Design of a Data Analysis System for Walking Robots.

A Design Project Report
Presented to the Engineering Division of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Masters of Engineering

by
Leticia Rojas Camargo

Project Advisor: Andy Ruina
Degree Date: January 2009

Abstract
Masters of Engineering in Mechanical and Aerospace engineeing
Cornell University

Design Project Report

Project title:
Design of a Data Analysis System for Walking Robots.

Author:

Leticia Rojas Camargo

Abstract:

The main goal of this project was to design a tool to simplify the data visualization and data
analysis for our robotics research. At the end of the project the goal is to have a functional
data analysis program that incorporates our specific visualization and analysis needs, as
well as the option of visualizing and analyzing data alongside a video.

MATLAB was chosen as a platform for programming the data analysis tool. The final
program consists of a data analysis and a data with video analysis option. The functions
that the program is capable of doing are divided in three sections, the data visualization
functions, the data analysis function and the video functions. The data visualization
functions are changing the data file to analyze, changing the variables plotted, moving the
cursor to an exact time point, moving discretely along data points, choosing the min and
max values of time to be plotted, changing the min and max values of the variables to be
plotted, zooming in and out in time and in the variables and showing error messages. The
data analysis functions are plotting two variables against each other, plotting more than one
variable against time on the same graph, scaling a variable and entering a MATLAB
function into the data. The video analysis tools are moving frame by frame and playing and
stopping the video in synch with the data and synchronizing the video and data to a new
synch point.

Report Approved By:
Project Advisor: Andy Ruina

Signature: Date:

Table of contents

Table of contents

Index of figures

1. Introduction
1.1 Motivation
1.2 The MATLAB based GUI

1.3 Report structure

2. Problem Statement
2.1 Problem statemen
2.2 Design objectives

2.3 Requirements

3. The data analysis GUI
3.1 Program structure
3.2 The data analysis GUI
3.2.1 Data Only GUI
3.2.2 The Data and Video GUI
3.3 Functions

4. Data display
4.1 Data file reading
4.2 Plot display
4.3 Zoom functions

4.4 Error display

5. Data analysis

5.1 Scaling a variable

o O 01 O

10
12
14

16
16
18
20
22

24
24

5.2 Plotting two variables against each other

5.3 Plotting several variables in one graph

5.4 Manipulating a variable

6. Combined video and data analysis
6.1 Video reading.
6.2 The video display window
6.2.1 Video functions
6.3 Data and video synchronization
6.4 Video capturing and deinterlacing

6.5 Limitations

7. Conclusions

8. References

A.1 Source Code for the Data Analysis program

26
27
29

31
31
32
33
34
35
37

39

40

41

Index of figures and tables

Figure 1.1. The data analysis MATLAB GUI.

Figure 3.1. Initial Prompt

Figure 3.2. Data file open prompt.

Figure 3.3 The MATLAB data analysis GUI (Data display only).
Figure 3.4. Help Menu

Figure 3.5. Video file open prompt

Figure 3.6. The MATLAB data analysis GUI (Data and video display).

Figure 4.1. Sample data file

Figure 4.2 Error message if data file is not chosen

Figure 4.3. Plot display

Figure 4.4. Variable list

Figure 4.5. Variable change prompt

Figure 4.6. Moving cursor to a user chosen time.

Figure 4.7. Changing maximum and minimum values of t.
Figure 4.8. Changing max. and min. values of a variable.
Figure 4.9. Error Display

Figure 5.1. Scaling a Variable

Figure 5.2. Loadcell variable, a)before scaling, b) after scaling
Figure 5.3. Plotting two variables against each other
Figure 5.4. PWM vs Torque plot

Figure 5.5. Plotting several variables on the same graph

Figure 5.6. Angle comparison plot

10

10

11

12

13

14

17

18

18

19

20

20

21

22

23

25

26

26

27

28

28

Figure 5.7. Manipulating the data.

Figure 5.8. Manipulated data plot

Figure 6.1. The video display window
Figure 6.2. Button functions

Figure 6.3. Video to data toggle message
Figure 6.4. Synchronization success message
Figure 6.5. Data to video toggle message

Figure 6.6. Deinterlacing a video with VirtualDub

Table 3.1 Data display functions
Table 3.2 Data analysis functions

Table 3.3 Video and data analysis functions.

29

30

33

34

34

35

35

37

14

15

15

1. Introduction

1.1 Motivation

The need for a data analysis tool became more pressing as the Cornell Ranger team
prepared for a record breaking walk and problems with the robot arose. The main
motivation for this project was driven from that one basic need that had not been fulfilled
until now. This data analysis program would provide us with an easy to use data display to
visualize possible unexpected behavior or errors as soon as they happened, as well as more

advanced tools to analyze the data more thoroughly after a walk or test.

Having the ability to perform these tasks with ease would help us greatly to achieve the
goals the team had set. Thus, making a program that could incorporate both, and even
more incorporate the reading and analysis needs of the different team members working

with the robot, became a priority.

The less pressing but certainly important issue of including video reading with data
synchronization into the data analysis was also considered and integrated at a later stage of

the project.

1.2 The MATLAB based GUI

Up until now, all the data analysis of the robot had been done by directly reading the
robot’s data file and plotting the data needed in MATLAB, and having to repeat the
operation every time we needed to analyze certain data. This was often a time consuming

task that if simplified, would be of much help for the team.

Making a GUI (Graphical User Interface) for the data analysis was the best option for
creating a user friendly data analysis program. Since most of the data analysis was already
done with the help of MATLAB, and because MATLAB is a powerful tool for this
purpose, it was decided to take advantage of the GUI programming capabilities of

MATLAB.

[u Figure 1

(5]
File Edit “iew Insert Tools Desktop “Window Help u
hedE h RaQd® € 08 50
E-'--‘EISE' Press H for help
T | T T T T T T T T
_®
E g5l 4
1 1 1 1 1 1 1 1
1000 2000 3000 4000 &000 6000 7000 8000
E) T T T T T f..-\-\.‘__m_lr,_,.,-‘__,__;,_._,_l_,—u:
~t 025 NN TN)
o l:‘._ H ‘._\: .-"I- '.._:‘. ; B
:%n 1 _I/‘/ 1 \"v-"_/ 1 \—"flf 1 1 1 i
9,_; 1000 2000 3000 4000 5000 6000 7000 8000
o
E 3 N T T T T T T i T T]
= 2 | - - - B]
o % 1 - S : LT W,]
g_ [] B) _ U____,—ﬂ' . ._.n.-‘—"’_ . o __ L u"““'\-\-..a——:
E -1k I S = AR I I I .
m 1000 2000 3000 4000 5000 6000 7000 8000
- - T T T T T T i T T =
= i U\'-
= % 2 e e T . L _'-'\-""""'H-' . "‘""""‘M .:'-. W,..,.._Z: _\."\.-'m\‘-""'-\'" ~]
g 0r 1 .-'"-ﬁc 1 - |_# . 1 H -; I -I 1]
m 1000 2000 3000 4000 5000 6000 7000 8000

Figure 1.1. The data analysis MATLAB GUI.

1.3 Report structure

This report is designed to serve as both a technical report of the data analysis gui as well as

the documentation of the software for users of the program and future developers in the

case that more features are needed.

The Design problem section will focus on familiarizing the reader with the goal and the

main requirements of the project, as well as the main challenges faced in programming the

tool.

The following section will explain the general structure of the data analysis GUIL. It will
also serve as a user’s guide and provide a brief description of the functions available to the

user.

Next the report will proceed to the technical details and characteristics of the data analysis
functions, dividing them in three sections. The first of these sections will focus on the data
reading and display. It will explain the way the data is read from the data file. It will also

focus on the display functions of zooming, changing plots and showing errors.

The following section will focus on the data analysis functions of the program. Each of the
data analysis functions of scaling a variable, plotting two variables against each other,
plotting more than one variable on the same plot will be justified within the context of the
needs of our team. This section will also have a description of the implementation and use

of each of these functions.

The third and final section of this report will center on the combined video and data
analysis option of the program. In this section, the differences between the data only and
data and video GUI windows will be explained. The section will also cover the way the
video is read into MATLAB, as well as its playback and synchronization with the data
characteristics. Finally this section considers the limitations of the video reading

capabilities of MATLAB.

2. Problem statement

2.1 Problem Statement

Communication with the Cornell Ranger Robot is made through a wireless data acquisition
card. It sends and receives data through a LabView interface. LabView then generates a
data file from the received data from the robot sensors. Currently, up to 25 different
variables can be collected into the data file. The contents of the data file help to diagnose
problems with the robot, as well as understanding how it works and matching it with a

simulation of the system.

This Masters of Engineering project was born from the need of a general data analysis tool
for the robot. This tool should help all of those working on the robot to visualize and
analyze its data. The problem solving scheme can be divided into two stages. The first one

is developing a functional and user friendly data analysis GUI that incorporates the

different data analysis needs of the team. The second stage will be to include video

synchronization into the data analysis.

2.2 Design objectives

The main goals of this project are:

e To have a functional and easy to use data display and analysis tool for the Cornell
Ranger Robot.

e To incorporate into the program the necessary functions to meet the data analysis
needs of the Cornell Ranger Teams.

e To have the option of combined video and data analysis capabilities that are not
limited by the video format.

e To be able to easily upgrade the code to accommodate new analysis needs, both for

the Cornell Ranger Robot as well as future robots.

2.3 Requirements

The requirements of the MATLAB data analysis program were decided taking into account

the different needs of the team, while taking into account the format of the data we got from

the data acquisition.

The data display requirements of the GUI are:
e One of more plots should be able to be displayed at once.
e [t should show the value of the plotted variable at a certain time chosen through a
Ccursor.
e It should allow the users to change which and how many plots they want to see.
e It should allow zooming in both in time (x axis) and variable (y axis).

e It should have is the capability to display errors.

The data analysis requirements are:
e It should be able to plot 2 variables against each other.
e [t should be able to plot several variables on the same plot for comparison.
e It should have is a scaling function.

e [t should allow the user to mathematically manipulate a variable.

For the video and data analysis the requirements are
e [t should be able to read the videos captured with either of the lab cameras, as well
as to have the possibility of reading videos captured with other devices.
e The user should be able to synchronize the video with the data and play it-back
simultaneously.
e The user should be able to move through the video frame by frame and also fast-
forward and backwards.

e We should be able to get as much frames per second from our cameras as we can.

3. The data analysis GUI

The following section is intended to familiarize the reader with the data analysis program.
This section contains the structure of the program, a guide to the use of the GUI and a

description of all the functions available to the user,

3.1 Program structure

The data analysis program for the Cornell Ranger Robot is a MATLAB based GUI. It is

made of a startup file, two main program files and three function files. These files are:

e startdataanalysis.m: The startup file. Running this m-file will start the GUI and let

the user choose the option of reading a video file along with the data.

e graphs_dataanalysis.m: This is the data analysis only program file. If the user
chooses to analyze data without video, this file will be used. Its GUI consists of a
single window and different functions are called back using the keyboard.

e graphs_videoread.m: This is the data and video analysis program file. If the user
chooses the option to read data along with video, this is the file that will be used.
Its GUI consists of two windows, a video display window with buttons to control
the video options, and a data display window, identical to the no-video GUI window
except for the synchronization functions.

e initgraphs.m: First of two data reading functions. This function is used to prompt the
user to open a data file and returns the filename and path information.

o rdfile.m: Second of two data reading functions. This function takes the file name and
path information from initgraphs.m and opens the data file information.

e The mmread function folder: This is a third party function used to read video files

regardless of its format.

