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This thesis presents a model-based controller design framework for bipedal robots

that combines energy-efficiency with stability.

We start with a physics based model for the robot and its actuators. Next, the param-

eters of the model are identified in a series of bench experiments. Then we formulate an

energy-optimal trajectory control problem. Our energy metric is the total cost of trans-

port (TCOT) and is defined as the energy used per unit weight per unit distance travelled.

We solve the trajectory control problem using parameter optimization software and an

adequately fine grid.

To implement the energy-optimal solution on the physical robot, we follow a two

part approach. First, we approximate the converged optimal solution with a simpler

representation that sufficiently captures the optimality. The resulting walking gait is

called the nominal trajectory. Second, we stabilize the nominal trajectory using an event-

based, discrete, intermittent, feed-forward controller. Our stabilizing controller tries to

regulate heuristically chosen quantities in a step, like step length or step velocity, doing

feedback on a few key sensor data values collected at key points in a step.

Using this control framework our knee-less 2D 1 m tall 9.9 kg 4-legged bipedal

robot, Ranger, achieved two feats: one, Ranger walked stably with a TCOT of 0.19,

which is the lowest TCOT ever achieved by a legged robot on level terrain and, two,

Ranger walked non-stop for 65 km or 40.5 miles without battery recharge or touch by a

human, setting a distance record for legged robots.
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4.11 Proper choice of pulsing time ensures power efficient working of
the h-bridge. The motor resistance (R) and motor inductance L pair
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CHAPTER 1

INTRODUCTION

Most of the content of this thesis has been submitted as a paper with an extended

online appendix [8] to the International Journal of Robotics Research. Parts of the

thesis that are not part of the above paper are marked with the symbol ∗.

We start by listing the various contributions of this thesis. Next, we review controller

design approaches for bipedal robots and introduce our approach in context. Unlike

most approaches, our control algorithm integrates energy-efficiency and stability under

a common framework. We finish up the chapter with an outline of the remainder of the

thesis.

1.1 Thesis contributions ∗

The thesis contributions are listed here.

1. Controller framework that combines energy-efficiency with stability. Past

control approaches (see section 1.2 in this chapter for a literature review), like pas-

sive dynamic walking are based on energy-efficiency or others, like zero-moment

point and foot placement type controllers, are based on stability. Some frame-

works like model predictive control and optimal feedback control combine both,

energy-efficiency and stability, but are computationally expensive. This thesis

presents a control framework that combines energy-efficiency with stability while

being computationally tractable (overview of our control framework is in chapter

2).
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2. Validation of control framework on experimental test-bed. We show two suc-

cessful demonstrations of our proposed control approach on the custom-built 2-D

1m tall knee-less biped, Ranger (see chapter 7). One, Ranger walked with a Total

Cost Of Transport (TCOT is defined as energy used per unit weight per unit dis-

tance travelled) of 0.19 stably and this is the lowest TCOT ever achieved by any

legged robot on level ground. Two, Ranger walked non-stop for 40.5 mi or 65 km

on a single battery charge to set a legged robot distance record (beating the earlier

record by a factor of 3).

3. Stabilizing a system with time delays longer than the characteristic time scale

of the system. Using our control framework and with a controller bandwidth arti-

ficially constrained to 0.5 second, we demonstrate balancing of a simple inverted

pendulum with a characteristic time scale of 0.32 second (see chapter 2, section

2.3).

4. DC Motor and gearbox model. We present a DC motor and gearbox model (see

chapter 3, section 3.3) and systematic experiments (see chapter 4, section 4.2) to

estimate the parameters of the model of Ranger. In particular, we found two non-

standard terms in the motor modeling: one, a brush contact resistance; and two,

a load-dependent friction term that we modeled as a current dependent friction

term.

5. Energy-based control of walking. Using a simple 2D point-mass model of walk-

ing and using step length control and ankle push-off control to modulate the mid-

step kinetic energy, we demonstrate substantial increase in the basin of attraction

of walking (see chapter 6).

6. Benchmarks for passive dynamic walkers. We provide two passive dynamic

walker benchmarks: the rimless wheel and the simplest walker (see appendix B).

These benchmarks can be used to validate various aspects of passive dynamic
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models of locomotion like verifying equations of motion, the root finder and Ja-

cobian of the linearized map.

7. Benchmarks for optimal trajectory control for legged robots. We present two

optimal trajectory control problem benchmarks: passive dynamic walking and

optimum level ground walking (see appendix D). These benchmarks can be used

to check the proficiency of the optimization software on optimal trajectory control

problems for legged robots.

1.2 Past control approaches

Here we review past control approaches. Our control approach is reviewed at the end of

this section.

1.2.1 Passive dynamics

One approach to energy-effective control is based on purely mechanical periodic gaits,

so-called passive dynamics, e.g., [28, 51, 70, 79]. A strictly passive-dynamic robot is

a linkage with no sensors and no motors that can step stably down slight slopes. As a

passive-dynamic robot ‘ramp walker’ moves down a slope γ, the mechanical energy lost

to friction and collisions is recovered by the decrease in gravitational potential energy.

Cost of transport. One measure of effectiveness penalizes power use and gives credit

for weight and speed:

Cost of transport =
power consumption

weight × speed
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This measure (based on weight and not mass) is dimensionless (W/(N m/s)= 1 ). The

smaller the cost of transport the more energy-effective the locomotion.

There are different costs of transport depending on what power is included. For a

human walking, the total cost of transport, accounting for the full food energy used by

a person as they walk, is about 0.3, e.g., [3, 13, 33]. However, an often-reported cost of

transport for people of 0.2 is based on subtracting the resting metabolic cost, the energy

a person uses to stand still. Finally, one can estimate a mechanical cost of transport

(MCOT) based on the total positive work done by the muscles or actuators (and not

subtracting out the negative work). This is about MCOT ≈ 0.05 = 0.2×25% for humans

because muscles are about 25% efficient (work is about 25% of chemical energy used

in humans [69]). For a passive-dynamic robot the energetic cost of transport (TCOT =

total power used per unit weight and speed) is sin γ ≈ γ, e.g., [40]; a machine that walks

down a slope of γ = 0.05 rad (3◦) has a TCOT of sin γ ≈ 0.05. For these robots the

mechanical cost of transport (MCOT), the actuator work per unit weight and distance, is

the same as the TCOT because all of the gravitational energy is supplied as mechanical

work. Typical passive-dynamic ramp walkers happen to use about the same amount of

gravitational work as is performed by the muscles of a human walking on level ground

(MCOT ≈ 0.05).

The first passive-dynamic robot to have a major impact on robotics was McGeer’s

“4-legged biped” which had 4 side-by-side legs with knees and no upper body. For

most analysis purposes, this is a two-legged machine living in 2 spatial dimensions [70].

Despite the non-anthropomorphic leg layout, McGeer’s quadruped had a gait that was

inspirationally evocative of human walking. McGeer’s 2-D concept was extended to

3-D by Collins et. al. [28]; they built a true two-legged passive dynamic walker which

successfully demonstrated downhill walking.
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Stability of purely passive-dynamic, or passive-dynamic-based powered robots is

less encouraging, however. Although stability of several passive-dynamic robots has

been numerically predicted by non-linear simulations, there is no qualitative analytic

theory of passive-dynamic stability beyond noting some contributing mechanisms: 1)

dissipation (e.g. the rimless wheel [22]); or 2) the non-holonomic nature intermittent

foot contact [91]; or 3) the static stability of the splayed standing configuration that is

intermittently visited in the walking cycle (as discussed in [25]). Thus there are no ana-

lytic recipes for enhancing stability, and so far there are no promising iterative numerical

approaches either.

Stability of passive-dynamic robots. A primitive, but at least objective (not

coordinate-system-dependent), measure of stability is given by the magnitude of the

biggest eigenvalue of the Jacobian of the step-to-step map (McGeer’s stride function)

of the periodic cycle of the walker [70, 99]. The magnitude of this eigenvalue indicates

how fast the disturbances would grow or shrink as the walker takes multiple steps af-

ter a small disturbance away from a periodic motion. If the biggest (possibly complex)

eigenvalue has magnitude less than one, then the periodic cycle is stable. By this mea-

sure, if all eigenvalues are far inside the unit circle on the complex plane (far less than

one in magnitude), then the robot is very stable. Typical passive-dynamic walkers are

only mildly stable at best by this measure, with their biggest eigenvalues rarely less than

about 0.6 [24, 41].

In the lab, the behavior of even the best passive-dynamic robots has been erratic and

fussy. Similarly, passive-based powered walkers (see next section for review) which rely

on passive dynamics for stability are also fussy, in our experience, and especially so in

three dimensions. That passive-dynamic robots can be stable at all has been great for

physical demonstrations, has made great videos, but has perhaps mis-inspired some into
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pursuing passive strategies for stabilizing motorized robots. At present there seems to

be little evidence that passive strategies can have anywhere near the reliability needed

for practical robotics or for predicting the observed stability of walking humans.

1.2.2 ‘Powered’ passive dynamics ∗

Inspired by the simplicity of passive dynamic walkers, there have been attempts to re-

alize passive dynamic walking on level ground by adding a source of power while pre-

serving the passive dynamics. Camp [15], in simulations, added ankle actuation to a

2-D knee-less passive dynamic walker. The ankle motors were turned on to a prescribed

voltage during a prescribed time in the walking cycle. As parameters were varied, this

walker exhibited stable and unstable limit cycles, period doubling and chaos as pre-

viously observed in fully passive walkers [41, 44]. Collins and Ruina [27] built a 3-

D bipedal robot, the ‘Collins’ walker, that walked successfully on level ground. The

Collins walker had a passive hip and powered ankles. During the single support phase,

the ankle motor loads up an ankle spring. The ankle spring is released once the swing-

ing foot hits the ground, thus generating an ankle push-off that powers walking. Robots

based on passive dynamics are quite energy-effective. For example, Collins 12.7 kg

walker used only 12 W to walk at 0.44 m/s on level ground. It had a TCOT of 0.2,

which is two thirds of the power of a human scaled for weight and speed and apparently

lower than that of any motor-driven legged robot before or since, with the exception of

Ranger described here. However, stability-wise these robots have not been any better

than the passive dynamic walkers on which they are based [48, 49].
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1.2.3 Zero Moment Point

One prominent class of control ideas focuses on the position of the Zero Moment Point

(ZMP), the point on the ground where the reaction force and couple have no horizontal

moment component. In 2D, this is the point where the net reaction is a force with no

couple (the so-called center of pressure, COP). ZMP controllers focus their attention

on choosing ankle torques to keep the ZMP inside the foot contact polygon, thus keep-

ing the foot flat on the ground [105, 106]. For standing still, balance of such robots is

attained primarily by manipulating the robot center of mass (COM) location with the

ZMP, in effect chasing the COM towards the center of the support polygon. For walk-

ing, the foot placement must be such that the ZMP can be kept inside the foot-contact

polygon while the robot COM is moving on or near a desired trajectory. Although these

robots may use foot placement in their balance control, the underlying principle is that

of balance by ankle torques.

Robots that use ZMP control for walking, most famously Honda’s ASIMO [93]

series, seem to have various characteristic attributes: they walk with bent knees that

allow the controllers to have authority over all the upper body degrees of freedom; they

have flat-bottomed feet, and they consume lots of energy, perhaps because all the robot

joint angles are carefully controlled at all instances of time. The TCOT of ASIMO in

2005 was estimated (from battery capacity, speed, weight and time) to be about 3.2 [26],

which is 10 times the TCOT of a typical human.

1.2.4 Linear inverted pendulum based control ∗

Generally one thinks that linear systems are easier to understand and control than non-

linear systems. This motivated Kajita to propose the 2-D linear inverted pendulum
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model of walking. The idea is to use knee torques in single support phase to con-

strain the hip to move in a straight line [55, 56, 57] and hence the name, linear inverted

pendulum based control. The resulting equation of motion are linear and one can use

standard linear control theory to do control. Later, Kajita extended the linear inverted

pendulum idea to control a three-dimensional robot [53, 54]. Because of the linearity of

the equations, even in 3D, the sagittal motion is decoupled from the side-to-side motion.

Thus he could apply the linear inverted pendulum control method separately to both, the

lateral and fore-aft balance.

Calculations with a point-mass model and with work-based cost suggest the lack

of energy optimality of such smooth level walking [92, 96]. This non-optimality has

been confirmed through human experiments [78]. As this method of control relies on

using large ankle torques, there is the possibility of the robot’s overturning as the center

of mass of the robot leaves the foot support polygon. The latter issue is mitigated by

combining ZMP with the linear inverted pendulum walking by using preview control

of ZMP [52]. The preview controller looks at the future reference ZMP and modifies

current inputs ahead of time to do smooth tracking and thus preventing the overturning

of the robot.

1.2.5 Balance by foot placement

Some more-dynamic feedback-controlled robots have had balance control based almost

entirely on foot placement, with little or no thought of balance by reaction torques acting

on flat feet. The best known of these are from Marc Raibert’s MIT lab and his company

Boston Dynamics. Originally these robots were 2D single-leg hopping robots with con-

trol based on the observation that hop height, forward speed and body orientation could
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all be controlled by control of leg angle and leg length at appropriate flight or contact

times [88]. These ideas were extended to 3D and multiple legs, e.g., [86]. Recently, bal-

ance based on foot placement has been used to make what seems to be a highly-reliable

true 3D biped walker [32]. Assuming PETMAN weighs about 1000 N, moves at about

2 m/s and consumes about 10,000W (about 13.5 hp) of hydraulic pump power, it has a

TCOT of about 5 (about 16 times that of a walking person).

One approach to foot placement is to step into an N-step capture region [60, 84],

where a step can be taken with the knowledge that the robot will be able to come to

a stop in n steps or fewer if desired. Speed control can be performed by stepping to

a spot relative to the instantaneous capture point and influencing the dynamics of this

point through moving the center of pressure on the foot. These techniques to date have

utilized simple inverted pendulum models of walking in order to reduce computational

complexity and applied on physical robots [34, 83].

1.2.6 Controller representation with neural nets and tuning via evo-

lutionary algorithms or learning ∗

Artificial neurons (a computational analog of biological neurons) encode information

and are linked to other neurons to make up a neural net. Typically, using neural nets,

one defines a controller that maps the sensor inputs to the actuator outputs with tunable

weights. Various performance measures can than be optimized by tuning the weights

of the neural nets using either a learning algorithm or heuristic optimization either in

simulation or on the physical robot. For example, Solomon et. al [95], in simulation,

used evolutionary algorithms to minimize the mechanical cost of transport (defined as

the positive actuator work done per unit weight per unit distance travelled). Paul [82],
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also in simulation, used genetic algorithms to maximize the distance travelled by the

biped. Manoonpong [67, 68] implemented a two-level neural net to do adaptive walking

for the bipedal robot Runbot. At the lowest level in Runbot was a controller that used

the joint angles and joint velocities as inputs while at the highest level was an adaptive

controller that used an infra-red sensor that monitored the ground slope. The weights of

the neural net were tuned by a learning algorithm.

