[WalkHipState] = MC_HIP_SWING_OUTER; 
    //transition to swing outer in the event that we're in freeswing_inner 
and there 
    //is an impact 
    Transition |= 1; 
   } 
   LCDWriteWord("FreeI"); 
  break; 
   
  case MC_HIP_EMERGENCY_INNER: 
   if (impact) 
   { 
    GBL_Data[WalkHipState] = MC_HIP_SWING_OUTER; 
    Transition |= 1; 
    //transition to swing_outer in the case that there is impact  
    //and we were in emergency inner 
   } 
   LCDWriteWord("EMERI"); 
   BeepFreq(50,200); 
   BlinkLEDColor(255,255,0,50,200); 
   StoreError(21); 
 
  break; 
   
  case MC_HIP_SWING_OUTER: 
   if(GBL_Elapsed_mS > Walk.targettime)  
   { 
    GBL_Data[WalkHipState] = MC_HIP_FREESWING_OUTER; 
    //Transition to FREESWING_OUTER once elapsed time passes target 
time 
    Transition |= 1; 
   } 
   LCDWriteWord("SwingO"); 
  break; 
   
  case MC_HIP_FREESWING_OUTER: 
   if ((FFgt(GBL_Data[AngleJointHip],FFneg(GBL_Param[FixAngle])))  &  
(FFgtz(GBL_Data[AngleRateEncoderHip]))& (FFgtz(GBL_Data[AbsAngleOuterLeg]))) 
   { 
    GBL_Data[WalkHipState] = MC_HIP_EMERGENCY_OUTER; 
    //Switch state to Emergency Inner 
    Transition |= 1; 
   } 
    
   if (impact) 
   { 



    GBL_Data[WalkHipState] = MC_HIP_SWING_INNER; 
    //transition to swing inter in the event that we're in freeswing_outer and 
there 
    //is an impact 
    Transition |= 1; 
   } 
    LCDWriteWord("FreeO"); 
  break; 
   
  case MC_HIP_EMERGENCY_OUTER: 
   if (impact) 
   { 
    GBL_Data[WalkHipState] = MC_HIP_SWING_INNER; 
    //transition to swing_inner in the case that there is impact  
    //and we were in emergency outer 
    Transition |= 1; 
   } 
   LCDWriteWord("EMERO"); 
   BeepFreq(50,200); 
   BlinkLEDColor(255,255,0,50,200); 
   StoreError(22); 
  break; 
 } 
  
  
 switch(GBL_Data[FeetStateInner]) 
 { 
  //handle the inner foot state machine 
  case MC_FEET_FLIP_UP: 
   if ((FFgt(GBL_Data[InnerFootHight], GBL_Param[FlipDownClearance]) & 
FFgt(GBL_Data[AngleJointHip], GBL_Param[FlipUpStart]))) 
   { 
    GBL_Data[FeetStateInner] = MC_FEET_LANDING; 
   } 
    
   if (impact) 
   { 
   GBL_Data[FeetStateInner] = MC_FEET_STANCELAND; 
   BeepFreq(250,4000); 
   BlinkLEDColor(0,0, 255,50,2000); 
   StoreError(23); 
   } 
  break; 
   
  case MC_FEET_LANDING: 
   if (impact) 
   { 
    GBL_Data[FeetStateInner] = MC_FEET_STANCELAND; 
    
   } 
  break; 
   
  case MC_FEET_STANCELAND: 
   if (FFlt(Walk.angleland, Walk.FeetStanceAngle)) 
   { 
    GBL_Data[FeetStateInner] = MC_FEET_STANCE; 



    
   } 
   if (impact) 
   { 
    GBL_Data[FeetStateInner] = MC_FEET_FLIP_UP; 
    
    BeepFreq(250,4000); 
    BlinkLEDColor(0,255, 0,50,2000); 
    StoreError(24); 
   } 
  break; 
   
  case MC_FEET_STANCE: 
   if (FFlt(GBL_Data[AbsAngleInnerLeg],Walk.PushOffStartAngle)) 
   { 
    GBL_Data[FeetStateInner] = MC_FEET_PUSHOFF; 
    Transition |= 2; 
   } 
    
   if (impact) 
   { 
    GBL_Data[FeetStateInner] = MC_FEET_FLIP_UP; 
    BeepFreq(250,4000); 
    BlinkLEDColor(255,0, 0,50,2000); 
    StoreError(25); 
   } 
  break; 
   