3.2 The data analysis GUI

Upon running startdataanalysis.m, the user will be prompted to decide if they want to work

with video and data or only data, as seen in fig. 3.1. The default option is No (Data Only)/

D@g

3.2.1 Data Only GUL

Do pou want to read a video with the data’?

Figure 3.1. Initial Prompt

If the user chooses to not read a video, the Data Only GUI will be launched. The first thing

it does is prompt the user to select a data file (fig. 3.2). This data file is obtained from the

data acquisition program for the robot and is in *.txt format.

4\ Choose New Data File

B B - L

[S5c)

=
o
Recent Places
E-Ieak:lop
m
!
Yuun
LY
Computer
| ™Y
g,

Metwork

Look in: I E Documents

Name' Date modified Type Size
| bursar.tet
__ final spring 08 txt
 horarios spr8. bt
) hwihS. bt
[#8 Mis carpetas para compartir
| nortonbd
| porqueyaci.bxt
__ prospective sp08 bt
| pruebaaaa.txt
__ renewal.bxt
| setojou poem.bd
__ scbrino.td
|| Test-20080926-160620 bt

x| ¢ Bk E-

File iame: [Test-20080926-160620 04 |
Files of type:) =]

Open
Cancel |

Figure 3.2. Data file open prompt.

10

Once the user selects the data file, the program reads the data into MATLAB, and into the

GUI. The main window will then be launched (fig 3.2).

(B Figure 1 = | B | S
File Edit ‘iew Insert Tools Desktop Mindow Help o
DS k| &0 E 0EH = H

4
w10 Press H for help
T E gsp -
——*d_'_#l_ﬂ__'_’ I I I I I I I
0 1ﬂﬂﬂm 3000 4000 5000 &0OO0O0 7000 8000
E 0.6 T T T o T
5 04}]
o IE_ U% . ,-"f\'\ ::_,/'_\\]
0 1ﬂﬂﬂm 3000 4000 5000 6000 7000 8000
o .
E 3 [T T T T - T T]
= 21) - Lon]
™ QD 11— . oy Ty .
g 0) —" " o __ e e
o B A Kt Y .
= -1t I il i A I I I -
= 1ﬂﬂﬂm 3000 4000 5000 &0OO0O0 7000 8000
1
E 4 - T T T T i, T T |
S 9l . s Do T _
- T e PR - L E R
E_ |) ek I_# bl ._;f_.."- B e i
|E I 2 I I [I I I I
0 1[]% 3000 4000 5000 6000 7000 8000

Figure 3.3 The MATLAB data analysis GUI (Data display only).

By default, the program plots the first four variables of the data file. These variables can be

changed by pressing the C key. The program displays the values of the variables at the

time denoted by the red cursor. This

cursor can be moved using the LEFT and RIGHT

arrow keys or by pointing and clicking with the mouse at the desired position.

11

Pressing the H key will bring out the help menu (fig 3.4). This menu provides a quick
guide of the different functions available in the program and its corresponding callback
keys. To call a function the user must press okay to close the help menu, once in the main

window the user can proceed to press the corresponding callback key of the function.

B Quick Guide = | =]

C: change vanables

F: wiew wariable names and comesponding numbers

T: move the cursor to an exact time

E: revert to oniginal zoom conditions

M wiew new data file

M: change the max and min b values [zoom in)

" change the max and min values for a given parameter [zoom in y)

0: enter a function to the data and plot the resulk againzt time

I1: plot 2 parameters againzst each other

[plot 2 ar more parameters against time on the zame graph

: goale a parameter

R: Show Eror at ¢

B: revert to anginal data

ARROW EEYS: soroll uzing left and right, zoom in « using up and down
¥ and £: zoom in y using this keys

5: To synchronize: wWhen in Graph Mode, move curzor to data point that
II cormesponds with current video frame and press 5

W Return to Yideo Mode [Synchronization will be zaved)

| &

—

Figure 3.4. Help Menu

3.2.2 The Data and Video GUI

If the option to read a video with the data is chosen in the initial prompt (fig 3.1), the Data
and Video GUI will be launched. Like in the Data Only version, a prompt to choose a data
file pops up (fig 3.2). However, once the data file is chosen a second file opening prompt

appears, allowing the user to choose a video file (fig 3.5)

12

o\ Choose Video File

)
=
Recent Places

Desktop

!"1

Yuun

f .q
e

Computer
K.
-

Networl

= snapshot.jpg

| sobrino.td

3| stanjan.zip

@ staternentpurpose.doc
@ sysconhwhkd.doc
@tarealEkirb}r.doc

|| Test-20080926-160620
B trusses.xls

@‘u’erif’y.doc

|| vidcaptest.mpg

| vidcaptest-new.avi

Look in: |ﬂ: Documents j
Name Date modified Type
3| Shinohara Udch - Interview with the Va...
@ sjprog.exe

& o B

Size

File name: |vidca|:|testﬂew.avi

Cpen

Files of type: |AII Files

=
=

Cancel

i

After both the video and the data are read into the program, the video display and the data
display windows are loaded (fig 3.6). The data display window opens with same default
options of the data only version. Also by default the video display functions are on and the
data display options can’t be used. To use the data display options, press the Go to data
window button to toggle completely to the data display window or the Allow graph functions
button to use one function and return immediately to the video display. The user can

navigate through the video with the different buttons or the slider on the video display

window.

Figure 3.5. Video file open prompt

13

B Figure 2 =le e e 1 =] = |
File Edit View Insert Tools Desktop Window Help = || Edit View Insert Tools Desktop Window Help -

zd&(k *a0®[e 0@ =0

left right Play Sop |Load Mew Data File| Goto data window | Allow Graph functions

Press H for help

(e}
EEst |

! L L L L L L L
m 1000 2000 3000 4000 S000 2 BOO0 7000 8000
T T T T A S ——

gleHipJoint

BE—— A
| S

1 i 1 n i n 1 1
Dm 1000 2000 3000 4000 5000 G000 7000 6000

A

- A A
L e N e

L E} T L L L
1000 2000 3000 4000 S000 2 BOOO 7000 8000

Lo—raw

TorgueOuter]

4

S A e

orgueOutel
=
i
B

EJ.

» et A ko]
e et sy S . s
T - - 4

L I Lt L I I
1000 2000 3000 4000 5000 G000 7000 6000

Figure 3.6. The MATLAB data analysis GUI (Data and video display).

3.3 Functions
In the following subsection we will show a brief overview of all the functions. The

functions are called back by pressing the lower case callback key on the keyboard

Table 3.1 Data display functions.

Callback Key | Function description

H Opens the help menu.

P Shows a list of the variable names and their
corresponding number.

C Changes variables to plot. Which and how

many variables are plotted, and the order of
plotting can be chosen.

N Changes the data file displayed

T Moves the cursor to an exact time,
alternatively, this can be done by pointing and
clicking on the plots.

«—and — Moves discretely along data points.
M Changes the maximum and minimum values
of time to plot (x axis).
Tand | Zooms in and out in time (X axis).

14

Y Change the maximum and minimum values of
a given variable to plot (y axis).
Xand Z Zooms in and out of the variables (y axis).
E Reverts to the original zoom conditions.
R Shows the error messages that appeared at t.
F Hides error messages.

Table 3.2 Data analysis functions.

Callback Key | Function description

U Plots two variables against each other in a
new window.

D Plots more than one variable against time on
the same graph in a new window.

L Scales a variable by a given value.

O Enters a function into the data and plots the
results against time.

B Reverts back to the original data.

Table 3.3 Video and data analysis functions.

Callback Function description
left button Moves video one frame back.
right button Moves video one frame forward.
Play button Plays video.
Stop button Stops video when playing
Load New Data File | Changes the data file displayed
button
Go to data display | Toggles to the data display window
button
Allow data function | Allows the use of a data function and
button returns to video window
Slider Navigates through video
S key Synchronizes the video with a chosen data
point
V key Returns to video display window when Go
to data display button is used.

In the following sections, these functions will be explained in depth.

15

4. Data display

The purpose of this section is to explain in detail the data display characteristics of the
program. In the following subsections, we will cover the data reading, the plot display on

the GUI, the zoom functions and the error display.

4.1 Data File Reading

The data analysis program can read the values contained in a data file generated by the
Cornell Ranger data acquisition LabView program. A new data file is loaded into the
program when it’s run. The user can also choose to read a new data file while the program
is running by pressing the N key on the data display window or the Load New Data File

button on the video display window.

16

The data file that the program uses is generated by the Cornell Ranger data acquisition
LabView program. Right now, this file captures the information of up to 25 sensors of the
robot during a user-chosen time. The data file is in *.txt format, it consists of 25 columns
the first row of data has the name of the data parameters and the next rows have the values.

The data from the robot is collected in 16 ms intervals.