Mostly, it is hard to extract any meaningful message from these optimized neural

nets. Also, a basic problem with physical implementation is that the learning generally

involves falling. While transferring well-working simulated results to physical robot is

a possibility, a well modeled robot would be vital for such an approach to work success-

fully.

1.2.7 Central Pattern Generator ∗

Central Pattern Generators (CPG) are neural nets that generate rhythmic patterns with-

out any feedback or control from higher control centers like the brain. There is some

evidence of humans using CPG’s to control walking [29] and this has inspired CPG

based bipedal control. In CPG’s, locomotion is thought to be an emergent behavior of

coupled oscillation of the neurons and mechanics; a view-point quite similar to the pas-

sive dynamic paradigm. In simulations, CPG’s have been used to control a 2-D bipedal

robot model by Taga [100, 101] and a 3-D bipedal model by Righetti and Ijspeert [89]. It

is likely that CPG based robots are not more stable than their passive dynamics counter

parts unless supplemented by feedback control.
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1.2.8 Optimal trajectory control ∗

In optimal trajectory control, one is interested in optimizing for one particular robot

behavior (for example steady walk with minimal energy, walk at certain speed). Given a

model of the robot, one finds control values as a function of time that minimize a given

cost metric and which generates the desired robot behavior like for example, steady

walking. Some common cost functions used are: the integral of torque squared [6, 7,

18, 20, 76]; impulse squared if the actuators can provide impulses; work based [20]; or

a combination of these [14, 17, 90].

These optimal control problems are converted to a parameter optimization problems

by discretizing the controls or the robot kinematics. Some common parameterization

schemes include: controls parameterized as piecewise linear function of time [76, 90];

joint angles parameterized as truncated fourier series [14]; polynomial functions of time

[17, 20, 80]; cubic splines [7]; bezier polynomials [108]. The resulting parameter opti-

mization problem is solved by using some variant of Newton’s method [17, 76] or using

Monte-Carlo methods like genetic algorithms or simulated annealing [14, 80].

Optimal trajectory control is not concerned with stability. The stability depends

on the particular representation chosen. For example, a trajectory will have a different

stability depending on whether it uses time or one or other state variables as the inde-

pendent variable in the controller. One could add stability into the cost metric or as an

optimization constraint. For example in Mombaur et. al. [74, 75], the biggest eigen-

value is bounded by specifying it as an optimization constraint. A problem here is that

the eigenvalues are sometimes non-smooth and this could hurt the rate of convergence

of the optimization software, particularly those based on gradient methods.
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1.2.9 Model predictive control ∗

In model predictive control (MPC) [39], optimal trajectory control is done on the fly in

real-time. In MPC, at every state sampling instance, an optimization algorithm is formu-

lated over a specified time period (moving horizon control) and solved online. Only the

first step of the control policy is implemented and the state is sampled again. Constraints

like actuator limits, joint angle limits, obstacles can be seamlessly incorporated in the

optimization. As planning is done based on constraints and is done quite frequently,

robot stability is implicitly integrated into this scheme. Also, by sampling the system

and planning over a short time scale, one could potentially use such a scheme to do

walking over rough terrain. MPC has so far been demonstrated in walking simulations

[4] and on a simple 2 DOF robot [65]. With the advent of faster computers and faster

optimization algorithms, such an approach looks promising.

1.2.10 Optimal feedback control ∗

Optimal feedback control [5], unlike optimal trajectory control, is concerned with find-

ing optimal control policies for every conceivable start point to every conceivable goal

states. The problem is typically solved by discretization. Consider a n dimensional state

space with each dimension discretized with a grid size of g. The discrete version of the

state space has a total of gn grid points. To solve the optimization problem, one com-

putes a value function which is associated with the optimal cost and the best strategy at

each of this grid points. Thus, optimal feedback control finds the optimal way to move

from one point in state space to another and thus stability is integrated into the problem

solution. However, this method suffers from the curse of dimensionality. For example,

for a 6 dimensional state space with a grid size of 10, one would need about 106 (1
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million) numbers to store the optimal solution besides the added burden of computing

the value function for this grid. This approach has so far been demonstrated only in

simulations [66, 109].

1.2.11 Library of trajectories ∗

Optimal feedback control is computationally intractable for higher dimensions but pro-

vides a global optimum and incorporates stability. On the other hand, optimal trajectory

control is computationally tractable but is concerned with only a single trajectory (it is a

local method) and does not account for stability. A method which combines the advan-

tages of both the above methods while offsetting the negatives, is to control the system

via a library of optimal control trajectories that are solved using optimal trajectory con-

trol and have been either verified to be stable or stabilized by a linear controller. We

discuss two implementations.

Atkeson and Morimoto [2] used optimal trajectory control to generate several key

trajectories. Using ideas from dynamic programming, a policy and a value function for

these key trajectories were estimated and updated. Tedrake et. al. [103] developed a

linear stabilizing controller based control algorithm to stabilize the system over large

regions of state space. One first starts by computing one optimal trajectory. Next, one

picks random point in state space and finds a local linear feedback controller that en-

ables one to get from the selected random point to the optimal trajectory. Finally, one

estimates the basin of attraction or stable region of these local controllers. Proceeding

in this fashion, one tries to fill the full state space with local linear controllers that are

guaranteed to be stable. Though these approaches look promising, there has yet to be a

physical implementation using such techniques.
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1.2.12 Non-linear stabilization of pre-computed trajectories ∗

Control theorists have traditionally been interested in computing stabilization laws that

stabilize pre-computed trajectories. This is a two stage approach. First, one computes

nominal trajectory using optimal trajectory control or using one or another intuitive

control scheme. Second, one finds feedback control laws that enable one to track these

nominal trajectories.

Two common approaches are feedback linearization/computed torque control and

sliding mode control. In feedback linearization/computed torque control [35, 72, 81],

the stabilizing law has two parts, a part that cancels the non-linear terms like gravity

and Coriolis forces and another proportional-derivative part that ensures that the system

track the nominal trajectory. In a sliding mode control, the system is forced to slide

along a hyper-plane in the state space using a controller that switches based on where

the system is in the state space [16, 87]. Such controllers are probably not energy-

efficient as they are based on canceling the natural robot dynamics, rather than working

with them. Also trying to follow pre-computed trajectories exactly might lead to system

chatter especially when the gains of the controller are high. Note that for these control

schemes to work, the system needs to be fully actuated.

1.2.13 Hybrid zero dynamics

Hybrid zero dynamics (HZD) [46] is one of the most coherent approach towards devel-

oping a systematic control framework and that combines energy-efficiency with stability

and was used by Westervelt [107] to control the 2-D robot Rabbit [19]. The central idea

is to tightly control all internal degrees of freedom of the robot so as to effectively elim-

inate them as independent degrees of freedom; they are all slaved to the motion of the
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uncontrolled ankle joint angles according to functions (the slave joints’ angles are func-

tions of the free ankle-joint angles) whose specification is the control. These functions

can be chosen to minimize this or that cost function (say, energy use, [19, 107]). In

HZD, stabilization occurs based on the interplay between energy lost on impact and

energy gained during stance, thereby reaching a stable speed after a handful of impacts.

In HZD, stability can be increased three ways [21]. One is to redo the optimization

with the same functional representation but adding a measure of stability to the opti-

mization, using for example the biggest eigenvalues as a constraint or as a part of the

objective function. A second less formal approach to the same idea is to change the

functional representation, carry out the optimization again, check the stability of the

resulting solution, and keep iterating till one finds a stable solution. A third way is to

stabilize the system using an additional discrete event-based feedback controller [45].

While the first two of these seem similar to passive dynamics in philosophy and in prac-

tice, with the largest eigenvalues at about 0.7 ( 0, the event-based feedback controller

could, in principle, confer much more stability.

There are a few potential issues: 1) HZD depends on high bandwidth control of

the slaved degrees of freedom, and in practice such high-bandwidth, high-gain con-

trol seems to be energy consumptive, even when the pre-calculated mechanical work is

small; 2) HZD depends on having a machine that is, after the HZD joint-position control

is implemented, not compliant and thus perhaps not appropriately yielding to physical

disturbances; and 3) HZD is perhaps not satisfyingly biomimetic in that it imposes tight

control of possibly unimportant degrees of freedom, thus violating biologically-relevant

ideas associated with, say, the uncontrolled manifold or with optimal control [63, 104].

Although HZD has not yet been used to make a robot with a low TCOT, the HZD ap-

proach still has potential to provide both stability and low energy use.
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1.2.14 Control framework in this thesis

Our overall control design approach is similar to that of Miura and Shimoyama [73]

(incidentally, Miura and Shimoyama were early, maybe only second to Formalsky [36]

in discussing walking as a Poincaré map). Their controller was made up of two parts:

an open loop time-based trajectory planner and a feedback controller to stabilize the

nominal trajectory. Their stabilizing linear feedback controller used the measurements at

the beginning of the step to drive the robot state at the end of the step to its nominal value.

That is, instead of tracking a trajectory in the gait cycle, their controller tried to regulate

the state only at the end of the step. The gains for the linear controller are calculated

by doing a step-to-step eigenvalue calculation. Where the HZD and ZMP approaches

constrain out most degrees of freedom at all times, the Miura and Shimoyama approach

only worries about them once per step. We add two small changes to this control idea:

1) the minimization of an energy metric as the performance criterion for the nominal

trajectory; and 2) allowing control at multiple times during a step using different control

actions and control goals in each interval.

The framework was chosen so as to have various general features:

• it should allow simple implementation of simple controllers such as the Collins

one-sensor-measurement-per-step controller [27] (e.g. see chapter 7);

• it should be able to implement intuitive control constructs (e.g., of the Raibert

hopper type) (e.g. see chapter 7);

• it should gracefully handle sensor delays (e.g. see chapter 2, section 2.3);

• it should be able to come arbitrarily close to any continuous non-linear multi-

variable feedback policy (e.g. see chapter 5);
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• it should be of a form so that it has a relatively simple expression for a controller

that is good enough (e.g. see chapter 5).

We found and implemented a control architecture that has these features. It is reflex-

based; there are triggers (thresholds in dynamic variables or in elapsed time) and re-

sponses (motor programs). It is intermittently feed-forward in that there is no feedback

(but for local motor-control feedback) during the motor programs that run between trig-

gers. The control essentially does discrete trajectory tracking, but it is not based on an

approximation of a continuous controller. It is not impulsive (and can be smooth). There

is no tight control over any aspect of the robot pose or balance.

1.3 Outline of the remainder of the thesis ∗

In chapter 2, we present our model-based controller design algorithm and elaborate

on some details. Next, we present a hi-fidelity model of the robot and its actuators

(chapter 3). The parameters of the model are identified in a series of bench experiments

(chapter 4). Our control design takes place in two stages. First, using optimal trajectory

control and the hi-fidelity model, we find the nominal trajectory and approximate it

(chapter 5). Second, we stabilize the nominal trajectory using a stabilizing controller.

We motivate our stabilizing controller using a point-mass model of the robot (chapter 6).

Next, we derive the stabilizing controller for the hi-fidelity model using the point-mass

model idea, followed by implementation on the robot (chapter 7). Conclusions follow

in chapter 8.

In appendix A, the equations of motion for robot are derived using Newton-Euler

equations. In appendix B, two passive dynamic walking benchmarks are provided.

These benchmarks help us to check and validate the equations of motion for the robot
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in a limited sense. In appendix C, smoothings for various non-smooth functions used

in this thesis are presented. In appendix D, the model and optimization software are

checked against two legged robot walking benchmarks. In appendix E and F, we provide

details on solving the energy-optimal control problem presented in chapter 5. Finally, in

appendix G, we present the finite state machine that was used for control on the physical

robot.
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CHAPTER 2

CONTROLLER DESIGN FRAMEWORK ∗

Our controller design algorithm is as follows,

Stage 1 - Modeling: Define a physics based model for the robot and the actuators

(chapter 3) and do a system identification to identify the parameters of the model

(chapter 4).

Stage 2 - Trajectory Generator: Formulate and solve an optimal trajectory control

problem (e.g. minimize energy per unit distance travelled) to get a sense of the

optimal solution. Next, approximate the optimal control solution found earlier

(chapter 5). See section 2.1 for more details.

Stage 3 - Stabilizing Controller: Stabilize the trajectory in step 2 using an event-

based, discrete, intermittent, feed-forward controller (chapter 6 and chapter 7).

See section 2.2 for more details.

In our controller framework, the control input U (e.g. torque, current, voltage, pres-

sure) can be expressed as,

U = Utrajectory-generator + Ustabilizing-controller

The above form of control decomposition into a trajectory generator and stabilizing

controller is not new in the controls community. However, the novelty here is the finer

details of how the trajectory generation and stabilization is done. We elaborate on these

in the next two sections.
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Figure 2.1: A hypothetical example to illustrate the trajectory generation pro-
cess. (a) A piecewise linear control parameterization with grid size
N = 10 involves N + 1 = 11 control parameters. This randomly
chosen set of control values are used as a guess for the parameter opti-
mization software. The grid size is h = 1/N = 0.2. (b) The converged
solution (after running the optimization) for the grid size N = 10. (c)
Approximation of the converged optimal control parameterization in
b using three parameters; two amplitudes (A1 and A2) and a switching
time (ts). The switching of amplitudes is time based here, but could
be made state based.

2.1 Trajectory Generator ∗

The trajectory generation proceeds in two stages. First, using a parameter optimization

software and using fine grid size we solve an energy-optimal control problem to estimate

the optimal cost. Second, informed by the converged solution we find an approximate
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coarse-grid control parameterization that captures the essential structure of the optimal

solution. We illustrate these two steps with a fictitious example.

Consider an optimization problem involving minimizing a certain cost with one ac-

tuator. To solve this optimization problem, we parameterized the controls as a piecewise

linear function of time with grid size h = 1/N = 0.2 (see figure 5.2a). This implies that

we have N + 1 = 11 control parameters at the grid points that can be tuned by the

optimization program. Figure 5.2a shows our initial guess for the optimization. The

optimization algorithm then finds the values of control variables at the grid points that

optimizes the given cost. We repeat this process for increasing grid sizes (e.g. N, 2N,

3N etc.), until the cost does not change appreciably between two successive grid sizes.

Let us assume that at N = 10 we are sufficiently close to the energy-optimal solution

and that further increase in N will give minimal improvement in the optimum. Figure

5.2b shows the converged solution for the grid size N = 10.