  case MC_FEET_PUSHOFF: 
   if (impact) 
   { 
    GBL_Data[FeetStateInner] = MC_FEET_FLIP_UP; 
   } 
 
  break; 
 } 
 switch(GBL_Data[FeetStateOuter]) 
 {   
  //handle the outer foot state machine 
  case MC_FEET_FLIP_UP: 
   if ((FFgt(GBL_Data[OuterFootHight], GBL_Param[FlipDownClearance]) & 
FFlt(GBL_Data[AngleJointHip], FFneg(GBL_Param[FlipUpStart])))) 
   { 
    GBL_Data[FeetStateOuter] = MC_FEET_LANDING; 
   } 
    
   if (impact) 
   { 
    GBL_Data[FeetStateOuter] = MC_FEET_STANCELAND; 
    BeepFreq(250,4000); 
    BlinkLEDColor(255,255, 255,50,2000); 
    StoreError(26); 
   } 
  break; 
   
  case MC_FEET_LANDING: 



   if (impact) 
   { 
    GBL_Data[FeetStateOuter] = MC_FEET_STANCELAND; 
    
   } 
  break; 
   
  case MC_FEET_STANCELAND: 
   if (FFlt(Walk.angleland, Walk.FeetStanceAngle)) 
   { 
    GBL_Data[FeetStateOuter] = MC_FEET_STANCE; 
    
   } 
   if (impact) 
   { 
    GBL_Data[FeetStateOuter] = MC_FEET_FLIP_UP; 
    BeepFreq(250,4000); 
    BlinkLEDColor(255,0, 255,50,2000); 
    StoreError(27); 
   } 
  break; 
   
   
  case MC_FEET_STANCE: 
   if (FFlt(GBL_Data[AbsAngleOuterLeg],Walk.PushOffStartAngle)) 
   { 
    GBL_Data[FeetStateOuter] = MC_FEET_PUSHOFF; 
    Transition |= 4; 
   } 
   
   if (impact) 
   { 
    GBL_Data[FeetStateOuter] = MC_FEET_FLIP_UP; 
    BeepFreq(250,4000); 
    BlinkLEDColor(255,255, 0,50,2000); 
    StoreError(28); 
   } 
    
  break; 
   
  case MC_FEET_PUSHOFF: 
   if (impact) 
   { 
    GBL_Data[FeetStateOuter] = MC_FEET_FLIP_UP; 
   } 
  break; 
 } 
 return Transition; 
} 
 
 

Set.c 
 
#include "headers.h" 



 
extern int counts; 
extern ffloat GBL_Data[]; 
extern ffloat GBL_Param[]; 
extern unsigned long GBL_Elapsed_mS; 
extern int Transition; 
 
 
void set(struct WalkVars *Walk) 
{ 
    int temptransition=0; 
 if ((Transition&1) != 0)//run on hip state machine transition 
 { 
 ffloat temp2; 
 temp2 = FFadd(0x000B7080,FFmult(FFsub(GBL_Param[GoalAngle], 0xFFFF4000), 
0x000D4E20)); 
  
 if (GBL_Data[WalkHipState]==MC_HIP_SWING_OUTER) 
 { 
  Walk->HipSwingPWMLevel= FFsub(FFmult(temp2, 
FFsub(GBL_Data[AbsAngleOuterLeg],0x000A805)), 0x00065D11); 
  Walk->targettime= GBL_Elapsed_mS+325; 
  Walk->I=ZEROFF;  
 } 
  
 if (GBL_Data[WalkHipState]==MC_HIP_SWING_INNER) 
 {  
  Walk->HipSwingPWMLevel= FFsub(FFmult(temp2, 
FFsub(GBL_Data[AbsAngleInnerLeg],0x000A805)), 0x00065D11); 
  Walk->targettime= GBL_Elapsed_mS+325; 
  Walk->I=ZEROFF; 
 } 
 counts = 0;  
  
 } 
  
  
 if ((Transition&2) != 0)//run on inner state machine transition 
 { 
  if (GBL_Data[FeetStateInner]==MC_FEET_PUSHOFF) 
  { 
   temptransition = Transition; 
   Walk -> Pushoff = FFadd(GBL_Data[AngleJointInner], Walk -> DeltaPushOff);  
  } 
   
  if (GBL_Data[FeetStateInner]==MC_FEET_STANCELAND) 
  { 
   Walk -> angleland = Walk -> LandingAngle;  
  } 
 } 
  
  
 if ((Transition&4) != 0)//run on outer state machine transition 
 { 
  if (GBL_Data[FeetStateOuter]==MC_FEET_PUSHOFF) 
  { 