NJ Test-20080926-160620.txt - Notepad

File Edit Format View Help

ms AngleHipJoint TorgqueouterR Torgqueoutert AngleIMuInner AngleRateIMuInner voltageBattery[v] PWMDesiredouter PWMMOTOrQUTEr PWl .
62080 221. 921.63086E-3 1.88220E+0 -264.32800E-3 -24.67728E-3 10.57617e+0 672.12500E+0 571.93750E+0 672.12500E+0 0.
62096 221. 921.63086E-3 1.88220E+0 -264.08386E-3 -5.64480E-3 10.57813E+0 672.12500E+0 571.81250E+0 672.12500E+0 0.z
62112 221. 926.39160E-3 1.92188E+0 -263.85498E-3 14.42242E-3 10. 58008E+0 675.28125E+0 574.40625E+0 672.12500E+0 o
62128 221. 926.39160E-3 1.92188E+0 -263.51929e-3 .93931E-3 10.58203E+0 676.75000E+0 373.59375E+0 672.12500E+0 o}
62144 221. 926.39160E-3 1.91382E+0 -18359€e-3 13767E-3 10.58398e40 676.75000E+0 575.46875E+0 672.12500E40 o]
62160 221. 926.39160E-3 1.91870E+0 .64954E-3 10. 580 96E+0 678.21875E+0 576.59375E+0 672.12500E+0 0
62176 221. 926.39160E-3 1.92969E+0 . 05444 10.58789E+0 679.68750E+0 77.71875E+0 672.12500E+0 [}
62192 220. 926.39160E-3 1.93B60E+0 . 53564 10. 589B4E+0 6B1.15625E+0 578.87500E+0 672.12500E+0 o
82208 220. 926.39160E-3 1.92831E+0 .04736 10. 591B0E+0 682.87500E+0 380.25000E+0 ©682. 87 500E+0 o}
62224 221. 926.39160E-3 1.93079e+0 . 60486 10.59375e40 684.31250E+0 581.37500E+0 682. 87500E40 o]
62240 221. 926.39160E-3 1.95764E+0 .45227 10.59473e+0 684.31250E+0 581.25000E+0 682.87500E+0 o]
62256 221. 926.39160E-3 1.95764E+0 . 29968 10.59766E+0 686.03125e+0 582.62500E+0 682. 87500E+0 o]
62272 221. 926.39160E-3 2.01538E+0 .99451E- 10.59961E+0 686.03125E+0 582.50000E+0 682, 87500E+0 o
02288 221. 926.39160E-3 2.01538E+0 .63B81lE-3 10.080156E+0 686.03125E+0 382.40625E+0 ©682. 87 500E+0 o}
62304 221, 926.39160E-3 2.05371E+0 .04846E-3 10.60352eE+0 687.50000E+0 583.53125e+0 682. 87 500E4+0 Q
62320 221. 926.39160e-3 2.05823E+0 . 54492g-3 10.60547E40 690.43750E+0 585.90625E+0 682.87500E40 o]
62336 221. 931.45752E-3 2.13477E+0 .02612e-3 10.60742e+0 693.59375e+0 588.50000E+0 693. 5937540 o]
62352 221. 931.45752E-3 2.13904E+0 40051E-3 10.60938E+0 693.59375E+0 588.37500E+0 693. 59375E+0 [}
62368 221. 936.21826E-3 2.14929E+0 77490E-3 10.61133E+0 696.78125E+0 590.96875E+0 693, 59375E+0 o
62384 221. 941.28418E-3 2.15336E+0 02722e-3 10.61230e+0 701.18730E+0 394.56250E+0 693, 3937 3E+0 0.
62400 221. 946.41113e-3 2.15039e+0 46265E-3 10.61523e40 702.87500E+0 595.90625E+0 693, 5937540 0.
62416 221. 946.41113e-3 2.15454E+0 95911€-3 10.61719e+0 705.81250E+0 598.31250E+0 693. 5937540 0
62432 221. 951.17187E-3 2.13940E+0 50134€E-3 10.61914E+0 705.81250E+0 598.18750E+0 693. 59375E+0 [}
62448 221. 956.23779e-3 2.13940E+0 76892E-3 10.62012E+0 707.53125E+0 599.53125E+0 693, 59375E+0 o
62464 221. 956.23779E-3 2.19006E+0 28064E-3 10.92207E4+0 707.53125E+0 399. 50000E+0 707.33125E4+0 o}
62480 221. 960.99854E-3 2.19006E+0 91443e-3 10.62500e40 709. 00000E+0 600. 56250E40 707.53125e40 o]
62496 221. 960.99854E-3 2.19495e+0 44141e-3 10.62695e+0 710.43750E+0 601.65625E+0 707.53125e+0 0
62512 221. 960.99854E-3 2.19995E+0 99890E-3 10.62891E+0 710.43750E+0 601.56250E+0 707.53125E+0 [}
62528 221. 960.99854E-3 2.15601E+0 58691E-3 10.6308B6E+0 711.90625E+0 602.65625E+0 707.53125E+0 o
02544 221. 960.99854E-3 2.16455E+0 96130E-3 10.9632B1E+0 713.37500E+0 003, B81250E+0 707.33125E+0 o}
62560 221. 966.06445e-3 2.09546E+0 45776E-3 10.63477e40 715.09375e+0 605.15625E40 707.53125e40 o]
62576 221. 966.06445e-3 2.10010E+0 03052e-3 10.63672e+0 716.81250E+0 606. 50000E+0 707.53125e+0 o]
62592 221. 970.82520e-3 2.04761E+0 49646E-3 10.63867E+0 719.71875e+0 608. 8437540 719.71875e+0 o]
62608 221. 970.82520E-3 2.05188E+0 99292e-3 10.63965E+0 719.71B75E+0 608.78125E+0 719.71875E+0 o
62624 221. 970.82520E-3 2.01721E+0 23761E-3 10.64180E+0 721.18730E+0 ©09.90625E+0 719.71873E+0 o}
62640 221, 75.95215E-3 2.01721E+0 58148e-3 10.64355E40 724.12500E+0 612. 2812540 719.71875E4+0 Q
62656 221. 975.95215e-3 1.95349e+0 96350E-3 10.64551E40 724.12500E+0 612.15625E40 719.71875e40 o]
62672 221. 975.95215e-3 1.95801E+0 39893e-3 10.64746E+0 725.84375e+0 613. 50000E+0 719.71875e+0 o]
62688 221. 980.65186E-3 1.94B85E+0 B88013E-3 £ 10.64941E+0 728.75000E+0 615.B7500E+0 719.71875E+0 o
62704 221.66443E-3 980.65186E-3 1.94B85E+0 .99512E-3 L44342E-3 10.65137E+0 730.46B75E+0 617.18750E+0 719.71875E+0 o
62720 221.66443E-3 980.05186E-3 1.96899E+0 .56787E-3 77984E-3 10.©53234E4+0 730.46B75E+0 617.12500E+0 730.46873E4+0 0. _
« m v

Figure 4.1. Sample data file

The data file is read into the data analysis program with the initgraphs.m and rdfile.m
functions. The initgraphs.m function opens a prompt window for the user to select a data file
and returns its name and path to the main program. If no data file is chosen the program

closes and an error message appears prompting the user to rerun the program (fig. 4.2).

17

u Must choose a file =Rl X

e Rerun the program and chooze a file when prompted

Figure 4.2 Error message if data file is not chosen

The filename and path information from initgraphs.m is then input into rdfile.m. The rdfile.m
function loads the data file into MATLAB and then reads the first line to generate the
variable names. It then reads the numerical values of the data into a matrix. It also checks
that all the rows have the same number of columns. The function is set to read a file with
25 variables (columns), which is the format of the current data file. If this format is

changed, the number of columns to read can be changed in line 13 of rdfile. This function

also reads an error file if available.

4.2 Plot display

B Figure 1 | [
[File Edit View Insert Tools Deskbop Window Help w
TrOIDNEEY FIEINEIEE

4

%10 Press H for help
I o . e
,,—-—'_'_'_'_'_'_'_
| “——cursor

0 100m 3000 4000 5000 G000 TOOD 8000

_ A
- ‘—\l /\\ i./_\]
%) 4 LS i Y ;¢ 7
R S O
0 100m 3000 4000 5000 G000 TQOO &00Q

2
AngleHipJaint
[=1=1=1

S oo
PaEba s
T T

Fa! L,

5 ~ ; i,

L : SN T i
—" L - w R

W, S, N e N

M i Pl 1 1 1
0 1Uﬂﬂm 3000 4000 5000 GOOO 7000 8OO0

3

TorqueOuterL TorqueOuterR

T
T T

I L Doy 4
E— -~ o I B ~
e RN =
R CE P TR Y [Lol
E [P e
P)

b 4 C L i L L
0 10% 3000 4000 5000 GOOO 7000 &O0O0O0

4
=T I
. T

Figure 4.3. Plot display

18

Once the data is loaded into the program it is plotted into the GUI. By default, the first four
variables are initially subplotted in the main GUI window as shown on figure 4.3. These
can be edited in line 16 of graphs_dataanalysis.m and line 30 of graphs_videoread.m. A list of
the numbers and names of the variables can be seen when pressing the P key (fig. 4.4).

This list will also appear with other functions that require the variable number.

Variables .. (=) e

1=m5;

2 = AngleHipaint;

3 = TorqueOuterR;

4 = Torqueluterl;

5 = AnglelMUInner;

E = AnaleR atelMUInner;
7 =VoltageB atten[v];

8 = PywiDezsiredOuter:
9 = Paw/hdbdatorOuter;
10 = PwtdDesiredduter;
11 = StepTime;

12 = StorediMUR atelmpact; |
13 = StoreddbsAngleluterLeg:
14 = Storeddbsdnglelnnerleq;
15 = PughoffE nergy;

16 = GuessEnergy;

17 = MinVelocity;

18 = AngleE ncoderHip;

19 = AngleE ncoderHip:

20 = AngleE ncoderHip:

21 = AngleE ncoderHip;

22 = AngleE ncoderHip;

23 = AngleE ncoderHip;

24 = Anglek ncoderHip;

25 = AngleE nooderHip:

Figure 4.4. Variable list

To change the variables to be plotted in the main GUI, press the C key. This function will
display the variable list and prompt the user to choose the variables to plot (fig 4.5). The
order of the plots is set by the order in which the variable number is written in the prompt,
and there is no limit on the number of plots to be shown. In the code, this changes the

value of the vector param and updates the GUI to the new plots.

19

n Change parameters

= e |

Enter new parameter values seperated by commas:

1234]

Ok Cancel |

Figure 4.5. Variable change prompt

A red cursor line will also appear on the plots, perpendicular to the time axis (x axis). The
values of the variables at the particular time shown by the cursor will appear over it (see fig
4.3). The user can move through the plots with the LEFT and RIGHT arrows in intervals
of 16 ms. This value can be changed on line 28 of graphs_dataanalysis.m. Alternatively, the
user can point and click with the mouse to a particular place in the plot, or press the T key
to move to an exact time location. In the code, the cursor is generated by plotting a line at

the location given by moving the arrows, inputting the value or clicking with the mouse,

and the value is displayed using the text function in MATLAB.

.
Bl view Inpu...l.ilﬂlﬁ

Input time value:

pas2

Ok

Cancel |

Figure 4.6. Moving cursor to a user chosen time.

The plot display as it is coded now has the limitation that it doesn’t use the time vector

information from the data file, but a time vector generated by the code. If the time interval

20

of future data files is changed, the code should be changed to read the time vector directly

from the data file.

4.3 Zoom functions

The zoom functions are divided in two: Zooming in time (x axis) and zooming in the
variables (y axis). To zoom in time, the user can use the UP and DOWN arrows. UP will
zoom in and DOWN will zoom out. The zoom factor is originally five, and can be set on
line 38 of the code. Alternatively, the user can choose the maximum and minimum values

of time to be plotted by pressing the M key (fig. 4.7).

B change x.. IE'E'&J

Mew min:

Mew max:

524
Ok Cancel
S w

Figure 4.7. Changing maximum and minimum values of t.

To zoom in the variable axis, the user can use the Z and X keys. X will zoom in and Z will
zoom out. Like with the zoom in time, the zoom factor is five, and it can be changed in line
65 of the code. Using these keys the zoom will take effect in all of the plots. Alternatively,
the user can zoom in only one of the plots by pressing the Y key. A prompt will then

appear asking for the variable number to zoom, and the new maximum and minimum

21

values to plot. To return to the original zoom of time and of the variables, the user must

press the E key

B Change v... L= e

m Zoom on y axis == |t) New min:

Enter number of parameter to be zoomed: Mew max:

] [.7395
Ol Cancel | Cil; Cancel

Figure 4.8. Changing max. and min. values of a variable.

4.4 Error display

In order to visualize the errors encountered by the robot in a run, the user should be able to
get an error file from the data acquisition program. As part of this project, a function to
generate an error file was added to the data acquisition program. For every data file created
a companion error file is also created. The name of this error file has the same time stamp
as the data file name. Thus, if the error file is placed in the same folder as the data file, the
MATLAB data analysis program will recognize this data stamp and read it along with the

data file.

The error information will be shown on top of the error variable when plotted as shown in

figure 4.9. Currently, the error is sent from the robot through data channel 15, placing it in

variable 16 of the data file. If this data channel changes, the error variable number can be

22

changed in line 18 of the code. Alternatively, the error information can be shown on top of

the plots by pressing the R key. Pressing the F key will hide it again.

Figure 1 =R X
File Edit View Insert Tools Desktop Window Help L]
DeHE kR @s|E| 0H ==
10°
T T T T
. 18 B
— £ 16 / B
141 1 I I I I L
0 1 2 3 4 5] B
w10t
1 T T T m T T T
o a
q I I I I I I
0 1 2 3 4 5] B
W x10°
B - =" T - L s e Sl I Sl T
o A0F B
- 20F B
D 1
0 1 2
w10t
T - T
2= s oo]
o 0 =t i e el
2 r .
I |
0 1 2

Figure 4.9. Error Display. On top is error shown using the R key, and on third graph is error shown

on the error variable.