Next, we try to find a simple coarse-grid approximation to the optimal control so-

lution obtained in 5.2b. In figure 5.2c, we have used three parameters, two amplitudes

(A1 and A2) and one switching time (ts), to represent the optimal solution obtained in

5.2b. We solve the optimal control problem again with this simple coarse-grid approxi-

mation of three parameters as our initial guess. We refine the approximation by adding

parameters or changing the functional representation till the cost is within some per-

centage of the optimal cost obtained from the grid size N = 10 in 5.2b. The goal of this

iteration is to maximize the simplicity of the coarse-grid control parameter representa-

tion, typically at a slight increase in the cost. On the physical robot, we implement this

coarse-grid solution of the optimal control problem.
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2.2 Stabilizing controller ∗

a) Trajectory without feedback control

c) Stabilizing controller b) Trajectory with stabilizing control
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Figure 2.2: Event-based, discrete, intermittent, feed-forward stabilizing con-
trol. A schematic example. (a) Shows the nominal (solid red = pe-
riodic optimal) and deviated (dashed blue = disturbed by modeling
errors, sensor errors or physical disturbances) trajectory for some dy-
namic variable x of interest which is measured at the start of a con-
tinuous interval, namely at section n. This is a generalized state in
that it may contain redundant information such as average speed over
the whole previous step. The goal of the stabilizing controller is to
minimize the output variable error at the end of the next interval. (b)
Shows the new deviated trajectory after switching on the feedback
control show in c). (c) The feedback motor program has two control
actions: a sinusoid for first half cycle and a hat function for the second
half of the cycle. The amplitudes U1 and U2 of the the two functions
are chosen at the start of the interval depending on the error (x − x̄).
By a proper choice of the amplitudes U1 and U2 deviations might be,
for example, fully corrected in one step giving a ‘deadbeat’ controller,
as shown in b).

The role of the stabilizing controller is to bring the robot back to its nominal tra-

jectory. Commonly, trajectory tracking uses a high bandwidth, high gain continuous
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control along the trajectory [37, 38, 47, 59, 64]. In our stabilizing control we try to track

some key variables at key points of the trajectory, using state estimates only at those

points, and try to track those key variables using as little sensor and little command

bandwidth as possible.

We illustrate the idea with a schematic example. Consider the nominal trajectory of

a second-order system shown as a solid red color line in figure 2.2. Let n and n + 1 be

instances of time at which we are taking measurements from sensors. The time interval

between the measurements n and n+1 is typically on the order of the characteristic time

scale of the system (say, leg swing time) and not the shortest time our computational

speed allows. Let us assume that we take two measurements, x = [x1 x2]′ at time n

(e.g., a position and velocity). We are interested in regulating two outputs: z1 and z2 at

time n + 1.

Due to external disturbances, the system has deviated from its nominal trajectory.

This trajectory is shown as a dashed blue color line in figure 2.2a. Now, the sensors read

x̄ at time n. In the absence of any feedback correction, the output values would become

z̄ = [z̄1 z̄2]′.

The stabilizing controller measures deviations at time n (δxn = x − x̄) and uses actu-

ation to minimize the deviations in output variables (δzn+1 = z − z̄). For illustration we

choose two control actions, δun = [U1 f1(t) U2 f2(t)]′, a half sinusoid and a hat function,

each active for half the time between time n + 1 and n. This is shown in figure 2.2c.

We adjust the amplitudes of the two control functions U1 and U2, based on measured

deviations δxn, to regulate the deviated outputs δzn. For example, with a proper selection

of the amplitudes of the two functions it is possible to fully correct the deviations in the

output variables, as shown in figure 2.2b.
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We linearize the system about the nominal trajectory (actually, we only linearize the

section to section map). The sensitivities of the dynamic state to the previous state and

the controls δUn = [U1 U2]′ are: A = ∂xn+1/∂xn, B = ∂xn+1/∂Un, C = ∂zn+1/∂xn and

D = ∂zn+1/∂Un. Thus we have

δxn+1 = Aδxn + BδUn (2.1)

δzn+1 = Cδxn + DδUn. (2.2)

Again, the x are a list of measured deviations, the z are a list of deviations which we

wish to control, the U are the activation amplitudes (1 or 2 of them).

Two ways of using the above equations to derive a stabilization controller are: pole

placement and discrete linear quadratic regulator (DLQR). We discuss these next.

1. Pole placement: We start by assuming a linear controller δUn = −Kδxn, where K

is a constant gain matrix and substitute this in equation 2.2 to get,

δzn+1 = (C − DK)δxn (2.3)

The goal of pole placement is to choose the gain K so that eigenvalues of the closed sys-

tem (C − DK) are placed at the desired positions. For example to place the eigenvalues

at the origin, making a dead-beat controller, the gain matrix would be, K = D−1C.

2. Discrete linear quadratic regulator (DLQR): In DLQR [77], we seek to mini-

mize the cost function Jdlqr defined as,

Jdlqr =

n=∞∑

n=0

(
δzn+1

T Rzzδzn+1 + δUn
T RUUδUn

)
, (2.4)

where Rzz and RUU are diagonal matrices that weight the different components of δzn+1

and δUn. The weights Rzz and RUU are design parameters picked to give reasonably
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fast return to nominal values (for example more than 50% return within one step for

walking) but without unduly high gains (which tend to lead to motor currents that are

beyond safety limits).

Putting equation 2.2 in 2.4 and re-arranging gives

Jdlqr =

n=∞∑

n=0

(
δxn

T Qδxn + 2δxn
T Nδun + δUn

T RδUn

)
, (2.5)

where Q = CT RzzC, N = DT RzzC and R = DT RzzD + RUU . The solution to this

optimization problem is linear state feedback

δUn = −Kδxn, (2.6)

where the gain K is obtained by solving the Ricatti equation [77] which we do using the

MATLAB control system toolbox (DLQR).

Some issues in the design of this controller (pole placement as well as DLQR) in-

clude:

• selecting a suitable section or instance of time to take measurements - this should

be a time when the dynamic-state estimation is reasonably accurate, and also a

time when dynamic-state errors which cause failure are evident;

• selecting measurement variables (xn) that are representative of system failure;

• picking output variables (zn) that also correlate with system failure; and

• picking actuator shape profiles that have large and relatively independent effects

on the target variables.
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2.3 Example of stabilizing controller: balancing a simple inverted

pendulum ∗

We present a low bandwidth control of a simple inverted pendulum using our stabilizing

controller idea presented in section 2.2. Our controller bandwidth is one half of a second

and is slower than the characteristic time scale of one third of a second of the simple

inverted pendulum. The low bandwidth controller presented here can also be interpreted

as a time delay. Thus our stabilization method can be used to control a system with time

delays.

2.3.1 Inverted pendulum model ∗

Figure 2.3: Schematic of a simple inverted pendulum. The simple inverted pen-
dulum consisting of mass m at G and attached to a massless rod of
length ! and controlled by a motor via a torque Tm at the hinge joint
H.

Equations of motion. Figure 2.3 shows an inverted pendulum consisting of a mass m

attached to massless rod of length ! at G and controlled by a motor at the hinge H by
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applying a motor torque Tm. Gravity g points downwards and θ is the angle made by the

pendulum with the vertical and measured in the counter-clockwise direction.

Using Newton-Euler’s method and doing angular momentum balance about the

hinge joint G, the equation of motion can be written as,

θ̈ =
g
!

sin(θ) +
Tm

m!2
(2.7)

Linearized equations of motion. We linearize the equations of motion about the ver-

tical equilibrium position by setting sin(θ) ≈ θ. Further, we define ω2 = g
! and u = Tm

m!2

to get,

θ̈ = ω2θ + u (2.8)

State space model. In order to cast equation 2.8 into state space formulation we define

θ = x1 and θ̇ = x2 to get,



ẋ1

ẋ2



=




0 1

ω2 0







x1

x2



+




0

1




u (2.9)

Further, we set x =




x1

x2



, a =




0 1

ω2 0



, and b =




0

1




in equation 2.9 to get,

ẋ = ax + bu (2.10)

2.3.2 Stabilizing Controller ∗

We now turn to our stabilizing controller (see section 2.2). We pointed out that suc-

cessful application of our stabilizing control depends on proper selection of four key
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quantities: a suitable section or instance of time to take measurements (n), measurement

variables (xn), output variables (zn) and nature of controls actions (Un). We discuss these

next.

For n, we take measurements once every T seconds. We choose our output variables

zn to be the same as the measurement variables xn, i.e. the joint angle and the joint ve-

locity. We choose two control actions, δun = [U1 f1(t) U2 f2(t)]′, each active for half the

time between time n+1 and n. Later we will make specific choices for the measurement

time T , and the control functions f1(t) and f2(t).

To apply our control scheme we linearize the system about the nominal trajectory.

Putting A = ∂xn+1/∂xn, B = ∂xn+1/∂Un, where δUn = [U1 U2]′ and noting that xn+1 =

zn+1 we get,

δzn+1 = δxn+1 = Aδxn + BδUn (2.11)

For this specific example, it is possible to find the matrices A and B analytically. We

got

A = eaT (2.12)

B =


∫ τ= T

2

τ=0
ea(T−τ)b f1(τ)dτ,

∫ τ=T

τ= T
2

ea(T−τ)b f2(τ)dτ

 (2.13)

Pole placement. We first assume a linear controller δUn = −Kδxn, where K is a gain

matrix and put this in equation 2.11 to get,

δzn+1 = (A − BK)δxn (2.14)

The goal of pole placement is to choose the gain K so that eigenvalues of the closed

system (A − BK) are placed at the desired position. In particular, we place the eigen-
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values at the origin (i.e. at zero). The gain matrix K needed to place the eigenvalues at

zero is given by, K = B−1A.

This type of controller – that does full correction of deviation – is called a dead-beat

controller. In dead-beat control, the system is brought to desired value in a finite number

of time steps (see [1] page 201). The concept of dead-beat linear control is unique to

discrete time controlled systems. Continuous control cannot give a dead-beat response

with a linear controller (see [77] page 416-417).

2.3.3 Results ∗

We consider balance of a 1 m long rod with mass of 1 kg attached to its end. We put

g = 10 m/s2, ! = 1 m, m = 1 kg, which gives ω2 = 10 /s2. We choose the sampling time

T = 1 s for control. Note that the characteristic time scale of this simple pendulum is

about 0.32 s (time scale =
√
!/g =

√
1/10s ≈ 0.32s), which about 3 times slower than

the sampling time of 1 second that we will be using.

Eigenvalue of uncontrolled system. Putting a =




0 1

10 0




and T = 1 s in equa-

tion 2.12 gives, A =




11.8333 3.7286

37.2864 11.8333



. The biggest eigenvalues of the system is

23.6243. This implies that any disturbance to the system at time t = 0 will grow by a

factor of 23.6243 in a time of 1 second.

Next, we consider dead-beat control of the inverted pendulum using two different

pair of functions of time. First, we consider two sinusoids f1(t) = f2(t) = sin(2πt/T ),

and second, we consider constant functions f1(t) = f2(t) = 1.
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Figure 2.4: Balance of a simple inverted pendulum using sinusoids for con-
trol functions. (a) Joint angle vs time (b) Joint velocity vs time (c)
Command torque vs time.

Example 1: Sinusoids for control functions. We put a =




0 1

10 0



, b =




0

1



,

T = 1, and f1(t) = f2(t) = sin(2πτ/T ) in equation 2.13 to get, B =




0.5670 −0.0935

1.8244 −0.4487



.

Using the matrix A calculated earlier and value of B in equation K = B−1A, we calcu-

lated the gain matrix as K =




21.7536 6.7603

5.3498 1.1144



.

Figure 2.4 shows the joint angle, velocity, control vs time for the inverted pendulum

with sinusoids for the control functions. The system is not quite dead-beat in simulation
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because we used the linear equations to calculate the gain K while the simulations used

the full non-linear equations.

Example 2: Constants for control functions. We put a =




0 1

10 0



, b =




0

1



,

T = 1, and f1(t) = f2(t) = 1 in equation 2.13 to get, B =




0.9300 0.1533

2.9927 0.7360



. Using

the matrix A calculated earlier and value of B in equation K = B−1A, we calculated the

gain matrix as K =




13.2613 4.1212

−3.2613 −0.6794



.

Figure 2.5 shows the experimental set up of the inverted pendulum we used to

demonstrate our stabilizing controller. There is a mass of about 1 kg at the end of

the 1 m long rod. The carbon fiber rod itself has negligible mass. The joint angle were

measured by an incremental encoder. The joint angular rate was calculated from the

joint angles using numerical differentiation. The joint angle had a 1o of hysteresis. The

motors have a current dependent friction and constant friction (see chapter 3 section 3.3

and chapter 4 for more details on motor model). The gear backlash is about 2o. Using

the controller gain K calculated above – which did not account for backlash, friction, or

angle hysteresis – we were able to balance the inverted pendulum upto a range of ±0.5

rad.
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Pendulum

Motor with 
incremental
encoder

Figure 2.5: Experimental verification of stabilizing control: balancing a sim-
ple inverted pendulum. We measured the pendulum state – the an-
gle and angular speed – once per second and used constant control
functions active for half a second each. We were able to balance the
inverted pendulum over a range of ±0.5 rad. Note that the bandwidth
of control is 1 s and is slower than the characteristic time scale of 0.32
s of the simple inverted pendulum.
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CHAPTER 3

MODELING

In this chapter, we present an overview of the legged robot called the Ranger. This robot

served as the bipedal platform on which the ideas in this thesis were implemented. We

also present a physics based hi-fidelity model of the robot and its actuators.

3.1 Ranger hardware

The Cornell Ranger is a four-legged knee-less biped (figure 3.1). It is about 1 m tall and

has a total mass, including batteries, of 9.9 kg.

It is autonomous in that all sensing and computation is on board, batteries are on

board, and it has no booms, tethers or cable connections. It is not autonomous in that,

at least so far, it needs to be started manually, and steering is done with a model-plane

type radio control.

Hardware. The robot has four legs in two pairs. The outer pair moves together, acting

as one leg, as do the inner pair. Each leg has an ankle joint and a foot but no knee joint.

For each pair of legs the ankle joints are mechanically connected. The robot has 3 main

internal degrees of freedom (hip and two ankle pairs), which are all powered by brushed

DC motors (46 W nominal). In parallel with the hip motor is a hip spring that tends to

keep the pairs of leg parallel. The two ankle motors are near the hip axis and actuate the

ankles via one-way (toe-off) cable drives. Foot lifting, for ground clearance, is powered

by a return spring on each ankle. A small fourth motor (1 W nominal) twists the inner

legs about a vertical axis with each step in order to steer the robot; the amount and
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Figure 3.1: Photo of Ranger and a schematic. (a) Ranger. (b) 2D Schematic.
The fore-aft cylinders with ‘eyes’ and the foam ‘ears’ (both visible in
photo) are only for shock absorption in case of falls. The hat is decora-
tive (hollow). The closed and rigid aluminum lace boxes, conceptually
shown as point H, house all of the motors and gearing, various pulleys
for the ankle cable drives, and most of the electronics (on the draw-
ing the hip motor location is only schematic). There are two boxes
connected by a hinge: an outer box, shaped like an upside-down U,
rigidly connected to the outer legs, and an inner box, filling the space
in the U, holding the inner legs (each of which can twist for steering)
The hip spring, which aids leg swing, is shown schematically as sym-
metric between the two legs but shows as a diagonal cable and spring
in the photograph. The feet are shaped so that toe-off is possible, so
that no torques are needed during single stance, and so that ground
clearance during swing can be achieved (by rotating the toe towards
the hip).

direction of steering is governed by radio remote control.