   Walk -> Pushoff = FFadd(GBL_Data[AngleJointOuter], Walk -> 
DeltaPushOff);  
  } 
   
     
  if (GBL_Data[FeetStateOuter]==MC_FEET_STANCELAND) 
  { 
   Walk -> angleland = Walk -> LandingAngle;  
  } 
 } 
  
  
 //Run every Reset 
Walk -> LandingAngle  = FFadd((FFmult(GBL_Data[Knormal], 
GBL_Param[LandingAngleNormal])),(FFmult(GBL_Data[Ksteering], 
GBL_Param[LandingAngleSteering]))); 
Walk -> FeetStanceAngle =  FFadd((FFmult(GBL_Data[Knormal], 
GBL_Param[FeetStanceAngleNormal])),(FFmult(GBL_Data[Ksteering], 
GBL_Param[FeetStanceAngleSteering]))); 
Walk -> DeltaPushOff  = FFadd((FFmult(GBL_Data[Knormal], 
GBL_Param[PushOffNormal])),(FFmult(GBL_Data[Ksteering], GBL_Param[PushOffSteering]))); 
Walk -> PushOffStartAngle = FFadd((FFmult(GBL_Data[Knormal], 
GBL_Param[PushOffStartAngleNormal])),(FFmult(GBL_Data[Ksteering], 
GBL_Param[PushOffStartAngleSteering]))); 
Walk -> DecreaseRate  =  FFadd((FFmult(GBL_Data[Knormal], 
GBL_Param[DecreaseRateNormal])),(FFmult(GBL_Data[Ksteering], TWOFF)));  
Walk -> KpFeetLand   =  FFadd((FFmult(GBL_Data[Knormal], 
GBL_Param[KpFeetLandNormal])),(FFmult(GBL_Data[Ksteering],GBL_Param[KpFeetLandSteering]))); 
Walk -> KpFeetStance  =  FFadd((FFmult(GBL_Data[Knormal], 
GBL_Param[KpFeetStanceNormal])),(FFmult(GBL_Data[Ksteering],GBL_Param[KpFeetStanceSteering])
));  
GBL_Data[TargetTime] = U32int2FFloat(Walk->targettime); 
 Transition = 0; 
  
  
} 
 
 

Actions.c 
 
#include "headers.h" 
 
extern ffloat GBL_Data[]; 
extern ffloat GBL_Param[]; 
extern ffloat Prev_Stance_Leg; 
extern bool impact; 
int counts; 
extern ffloat Error, P,I,D,ForcePID; 
  
 
 
void actions(struct WalkVars *Walk) 
{ 
 



 /////// HIP state machine 
 switch(GBL_Data[WalkHipState]) 
 { 
  case MC_HIP_SWING_INNER: 
   if (counts < 200) //ramp for 200 ms 
   { 
    counts++;  
   } 
   GBL_Data[PWMDesiredHip] =  (FFmult(FFdiv(Walk-
>HipSwingPWMLevel,0x00086400),S16int2FFloat(counts)));  
  break; 
   
  case MC_HIP_FREESWING_INNER: 
   GBL_Data[PWMDesiredHip] = ZEROFF; 
  break; 
   
  case MC_HIP_EMERGENCY_INNER: 
   Error = FFsub((GBL_Param[FixAngle]),GBL_Data[AngleJointHip]);  
   //PID control of Hip    
   P= FFmult(GBL_Param[KEmergency],Error);  
   Walk -> I=FFadd(Walk ->I,FFmult(FFmult(0x000106270,LOOPTIME),Error)); 
   D= FFmult(0x000A4EC0,(GBL_Data[AngleRateEncoderHip]));  
   ForcePID = FFadd(P,FFsub(I,D));  //difference between Fsubscribed and 
Fmeasured times a PID action 
   GBL_Data[PWMDesiredHip] = ForcePID ; 
  break; 
   
  case MC_HIP_SWING_OUTER: 
   if (counts < 200) //ramp for 200 ms 
   { 
   counts++;  
   } 
   GBL_Data[PWMDesiredHip] =  FFneg(FFmult(FFdiv(Walk-
>HipSwingPWMLevel,0x00086400),S16int2FFloat(counts))); 
  break; 
   
  case MC_HIP_FREESWING_OUTER: 
   GBL_Data[PWMDesiredHip] = ZEROFF; 
  break; 
   
  case MC_HIP_EMERGENCY_OUTER: 
   Error = FFsub(FFneg(GBL_Param[FixAngle]),GBL_Data[AngleJointHip]); 
  