23

5. Data analysis

In this following section we will explore the different data analysis functions. These
functions are: scaling a variable, plotting two variables against each other, plotting several

variables in one graph and manipulating a variable.

5.1 Scaling a variable

To scale a variable, the user must press the L key. A prompt will ask the user to choose the
variable to scale, and the scale factor (fig. 5.1). In the code, the variable is multiplied by

the scale factor chosen by the user, and the minimum and maximum values are changed

accordingly. To return to the original data, the user must press the B key.

24

B scale 2 p.. =l & s

Parameter to scale:

Scale factor:

}J.ﬁl

O Cancel

Figure 5.1. Scaling a Variable

This function is useful for example for comparison of two variables with a very different
scale. In this case, one of them can be scaled to a similar scale to the other one and then
plotted on the same graph to compare how they change in time. It can also serve to change
the units of a variable, like changing the value of angles from radians to degrees. Figure

5.2 shows an example of scaling. In this case, the Loadcell variable (variable 4) is scaled

by a factor of 0.001.

B Figure 1 SE)
File Edit Wiew Insert Tools Desktop Window Help o
DedE kA | @ 0B =0

9328 Press H for help

95[][] T T T T T_]

8000 .

= 8500 -
L1 k]
L&)

=3 8000F -
3

7500 -

7000 | -

1 1 1 1 1

0 0.5 1 1.5 2 25

x 10°

25

B Figure 1 =NACIE X
File Edit View Insert Tools Desktop “Window Help E

DedES k| AA@ | F 0B =H

Pgry] Press Hfor help
9 -
= BAhF _
L E]
L&)
* 8 8 _
3
l. b 1 |
r | _
1 | I I

0 0.5 1 1.5 2 25

4
b)r %10

Figure 5.2. Loadcell variable, a)before scaling, b) after scaling

5.2 Plotting two variables against each other

To plot two parameters against each other the user must press the U key. A prompt will ask
the user to choose two parameters to compare, one to be plotted on the x axis and another
on the y axis. It will also ask the user if they want a title for this plot (fig 5.3). The

resulting plot will be plotted on a new window and can be saved as a MATLAB fig file.

B Plot 2 paramet... b= B Plot 2 paramet... =) B Plot 2 Par---@ﬂﬁ
Enter parameter to be plotted on x axis: Enter parameter to be plotted on v axis: Enter title for your graph

K B |
Ok I Cancell [0].4 | Canc:el| Ok | Cancel|

Figure 5.3. Plotting two variables against each other

26

An example of this function is shown on figure 5.4. In this case, the PWM applied to the

motor is plotted against the Torque output by the motor to see the hysteresis of the motor

response.

FigureZ =Necn X
File Edit “iew Insert Tools Desktop ‘Window Help

hedE8 K AQOe | 0H =580

pwm vs torque
25 T T

—
(5]

TorqueOuterR

-

0.5

0 i i i i i i i i
0 100 200 300 400 500 600 700 800 900
PWMMotorOuter

Figure 5.4. PWM vs Torque plot

5.3 Plotting several variables in one graph

To plot several variables in one graph, the D key must be pressed. The corresponding
prompt will ask to enter the variables to be plotted on the same graph (fig. 5.5). The

number of variables to be plotted is not limited. The chosen variables will be plotted on a

27

new window, and a legend showing which plot corresponds to which variable will be

included.

m Plot mom...@lﬂlﬁ

Enter parameters to be plotted:
h3n4n5n5

O Cancel |

Figure 5.5. Plotting several variables on the same graph

Figure 5.6 shows an example where the angles of the feet and hip are compared. In this
case only the outer feet are moving, but the hip and inner feet angle were included to show
the capabilities of the function. The difference between the left and right outer feet angle
will make the robot change direction, thus plotting these two variables in the same graph

helped to find how much the robot will turn.

B Figure 2 =HECIAL X
File Edit ‘iew Insert Tools Desktop ‘Window Help E

D& K RAQO® E 0B 5O

2

0.5

AngleHipJoint i
05 i AngleAnkleJointinner i
0

05 — AngleAnkleJointOuterR 25 3
AngleAnkleJointOutrerl

Figure 5.6. Angle comparison plot

28

5.4 Manipulating a variable

Pressing the O key will send you to the command window where the prompt introduce
an expression to compute the parameter with >> will appear (fig. 5.7).
There, the user can type a function to compute the data. Since the data is stored in a matrix
(called data), the format to compute it is to get the column vector of the desired variable
number, for example data(:,3). The desired function can then be typed using the
standard MATLAB functions with data(:,n) as the variable. The result of the function

will be plotted in a new window

Command Window

Iﬂ To get started, seleck MATLAR Help or Demas from the Help menu,

introduce an expression Lo compute the paramecer with >>data(:, 3] data(:, 4]

&l |

Figure 5.7. Manipulating the data. Command window

This function is very useful if for example the data is noisy, since it can be put through a
filter. But it can also be used to do all kinds of manipulations For example the expression
written in figure 5.7 where the variable 3 is divided by the variable 4. The result of this

function is shown on figure 5.8.

29

[n Figure 2

File Edit ‘iew Insert Tools Desktop ‘Window Help

DEaEE K RaMe | 08 8O3

4 '
0 1000 2000 3000 4000 5000 6000

7000

a000 8000

Figure 5.8. Manipulated data plot

30

6. Video and data analysis

When the user chooses to load a video, the graphs_videoread.m file will load. This file will
load a GUI consisting of two windows, a video display window, and a data display
window. The data display window is practically identical to the one in
graphs_dataanalysis.m, except for a couple of video analysis functions added. The video
display window has other functions that can be accessed by the buttons on that window. In

this section we will explore these functions more thoroughly.

6.1 Video reading

In order to be able to read any kind of windows supported video file, the program uses the
mmread function. This function is a third party function by Micah Richert of UCSD found
through the MATLAB file exchange website. This function is capable of reading any file

supported by Windows Media Player by accesing to the codec information, and

31

transforming it into a format readable by MATLAB. The output of the function is shown in

the next few lines.

>>movread = mmread(vfilename,[],[],false,true)

movread =

width: 720

height: 480
nrFramesTotal: 232

frames: [1x232 struct]

rate: 29.9700

totalDuration: 0O

times: [1x232 double]

The data analysis program is set to read the video without sound in order to save time and
memory. The size information of the video is used to set up the video display window size.
The rate information sets the data and video playback synchronization. However, this
value can be sometimes wrong due to the video file format used (for example with the slow
motion capture option of the lab camera, the recording frame rate is 120 fps but the
playback frame rate will be 30). If the user encounters this problem, the frame rate can be

manually edited in line 47 of graphs_videoread.m.

6.2 The video display window

The video display window (fig.6.1) will appear on the left hand side of the screen once it

loads. Its size will vary depending on the size of the video. The window also has function

buttons at the top of the window, and a slider at the bottom. The slider allows the user to

move through the video fast.

32

[. Figure 2 w . , @@u

File Edit “iew Insert Toaols Desktop Window Help k]

lexft rigghit Play Stop |Losd Mewy Data File| Goto data window | Allow Graph functions

Figure 6.1. The video display window

6.2.1 Video functions

The video functions can be called back with the buttons on top of the video display
window. The buttons left and right move the video one frame backward or forward as well
as the data. Play starts the playback of the video along with the data, Stop stops playback.
Load New Data File calls the same function as the N key in the data display window to open
and load a new data file. Go to data window suspends the video window functions
temporarily and allows the data window functions. This function allows the user to choose

a synchronization point on the data. To return to the video display window press the V key.

33

Finally, Allow Graph functions allows the user to access one of the keyboard activated data

display window functions and then returns automatically to the video display window.

left ‘ rigght ‘ Plary | Stop [Load Mewy Data File| Goto data window: | Allowy Graph functions

Figure 6.2. Button functions

6.3 Data and video synchronization

When the user presses the Go to data window button a message will appear showing the user
several options available (fig 6.3). The user can either make use of data display and

analysis functions or choose a new synchronization point for the data and video.

Graph mode =HACIH[X

You can now uge Graph functions. Press H for help or 5 to spnchronize a
data point with current videno frame. Press Y to returmn to wideo mode

Figure 6.3. Video to data toggle message

Upon loading, the video and data are synchronized to their corresponding first points (Data
point 1 with frame 1 of the video). To change this, the user must navigate to the video
frame they wish to use for synchronization. Then, the user should press the Go to data
window button. Once on the data display window the user must choose the data point to
which they wish to synchronize the data with, either using the mouse, the left and right

arrow keys or the T key. Once the user has the data at the desired point, pressing the S key

34

will synchronize the video and data for future playback. A message will appear with both
the frame and data point numbers of synchronization (fig 6.4). To return to the video
display window after synchronization press the V key, a message will appear when the user

has successfully returned to the video display window (fig. 6.5).

u Success Bt =HACH X
Wideo and Graph zuccessfully synchronized: Frame Mo 1 with Data Point Mo
179
b
Figure 6.4. Synchronization success message
u Success | o
Successfully returned to Yideo Mode at svnchronized point
— ——

Figure 6.5. Data to video toggle message

6.4 Video capturing and deinterlacing.

Since the mmread function allows the user to read any kind of video into the data analysis
program, video capturing from a camera can be done through the users preferred method.
However, if the video from the camera comes interlaced, the user might want to deinterlace
it to get a higher frame rate. The suggested method to do it is using VirtualDub, a video

editing freeware.

35

Most videos taken from hand held cameras are interlaced. Interlacing is the method in
which a video frame of height h is made by mixing two “fields” or frames of height h/2
taken at two times. This is done in order to have a higher resolution for the camera, but it
means that the video can be deinterlaced in order to get a higher frame rate from the

camera, by sacrificing some of its resolution.

To deinterlace a video using VirtualDub, the user must go to Video>Filters after opening a
video (fig 6.6a). Once in the filter window, the user should choose Add... the bob doubler
filter to do the deinterlacing. The options of the filter can be left as default (fig 6.6¢), if the

user notices that the final video output jumps forward and backwards, the field order should

be changed.
@ VirtualDub 1.B.6 - [vidcaptest-new.avi] r “ Elﬁléj
File Edit View Go |Video| Audic Options Tools Help

Filters... Ctrl+F
Frame Rate... Ctrl+R
Color Depth...

Compression... Ctrl+P

Select Range...

Direct stream copy
Fast recompress
Mormal recompress

Full processing mode

Smart rendering

Preserve empty frames

Copy source frame to clipboard Ctrl+1
Copy output frame to clipboard Ctrl+2
Scan video stream for errors....

Error mode...

0 50 100 150 200 250 300 350 400 450 500 550 600 629
J| ,1|..»,J| J4|M|w|/]|&|cﬁ|;y|§.| ‘_|4| Frame 0 (000:00.000) [K]

Modify video frame filter list.
a\ = =

36

£ e —
Add Filter =HACE X
2:1 reduction (high quality) (intemal) - 0K |
2:1 reduction {intemal}
blur maore (intemal) Cancel
bilur (intemal
bob doubler emal E
boe blur {intemal) Load
brightness./contrast (intemal)
chroma smoother (intemal)
convert format {intemal)
deinterdace (intemal)
emboss {intemal) ;
b {ntemal) Filter: bob doubler [
field swap {intemal)
fill (intemal)
flip horizontalty fintemal) Field order " Top field first
flip vericaly (intemal) @+ Bottom field first
aeneral convolution fintemal) i
Deinterlacing method (+ Bob
Upsamples an interflaced video to double frame rate. " ELA
" Adaptive ELA
Show preview | OK | Cancel

b)UENC\

Figure 6.6. Deinterlacing a video with VirtualDub.

a) Opening the filter choice window. b) Adding the filter. c) Filter options.