Electronics. The main control loop runs, with no supervisory operating system, on an

ARM9 microcontroller. Four ARM7 processors on custom boards monitor and control
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the three main joints (the outer ankles are counted as a single joint) and the steering.

Two more ARM7 processors supervise the on-board communications network (con-

troller area network, CAN), the Bluetooth data reporting, and the onboard data display

and lights. The Inertial Measurement Unit (IMU) also contains a proprietary micropro-

cessor board. The multi-processor bus-based architecture (CAN) was chosen to facilitate

design evolution, to simplify overall wiring (e.g., so a new sensor could be added with-

out new wiring into the main processor) and to compartmentalize the control software

(high-level on ARM9, low level on ARM7s). Sensors for each motor include an optical

encoder, a voltage sensor, and a current sensor. In addition, each joint has an absolute

angle sensor. Each foot has an optical strain gauge for measuring foot distortion (and

hence foot contact). From the 3D IMU, Ranger’s control only uses the sagittal plane

angular rate sensor. The top-level control loop runs at 500 Hz on the ARM9 processor;

data is sent to and from the satellite ARM7 processors once per loop execution; the

motor current controllers, and their associated sensors operate at 2 kHz on the ARM7

processors. The motors and electronics are powered by seven 25.9 V lithium-ion batter-

ies with a total capacity of about 493 watt-hours (1.77×106J).

Software. The total custom control code is about 10,000 lines of C and C++ code,

the bulk of which is associated with low-level measurement, low-level control and com-

munications protocols. The main control loop is based on hierarchical concurrent finite

state machines (see chapter 5, section 5.3 and appendix G). Control and estimation

tasks are coordinated by a simple cooperative-multitasking scheduler, while low-level

input-output, such as from motor encoders, uses processor interrupts.

For debugging and development, walking data is viewed and logged via wireless

system. Although control parameters can be adjusted wirelessly mid-walk, during at-

tempts at walking distance records autonomy is maintained by sending to the robot only
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steering signals and requests for data (e.g., cumulative number of steps, battery voltage)

and not sending any walking control nor any changes of walking control parameters.

More design details. Description of more aspects of the hardware, electronics and

low level control are in the appendix of the paper [8]. Even more details, including

photos, videos and 100+ reports are on Cornell’s www site [12]

However, as with any complex machine, success at control rests on a pyramid of

such hardware developments and refinements. For example, success here depended

on all of these things: the design of the foot shape to allow push-off, stance with low

torque, and swing clearance; the design of the foot as a load cell (foot deformation is

measured); a low-mass leg and foot; design of the single-cable drive (which is also a

series elastic element which needs to have twice the stiffness for the inner leg-pair as

for each of the outer legs); design of the body box for stiffness; selection of motors

and gearing for torque and efficiency; design of the motor controllers (based on Pulse

Width Modulation, PWM) for low dissipation; selection of energy-efficient electronics,

i.e., the sensors and the microprocessors; determining overall state from sensor data,

including the determination of predicted and actual ground collision time; design of a

low-power leg-twist steering mechanism that would not interfere with the 2D dynamics;

hip-spring design and placement; and dozens of other issues like the selection of glues,

the protocol for washing off flux to prevent corrosion, methods for joint alignment and

needed drive-train compliance, cable tensioners, shock absorbers for fall protection, etc.
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3.2 Robot model

Our controller design development depends on a fast-running and reasonably accu-

rate offline dynamical simulation of the physical robot. The model we used is two-

dimensional; it only has dynamics in the sagittal plane (the steering control was not

dynamically modeled).

Each ‘leg’ (one inner and one outer) is characterized by a mass, a center of mass

(COM) location, and polar inertia about the COM. The rubber-bottomed feet are as-

sumed to be rigid and massless with bottoms that make point contact with a rigid, flat

and level ground (unless otherwise noted). The hip motor connects to the legs with

gears so the drive is modeled as not compliant; i.e., in the model the hip does not have

an independent degree of freedom from the hip motor. The spring at the hip adds a

centering torque to the hip motor torque, in proportion to leg splay. The hip motor (‘re-

flected’) inertia is neglected because, after multiplying by the gear reduction squared

(662 = 4356), the inertia of the hip motor is about 50 times less than that of the legs. In

contrast, the ankle motors are in series with the elastic cable drive. So the ankle motors,

with an associated rotary inertia, each have a degree of freedom independent from the

ankles. The ankle drive cables are modeled as linear springs, as are the return springs.

When in contact with the ground the feet are assumed to roll without slip. The ground

collisions are assumed to be instantaneous with no bounce and no slip. The heel-strike

collision is assumed to have no impulsive torques at the joints and no discontinuities

in configuration. The robot is assumed to be symmetric with respect to inner and outer

legs and hence only one step is needed to characterize a periodic gait. The two ankle

motors do not participate in the collision because the ankle motors are isolated by the

ankle springs (Achilles tendons). So the ankle motor positions and velocities are taken

as continuous through heel-strike. In contrast, the hip motor has a collisional velocity
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discontinuity but not collisional torque because its inertia is neglected. Although we

model the ground contact as a point contact between rigid feet and rigid ground, we

add a small contact-damping couple between foot and ground to damp out oscillatory

rocking motions of the feet (observed in simulations if this damping is zero).

Altogether the robot has five internal degrees of freedom (one hip joint including

the motor, two ankle joints, and two ankle motors). During single stance, there is one

additional pose degree of freedom (rotation of the stance foot) making a total of six.

During double stance there are only the five internal degrees of freedom.

Phases of motion. The motion of the robot consists of two smooth phases: 1) single-

stance, when only one foot is on the ground, and 2) double-stance when both feet are

on the ground. The two phases have different equations of motion. The two phases are

separated by two instantaneous transitions: a) the heel-strike collision at the transition

from single-stance to double-stance, and b) the (non-collisional) toe-off transition from

double-stance to single-stance. A walking cycle consists of a single step. For example:

. . . outer-legs toe-off︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
previous step

→

smooth phase
︷!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!︷
inner-legs single-stance→

collisional transition︷!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!︷
outer-legs heel-strike→

smooth phase
︷!!!!!!!!!!!︸︸!!!!!!!!!!!︷
double-stance→

smooth transition︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷
inner-legs toe-off︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

a single step = one cycle

→ outer-legs single-stance→ . . .︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
next step

(3.1)

Due to intermittent contact the robot may be viewed as non-holonomic, but no consider-

ation is taken of this in the modeling because the system is holonomic within each phase

[91].
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Governing equations. Using the assumptions described above, the governing equa-

tions follow from momentum and angular momentum balance applied to the robot and

its subsystems:

Single stance (continuous): Ms(q)q̈ + Cs(q, q̇)q̇ +Ks(q) = T (3.2)

Heel-strike (instantaneous): Angles continuous but velocities jump

Mc(q+)q̇+ −Mc(q−)q̇− = JT
c P$ (3.3)

Double stance (continuous): Md(q)q̈ + Cd(q, q̇)q̇ +Kd(q) = T + JT
d P (3.4)

Toe-off (instantaneous): Angles and velocities continuous (3.5)

where each equation is a 6-component vector equation. The six elements of q are the

three robot joint angles, the two ankle motor angles and the absolute angle of one foot.

The six elements of T are the three motor torques (including the gear box friction), and

three foot-related torques (two ankle torques and one torque at the reference-foot ground

contact). The foot torques are determined by joint friction and by the ground contact

damping term. The Ms are the mass matrices (subscripts s, d and c are for the ‘single’,

‘double’ and ‘collisional’ phases), the Cs are the velocity squared terms (centrifugal

and Coriolis) and the six components of the Ks include the gravity and spring related

terms. The 2-element P and P$ are trailing foot constraint force components during

double stance and constraint impulse components during heel-strike respectively (in

some formulations P and P$ are Lagrange multipliers for constraints). Finally, the 6×2

matrices Jc and Jd are kinematically determined matrices that show the effect of trailing-

foot constraint force components on the internal degrees of freedom when the kinematic

chain is closed (double stance). See appendix A for derivation of equations of motion

and appendix B for benchmarks to check the accuracy of derived equations of motion.

39



3.3 Motor and gearbox model

motor

Figure 3.2: Schematic of DC motor connected to a DC voltage source. The DC
motor consists of rotating part called the rotor and a resistive part. The
sum of voltage drop across the rotor (VB) and resistive part (VR) equals
the total voltage supplied by the DC source V . The current flowing in
the circuit is I.

Although we run a tight feedback loop on motor current (2 kHz control loop), we

do not run a tight feedback loop on the motor torque or angular velocity. So we cannot

model the motors as pure torque, pure velocity or pure position sources and we need

a model for motor torque in terms of motor current and angular velocity. Measuring

torque, angular velocity, current and voltage during both positive and negative work on

our own bench-test setup, we have found that standard motor models lack two major

features: 1) a voltage drop across the brush contacts, and 2) a load dependent, velocity-

direction dependent and roughly velocity-magnitude independent frictional torque. Al-

though these phenomena are known, e.g., [31, 50] they are not commonly accounted for,

so we review our motor model here.

The electrical power consumption P of the motors is given by the voltage V across

the motor times the current I through it. At this point in the modeling we think of a

constant Direct Current (DC) source and do not consider losses due to the oscillations
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in current from the Pulse Width Modulation (PWM) used by our motor controllers.

The total electrical power is given as follows (see figure 3.2).

P = VI = VRI + VBI

=

VR︷!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!︷
(IR + Vc sgn(I)) I +

VB︷︸︸︷
GKω I (3.6)

where sgn(I) ≡ I/|I|.

The motor voltage has a contribution from resistance VR and from “back EMF” VB.

The resistance of a real motor has a contribution from the windings, R (the part reported

in the motor specification sheets), and a part due to brush contact resistance (which the

manufacturer does not mention). Our experiments (consistent with the literature [50])

show that the contact resistance leads to a more-or-less constant voltage drop Vc, which

changes sign when the current is reversed. We used Vc = 0.7 V with a winding resistance

of 1.3 Ω in simulation. The brush voltage drop has the biggest relative effect when the

total motor current is close to zero.

We characterize rotation rate using the gearbox output angular velocity ω hence

VB = KGω is used above, where K is the motor constant, G is the down gearing ratio,

and Gω is the motor angular speed.

The output shaft torque (T ) is given by the ideal-motor output torque after the gear-

box (GKI) minus the frictional losses in the motor and gear box T f .

T =
GKI︷︸︸︷

Tideal −T f (3.7)

Our bench tests show friction with viscous, Coulomb and load-dependent parts for
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which the following functional form is a reasonable fit to our bench tests:

|T f (I,ω)| ≤ C0 + µGK|I| if ω = 0

T f (I,ω) = C1ω +C0 sgn(ω) + µ sgn(ω)GK|I| if ω ! 0 (3.8)

The viscous friction is given by C1ω, the coulomb friction by C0 sgn(ω). A friction that

scales approximately with torque, apparently due to load-dependent friction in the gears,

is given by µ sgn(ω)GK|I| (Note that |I| correlates with the magnitude of net torque and

sgn(ω) shows the resistance to motion).

Combining the equations above, when ω ! 0 we get:

T = GKI −C1ω −C0 sgn(ω) − µsgn(ω)GK|I|. (3.9)

Again note that we have two nonstandard terms: in the power equation, there is a contact

voltage drop; and in the torque equation, there are both Coulomb friction and current-

dependent friction terms. Our current-dependent friction term is similar in effect to the

load dependent friction term [31]. To make the solutions unique in numerical imple-

mentation at ω = 0 and to ensure smoothness in the solution for better convergence

of numeric optimizations, we replace the sgn (sign) function with a hyperbolic tangent

function (see appendix C). The values we used in simulation were: K = 0.018 N m/A,

G = 66 (hip), G = 34 (ankle, gear reduction is 43, taking account of pulley radii the

ratio is 34), C1 = 0 N m s/rad, C0 = 0.01 N m and µ = 0.1. In this approximation the

torque is mis-estimated by about 10% by not using the friction terms. See chapter 4,

section 4.2 for more details on system identification.
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CHAPTER 4

SYSTEM IDENTIFICATION

This chapter is divided into two parts. In the first part, we present system identifi-

cation for the robot model. In the second part, we present system identification for the

motor and gearbox model.

4.1 System identification for mechanical parameters

For numerical simulation we need to estimate the ten parameters shown in figure A.1.

CAD drawings could have been used to estimate most of these. But because there were

many modifications not in the original drawings (rubber feet, glue, tape, etc.) we took

inertial parameter identification as a separate measurement project. The length parame-

ters (ankle eccentricity d, the radius of feet r and leg length !) are measured with a tape

measure. Measurement of the inertial parameters is presented in section 4.1.2. Measure-

ment of the spring parameters: the hip spring constant and the ankle spring constant is

presented in section 4.1.3. However, first we show how we dynamically balance the the

legs, thereby making the robot symmetrical and simplifying the controller design and

simulations.

4.1.1 Dynamic balancing of legs

We would like the legs to be dynamically balanced so that a controller that treats the

legs as equal does not lead to a limping gait. Assuming a balanced machine, we can

then simplify both the simulations and the controller by only dealing with a single step

(rather than a 2-step sequence) as the basic action.
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/hip

Figure 4.1: Dynamic balance of the legs. The two legs of the robot are dynam-
ically symmetrical (‘balanced’) if they they have the same distances
between the hip and ankle hinges, the same feet shapes and have 3
matching inertial properties. The two masses do not have to be the
same, however.

Figure 4.1 shows that the robot that may have unbalanced legs; i.e., the masses (mi),

inertia about hip (Ji/hip) and the location of the COM (si) of the two legs may different.

Here i = inner or outer.

Number of parameters. In side view the robot has 4 serial links (inner foot, inner

leg, outer leg, outer foot). As detached planar rigid objects each of these has 4 inertial

parameters: center of mass position relative to landmarks (e.g., hinges and corners) on

the object (x and y positions using an object-based coordinate system); mass m; and

moment of inertia about the center of mass JG. Thus one could imagine up to 16 inertial

parameters in the model. Neglecting the mass of the feet eliminates 8 of these (4 for

each foot), reducing the number of inertial parameters to 8.
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Redundancy of parameters. At every joint we can imagine adding and subtracting

point masses. For example we could add a point mass madd to the inner legs at the

hip and simultaneously add a negative mass −madd to the outer legs (that such is non-

physical does not detract from the argument). No term in any of our equations of motion

are affected by this addition and subtraction. Thus no motion nor torque is altered. One

could also make the claim by appeal to Lagrange’s equations: the expression for the

system kinetic and potential energies are unaltered by this addition/subtraction.

We have thus changed the masses of each of the links and the locations of the cen-

ters of mass of each of the legs, but we have not changed any of the dynamics of the

linkage. [As an aside, with this mass addition/subtraction we have changed the reaction

forces transmitted at the hinge, but these do not affect the motions or the joint torques.]

Thus, the supposed 8-dimensional parameter space is indifferent to one dimension. That

is, there must be a collection of 7 parameters which can predict all coefficients in the

governing equations.