   //PID control of Hip    
   P= FFmult(GBL_Param[KEmergency],Error);  
   Walk ->I=FFadd(Walk->I,FFmult(FFmult(0x000106270,LOOPTIME),Error)); 
   D= FFmult(0x000A4EC0,(GBL_Data[AngleRateEncoderHip]));  
   ForcePID = FFadd(P,FFsub(I,D));  //difference between Fsubscribed and 
Fmeasured times a PID action 
   GBL_Data[PWMDesiredHip] = ForcePID ;  
  break; 
 }  
 
 switch(GBL_Data[FeetStateInner]) 
 { 
  case MC_FEET_FLIP_UP: 



   Error = FFsub(0xFFFE6666,GBL_Data[AngleJointInner]);    
   GBL_Data[PWMDesiredInner] = 
FFsub(FFmult(GBL_Param[KpFeetFlipUp],Error), FFmult(GBL_Param[KdFeetFlipUp], 
GBL_Data[AngleRateEncoderInner])); 
  break; 
   
  case MC_FEET_LANDING: 
   Error = FFadd(Walk -> LandingAngle,GBL_Data[AbsAngleInnerFeet]);  
   GBL_Data[PWMDesiredInner] = FFmult(Walk->KpFeetLand,Error); 
   //GBL_Data[TestOutput6] = Walk->KpFeetLand; 
  break; 
   
  case MC_FEET_STANCELAND:  
   Walk -> angleland = FFsub(Walk->angleland, Walk->DecreaseRate); 
   Error = FFadd(Walk->angleland,GBL_Data[AbsAngleInnerFeet]);  
  
   GBL_Data[PWMDesiredInner] = FFmult(Walk->KpFeetStance,Error); 
  break; 
   
  case MC_FEET_STANCE:  
   Error = FFadd(Walk -> FeetStanceAngle,GBL_Data[AbsAngleInnerFeet]); 
   
   GBL_Data[PWMDesiredInner] = FFmult(Walk->KpFeetStance,Error); 
  break; 
   
  case MC_FEET_PUSHOFF: 
   Error = FFsub(Walk->Pushoff,GBL_Data[AngleJointInner]);   
  
   GBL_Data[PWMDesiredInner] = FFmult(GBL_Param[KpFeetPushOff],Error); 
   //GBL_Data[TestOutput6] = (*Walk).Pushoff; 
  break; 
 }  
  
  
 switch(GBL_Data[FeetStateOuter]) 
 { 
  case MC_FEET_FLIP_UP: 
   Error = FFsub(0xFFFE6666,GBL_Data[AngleJointOuter]);    
   GBL_Data[PWMDesiredOuter] = 
FFsub(FFmult(GBL_Param[KpFeetFlipUp],Error),FFmult(GBL_Param[KdFeetFlipUp], 
GBL_Data[AngleRateEncoderOuter])); 
  break; 
   
  case MC_FEET_LANDING: 
   Error = FFadd(Walk ->LandingAngle ,GBL_Data[AbsAngleOuterFeet]);  
   GBL_Data[PWMDesiredOuter] = FFmult(Walk->KpFeetLand,Error); 
  // GBL_Data[TestOutput6] = Walk->KpFeetLand; 
  break; 
   
  case MC_FEET_STANCELAND:  
   Walk -> angleland = FFsub(Walk->angleland,Walk->DecreaseRate); 
   Error = FFadd(Walk->angleland,GBL_Data[AbsAngleOuterFeet]);  
  
   GBL_Data[PWMDesiredOuter] = FFmult(Walk->KpFeetStance,Error); 
  break; 
   



  case MC_FEET_STANCE: 
   Error = FFadd(Walk -> FeetStanceAngle ,GBL_Data[AbsAngleOuterFeet]); 
   
   GBL_Data[PWMDesiredOuter] = FFmult(Walk->KpFeetStance,Error); 
  break; 
   
  case MC_FEET_PUSHOFF: 
   Error = FFsub(Walk->Pushoff,GBL_Data[AngleJointOuter]);   
  
   GBL_Data[PWMDesiredOuter] = FFmult(GBL_Param[KpFeetPushOff],Error); 
   //GBL_Data[TestOutput6] = Walk->Pushoff; 
  break; 
 }  
 
 
} 
 
 