6.5 Limitations

The combined video and data analysis progam has several limitations must be take into
account when using it. First of all, because of the way mmread reads the videos, the video
size is limited to a certain number of frames. The maximum number of frames that a video
might have in order to avoid crashing is variable and depends on the computer’s memory.

However, this value is around 600 frames.

Another limitation it has is the fact that by using the slider to search for a point in the video,
this might become desynchronized if the end of the data is reached before the end of the
video. In this case, when the end of the data is reached, the cursor will stay at this value
even if the video keeps moving forward, but if it is moved backwards, the data cursor will

move back starting at this new desynchronized point. This problem might be solved in the

37

future by finding a way to save the information of the last synchronized point of the video

before it is desynchronized and being able to return to it.

38

7. Conclusions

In the end, we were able to finish a completely functional data analysis system that has
been invaluable to our team. Since its first stages, it has made the data analysis tasks easier
and has saved us valuable time. During the April 2008 record run, it was an essential tool,
both to find problems in the earlier failed attempts and to process the 5+ hours of data from
the 9 km run. Currently, it is the preferred method for data analysis and data visualization

used by the Cornell Ranger Team.

While it is completely functional, the program is also updatable. This will allow the team

to accommodate new data analysis needs as well as changes in the data acquisition

configuration as the Cornell Ranger is updated, and also as new robots are built.

39

8. References

[1] Palm, William J. Introduction to MATLAB for engineers. McGrawHill, Boston, 1998.
[2] MATLAB Help files

[3] What is Deinterlacing? Facts, solutions, examples. http://www.100fps.com/

[4] VirtualDub documentation. http://www.virtualdub.org/virtualdub_docs.html

[5] Richert, Micah. MATLAB File Exchange. Mmread file detail.

http://www.mathworks.com/matlabcentral/fileexchange/8028

40

http://www.100fps.com/
http://www.virtualdub.org/virtualdub_docs.html
http://www.mathworks.com/matlabcentral/fileexchange/8028

Appendix 1. Source Code for the Data Analysis program

Al.1 startdataanalysis.m

b 96%%%%%%%%6%%%%%% % %%%6% %% % % %6%6%% %% % % %%%%%

6 Leticia Rojas Camargo

o Fall 2008 MEng Project

%

%With the help of Stephane Constantin

%

% Data analysis program for Cornell Ranger
% Start up File

%

% This file works with graphs_dataanalysis.m, graphs_videoread.m, the
functions rdfile.m, initgraphs.m,

% and the mmread function folder

%

% %%%%%%%%%%%%%%6%6%%%%% % %%%% %% %% %%%%%%% %

XX

X

button = questdlg("Do you want to read a video with the
data?","","Yes","No","No");

if (button(l) == "Y")
run graphs_videoread
elseif (button(l) =="N")
run graphs_dataanalysis
end

41

Al.2 initgraphs.m

function varargout = initgraphs()
%This function is used to open the data file for the
%data analysis program

[filename, path] = uigetfile("*.txt", "Choose New Data File");

if (filename == 0) %user pressed cancel
errordlg("Rerun the program and choose a file when prompted®,
"Must choose a file");
return;
end

varargout{l} = filename;

varargout{2} path;

Al1.3 rdfile.m
function [name, data, errors]=rdfile(filename,path)
%this function reads the data file

addpath(path);
cd(path) %update current directory if one is given

%Load Data
fid = fopen(filename); %open FTile for reading
remain = fgetl(fid); %read first line
numvars = 25; %total number of variables (number of columns)
%this number can be edited to fit a different
%number of variables
for 1 = 1l:numvars %parse Tirst line into individual variable names
[token, remain] = strtok(remain);
name{i} = token;
end

data = fscanf(fid,"%f"); % Load the numerical values into one long
vector

nd = length(data); % total number of data points

nr = nd/numvars; % number of rows; check (nhext statement)
to make sure

if (nr ~= round(nd/numvars))

fprintf(1, "\ndata: nrow = %F\tncol = %d\n",nr,numvars);

42

fprintf(1, "number of data points = %d does not equal
nrow*ncol\n”,nd);
error(“data is not rectangular™)
end
data = reshape(data,numvars,nr)”;

fclose(Tid); %close fTile

%Load errors
filename2 = strrep(filename, "Test", "Error");
fid = fopen(Filename2); %open File for reading errors

it (fid ~= -1)
fgetl (Fid); %read fTirst line

errors = textscan(fid, "%*f %*f %s®, “delimiter®, °“\t"); % Load
error strings into one cell
errors = errors{l}; %turn cell into array

fclose(fid); %close file

else

x=size(data);

errors = cell(x(1),1);
end

Al.4 graphs_dataanalysis.m

% AEEAXAAAXAAAXXAAAXAXAAXAAAAXAAAXAXAAAXAAAXAAAAXAAAXKXAK

% data analysis program for the Cornell Ranger Robot

%

% This program allows the user to read the data file generated by the
% Labview robot control program

XX

%this part of the program reads the data file

[filename, path] = initgraphs(); %opens the file

[name, data, errors]=rdfile(filename,path); %reads the file
%Variable Initialization

param = [1 2 3 4]; Y%parameters to be plotted by default

43

E=16; %variable where error is read, this value is determined by the
data channel that reads the error signal
err=0; %Error messages not shown at startup

position = 0; %this saves the window size/position
single_cursor=1; %flag to have one or multiple cursors

zn=0; %zoom counter
zyn=0; %zoom counter
%one data point every 16 ms:

T=16;
%left or right arrow keys move the cursor T ms left or right:
LRdelta=T;

n=length(param);

%create time array:

index_array=1:length(data(:,1)); %array of indexes

time (index_array-1).*T ; %if T=16, time = [0 16 32 48 64
-1

tmin = min(time);

tmax = max(time);

ZF=round(tmax-tmin/5); %zoom factor (variable)

%corresponding array indexes for tmin and tmax:

xmin = floor(tmin/T) + 1;

xmax = Floor(tmax/T) + 1;

%save original param if user want to go back to original plot after
zooming

tmin_original = tmin;

tmax_original = tmax;

%save original data if user wants to go back after scaling

data_original=data;

%create mins and maxs for each parameter
for =1:25

entirerange=data(:,f);
ymax(f)=max(entirerange(xmin:xmax)) +
0.05*(max(entirerange(xmin:xmax))-min(entirerange(xmin:xmax))) ;
ymin(f)=min(entirerange(xmin:xmax)) -
0.05*(max(entirerange(xmin:xmax))-min(entirerange(xmin:xmax))) ;
if(ymin(F)==ymax(f)) Y%extreme case
ymax(F)=ymax(f)+1;
ymin(F)=ymin(F)-1;
end

ZFy (F)=round(ymax(f)-ymin(¥)/5); %zoom factor

44

ymax_original (f)=ymax(F);
ymin_original (f)=ymin(f);

ymaxd_original (f)=ymax(f); %original data max and min
ymind_original (f)=ymin(f);
end

fig = figure(l);

if (position ~= 0)%update position of figure window
set(fig, "Position®, position);

end

%define help message as cell array of strlngs

helpstring{l} = "C: change variables”

helpstring{2} = "P: view variable names and corresponding numbers”®;
helpstring{3} = "T: move the cursor to an exact time~;
helpstring{4} = "E: revert to original zoom conditions”;
helpstring{5} = "N: view new data file";

helpstring{6} = "M: change the max and min t values (zoom in t)~;
helpstring{7} = "Y: change the max and min values for a given

parameter (zoom in y)-;

%helpstring{7} = "A: toggle multiple cursor lines *cannot scroll if
multiple cursors are on*";

helpstring{8} = "0: enter a function to the data and plot the result
against time®;

helpstring{9} = "U: plot 2 parameters against each other~;

helpstring{10} = "D: plot 2 or more parameters against time on the
same graph®;

helpstring{11} = °"L: scale a parameter”;

helpstring{12} = "R: Show Error at t~";

helpstring{13} = "B: revert to original data”;

helpstring{14} = "ARROW KEYS: scroll using left and right, zoom in X
using up and down-;

helpstring{15} = "X and Z: zoom in y using this keys~;

%loop initializations:
but=0;
t = tmin + T;
x_index = round(t/T) + 1;
while(but~=3) %always wait for a click %stops program by right-
clicking
for i = 1l:length(name) %create the variable list for reference
paramslist(i) = {[num2str(i)," = ",name{i},":"1};
end

clf; %clear current figure

%This part of the program plots the data

for f=1:n

45

with marker

lines

click)

subplot(n,1,f) %work on specific plot per iteration

if(single_cursor==1) %user chose to have only one cursor
%replot graphs: (erasing previous cursor)

%Comment or uncomment line to plot with lines or points

%plot(time,data(:,param(f)),".", "MarkerSize~,4) %plots
points

plot(time,data(:,param(f)), " ", "LineWidth",2) %plots with

axis([tmin tmax ymin(param(f)) ymax(param(f))])
end

if (f == 1) %display this message on the top of the window
title("Press H for help®);
end

%plot new cursor line:
t click=[t t]; %x intercept of line (obtained from mouse

yy=[ymin(param(f)) ymax(param(¥))]; %initial y range of line

for particular subplot

line(t_click,yy,"Color","r")

%data value display: (y vaues)
text(t,ymax(param(f)), num2str(data(x_index,param(f))), ..
"Tag", "Cursor”, . ..
“"UserData®, 4,...
"FontSize",10,...
"HorizontalAlignment®, "center~”, ...
*VerticalAlignment®, "bottom~®, ...
"Color=,"y", ...
"BackgroundColor*,[26/255 133/255 5/255], - ..
"Clipping","off",_ ..
"ButtonDownFcn® ,{@CursorButtonDownFcn}) ;

%Error display: (on error variable)
if(param(f)==E) %variable where error info is located
text(t,ymax(param(f))+0.3*(ymax(param(f))-

ymin(param(f))), errors(x_index), ...

"Tag", "Cursor”, ...

“UserData®, 4,...

"FontSize~",10,...

"HorizontalAlignment®, "center”, ...

*VerticalAlignment®, "bottom~®, ...

"Color-®,"y", ...

"BackgroundColor*®,[1/255 1/255 1/255], - ..

“Clipping~®, “off", ...