We claim that the following is such a set of 7 (c and w are local object-referenced x

and y coordinates):

J1/hip, J2/hip; m1c1, m2c2; m1w1, m2w2; and Mtot ≡ m1 + m2. (4.1)

Each of these parameters is indifferent to (doesn’t change with) the hip-mass addi-

tion and subtraction described above. They are also independent in that by appending

the list with another single number, for example the mass of one leg, all 8 of the original

inertial parameters can be found (mi, JGi, ci and wi). In summary, the 7 mass parameters

are: The first mass-moment of the mass distribution of each leg about the hip (2 numbers

for each leg), the second polar mass moment of each leg about the hip (polar moment of

inertia about the hip), and the total mass of the robot.
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4.1.2 Measuring inertial parameters

Not coincidentally, the independent set of 7 parameters are exactly what it is possible

to measure without disassembling the robot. Note, for example, that it is not possible to

find the mass of one leg (m1 or m2). Nor is it possible to find the distance of the center

of mass of one leg from the hip (can’t find s1 or s2).

We find the 7 parameters as follows:

1) The total mass Mtot is found by weighing the robot.

2,3) The first moment of mass along each leg c ·m is found for each leg by the experi-

ment shown in figure 4.2.

Load cell

Figure 4.2: Experiment to measure the first mass moment c · m. The robot is
hinged at the hip joint and held such that the leg axis is perpendicular
to gravity. Balance of moments about the hip hinge gives cm = F!.

4,5) The angle of the radial line from the hip on which the center of mass lies is found

by hanging each leg from the hip hinge and measuring the angle θ of the leg (see

figure 4.3). Because tan θ = w/c we have for each leg that wm = tan θ cm.

6,7) The inertia of each leg about the hip joint can be found from timing the small

oscillations of each leg freely swinging from a hip clamped in place.

Tpend = 2π

√
J/hip

gsm
(4.2)
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1

H

G

Figure 4.3: Experiment to measure the fore-aft offset of the COM. The robot is
hinged at its hip joint H and held in the vertical plane. In equilibrium
the center of mass of the leg G1 is directly below the hinge point H.
The angle θ can be measured.

where sm =
√

(cm)2 + (wm)2. So, for each leg,

J/hip =
T 2

pend

4π2 g
√

(cm)2 + (wm)2. (4.3)

Thus all 7 independent inertial properties were measured without robot disassembly.

Balance of 3 inertial parameters. With these 7 independent parameters, symmetry

of the two legs is achieved by making these 3 matches:

J1/hip = J2/hip

m1c1 = m2c2

m1w1 = m2w2 (4.4)

As mentioned, although we have four parameters for each leg (Ji/G, mi, ci and wi)

there are only three conditions that ensure dynamic balance of the two legs.
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Physical balancing. We made the best balance we could by appropriate placement of

the batteries on the outer legs. We chose not to add additional masses. Because we were

constrained in our battery attachment points we could not get perfect dynamic balance

(i.e., could not achieve equality within measurement accuracy of equation 4.4).

4.1.3 Measuring spring constants

Load cell

Load cellEquilibrium 
position for
   spring

(a) (b) 

Figure 4.4: Measuring the spring constants. (a) The hip spring stiffness is deter-
mined by measuring the force to deflect the leg a given angle. (b) The
ankle spring constants (the elasticities of the cable drive), are mea-
sured by locking the ankle motors and measuring the force to deflect
the ankles.

Measuring the hip spring constant. Figure 4.4a shows the set up used to estimate

the hip spring constant. In this experiment, the robot was placed in the horizontal plane

and so gravity does not influence the experiment. The hip springs are designed so they

48



have no torque when the legs are parallel to each other. First, we checked this by noting

that the spring torque is zero when the legs are parallel. Next, we pulled Ranger’s legs

with a digital ‘fish’ scale (a load cell with hooks) and noted the hip angle θ. The hip

torsional spring constant is then

kh = FL/θ.

As predicted the spring is nearly linear in Ranger’s operating region (hip angle ±0.5

rad).

Measuring the ankle spring constant. Figure 4.4b shows the ankle spring-constant

measurement. The motor was put in position control (locked at a fixed angle) and the

foot deflected with the fish scale (see Figure 4.4b) and the angle of ankle deflection θ

measured. Thus the ankle spring constant

ks = FL/θ.

4.1.4 Summary of parameters estimated

We summarize the various parameters estimated in this section.

Parameter Value
! 0.96 m
r 0.2 m
d 0.11 m

wm 0.0
cm 0.72 kg m
Jhip 0.55 kg m2

kh 7.6 N m/rad
ks 14 N m/rad

Table 4.1: Values of robot parameters that were estimated in bench tests.
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4.2 System identification for motors and gearboxes

In chapter 3 section 3.3, we showed the motor and gearbox model we used for simulation

and optimization. First we re-state these equations and follow that with a discussion on

how the model was found and the parameters identified.

4.2.1 Power equation

The power equation gives the power consumption (P) as a function of the current (I)

and the speed (ω). In the end we wrote this equation as

P = VI =
{
IR + Vc sgn(I) +GKω

}
I (4.5)

Here the gear ratio G is known based on manufacturer’s specifications and we have to

identify the three constants: resistance R, contact voltage Vc and torque constant K.

4.2.2 Torque equation

The torque equation gives the output shaft torque (T ) as a function of the current and

shaft speed. The function T f (I,ω) in the expression below is the frictional torque and

we have assumed that it depends on the current (I) and shaft speed (ω).

T = G(KI − Jm

motor acceleration︷︸︸︷
Gω̇ ) − T f (I,ω) (4.6)

We found that the friction torque T f (I,ω) can be reasonably decomposed into a constant

friction term and viscous friction term.

|T f (I,ω)| ≤ C0s(I) if ω = 0

T f (I,ω) = C1ω +C0d(I) sgn(ω) otherwise (4.7)
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where C1, C0s and C0d are coefficients of viscous, static and dynamic friction respec-

tively and the latter two are assumed to be current dependent.

Next, we found reasonable fit using C0s(I) = C0s + C′0s|I| and C0d(I) = C0d + C′0d|I|.

We characterize the current dependent part of the constant friction by parameter µ as

follows. We put C′0s = µsGK|I| and C′0d = µdGK|I|. Thus our frictional torque becomes,

|T f (I,ω)| ≤ C0s + µsGK|I| if ω = 0 (4.8)

T f (I,ω) = C1ω +C0d sgn(ω) + µdGK|I| sgn(ω) otherwise (4.9)

In the above equations, the gear ratio G is known based on manufacturer’s specifications.

The torque constant K is known from the system identification on the power equation

presented earlier. Thus in equation 4.8 and 4.9, we have to identify the five constants,

C0s, C0d, µs, µd and C1.

4.2.3 Cantilever test set-up for data collection

Details of set-up. Figure 4.5 shows the labeled photograph of our experimental set-

up. The set-up consists of two motors; a Faulhaber test motor of the type used on the

robot and a Maxon brake motor used as the motor load. Each motor can be individually

controlled by DC power supplies. The test motor is fitted with a 14:1 gear box. The

motors are connected to each other by two helical shaft couplings and a slender steel

rod. A Hall-effect current sensor measures the current flowing through the test motor.

A rotary encoder measures the angular position of the brake motor. Angular position

can be converted to angular speed by finite differencing and low-pass filtering. Using

the brake motor gear ratio and its measured angular speed, we can find the speed of the

output shaft, the slender steel rod in the set-up. A load cell (Transducer Techniques,

MLP-75) measures the test motor torque output. By varying the current flowing through
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Figure 4.5: Cantilever set up used for system identification for DC motors.
A ‘brake’ motor is mounted on a hinged plate so the torque acting on
it can be measured. It is driven by the motor being tested, which is
mounted on a solid workbench, via two helical shaft couplings and a
slender steel rod. A DC power source is connected to the test motor
that maintains the input voltage V . By varying the current in the brake
motor, varying braking torques can be applied to the test motor. Test
motor current I, output shaft speed ω, and output shaft torque T are
measured and used for system identification. Note that the ‘brake’
motor can also be powered so that the test motor can be characterized
in the negative-work regime (i.e., as a generator).

the braking motor, varying braking torques can be applied. Data is recorded by a Na-

tional Instruments LabVIEW program which is interfaced with the sensors through a

data acquisition system.

Data collection. The data collection was done as follows.

• A DC voltage (V) was set on the test motor. The braking torque was varied by

varying the current to the brake motor. Test motor current (I), output shaft speed

(ω) and output shaft torque (T ) reading were noted for increasing and decreasing
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braking torques.

• A different motor voltage was fixed and the test repeated. The test motor voltages

chosen were −6,−4,−2, 0, 2, 4 and 6 V .

4.2.4 Fit the power equation

In order to fit the power equation 4.5 we need to find the constants R, Vc and K. First,

we stall the motor and noting the current at various voltages, we fit the constants Vc and

R. Next, using the data from the cantilever experiment we fit the constant K.
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Figure 4.6: Curve-fitting for contact voltage and terminal resistance. Least
squares curve-fitting voltage and current data for a stalled motor gives
a terminal resistance R = 1.3 Ω (slope) and contact voltage drop Vc =

0.7 V (y-intercept).
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Fit the resistance (R) and contact voltage drop (Vc) by stalling the motor. In equa-

tion 4.5, we first set to identify the resistance R and contact voltage drop Vc. We stalled

the motor and applied various currents I and measured the output voltage V . Putting

speed ω = 0 in equation 4.5 we have V = IR + Vc sgn(I). Using a least squares fit, we

found R = 1.3 Ω and Vc = 0.7 V . Results of the fit are shown in figure 4.6.

Fit the the torque constant (K) from cantilever experiment. Having fitted the re-

sistance R and contact voltage drop Vc in equation 4.5, we only need to fit the torque

constant K. Using the DC voltage V , motor current I and output shaft speed ω data from

the cantilever experiment and knowing that the gear ratio G = 14, we fitted the torque

constant K = 0.018 as shown in figure 4.7.

4.2.5 Fit the torque equation

In order to fit the torque equations 4.8 and 4.9, we have to identify the five constants,

C0s, C0d, µs, µd and C1. First, using a series of pulley experiment as shown in figure 4.8

we identify all the five constants. Next, using the data from the cantilever experiment we

check our fit and also point out the necessity of having the |I| function in the frictional

torque equations 4.8 and 4.9 .

Fit the dynamic friction at zero current (C0d). We set the motor in figure 4.8 in open

loop (I = 0) and increased the mass M in increments of 5 gram while gently tapping the

pulley until it set into slight motion. At about M = 40 gram, the mass started to move

downward (clockwise rotation of pulley when viewed from the right side). Using the

radius of the pulley (r = 2.5 cm), mass M, gravity g and equation 4.6 and equation 4.9,

we calculated the dynamic friction at zero current to be T = Mgr = T f = C0d = 0.01
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Figure 4.7: Curve-fitting for motor torque constant. Motor torque constant
K = 0.018 V s/rad was curve-fitted from equation 4.5 using motor
current I, output shaft speed ω and DC voltage V data obtained from
the cantilever set-up. In equation 4.5 we used gear ratio G = 14 as
per manufacturer’s specification. Constants R = 1.3 Ω and Vc = 0.7 V
were obtained in an earlier experiment (see figure 4.6).
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motor

pulley

string

Figure 4.8: Measuring friction coefficients. In some experiments the motor was
initially still, in others it is turning at known speed.

Nm. An identical value for the dynamic friction was calculated when the mass was hung

on the other side of the pulley (counter-clockwise rotation of pulley when viewed from

the right side).

Fit the static friction at zero current (C0s). We set the motor in figure 4.8 in open

loop (I = 0) and increased the mass M in increments of 5 gram till the motor-pulley,

with no tapping, until it set into slight motion. At about M = 45 gram the mass began

to move downwards. Using the radius of the pulley r, mass M, gravity g and equations

4.6 and equation 4.8, we calculated the static friction at zero current to be T = Mgr =

T f = C0s(0) = 0.01 Nm. The same static friction value was calculated when the test was

repeated with the mass hanging on the other side of the pulley.

Fit the viscous friction at zero current (C1). We set the motor in figure 4.8 in open

loop (I = 0) and increased the mass to M1 until the motor-pulley set in motion. We

noted that speed ω1. Next we changed the mass to M2 and repeated the experiment and
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noted the new speed ω2. From equation 4.6 and equation 4.9 we have

T1 = M1gr = T f 1 = C1ω1 +C0d

T2 = M2gr = T f 2 = C1ω2 +C0d

Subtracted the first equation from the second gives,

C1 =
(M2 − M1)gr
ω2 − ω1

(4.10)

Using equation 4.10, we calculated the viscous friction to be 3.3 × 10−3 N m s/rad. The

same experiment when repeated with the mass hung on the other side of the pulley gave

a similar value.

Fit the coefficient of dynamic friction (µd). We repeated the experiment used to iden-

tify C0d, except that we set the current to a non-zero value. If M is the load at which the

motor-pulley system just starts to move then, from equation 4.6 and equation 4.9, just at

the onset of motion we have

T = Mgr = GKI − µdGK|I| −C0d

Solving for µd gives,

µd =
1

sgn(I)

{
1 − Mgr +C0d

GKI

}
(4.11)

We repeated this test for different current values and also by putting the mass on the

other side of the pulley. The average value for µd across various tests was found to be

0.1.

Fit the coefficient of static friction (µs). We repeated the experiment used to identify

C0s, except that we set the current to a non-zero value. Again, if M is the load at which
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the motor-pulley system just moves when tapped then, from equation 4.6 and equation

4.8, just at the onset of motion we have

T = Mgr = GKI − µsGK|I| −C0s

Solving for µs gives,

µs =
1

sgn(I)

{
1 − Mgr +C0s

GKI

}
(4.12)

We repeated this test for different current values and also by putting the mass on the

other side of the pulley. The average value for µs across various tests was found to be

0.1.

Finally, we used the value of the constants C0s, C0d, C1, µs and µd and checked

the torque equation with the data obtained from the cantilever experiment. Figure 4.9

shows our model fit with the torque-speed-voltage data obtained from the cantilever

experiment.

4.2.6 Summary of constants for motor model

Table 4.2 shows all the constants obtained in the motor equation.