"ButtonDownFcn® ,{@CursorButtonDownFcn});
end

%Error display: (on top)

46

if(f==1)
if (err == 1)
text(t,ymax(param(f))+0.35*(ymax(param(f))-
ymin(param(f))), errors(x_index), ...
"Tag®,"Cursor”, ...
"UserbData“®, 4,...
"FontSize®,10, ...
"HorizontalAlignment®, "center”, ...
"VerticalAlignment®, "bottom”, ...
"Color-®,"y", ...
"BackgroundColor*®,[1/255 1/255 1/255], ...
"Clipping~,“off",__.
"ButtonDownFcn® ,{@CursorButtonDownFcn});
end
end

%data value display: (time value)
if(f==n) %only for last graph
text(t,ymin(param(f))-0.5*(ymax(param(f))-
ymin(param(f))), [Ft= " num2str(t) " ms"],--.
"Tag", "Cursor™, ...
"UserData”, 4,...
"FontSize",10,...
"HorizontalAlignment®, "center”, ...
"VerticalAlignment®, "bottom”, ...
“Color=,"y",...
"BackgroundColor*®,[1/255 1/255 1/255], - ..
“Clipping”, off", ...
"ButtonDownFcn*® ,{@CursorButtonDownFcn});
end
%add appropriate variable name and index to y axis
ylabel ([(param(f)) name(param(f))]);
end

%get click and save x,y
[t all,y,but]=ginput(1l); %t all is In ms

%change data set
if (but == double("n"))
position = get(fig, "Position”); %save figure position (user
may have changed it)

[filename, path] = initgraphs();
if (filename ~= 0) %user did not press cancel

close(gcf);
[name, data]=rdfile(filename,path);

%one data point every 16 ms:
T=16;

47

%left or right arrow keys move the cursor 50 ms left or
right:
LRdelta=T;
n=length(param);

%create time array:

index_array=1:length(data(:,1)); %array of indexes

time = (index_array-1).*T ; %if T=16, time = [O
16 32 48 64]

tmin = min(time);

tmax = max(time);

ZF=round(tmax-tmin/5); %zoom factor (variable)

%corresponding array indexes for tmin and tmax:

Xmin floor(tmin/T) + 1;

xmax = Floor(tmax/T) + 1;

%save original param if user want to go back to original
plot after zooming

tmin_original

tmax_original

tmin;
tmax;

but=0;
t = tmin + T;
X_index = round(t/T) + 1;

%create mins and maxs for each parameter

for f=1:25

entirerange=data(:,f);
ymax(f)=max(entirerange(xmin:xmax));
ymin(fF)=min(entirerange(xmin:xmax));
if(ymin(f)==ymax(f)) Y%extreme case
ymax(f)=ymax(f)+1;
ymin(F)=ymin(f)-1;

end

ymax_original (F)=ymax(F);
ymin_original (F)=ymin(F);

end

end
end

%changing variables to plot

if (but == double("c"))
msg = msgbox(paramslist, "Variables and Values®, "modal®);
%create default answer (current variables)
str = [num2str(param(1)), °,"1;

48

for 1 = 2:n
str = [str, num2str(param(i)), °,"1;

end

newparamcell = inputdlg("Enter new parameter values seperated

by commas:", "Change parameters®, 1, cellstr(str));

if(isempty(newparamcell)) %user pressed cancel
newparamcell = cellstr(str);

end

close(msg)

param = str2num(newparamcell{1});

n = length(param);

end

%changing time max,min using m key
if (but == double("m"))
prompt = {"New min:", "New max:"};
def = {num2str(tmin),num2str(tmax)};
maxmincell = inputdlg(prompt, "Change xmax and xmin
(milliseconds)”®, 1, def);
it (isempty(maxmincell))%user pressed cancel
maxmincell = def;
end
newmin = str2num(maxmincell{1});
newmax = str2num(maxmincell{2});
if (newmin >= newmax) %do nothing
newmin = tmin;
newmax = tmax;
end
tmin = newmin;
tmax = newmax;
end

%user wants to bring up quick guide (help box)
it (but == double("h%))

uiwait(msgbox(helpstring, "Quick Guide®, “help™));
end

%if user wants to list variables
if (but == double("p"))

uiwait(msgbhox(paramslist, "Variables and Values™))
end

%moving cursor conditions:

if(but==1)%left click
%save useful mouse location data only when user left-clicks:
t = round(t_all);
x_index = round(t/T) + 1;

end

%user wants to move cursor left
if(but==28) %but=28 ==> left arrow key pressed
newt = t - LRdelta;
if (newt >= 0) %ensure t is nonnegative
it (newt < tmin) %move plot to the right, since cursor
can"t move further left

49

tmin
tmax
end
t = newt;

newt;
tmax - LRdelta;

end
X_index = round(t/T) + 1;

end

%user wants to move cursor right

if(but==29) %but=29 ==> right arrow key pressed
newt=t+LRdelta;
it (newt <= max(time)) %ensure t is within domain

if (newt > tmax) %move plot to the left, since cursor
can®t move further right

tmax = newt;
tmin = tmin + LRdelta;
end
t = newt;
end
X_index = round(t/T) + 1;

end

% move cursor by directly entering new value
it (but == double("t"))
newxcell = inputdlg("Input time value:","View Input

Time",1,cellstr(num2str(t)));

newt = str2double(newxcell{1});

if(newt < tmin && newt >= min(time))
tmin = newt;

elseif(newt > tmax && newt <= max(time))
tmax = newt;

end
it (newt >= min(time) && newt <= max(time))
t = newt;
X_index = round(t/T) + 1;
end
end
%zooming conditions:
%user wants to zoom in but=30 ==> up arrow key pressed
iT(but==30)
zn=zn+1;

tmin=t-ZF/zn;
tmax=t+ZF/zn;
end

%user wants to zoom out but=31 ==> down arrow key pressed

if(but==31)
if(zn>1) %removes case of dividing by zero
zn=zn-1;

tmin=t-ZF/zn;
tmax=t+ZF/zn;
end
end

50

%user wants to zoom in in vy
if(but==double("x"))
zyn=zyn+1;
ymin=data(x_index,1:25)-ZFy./zyn;
ymax=data(x_index,1:25)+ZFy./zyn;
end

%user wants to zoom out 1iny
if(but==double("z"))
if(zyn>1) %removes case of dividing by zero
zyn=zyn-1;
ymin=data(x_index,1:25)-ZFy./zyn;
ymax=data(x_index,1:25)+ZFy./zyn;
end
end

%user wants stop zooming and go back to original graph
if(but== double("e"))

tmin=tmin_original;

tmax=tmax_original;

ymin=ymin_original;

ymax=ymax_original;

zn=1;
end

%manipulate the data and plot the result against time
if (but == double("0%))
mandata=input("introduce an expression to compute the
parameter with >>%);

ymaxm=max(mandata(xmin:xmax)) ;

yminm=min(mandata(xmin:xmax)) ;

if(yminm==ymaxm) %extreme case
ymaxm=ymaxm+1;
yminm=yminm-1;

end

figure

axis([tmin tmax yminm ymaxm])
plot(time,mandata, " ", LineWidth",2)
grid on

figure(l)

end
%Plot 2 parameters against each other
if (but == double("u®))

msg = msgbox(paramslist, "Variables and Values®, "modal®);

paramx = inputdlg("Enter parameter to be plotted on x axis:®,
"Plot 2 parameters against each other®, 1);

51

paramy = inputdlg("Enter parameter to be plotted on y axis:",
"Plot 2 parameters against each other®, 1);

graphtitle = inputdlg("Enter title for your graph®, "Plot 2
parameters against each other®, 1);

if(isempty(paramx)) %user pressed cancel
paramx = "17%;

end

if(isempty(paramy)) %user pressed cancel
paramy = "1°;

end

xparam = str2double(paramx);
yparam = str2double(paramy);
figure

plot(data(:,xparam),data(:,yparam))
title(graphtitle)

xlabel (name(xparam))

ylabel (name(yparam))

grid on

close(mnsg)
figure(l)

end

%plot 2 or more parameters against time

if (but == double("d"))
msg = msgbox(paramslist, "Variables and Values®, "modal®);

%create default answer (current variables)
str = [num2str(param(1)), °,"1;
for k = 2:n

str = [str, num2str(param(k)), °,"1;
end

paramplotstr = inputdlg("Enter parameters to be plotted:~,
"Plot more than one parameter vs. time on graph®, 1,cellstr(str));
Y%paramplot = input("Enter parameters to be plotted:");

graphtitle = inputdlg("Enter title for your graph®, "Plot
more than one parameter vs. time on graph®, 1);

paramplot = str2num(paramplotstr{l});
close(mnsg)

figure
for k=1:length(paramplot)

52

%plot(time,data(:,paramplot(k)),".","MarkerSize~,4)
%plots with marker points

h=plot(time,data(:,paramplot(k)), ", "LineWidth",2);
%plots with lines

title(graphtitle)
grid on

hold all
end
legend(name(paramplot(1: length(paramplot))), “"Location®, "S0%)
figure(l)

end
%zoom in y

if (but == double("y"))
msg = msgbox(paramslist, "Variables and Values®, "modal®);
paramminmax = inputdlg("Enter number of parameter to be
zoomed: ", "Zoom on y axis", 1);
i = str2double(paramminmax);

yprompt = {"New min:","New max:"};
def = {num2str(ymin(i)),num2str(ymax(i))};
ymaxmincell = inputdlg(yprompt, "Change ymax and ymin®, 1,
def);
it (isempty(ymaxmincell))%user pressed cancel
ymaxmincell = def;
end
ynewmin = str2num(ymaxmincell1{1});
ynewmax = str2num(ymaxmincell{2});
it (ynewmin >= ynewmax) %do nothing
ynewmin = ymin(i);
ynewmax = ymax(i);

end

ymin(i) = ynewmin;
ymax(i) = ynewmax;
close(msg)

end

%scale parameters
if (but == double("I"))
msg = msgbox(paramslist, "Variables and Values®, "modal®);

scprompt = {"Parameter to scale:","Scale factor:"};
paramscale = inputdlg(scprompt, "Scale a parameter®, 1);

53

factor

it (isempty(paramscale))%user pressed cancel
paramscale = {"17,"1"};
end

pscale=str2double(paramscale{1});
scale=str2double(paramscale{2});

close(msg)
data(:,pscale) = scale*data(:,pscale);

entirerange=data(:,pscale);

ymax(pscale)=max(entirerange(xmin:xmax));

ymin(pscale)=min(entirerange(xmin:xmax));

if(ymin(pscale)==ymax(pscale)) %extreme case
ymax(pscale)=ymax(pscale)+1;
ymin(pscale)=ymin(pscale)-1;

end

ZFy(pscale)=round(ymax(pscale)-ymin(pscale)/5); %zoom

ymax_original (pscale)=ymax(pscale); %new original zoom

conditions for the parameter

end

ymin_original(pscale)=ymin(pscale);

%go back to original data
if(but== double("b"))

end

tmin=tmin_original;
tmax=tmax_original;
ymin=ymind_original;
ymax=ymaxd_original;
ymin_original=ymind_original;
ymax_original=ymaxd_original;
data=data_original;

zn=1;

%show (and stop showing) errors on top of the page
if (but == double("r7))

end

err=1;

if (but == double("f"))

end

err=0;

54

Y ————— end button functions-----———————————-—

%limit x-axis:

if(tmin<0)
tmin=0;

end

%mm=0length(data(:,param(2)));

if(tmax> max(time))
tmax=max(time);

end

end %while

Al.5 graphs_videoread.m

% xxxxxxxx
% data and video analysis program for the Cornell Ranger Robot
%

% This program allows the user to read the data file generated by the
% Labview robot control program plus a video of any format

clear all

clear fig

%Prompt user for data file and read it
[filename, path] = initgraphs();

[name, data, errors]=rdfile(filename,path);

%prompt user for video File:

[vFilename, vpath] = uigetfile("*.*", "Choose Video File");
addpath(vpath);

cd(vpath)

%read video file. The usual maximum frames that the program can read is
%about 600
movread = mmread(vfilename,[],[],false,true);

%get parameters from the video file
maxframes=movread.nrFramesTotal ; %number of frames

mov=movread. frames; %frame info
h=movread.height; %height of video
w=movread.width; %width of video

55

%Variable initialization
param = [1 2 3 4];
E=16; %variable where error is read
err=0;
position = 0; %this saves the window size/position

single_cursor=1; %flag to have one or multiple cursors

Gmode=0; %Fflag to toggle between Graph only and Graph+Video modes
-— intitially in Graph+Video

%Synchronize=0;

Gmode_change=1;

zn=0; %zoom counter
zyn=0; %zoom counter

%camera frame rate:
FPS=round(movread.rate); %frames per second from camera. edit if
value is incorrect

%get the period automatically from reading the time stamp in the data
%File:

T=data(3,1) - data(2,1); %originally T=16ms

%T=1;

%left or right arrow keys move the cursor LRdelta ms left or right:
LRdelta=round(1000/FPS); %time between two camera frames (camera
mode) ----> is rounding good ???7?

n=length(param);

%create time array:

index_array=1:length(data(:,1)); %array of indexes

time (index_array-1) .*T ; %if T=16, time = [0 16 32 48 64
-1

tmin = min(time);

tmax = max(time);

ZF=round(tmax-tmin/5); %zoom factor (variable)

%corresponding array indexes for tmin and tmax:

xmin = floor(tmin/T) + 1;

xmax = Floor(tmax/T) + 1;

c=1;

%save original param if user want to go back to original plot after
zooming
tmin_original = tmin;

56

tmax_original = tmax;

%save original data if user wants to go back after scaling
data_original=data;

%create mins and maxs for each parameter
for f=1:25

entirerange=data(:,f);
ymax(f)=max(entirerange(xmin:xmax)) +
0.05*(max(entirerange(xmin:xmax))-min(entirerange(xmin:xmax))) ;
ymin(F)=min(entirerange(xmin:xmax)) -
0.05*(max(entirerange(xmin:xmax))-min(entirerange(Xxmin:xmax))) ;
if(ymin(F)==ymax(f)) Y%extreme case
ymax(F)=ymax(f)+1;
ymin(F)=ymin(f)-1;
end

ZFy (F)=round(ymax(f)-ymin(f)/5); %zoom Ffactor

ymax_original (F)=ymax(F);
ymin_original (f)=ymin(f);

ymaxd_original (f)=ymax(f); %original data max and min
ymind_original (f)=ymin(f);
end

%intialize variables to save synchronization points
k_sync=1;

t_sync=tmin+T;

x_sync = round(t_sync/T) + 1;

%initialize variables for video file:
play_speed=15;

k=1;

loc=[0.5 0.5 0 0];

nmovie=[1 Kk];

but=0;

Allow=0;

play=0;

Fwd=0;

moveright=0;

fig2=Ffigure(2);

57

set(fig2, "Position”, [5 100 w h+30])

%screen buttons:

hR = uicontrol (fig2,"Style®, "pushbutton®, "String®, "“right",...
"Position®, [55 h 50 30], "Callback®, "but=29%);

hL = uicontrol (fig2,"Style”, "pushbutton®, "String®, “left",...
"Position®, [5 h 50 30], “Callback®, "but=28%);

hS = uicontrol (fig2,"Style®, “pushbutton®, "String”, “Load New Data

File", ...

"Position®, [210 h 100 30], “Callback®, "but=110%);

hA = uicontrol (fig2,"Style”, “pushbutton®, "String®, “Allow Graph

functions”, ...
"Position”, [430 h 120 30], "Callback®, "Allow=1");

hP = uicontrol (fig2,"Style®, "pushbutton®, "String®, "Play”,...
"Position”, [110 h 50 30], “Callback®, "play=17);

hS = uicontrol (Fig2,"Style”, "pushbutton®, "String®, °"Stop”,...
"Position”, [160 h 50 30], "Callback®, "play=07);

hGr = uicontrol(fig2, "Style®, "pushbutton®, "String®, "Go to data

window", ...
"Position®, [310 h 120 30], “Callback®, "Gmode=1%);

hFwd = uicontrol(fig2,"Style®, "slider”,"value®,1,...
"SliderStep”, [1/maxframes 0.1],"min",1, "max” ,maxframes, . ..
"Position®, [0 O w 20], "Callback®, "Fwd=1");

hfps= uicontrol (fig2, "Style”,"edit",...%, "Min",1, "Max" ,200)%. . .

"Position”,[0 20 30 20])

%

uicontrol (hR)
uicontrol (hL)
uicontrol (hS)
uicontrol (hA)
uicontrol (hP)
uicontrol (hS)
uicontrol (hGr)
uicontrol (hFwd)

%Data window
fig = figure(l);
if (position ~= 0)%update position of figure window
set(fig, "Position”, position);

end

%define help message as cell array of strings:

helpstring{l1} = "C: change variables”;

helpstring{2} = "P: view variable names and corresponding numbers”®;
helpstring{3} = "T: move the cursor to an exact time~;
helpstring{4} = "E: revert to original zoom conditions”;
helpstring{5} = "N: view new data Tile~;

helpstring{6} = "M: change the max and min t values (zoom in t)~;

58

helpstring{7} = "Y: change the max and min values for a given
parameter (zoom in y)~;

%helpstring{7} = "A: toggle multiple cursor lines *cannot scroll if
multiple cursors are on*";

helpstring{8} = "0: enter a function to the data and plot the result
against time-;

helpstring{9} = "U: plot 2 parameters against each other~;

helpstring{10} = "D: plot 2 or more parameters against time on the
same graph®;

helpstring{1l} = "L: scale a parameter”;

helpstring{12} = "R: Show Error at t~";

helpstring{13} = "B: revert to original data~;

helpstring{14} = "ARROW KEYS: scroll using left and right, zoom in x
using up and down*;

helpstring{15} = "X and Z: zoom in y using this keys";

helpstring{16} = "S: To synchronize: When in Graph Mode, move cursor
to data point that corresponds with current video frame and press S*;

helpstring{l7} = "V: Return to Video Mode (Synchronization will be
saved) " ;

%loop initializations:

but=0;

t = tmin + T;

x_index = round(t/T) + 1;

X_indexmin=x_index;

x_indexmax=round((tmax)/T) - 1;

while(but~=3) %always wait for a click %stops program by right-
clicking

but=0;

for i = 1l:length(name) %create the variable list for reference
paramslist(i) = {[num2str(i),"” = ",name{i},":"1};
end

%limits video frames at extremes:
if(nmovie(2)==0)
k=1;
nmovie(2)=1;
end
if(nmovie(2)>=maxframes)
k=maxframes;
nmovie(2)=maxframes;
end

nmovie
X_index

movie(Fig2,mov,nmovie,play speed,loc) %displays the video

59

set(0, "CurrentFigure”,fig) % make figure 1 current figure for
plotting

if(but==3)
disp tormallll
ttt=333

end

if(play==1 && k<maxframes)
if x_index==x_indexmax
msgbox("You have reached the end of the data")
play=0
else
k=k+1;
c=1;
movecursor=1;
nmovie=[1 k];
moveright=1;
set(hFwd, "value® ,k);
end
end

if(but==28) %user wants to move cursor left but=28 ==> left
arrow key pressed
ifT (x_index==x_indexmin || x_index==(x_indexmin+1))
msgbox(*You have reached the begining of the data“)

else
c=1;
movecursor=1;
k=k-1;
nmovie=[1 k];
set(hFwd, "value® ,k);
end
end

if(but==29) %user wants to move cursor right but=29 ==> right
arrow key pressed
if x_index > x_indexmax-1
msgbox("You have reached the end of the data")

else
c=1;
movecursor=1;
k=k+1;
nmovie=[1 k];
set(hFwd, "value® ,k);

end
end
it (Fwd==1)
comp=k;
k=get(hFwd, “"value®);
k=round(k);

nmovie=[1 k];
if (comp < k)

60

c=k-comp;
but=29;
moveright=1;

end

it (comp > k)
c=comp-k;
but=28;

end
Fwd=0;

end

%this part of the program plots the data

for f=1:n
subplot(n,1,f) %work on specific plot per iteration

if(single_cursor==1) %user chose to have only one cursor
%replot graphs: (erasing previous cursor)

%Comment or uncomment line to plot with lines or points

plot(time,data(:,param(f)),".", "MarkerSize~",4) %plots
with marker points

%plot(time,data(:,param(f))," ", "LineWidth",2) %plots with

%lines

axis([tmin tmax ymin(param(f)) ymax(param(f))])
end

if (F == 1) %display this message on the top of the window
title("Press H for help”);
end

%plot new cursor line:

t_click=[t t]; %x intercept of line (obtained from mouse
click)

yy=[ymin(param(f)) ymax(param(f))]; %initial y range of line
for particular subplot

line(t_click,yy,"Color","r")

%data value display: (y vaues)
text(t,ymax(param(f)), num2str(data(x_index,param(f))), ...
"Tag", "Cursor”, ...
"UserData”, 4,...
"FontSize®,10,. ..
"HorizontalAlignment®, "center”, ...
*VerticalAlignment®, "bottom~®, ...
"Color-®,"y", ...
"BackgroundColor®,[26/255 133/255 5/255], - ..

61

“Clipping~®, “off", ...
"ButtonDownFcn*® ,{@CursorButtonDownFcn});

%Error display: (on error variable)
if(param(f)==E) %variable where error info is located
text(t,ymax(param(f))+0.3*(ymax(param(f))-
ymin(param(f))), errors(x_index), ...
"Tag","Cursor”, ...
"UserData”, 4,...
"FontSize~,10,...
"HorizontalAlignment®, "center”, ...
"VerticalAlignment®, "bottom”, ...
"Color-®,"y", ...
"BackgroundColor®,[1/255 1/255 1/255], ...
"Clipping~,“off",_ ..
"ButtonDownFcn® ,{@CursorButtonDownFcn});
end

%Error display: (on top)
if(f==1)
if (err == 1)
text(t,ymax(param(¥))+0.35*(ymax(param(f))-
ymin(param(f))), errors(x_index), ...
"Tag", "Cursor”, ...
“"UserData”, 4,...
"FontSize~",10,. ..
"HorizontalAlignment®, "center”, ...
"VerticalAlignment®, "bottom~®, ...
"Color-®,"y", ...
"BackgroundColor”®,[1/255 1/255 1/255], - ..
"Clipping","off",_ ..
"ButtonDownFcn® ,{@CursorButtonDownFcn}) ;
end
end

%data value display: (time value)

if(f==n) %only for last graph
text(t,ymin(param(f))-0.5*(ymax(param(f))-

ymin(param(f))), ["t= " num2str(t) ° ms"], ...