4.2.7 Motor controller ∗

Our simulation and the robot’s main computer assume that the motor controllers are

current sources, i.e. they can provide the current we ask for. Our hardware motor con-

trollers are voltage sources as they are driven by batteries and pulse width modulation

(PWM). So, we convert them into current sources as follows. First, we use PWM to
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Figure 4.9: Checking the friction model. The frictional torque identified using
a series of pulley experiments is checked with data obtained from the
cantilever experiment. Various shaped dots are data and the curves are
the fit. The positive work regimes are where the torque and angular
velocity have the same signs (first and third quadrants). The worst data
fits are for high braking torques (lower right and upper left on plots).
The discontinuities at speed = 0 are from friction force reversals. The
discontinuities near the torque = 0 axis are due to the reversing of the
contact voltage drop when the current reverses.
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Parameters Symbol Expts. (Specs.)
Terminal resistance (Ω) R 1.3 (0.7)
Contact voltage drop (V) Vc 0.7
Torque constant N m/A) K 0.018 (0.017)
Viscous friction N m s/rad) C1 0
Constant friction (N m) C0 = C0s = C0d 0.01
Current-dependent const. friction µ = µs = µd 0.1

Table 4.2: Comparison between experimental values with manufacturer’s
specification for the motor model. The static and dynamic constant
friction terms have the same value, i.e. C0s = C0d and hence these
are replaced with the term C0. Similarly, static and dynamic current
dependent friction terms have the same value, i.e. µs = µd and hence
these are replaced with the term µ. Note that the measured resistance
is almost twice that reported in the specification sheet. Also, the brush-
commutator contact voltage drop of the motor is not mentioned in the
specification sheet

modulate the voltage supplied to the motor and next, we use a proportional-integral

control on the motor current so that the motors can supply the needed current to drive

the output shaft. In this section, we explain PWM followed by a note on how to choose

the PWM frequency based on motor parameters to reduce energy losses.

Pulse width modulation to regulate voltage to the motor. Figure 4.10a shows an

ideal DC motor connected to the DC motor source via an h-bridge. An h-bridge is an

electronic device that is used to do pulse width modulation. The voltage applied by the

DC source is constant and is VB and is shown in figure 4.10b. The h-bridge applies

pulses at a set frequency (here 1/tp). The duty cycle is the time the pulse is switched on.

In the example above and as shown in figure 4.10c, the duty cycle is 40 % or the pulse

is ON for 40 % of the pulse time tp. The result is that the net voltage across the motor is

40 % of the constant DC voltage (or 0.4VB) as shown in figure 4.10d. Thus by varying

the duty cycle it is possible to control the voltage applied to the motor.
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(a) Motor connected to DC source through a h-bridge

t
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V

0.4
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tp 2tp0.4tp t

VB

VB

(b) DC source (c) h-bridge (d) Voltage across motor

Figure 4.10: Working of h-bridge that is used to do pulse width modulation.
(a) Motor connected to the DC source via h-bridge (h-bridge is an
electronic chip that does pulse width modulation). (b) The voltage
provided by the DC source is constant. (c) The h-bridge pulses the
voltage at a set frequency. Here pulsing time is tp. In this example,
the pulses are on for 40 % of the pulsing time. (d) The net voltage
across the motor circuit is 0.4 of DC source voltage.

Choosing the pulsing time tp. Though we have ignored the motor inductance in our

modeling in section 3.3, it plays an important role in current regulation and energy

efficiency of the motors. The motor resistance (R) and motor inductance (L) pair (see

figure 4.10a) acts as an integrator. From theory of R-L circuits, one can show that

for the current to be more or less constant (good integrator action) we need to have

tp ≤ 0.2(L/R). This is shown in figure 4.11a. We illustrate the effect of using slower

than ideal pulsing time with an example. Let us choose the pulsing time, tp = 0.5(L/R).

The resulting current is shown in figure 4.11b and is clearly not constant. Note that

average current in (b) is same as that in (a), however the power (voltage times current)
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(a) Efficient h-bridge (b) Inefficient h-bridge
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Figure 4.11: Proper choice of pulsing time ensures power efficient working
of the h-bridge. The motor resistance (R) and motor inductance L
pair act as an integrator. (a) For the current to be constant we need,
tp ≤ 0.2(L/R). (b) If the pulsing time is slower, here tp = 0.5(L/R),
the current is non-constant. Note that although the average current in
b) is that same as that in a), the power (voltage times current) usage
in b) is more than that in a) because the root mean square value of
the current in b) is more than that in a)

used in (b) is higher than that in (a). Thus (b) is power in-efficient as compared to (a).

For our motors, we found that the resistance R is non-constant and is given approx-

imately as R = Rbrush + Vc/|I|, where Rbrush is the brush resistance, Vc is the contact

voltage drop in the brush-commutator interface and I is the motor current. The motor

resistance is high at low currents because of the second term but quickly asymptotes to

Rbrush as the current is increased. So we use R = Rbrush in the formulae for pulsing time.

Our motors had a Rbrush = 1.3Ω and motor inductance of 70µH. The pulsing time for

our motors should be atleast tp = 0.2L/Rbrush = 0.1µs. This gives a pulsing frequency

of 1/tp ≈ 100 kHz. We used this frequency to drive our h-bridge.
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CHAPTER 5

TRAJECTORY GENERATOR

In this chapter, we first formulate an energy-optimal trajectory control problem.

Next, we solve the optimal trajectory control problem using a parameter optimization

software package. Informed by the converged optimization results, we approximate the

optimal control solution. This approximate control representation will be implemented

on the physical robot.

5.1 Energy-optimal trajectory

Our energy-optimal trajectory control problem is as follows.

Given the walking sequence in equation 3.1 and described by equations 3.2, 3.3, 3.4

and 3.5, with parameters constrained to those of our physical robot, we seek a control

strategy that minimizes the specific total cost of transport

TCOT =
total battery energy used per step

weight × step length
=

total battery power used
weight × vstep

(5.1)

where velocity vstep is the average velocity in a step. A trajectory is specified by hip

(h) and ankle (ia & oa for inner and outer) motor currents versus time (Ih(t), Iia(t) and

Ioa(t)), and initial conditions at the start of single stance. Associated with these are

angles versus time, the times of transitions to and from double stance, and the fraction

of the time spent in double stance.

The numerical trajectory optimization is run with various constraints: we seek an

optimal periodic gait, so we only optimize over one step and impose the periodicity con-

straint that the state (angles and rates) at the beginning of single stance should be equal

to the state at the end of double stance; we demand that in single stance, the swing-
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ing leg’s foot should have sufficient ground clearance to prevent foot scuffing; motor

currents must be within specified bounds to prevent overheating and damage to gear

boxes; and tensional contact with the ground is forbidden. Barring numerical difficul-

ties, we would recover identical optimization results if the trajectory was parameterized

by motor angles, rates, accelerations or voltages.

5.2 Optimization sub-costs

We split the energy used per step (in equation 5.1) into three parts which we take to be

decoupled:

• Pfixed is the power of the always-on electronics. It is the power for the non-motor

on-board electronics (e.g., microprocessors, sensors, communications). We as-

sume that Pfixed is independent of the control strategy. Thus the energy needed to

run the electronics is given by Efixed = Pfixedtstep, where tstep is the period of one step.

• Efoot-flip is the energy to flip the swing foot up once and down once in single swing.

• Ewalk is the energy needed to take a step, excluding the energy needed to flip the

foot up and down during swing. This is the electrical energy to the hip motor and

its controller and to the stance ankle motor and its controller.

Given the total robot mass Mtot, gravitational acceleration g, and step length dstep , we

can re-write equation 5.1 as

TCOT =
Pfixedtstep + Efoot-flip + Ewalk

Mtot g dstep

(5.2)

= COTfixed + COTfoot-flip + COTwalk (5.3)
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Figure 5.1: Contour plots: COT versus step velocity and step length. (a) COT
for fixed cost (i.e., the electrical overhead from equation 5.4). This is
a fixed cost per unit time. (b) COT for foot flip-up, flip-down after
decoupled ankle optimization from equation 5.6. (c) COT for ‘walk’
(hip swing + stance ankle) from equation 5.7. The dotted line is a line
of constant step frequency. (d) Total cost of transport (TCOT) given by
the sum of the three constituent COTs (see equations 5.2 and 5.3). The
local minimum comes from a trajectory optimization of all three costs
summed, and without use of the independent trajectory optimization
of COTwalk (i.e., it is not found using the contours from c).
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where COTfixed, COTfoot-flip, and COTwalk are COTs corresponding to fixed cost, flip the foot

up and down in single stance, and motor use for push-off and leg-swing, respectively.

The step time is given by tstep = dstep/vstep.

Figure 5.1 shows the contour plot of various constituent COTs versus step length

and step velocity. As in [97], some independent optimizations are possible, as discussed

below.

5.2.1 Fixed-cost (electrical overhead) COT

We can re-write the fixed cost COT from equations 5.2 and 5.3 as follows,

COTfixed =
Pfixed

Mtot g vstep

(5.4)

The overhead power for our robot is essentially independent of motor use, at Pfixed = 5.15

W. From equation 5.4 we see that COTfixed is inversely proportional to the step velocity

and, for a given average speed vstep , independent of step length. Thus this ‘basal energy’

contribution is minimized by maximizing the overall robot speed vstep (as noted in [85]

for example). Figure 5.1a shows the contours for the fixed-cost (electrical overhead)

COT. As evident in equation 5.4 and from the figure 5.1a, the COT for fixed cost is

inversely proportional to the step velocity and independent of step length. Thus, the

fixed cost COT favors walking at fast speeds. This cost is hardware, and low-level

control, limited. Despite care in hardware design, COTfixed was ultimately our biggest

cost (49% of the TCOT in the final controller).
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5.2.2 Foot-flip COT optimization

The truncated-heel foot shape was designed to give adequate ground clearance in swing

if the swing toes are pointed up towards the shins. For robustness we use this full flip-up

at every step, executing the flip-up quickly at the start of swing and lowering the foot

quickly once the swing leg is sufficiently forward of the stance leg. We use the same

flip-up and flip-down control independent of the walking speed or step length. We found

that 0.25 s was fast enough for both flip-up and flip-down. Because the feet are light we

assume that leg swing has no effect on ankle torques and currents, and vice versa.

Thus we did a decoupled optimization on the strategy for lifting (and, identically,

for lowering) the foot the specified angle in the specified time (see appendix E, section

E.1).

Figure 5.1b shows the contours for foot-flip COT after this optimization. As evident

in equation 5.6 and from the figure 5.1b, the COT for foot-flip is inversely proportional

to the step length and is independent of step velocity. Thus, the foot-flip COT favors

walking at big step lengths.

Had we, instead, named a minimal foot clearance, the optimization would find a

minimal motion that just makes that clearance. For example, if we only insist that the

foot clear the ground the optimization finds a motion where the swing foot barely clears

the ground for the whole swing phase. Here, there is a clear trade-off between energy

use and robustness, and for this part of the control we choose robustness (big ground

clearance by fast early foot lifting and fast late foot lowering).

The numerical flip-up and flip-down optimizations sought an ankle current as a func-

tion of time I f
a (t), which starts the ankle motors from rest, turns the feet an angle of 1.7

rad in 0.25 s, and returns to rest, while minimizing the electrical energy to do so. This
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optimization used the full motor model, accelerating the motor rotor inertia, but ne-

glected the mass of the foot, the return spring and the Achilles-tendon compliance (tak-

ing the tendon to be inextensible). The strategy for raising is the same as for lowering.

Thus our cost function for flip-up-flip-down is,

Efoot-flip = 2
∫ t=0.25s

t=0

[
Pfoot-flip

]+ dt (5.5)

where Pfoot-flip is the power in the motor that turns the foot attached to the swing leg in

single stance. The factor of 2 accounts for the inclusion of both flip-up and flip-down.

To describe our approximation that the system is non-regenerative (the motors are not

efficient at recharging the batteries when doing negative work) we define the function

[P]+ as follows, [P]+ = P, if P ≥ 0 and [P]+ = 0, if P < 0.

The optimization is non-trivial because of the relatively complex motor equation 3.9.

To solve the problem numerically, we use a discrete approximation for current versus

time with 33 intervals of piecewise linearly-varying current (see appendix E, section

E.1).

The result of the optimization is a foot-flip cost Econst
foot-flip that is independent of step

length and speed.

Thus the foot-flip cost COT optimization problem from equations 5.2 and 5.3 is

COTfoot-flip =
Econst

foot-flip

Mtot g dstep

. (5.6)

The optimized ankle flip-up current is shown between about 0.66 s and 0.9 s in the lower

solid red curve in figure 5.2. The profile is approximately explicable in terms of what

we would get by minimizing either of the standards for ‘energy’ optimization:
∫

I2dt or
∫

power dt. The former optimization would give current varying linearly in time and

the latter a bang-bang (impulsive) control. Thus we see a ramp with a slight spike at
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each end. In addition there is a slight bias that seems to counter mechanical friction. As

mentioned, the mirrored current is used for flip-down.

Because the foot-flip energy cost is independent of speed or step length, from equa-

tion 5.6, we see that COTfoot-flip is inversely proportional to the step length and indepen-

dent of step velocity. That is, the foot-flip contribution to the TCOT is minimized by

maximizing step length. Taking this cost together with the fixed cost and optimizing

would give the longest possible steps at the greatest possible forward speed. The opti-

mal solution is not maximally fast with maximally long steps, however, because of the

swing and push-off costs, both of which penalize speed and step length.

5.2.3 ‘Walk’ COT optimization

The first two terms in the expression for energy cost, the electrical overhead fixed cost

and the foot flip up/down cost, have been reduced to simple dependencies on step length

and step velocity.

The remaining ‘walk’ cost is given by

COTwalk =
Ewalk

Mtot g dstep

=

∫ t=tstep

t=0

∑
[Pwalk]+ dt

Mtot g dstep

(5.7)

where Pwalk are the various motor (plus controller) powers. The summation here is over

all the motors involved in powering the walk excluding the foot flip-up and flip-down.

Again we assume that our batteries cannot regenerate (see appendix E, section E.2 for

more details).

From figure 5.1c, we note that the COT for walking has a strong frequency depen-
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dence. Walking at frequencies other than those which are close to the ‘natural’ leg

frequency are expensive. We found that the minimum for the ‘walk’ COT occurs at

step length of 0.13 m and step velocity of 0.21 m/s (step frequency = 1.6 Hz). That the

‘walk’ COT is minimized for a non-zero step length came as a surprise because simple

models of walking with work-based cost have shown that zero step lengths are optimum

[40, 61, 62, 96].

Figure 5.1c shows a contour plot of the ‘walk’ COT (hip and stance-ankle motors) as

a function of prescribed step length and speed. Note that step frequency is step velocity

divided by step length. So, for a line through the origin, the reciprocal of the slope is the

step frequency. The dotted line in the figure is one such line, a characteristic frequency

of this machine. In this case it is the frequency of oscillation of the robot, a double

pendulum with a spring at the intermediate joint, oscillating about vertical (but not the

real root associated with the unstable falling motion).

5.2.4 Total COT optimization

The sum of the three costs are calculated and the TCOT is minimized with numerical

optimal control using 33 mesh points in single stance and 9 in double stance for the hip

and ankle.

Finally, we add the COTs for fixed cost, foot-flip and walking to get the total TCOT

as a function of step length and step velocity. The TCOT as a function of step velocity

and step length is shown in figure 5.1d. The optimum walking speed for the robot is

0.77 m/s at a rather large step length of 0.48 m and a step frequency of 1.6 Hz. The

minimum TCOT is 0.163.
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The resulting hip and ankle currents are the solid red curves in figure 5.2.

As expected from simple models e.g., [98] the optimization does use a pre-emptive

push-off (big ankle extension current at 0.55 s). The shape of the hip current was not

anticipated because we expected the hip motor would tend to speed the swing to reduce

step size and collision costs. But it can be explained post-facto thus: the optimal leg

swing is almost passive (perhaps balancing collisional cost reduction with small steps

with flip-up costs). But motor friction losses need to be made up. The optimization

chooses a motor current to most efficiently make up for frictional losses, and this in-

volves using the motor when it is most efficient, namely when it is spinning fast.

5.3 Simplifying the optimal trajectory

The energy-optimal trajectory control problem presented in section 5.1 is infinite di-

mensional with an approximate numerical solution described by the current values at a

finite set of discrete times. As the grid resolution is increased with more grid points,

the numerical optimum is improved and the number of control parameters increases.

We estimated reasonable convergence to the supposed optimum using a total of 126 pa-

rameters, which we consider too complex to implement on the robot given our goal of

eliminating unnecessary complexity. Furthermore, the optimal solution is time-based

and we require that portions of the current trajectories be synchronized to events, such

as heel-strike.

Also, our energy-optimal solution is based on trajectory optimization and does not

consider gait stability. Our energy-optimal trajectory is not necessarily stable at all.

To make the controller simpler, but still energy effective and stable, we first simplify
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a single step = one cycle (see equation 3.1)

Figure 5.2: Numerically fine-grid optimal (solid red) and coarse-grid optimal
(dashed blue) motor currents. Logical states of the state-machines
(a-f, i-vi) are shown with respect to the coarse-grid (dashed blue)
curves. Because the coarse-grid optimization has a different period
than the fine-grid optimization (1.22 s versus 1.19 s) the red curve is
slightly contracted to fit on the graph. The upper graph is the hip cur-
rent; positive current swings the inner legs forwards. The lower graph
is the inner ankle current, positive current extends the foot. In the left
half of the graphs the outer leg is in swing and the inner in stance;
in the right half the roles are reversed. The gray bands are periods of
double support. For the hip, the current in the right half is the nega-
tive of the left half. But the inner ankle current lacks this symmetry
because the ankle has a different job in stance (left half) than swing
(right half). Amongst the parameters tuned in the coarse-grid (dashed
blue) solution are the times tm, ts, tss and tstep. The fine-grid solution
(solid red) is described with about 126 parameters. The coarse-grid
solution is described with 15 parameters. The fine-grid and coarse-
grid optimized currents predict TCOT = 0.167 and 0.18 respectively.
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the description of the near-optimal trajectory (this section), and then add a reflexive

(event-based) feedback controller (see chapter 7).

Optimizing the coarse-grid description. First, according to the KISS (keep it simple

stupid) design principle, we use a simpler coarse-grid representation that has few pa-

rameters. We did this by looking at the general shape of the fine-grid optimization (red

solid lines in figure 5.2) and choosing intervals where we could use a simpler controller.

The coarse-grid form is chosen manually so as to best catch the features of the fine-grid

optimization but with fewer terms. The values of the parameters (durations, and con-

stants in the impedance controls) are chosen by again doing a trajectory optimization,

but now parameterized with the simplified parameters. Our goal is to achieve a gait with

close to the same TCOT, informally doing a simultaneous optimization of both energy

use and simplicity.

For example for the foot-flip we replace the 33 piecewise-linear currents at the grid

points with just 3 parameters of a proportional-derivative (P-D) controller. The three pa-

rameters are the proportional gain, derivative gain and the reference angle. The optimal

cost is 1.06 J while the cost with the coarse-grid representation is 1.1 J. We note that

in going from the fine-grid solution to the coarse-grid control parameterization for the

foot-flip optimization we have increased the cost by 4% while decreasing the number of

parameters from 33 to 3.

Similarly, we simplified the controls for the hip and ankle motors for the walk op-

timization. For the energy-optimal trajectory control problem we presented earlier, we

had 126 parameters in all and a TCOT of 0.167. With our coarse-grid representation

we reduced the parameters to 15 while increasing the TCOT to 0.18, a 7% increase in

cost. Table 7.1, column 1 and 2 compare the cost obtained for the optimal gait with the
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coarse-grid representation.

Concurrent augmented state machines. Each joint is controlled by its own concur-

rently running augmented finite state machine, traversing a set of logical states (see

appendix G). The logical state describes which portion of control code is active. This is

augmented by the dynamical state which describes the measured and estimated aspects

of the robot (angles, angular rates, elapsed time since last transition, binary variables for

whether each foot is on the ground or not, etc.). Each joint’s state machine has access to

the full dynamical state and is also informed by global commands (such as for steering,

starting, shutdown). For each joint, a gait cycle (2 steps) traverses a circle of states.

The transitions are triggered by events which are thresholds in the dynamic state or time

(e.g., ‘change logical states when ankle angle has reached 0.126’). The individual state

machines do not communicate with each other explicitly but are synchronized through

the shared data, and shared dynamic state estimation. Within one state there is a tight (2

kHz) feedback loop that controls, say, the current to the inner ankle (ia):

Iia = f (full dynamical state of the robot)

= A +C1θia +C2θ̇ia + D (5.8)

Although the architecture allows any function f of the full dynamical state, we only

use simple functions with dependence on only some dynamical-state variables; at any

instant most joints are in a 1-degree-of-freedom impedance control mode, as expressed

by equation 5.8. The redundant constant D expresses a dependence of the within-state

control on the dynamical state at the start of the state. In most cases the within-state

control is fully local. However, couplings more general than equation 5.8 are allowed

and sometimes used. For example, during single stance the ankle joint current is based

on the absolute angle of the foot (which is a state estimation based on data from several

sensors). And one of the dynamical states is the binary variable saying whether the robot
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is, overall, going too fast or too slow (see chapter 7 for more details).

We call this control architecture “reflex”-based because the change of state is trig-

gered by an event. Because each state has its own motor program, in effect motor pro-

grams are triggered by events. If the triggers are defined to occur at minor changes in

dynamical state, say the passage of 10 ms, and the changes of the within-state parame-

ters are small, and if complex forms of f are allowed within a state, then the machine

can be a close approximation of continuous gain scheduling. Similarly, if the functions

f within a state are allowed to be arbitrarily complicated, then the control can be arbi-

trarily close to any non-linear state feedback controller.

The parameters for this controller (thresholds, numbers of states, gains within a

state) are developed by a sequence of optimizations and human decisions: fine-grid tra-

jectory optimization; coarse-grid trajectory definition and optimization; and stabilizing

controller definition and optimization. In the final implementation, the resulting con-

troller had this form (these logical states are shown in figure 5.2):

Hip logical states. The hip has six logical states per two-step cycle, three states for each

step.

a) Double stance. Starts at heel-strike; ends at toe-off. Hip current = 0.

b) Pre-mid swing. Starts at toe-off; ends when stance leg is vertical (mid-stance).

Hip current = constant.

c) Post mid-swing. Starts at mid-stance; ends at heel-strike. When on the nominal

trajectory hip current = 0.

d,e,f) Repeat. The same 3 states are visited again but with the roles of the legs

reversed.
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Inner ankle logical states. The outer ankle has an identical (mirrored) set of states.

There are 6 logical states for a 2-step cycle. Unlike the case for the hip, all 6 logical

states need description because the foot has both stance and swing roles in a two-step

gait cycle.

i) Inner-leg single stance. Starts at outer leg toe-off; ends when outer ankle

reaches, from above, a prescribed height above the floor. Absolute foot angle,

not ankle joint angle, is controlled (with the standard impedance controller, equa-

tion 5.8).

ii) Inner-leg push-off. Starts when the outer (swing) foot is a critical distance

above the ground; ends at outer-leg heel-strike. It is the same controller structure

as inner-leg single stance (above), but with a different target absolute angle and

different compliance (and with damping of zero).

iii) Double-stance after inner-leg single stance. Starts at outer-leg heel-strike;

ends at inner-leg toe-off. Ankle current is zero (and foot tends to lift because of

tensioning spring).

iv) Inner-leg flip-up. Starts at toe-off; ends at mid-stance. A compliant controller

tries to put the foot at its uppermost position (target ankle-joint angle).

v) Inner-leg flip-down. Starts when stance leg is at a critical angle; ends at inner-

leg heel-strike. Compliant controller tries to put foot at a specified absolute angle.

vi) Double stance after heel-strike. Starts at inner-leg heel-strike; ends at outer-

leg toe-off. Compliant control aims for target absolute angle.

Note that the simple command profiles generated by this state machine are far from

those from the optimization (i.e., compare the solid red lines with blue dashed lines in

figure 5.2), but they are close in their net energy cost.
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5.4 Other Results

5.4.1 Optimization validation

To verify and develop our simulation and optimization, we carried out two optimizations

whose solutions we already knew. First, we locked the ankles of the robot, simulated

motion on a shallow ramp, used absolute value of the hip motor work in the TCOT

equation and ran the optimization. The optimization discovered two passive solutions

for different initial guesses consistent with earlier findings [41, 70]. Second, we put

most of the mass in the hips, made the legs light, used the absolute value of mechanical

work done by the ankles and hip in the TCOT equation and ran the optimization. The

optimization discovered classical inverted pendulum walking with impulsive push-off

before heel-strike for reasonable step length and step velocity combinations, consistent

with earlier findings [96, 98]. Please see the appendix D for more details.

5.4.2 Optimal trajectory control solution

In early trials the heel-strike collisions made sounds, due to the large steps that the

optimization requested, that made us fearful of damage. To avoid such large collisions,

the step length was constrained in the fine-grid optimizations to 0.38 m, which, after

optimization, led to a step velocity of 0.64 m/s, and TCOT= 0.167. The fixed costs

accounted for 49% of the TCOT. In this fine-grid simulation, the constant cost per step

associated with flipping the foot in single stance accounted for 23% of the TCOT. The

remaining 28% was used by the hip swing motor (11%) and stance ankle motors (17%).

Thus, almost half of the energy budget is spent powering the electronics and about a

quarter is spent in accelerating and decelerating the swing ankle motors to do flip-up
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and flip-down.

5.4.3 Comparison with alternative optimizations

Our primary optimization is of the total energy budget as estimated by a high-fidelity

model. Traditionally in optimization one of two other proxy objectives are used: 1)
∫

torque2 dt (often, unfortunately, called ‘power’), or 2) Positive mechanical work.

Using the mechanical properties (masses, inertias, geometry) of our robot we can

also optimize the gait using these objectives. Then we can find the currents and actual

energy cost to implement the resulting trajectories.

Minimizing positive mechanical work we find a gait that has a step length of 0.57

m and step velocity of 0.97 m/s and with a TCOT of 0.3, nearly twice the TCOT of the

optimal trajectory based on actual electrical cost.

Minimizing
∫

torque2 dt we find a gait that has a step length of 0.67 m and step

velocity of 1.1 m/s and with a TCOT of 0.23, about 40% greater than the TCOT of the

optimal trajectory used as the basis of our control.

Finally we minimized
∫

I2R dt for the hip and ankle motors, but using our full motor

models (with a brush voltage, load-dependent friction and motor inertia). This mini-

mizes the non-work parts of the actual electrical costs, neglecting the ‘fixed’ overhead

costs. The resulting current profiles yielded a walk with a step length of 0.56 m, a step

velocity of 0.92 m/s and a TCOT of 0.18, surprisingly not much bigger than the 0.167

of our full electrical cost optimization.

That is, all three optimizations yield coordinations that are somewhat reasonable,
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given that at this point in the development of legged robots, robots differ by factors of 10

or more in energy effectiveness. However, once one gets to the margin where a 10 per-

cent improvement is substantial (as for most any commercial machine or transportation

device), the only proxy that is a reasonable substitute for the full energy optimization

we used is
∫

I2R dt, while using the full non-ideal motor and transmission models in the

simulation.
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CHAPTER 6

ENERGY BASED CONTROL OF A 2-D POINT-MASS WALKING MODEL ∗

In this chapter, we present an energy based control of a 2-D point-mass model of

walking. The ideas developed here will be extended to stabilize Ranger’s nominal gait

(see chapter 7).

6.1 Point-mass model of walking ∗

   Massless
   stance leg

Massless
swing leg

Figure 6.1: 2-D point-mass walker. The walker consists of two massless legs of
length ! with a point-mass M at the hip joint. There are two actuators;
an actuator at the hip that controls the step length and an actuator on
the stance leg that can generate an impulsive push-off along the stance
leg.

Figure 6.1 shows a simplistic model of walking. The model has mass-less legs of

length ! and a point-mass M at the hips. Gravity g points down as shown. The model has

two actuators; a hip actuator and a stance leg actuator. As the legs are massless, we as-

sume that the hip actuator can place the swing leg at the desired position instantaneously

fast. The stance leg linear actuator is used to generate an impulsive push-off along the

stance leg. We assume perfect state estimation, no saturation limits on actuators, ignore
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scuffing of the swing leg with the ground, and assume that the grounded leg does not

slip.

6.2 Methods ∗

6.2.1 Nominal and deviated trajectory trajectory ∗

Figure 6.2 shows a typical step for this model. The point-mass model starts in the

upright position or the mid-stance position as shown in (a) with nominal velocity θ̇0.

The model moves passively to state just before heel-strike in (b) with hip velocity θ̇−0 .

Here, the stance leg applies an impulsive push-off P0 just before heel-strike (we assume

that the point-mass does not take-off during the impulsive push-off and this assumption

is justified because the impulsive push-off is immediately followed by heel-strike in (c))

and the hip actuator position the swing leg at the angle 2θ0. Next, in (c) the swing leg

collides with the ground and becomes the new stance leg. The hip velocity after collision

is θ̇+0 . Finally, the new stance leg moves passively to the state (d) where the model ends

up in the upright position or the mid-stance position with a velocity of θ̇0.

Figure 6.3 shows a typical step due to the effect of disturbance. Due to a disturbance,

the point-mass model starts at (a) in the upright position or the mid-stance position with

velocity θ̇d ! θ̇0. The model moves passively to state just before heel-strike in (b) with

hip velocity θ̇−. Here the stance leg actuator applies an impulsive push-off just before

heel-strike and the hip actuator positions the swing leg at the angle 2θ. Next, in (c) the

stance swing leg collides with the ground and becomes the new stance leg. The hip

velocity after collision is θ̇+. Finally, the new stance leg moves passively to the state (d)

where the model ends up in the upright position or the mid-stance position.
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(c) After heel-strike (step n+1) (d) Mid-stance (step n+1)

(a) Mid-stance (step n) (b) Before heel-strike (step n)

Figure 6.2: Nominal gait for the walker. The walker starts in the upright or mid-
stance position in (a). Next, just before heel-strike in (b) the stance
leg applies an impulsive push-off P0 and the hip actuator positions the
swing leg at an angle 2θ0. Next, after heel-strike in (c) the swing leg
becomes the new stance leg. Finally, the walker ends up in the upright
position or mid-stance position on the next step in (d).

The control problem is to use the measurement at mid-stance θ̇d at step n, to decide

a step length 2θ and the impulsive push-off P just before heel-strike to end up with the

nominal velocity θ̇0 at the next mid-stance at step n+1.

Equations of motion. Here we present equations of motion for the deviated trajectory

(see figure 6.3) and later use these to derive a stabilizing controller.