"Tag","Cursor”, ...
"UserData”, 4,...
"FontSize~,10,...
"HorizontalAlignment®, "center”, ...
"VerticalAlignment®, "bottom”, ...
"Color-®,"y", ...
"BackgroundColor®,[1/255 1/255 1/255], ...
“Clipping~,“off",__.
"ButtonDownFcn® ,{@CursorButtonDownFcn});

end

%add appropriate variable name and index to y axis

ylabel ([(param(f)) name(param(f))]):

end

62

if(Gmode==0) %Graph+VideO mode
LRdelta=round(1000/FPS); %vertical cursor moves left or
right by period between two video frames
Gmode_change=1;
end

iT(Gmode==1) %graph only mode

LRdelta=T; %vertical cursor moves left or right by
period between two data points

disp GraphMode!

if(Gmode_change==1)

uiwait(msgbox("You can now use Graph functions. Press H for
help or S to synchronize a data point with current video frame. Press V
to return to video mode®, “Graph mode-®))

Gmode_change=0;

end
[t all,y,but]=ginput(1l); %t_all is in ms Y%always waits
for keyboard or mouse commands
end
itf(Allow==1) %can also get graphs keyboard or mouse for graphs

while in video mode
disp GnputAllowed!!!
[t all,y,but]=ginput(1); %t all is In ms
Allow=0;
end

%go back to video mode
if(but == double("Vv"))
Gmode=0;
k=k_sync; %return to saved framd and data point number
when synchronized
X_index=x_sync;
t=t_sync;
uiwait(msgbox("Successfully returned to Video Mode at
synchronized point®, "Success®))
end

%change data set
it (but == double("n"))
position = get(fig, "Position"); %save figure position (user
may have changed it)

[filename, path] = initgraphs();
it (Filename ~= 0) %user did not press cancel

[name, data, errors]=rdfile(filename,path);

T=data(3,1) - data(2,1); %originally T=16ms

63

%left or right arrow keys move the cursor LRdelta ms left

or right:

LRdelta=round(1000/FPS); %time between two camera frames

(camera mode

%create time array:

index_array=1:length(data(:,1)); %array of indexes

time = (index_array-1).*T : %if T=16,
16 32 48 64 1]

tmin = min(time);
tmax = max(time);

time = [O

ZF=round(tmax-tmin/5); %zoom factor (variable)
%corresponding array indexes for tmin and tmax:

xmin
Xmax

floor(tmin/T) + 1;
floor(tmax/T) + 1;

%save original param if user want to go back to original

plot after zooming

tmin;
tmax;

tmin_original
tmax_original

but=0;
t = tmin + T;
X_index = round(t/T) + 1;

%create mins and maxs for each parameter

for f=1:25

entirerange=data(:,f);
ymax(f)=max(entirerange(xmin:xmax));
ymin(fF)=min(entirerange(xmin:xmax));
if(ymin(f)==ymax(f)) Y%extreme case
ymax(f)=ymax(f)+1;
ymin(F)=ymin(f)-1;

end

ymax_original (F)=ymax(F);
ymin_original (F)=ymin(F);

end

end
end

%changing variables to plot
if (but == double("c"))

msg = msgbox(paramslist, "Variables and Values®,

%create default answer (current variables)
str = [num2str(param(1)), °,"1;

64

"modal *);

for 1 = 2:n
str = [str, num2str(param(i)), °,"1;

end

newparamcell = inputdlg("Enter new parameter values seperated

by commas:", "Change parameters®, 1, cellstr(str));

if(isempty(newparamcell)) %user pressed cancel
newparamcell = cellstr(str);

end

close(msg)

param = str2num(newparamcell{1});

n = length(param);

end

%changing time max,min using m key
if (but == double("m"))
prompt = {"New min:", "New max:"};
def = {num2str(tmin),num2str(tmax)};
maxmincell = inputdlg(prompt, "Change xmax and xmin
(milliseconds)”®, 1, def);
it (isempty(maxmincell))%user pressed cancel
maxmincell = def;
end
newmin = str2num(maxmincell{1});
newmax = str2num(maxmincell{2});
if (newmin >= newmax) %do nothing
newmin = tmin;
newmax = tmax;
end
tmin = newmin;
tmax = newmax;
end

%user wants to bring up quick guide (help box)
it (but == double("h%))

uiwait(msgbox(helpstring, "Quick Guide®, “help™));
end

%user wants to synchronize data and video
if (but == double("s"))

k_sync=k; %save current frame and data point number
X_sync=x_index;
t_sync=t;
k_str=num2str(k);
X_str=num2str(x_index);
uiwait(msgbox(["Video and Graph successfully synchronized:
Frame No ",k str,” with Data Point No ",x str,], "Success", "Sync"));

end
%if user wants to list variables
if (but == double("p~))

uiwait(msgbox(paramslist, "Variables and Values™))
end

65

%moving cursor conditions:

if(but==1)%left click
%save useful mouse location data only when user left-clicks:
t = round(t_all);
x_index = round(t/T) + 1;

end

%user wants to move cursor left
if(but==28) %but=28 ==> left arrow key pressed
newt = t - c*LRdelta;
if (newt >= 0) %ensure t is nonnegative
if (newt < tmin) %move plot to the right, since cursor
can"t move further left
tmin = newt;
tmax = tmax - LRdelta;
end
t = newt;
end
X_index = round(t/T) + c;
end

%user wants to move cursor right
if(but==29 || moveright==1) %but=29 ==> right arrow key pressed
moveright=0;
newt=t+ c*LRdelta;
it (newt <= max(time)) %ensure t is within domain
if (newt > tmax) %move plot to the left, since cursor
can®t move further right
tmax = newt;
tmin = tmin + LRdelta;
end
t = newt;
end
X_index = round(t/T) + 1;

end

% move cursor by directly entering new value
it (but == double("t"))
newxcell = inputdlg("Input time value:®,"View Input
Time",1,cellstr(num2str(t)));
newt = str2double(newxcell{1});
if(newt < tmin && newt >= min(time))
tmin = newt;
elseif(newt > tmax && newt <= max(time))
tmax = newt;
end
it (newt >= min(time) && newt <= max(time))
t = newt;
X_index = round(t/T) + 1;

66

end
end

%zooming conditions:

%user wants to zoom in time but=30 ==> up arrow key pressed
i f(but==30)

zn=zn+1;

tmin=t-ZF/zn;

tmax=t+ZF/zn;
end

%user wants to zoom out time but=31 ==> down arrow key pressed

if(but==31)
if(zn>1) %removes case of dividing by zero
zn=zn-1;

tmin=t-ZF/zn;
tmax=t+ZF/zn;
end
end

%user wants to zoom in iny
if(but==double("x"))
zyn=zyn+1;
ymin=data(x_index,1:25)-ZFy./zyn;
ymax=data(x_index,1:25)+ZFy./zyn;
end

%user wants to zoom out 1iny
if(but==double("z"))
if(zyn>1) %removes case of dividing by zero
zyn=zyn-1;
ymin=data(x_index,1:25)-ZFy./zyn;
ymax=data(x_index,1:25)+ZFy./zyn;
end
end

%user wants stop zooming and go back to original graph
if(but== double("e"))

tmin=tmin_original;

tmax=tmax_original;

ymin=ymin_original;

ymax=ymax_original;

zn=1;
end

%manipulate the data and plot the result against time
if (but == double("0%))
mandata=input("introduce an expression to compute the
parameter with >>%);

ymaxm=max(mandata(xmin:xmax)) ;
yminm=min(mandata(xmin:xmax)) ;

67

if(yminm==ymaxm) %extreme case
ymaxm=ymaxm+1;
yminm=yminm-1;

end

figure(3)

axis([tmin tmax yminm ymaxm])
plot(time,mandata, " ", "LineWidth",2)
grid on

figure(l)

end

%Plot 2 parameters against each other
if (but == double("u®))
msg = msgbox(paramslist, "Variables and Values®, "modal®);

paramx = inputdlg("Enter parameter to be plotted on x axis:",
"Plot 2 parameters against each other®, 1);

paramy = inputdlg("Enter parameter to be plotted on y axis:®,
"Plot 2 parameters against each other®, 1);

graphtitle = inputdlg("Enter title for your graph®, "“Plot 2
parameters against each other®, 1);

if(isempty(paramx)) %user pressed cancel
paramx = "1°7;

end

if(isempty(paramy)) %user pressed cancel
paramy = "1°;

end

xparam = str2double(paramx);
yparam = str2double(paramy);
figure(3)

plot(data(:,xparam),data(:,yparam))
title(graphtitle)

xlabel (name(xparam))

ylabel (name(yparam))

grid on

close(mnsg)
figure(l)

end

%plot 2 or more parameters against time

if (but == double("d"))

68

msg = msgbox(paramslist, "Variables and Values®, "modal®);

%create default answer (current variables)
str = [num2str(param(1)), °.,"1;
for k = 2:n

str = [str, num2str(param(k)), °,"1;
end

paramplotstr = inputdlg("Enter parameters to be plotted:~,
"Plot more than one parameter vs. time on graph®, 1,cellstr(str));

graphtitle = inputdlg("Enter title for your graph®, “Plot
more than one parameter vs. time on graph®, 1);

paramplot = str2num(paramplotstr{l});
close(msg)

figure(3d)
for k=1:length(paramplot)
%plot(time,data(:,paramplot(k)),".", "MarkerSize*~,4)
%plots with marker points
h=plot(time,data(:,paramplot(k)), ", "LineWidth",2);
%plots with lines

title(graphtitle)
grid on

hold all
end
legend(name(paramplot(1: length(paramplot))), "Location®, "S0%)
figure(1)

end
%zoom in y

if (but == double("y"))
msg = msgbox(paramslist, "Variables and Values®, "modal”);
paramminmax = inputdlg("Enter number of parameter to be
zoomed: ", "Zoom on y axis", 1);
i = str2double(paramminmax);

yprompt = {"New min:","New max:"};
def = {num2str(ymin(i)),num2str(ymax(i))};
ymaxmincell = inputdlg(yprompt, "Change ymax and ymin®, 1,
def);
if (isempty(ymaxmincell))%user pressed cancel
ymaxmincell = def;

69

end
ynewmin = str2num(ymaxmincel1{1});
ynewmax = str2num(ymaxmincell{2});
it (ynewmin >= ynewmax) %do nothing
ynewmin = ymin(i);
ynewmax = ymax(i);
end
ymin(i) = ynewmin;
ymax(i) = ynewmax;

close(msg)
end

%scale parameters
if (but == double("I"))
msg = msgbox(paramslist, "Variables and Values®, "modal®);

scprompt = {"Parameter to scale:","Scale factor:"};
paramscale = inputdlg(scprompt, °"Scale a parameter”, 1);

it (isempty(paramscale))%user pressed cancel
paramscale = {"1","1"};
end

pscale=str2double(paramscale{1});
scale=str2double(paramscale{2});

close(msg)
data(:,pscale) = scale*data(:,pscale);

entirerange=data(:,pscale);

ymax(pscale)=max(entirerange(xmin:xmax));

ymin(pscale)=min(entirerange(xmin:xmax));

if(ymin(pscale)==ymax(pscale)) %extreme case
ymax(pscale)=ymax(pscale)+1;
ymin(pscale)=ymin(pscale)-1;

end

ZFy(pscale)=round(ymax(pscale)-ymin(pscale)/5); %zoom
factor

ymax_original (pscale)=ymax(pscale); %new original zoom
conditions for the parameter
ymin_original (pscale)=ymin(pscale);

end
%go back to original data
if(but== double("b"))

tmin=tmin_original;
tmax=tmax_original;

70

ymin=ymind_original;
ymax=ymaxd_original;
ymin_original=ymind_original;
ymax_original=ymaxd_original;
data=data_original;
zn=1;

end

%show (and stop showing) errors on top of the page
if (but == double("rv))

err=1;
end

it (but == double("f"))
err=0;
end

-———-%
%limit x-axis:
if(tmin<0)
tmin=0;
end
if(tmax> max(time))
tmax=max(time);
end

end %while

% run graphs7scrkE

71

	Mengproj_Abstract
	mengproj_outline
	mengproj