82



(c) After heel-strike (step n+1) (d) Mid-stance (step n+1)

(a) Mid-stance (step n) (b) Before heel-strike (step n)

Figure 6.3: Effect of disturbance. Due to a disturbance, the point-mass model
starts in the upright position or the mid-stance position with velocity
θ̇d in (a). Next, just before heel-strike in (b) the stance leg applies an
impulsive push-off P and the hip actuator positions the swing leg at
an angle 2θ. Next, after heel-strike in (c) the swing leg becomes the
new stance leg. Finally, the walker ends up in the upright position or
mid-stance position on the next step in (d). The control problem is to
use the measurement θ̇d and to control the impulse P and step length
2θ to end up with the nominal velocity θ̇0 at the next mid-stance

Mid-stance position at step n (a) to instance before heel-strike at step n (b). Let

the mid-stance velocity at step n be θ̇d. We non-dimensionalize time with
√
!/g here.

The non-dimensional kinetic energy Ed corresponding to this velocity is given by Ed =

0.5(θ̇d)2. Let the step angle be 2θ and the velocity just before heel-strike be θ̇−. Using
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conservation of energy and from figure 6.3 (a) - (b) we have,

Ed =
(θ̇d)2

2
=

(θ̇−)2

2
+ cos θ − 1⇒ θ̇− =

√
2(Ed + 1 − cos θ) (6.1)

Instance before heel-strike at step n (b) to instance after heel-strike at step n+1 (c).

In order to relate angular velocities before heel-strike θ̇− to that after heel-strike θ̇+, we

do an angular momentum balance about the impending collision point. For the non-

dimensional impulsive push-off P (impulse is non-dimensionalized with M
√

g!) before

or after heel-strike we have from figure 6.3 (b) - (c),

θ̇+ = P sin 2θ + θ̇− cos 2θ (6.2)

Instance after heel-strike at step n+1 (c) to mid-stance position at step n+1 (d).

Let the mid-stance velocity on step n+1 be θ̇0. The kinetic energy associated with this

mid-stance velocity is given by E0 = 0.5(θ̇0)2. Using conservation of energy we can

relate the angular velocity after heel-strike (θ̇+) with the angular velocity at mid-stance.

From figure 6.3 (c) - (d) we have,

(θ̇+)2

2
+ cos θ − 1 =

(θ̇0)2

2
= E0 ⇒ θ̇+ =

√
2(E0 + 1 − cos θ) (6.3)

Relating energy from mid-stance position at step n to energy at mid-stance position

at step n+1. To relate the energy at mid-stance at step n with that at mid-stance at step

n+1, we put equation 6.1 and 6.3 in equation 6.2 and solve for E0,

E0 = f (Ed, θ, P) = 0.5
(
P sin 2θ +

√
2(Ed + 1 − cos θ) cos 2θ

)2 − (1 − cos θ) (6.4)

In the next section we present the control problem and its solution based on equation

6.4.
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6.2.2 The control problem and its solution ∗

We want to regulate the mid-stance velocity at any step to its nominal value θ̇0 and

subsequently the kinetic energy E0 = 0.5θ̇20. Consider figure 6.3a where the mid-stance

velocity is θ̇d ! θ̇0. From equation 6.4 we see that using a combination of push-off

impulse P and the step length 2θ it is possible to modulate the angular velocity and

subsequently the kinetic energy on the subsequent step as shown in figure 6.3d. That is,

we try to drive the system to its nominal value in one step. This kind of full correction of

deviations is called a dead-beat control (see [1] page 201). We call this type of control

as a one-step dead-beat control.

6.3 Results ∗

6.3.1 Nominal gait ∗

The nominal gait is characterized by a nominal step length 2θ0, nominal mid-stance

velocity θ̇0, and a nominal impulsive push-off P0. To calculate the nominal impulse, we

put Ed = E0, P = P0, and θ = θ0 in equation 6.4 and solve for impulse P0,

P0 =
√

2 [E0 + 1 − cos(θ0)] tan(θ0) (6.5)

We present results for a step length of 2θ0 = 0.4 and mid-stance velocity of θ̇0 = 0.2

(Note that this corresponds to a step length of about 0.4 m and mid-stance velocity

of 0.64 m/s for Ranger). Solving for nominal impulse using equation 6.5 gives, P0 =

0.0573.
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Figure 6.4: Push-off control and step length control considered separately to
do a one-step dead-beat control. Push-off control with step length
maintained at the nominal value (blue dashed line). Push-off control
works best to inject energy into the system and is evident from the
fact that there are no solution in the high disturbance energy range.
Step length control with push-offmaintained at the nominal value (red
solid line). Step length control works best to extract energy out of the
system and is evident from the fact that there are no solution in low
disturbance energy range.

6.3.2 Push-off control ∗

In the push-off control, we maintain the step length at 2θ0 and given the disturbance

kinetic energy Ed, we try to solve for a push-off impulse P using equation 6.4 to get

back to the nominal velocity θ̇0 and hence nominal kinetic energy E0 at the next step.

E0 = f (Ed, θ0, P) = 0.5
(
P sin 2θ0 +

√
2(Ed + 1 − cos θ0) cos 2θ0

)2 − (1 − cos θ0) (6.6)

Figure 6.4 (blue dashed line) gives the non-dimensional impulse P (holding the step

length at 2θ0) needed to get back to the nominal energy E0 from the disturbance charac-

terized by the energy Ed. We are able to find an impulse for all energy ranges, Ed < E0.
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However, we are not able to find an impulse solution for certain ranges Ed > E0 as

shown in the figure. Note that we do not allow for negative impulse which correspond

to suction from the ground. Thus the push-off control works best to inject energy in to

the system.

6.3.3 Step-length control ∗

In the step-length control, we maintain the push-off at P0 and given the disturbance

kinetic energy Ed, we try to solve for the step length 2θ using equation 6.4 to get back

to the nominal velocity θ̇0 and hence nominal kinetic energy E0 at the next step. Thus

from equation 6.4 we get,

E0 = f (Ed, θ, P0) = 0.5
(
P0 sin 2θ +

√
2(Ed + 1 − cos θ) cos 2θ

)2 − (1 − cos θ) (6.7)

Figure 6.4 (red solid line) gives the step length θ (holding the push-off impulse at P0)

needed to get back to the nominal energy E0 from the disturbance characterized by the

energy Ed. We are able to find a step length for all energy ranges, Ed > E0. However,

we are not able to find a step length for certain ranges Ed < E0 as shown in the figure.

Thus the step length control works best to extract energy out of the system.

6.3.4 Two one-sided controllers: switching between push-off control

and step-length control in different energy regimes ∗

Informed by the result above we note that the push-off control works best to inject

energy in to the system and the step length control works best to extract energy out of

the system. Hence, we propose two one-sided controllers that cover the entire range of
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Figure 6.5: Two one-sided controllers to do a one-step dead-beat control. If
the energy of the system is less than the nominal energy than a push-
off control is used to inject energy into the system (blue dashed line).
If the energy of the system is more than the nominal energy than a step
length control is used to extract the excess energy from the system (red
solid line). Such a controller works on the entire range of disturbances
that we have considered here.

disturbance energies Ed we considered here. If the kinetic energy of the system is less

than the nominal energy i.e. Ed < E0, we use a push-off control. If the kinetic energy of

the system is more than the nominal energy i.e. Ed > E0, we use the step length control.

Control using this form of the two one-sided controllers is shown in figure 6.5.
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CHAPTER 7

STABILIZING CONTROLLER

The nominal trajectory generated by simplified control representation presented in

chapter 5 in section 5.3 is not stable. In this chapter, we apply our event-based, discrete,

intermittent, feed-forward controller to stabilize Ranger’s nominal trajectory.

The flow of this chapter is as follows. First, we present an intuitive control scheme

for stabilizing Ranger’s nominal gait. The scheme is based on the energy-based control

idea presented in chapter 6. We noted in section 7.1 that for successful application of

our stabilizing controller it is important to properly select the four key quantities; the

section or instance of time to collect sensor data, the measurements to be made, the

output variables to regulate, and type of control actions to take. So next, we identify

the four key quantities for the control scheme. Finally, using the linearization about the

nominal trajectory and using a discrete linear quadratic regulator (DLQR) we implement

our stabilizing controller on Ranger.

7.1 The control heuristic behind stabilization

The key heuristic idea behind stabilization was presented for a point-mass model of

walking in chapter 6. Here, we adapt this idea to stabilize Ranger’s nominal trajectory.

Mid-stance dynamic state evaluation. The angular speed of the stance leg at mid-

stance is key for evaluating stability: the robot has to make it to that point at a positive,

but not-too-fast, speed. It is also a good time for state estimation because it is not

near in time to collisional vibrations which contaminate the dynamic-state estimation.

Thus we use that ‘mid-stance’ time as a key time for evaluating the dynamical state.
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This contrasts with typical numerical simulations of passive-dynamic robots that take

(Poincaré) sections just before or just after heel-strike, an apparently natural transition

time. The top-dead-center (mid-stance) position is sufficiently useful, however, that it is

worth introducing an artificial logical-state boundary there.

How can the robot can fall down? Given that we do all we can to preclude tripping

with our foot-lifting plan, the only possible falls are falling forwards and falling back-

wards. Because leg-swing speed is limited, if the robot is going too fast the foot will not

swing forwards enough and the robot will fall forwards. On the other hand, if the robot

is going too slowly the stance leg will not make it over the top-dead-center position and

it will fall backwards. Thus the essential control needs to get the center-of-mass through

the top-dead-center position at a positive speed close to nominal. It must speed up or

slow down the walking, as needed, to keep this top-dead-center speed positive but slow.

Push-off and step-length regulation. There are two main ways to regulate the overall

center-of-mass speed. One is regulation of the ankle push-off: the size and timing of the

push-off affect the robot speed (bigger push-off leads to bigger speed of the next step).

The other is by changing step length (increasing step length decreases speed of the next

step). For simple walking models, it is known that the energy lost during heel-strike

collision scales with the square of step length at a given forward speed [40, 41, 61, 92,

96]. Increasing the step length increases collisional loss and slows the robot. No other

motor actions (leg swinging, foot motions) have a significant effect on robot speed.

However, push-off control and step length control each have limitations. To decrease

speed, push-off can only be decreased to zero. Thus push-off regulation has limited

effectiveness for slowing the robot. On the other hand, decreasing the step length is

also bounded in effectiveness because the minimum step length is zero. And, more
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practically, the step time has to be long enough for the foot to flip up and flip down, so

very short steps are not possible.

To circumvent these limitations we use each mode where it is most effective. If the

robot is going too fast we use increased step length to slow the robot. If it is going too

slow we use increased push-off to increase speed. In this way, we expect our quasi-linear

controller to have a larger controllable region.

7.2 Design of two one-sided controllers

To implement this intuitive control scheme with our feedback control framework (see

chapter 2, section 2.2), we need to decide the four key variables; a suitable section or

instance of time to take measurements (n), measurements (xn), output variables to be

regulated (zn) and nature of controls actions (Un). We choose our measurement section

n, as the instance of time when the stance leg is vertical, henceforth called as the mid-

stance position. At the mid-stance position we measure the stance leg rate xsr, hip angle

xha and hip rate xhr, i.e. x = [xsr xha xhr]′. We select different outputs zn and control

actions Un depending on the controller used and is discussed next.

7.2.1 Regulate fast speeds using step length control

If the robot’s mid-stance velocity is greater than the nominal, we alter the foot placement

while maintaining the nominal push-off. We try to regulate the stance leg angular rate

zlr at the next midstance as well as the falling rate zar of the foot just before the next

heel-strike (to prevent mis-timing the next push-off). Thus the regulated variables are

z f = [zlr zar]′.
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Relative to the nominal trajectory we have

δxn+1 = A fδxn + B fδU f
n (7.1)

δz f
n+1 = C fδxn + C fδU f

n (7.2)

Using DLQR cost given in equation 2.5 and equations 7.1 and 7.2 we set up a

DLQR problem for determining the 2×3 gain matrix K, which permits calculation

of the U values from the x values (equation 2.6). In the DLQR we use the weights

R f
zz = diag{1/σ2

sr, 1/σ2
lr} and R f

UU = ρhipdiag{1, 1}, where σar = 0.2 is a user-selected

characteristic foot falling rate deviation, σlr = 0.2 is the user-selected characteristic de-

viation in the leg rate (both in consistent units), and ρhip = 0.5 weights the effort by the

hip actuators.

7.2.2 Regulate slow speeds using push-off control

If the robot’s mid-stance velocity is less than the nominal then we increase push-off

while maintaining the same step length. So we try to regulate, back to nominal, the

values of three dynamic state variables: the stance leg-rate zlr at the next step, the down-

ward velocity zar of the ankle just before the next heel-strike, and the step length zsl at

heel-strike. These three quantities zs = [zlr zar zsl]′ are affected by three actions: two

constant-in-time hip torques and the reference angle of the proportional-derivate control

on the foot during push-off. The discrete linear equations have the standard form:

δxn+1 = Asδxn + BsδUs
n (7.3)

δzs
n+1 = Csδxn + DsδUs

n. (7.4)

Again using DLQR cost given in equation 2.5 and equations 7.3 and 7.4 we

set up a DLQR problem to determine a 3×3 gain matrix K. We choose Rs
zz =
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diag{1/σ2
sr, 1/σ2

ar, 1/σ2
sl} and Rs

UU = diag{ρhip, ρhip, ρankle}, where σsr = 0.2 is the user-

specified characteristic stance leg angular rate, σar = 0.2 is the characteristic falling

rate of the foot just before heel-strike, σsl = 0.2 is the characteristic step length, and

ρhip = 0.5 weights the hip actuator effort relative to the deviation of outputs while

ρankle = 2 weights the feet actuators efforts relative to the deviation of the output vari-

ables.

In summary, the stabilizing (discrete trajectory tracking) controller has 15 gains. Six

for ‘too fast’ (two actuations × three sensors) and nine for ‘too slow’ (three actuations

× three sensors).

7.3 Results

7.3.1 Robustness ∗

Figure 7.1 and 7.2 show the effect of perturbing the robot from its nominal trajectory in

simulation.

We applied a pushing disturbance (see figure 7.1) to the robot just before mid-stance

(note that we measure the robot state at mid-stance). The push caused the robot’s mid-

stance velocity to increase by 50 % from its nominal value. The robot recovers from the

push in about 2 steps by taking bigger than nominal steps while maintaining the nominal

push-off.

We applied a pulling disturbance (see figure 7.2) to the robot just before mid-stance

(note that we measure the robot state at mid-stance). The pull caused the robot’s mid-

stance velocity to decrease by 50% from its nominal value. The robot recovers from
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the pull in about 4 steps by increasing the ankle push-off from its nominal value while

maintaining the nominal step length.
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Figure 7.1: Recovering from pushes. At the 0th step the mid-stance velocity is
increased by 50% by a pushing disturbance. The robot is back on the
nominal trajectory in about 2 steps.

7.3.2 Implementation on the physical robot

The robot control was based on approximating (coarse-grid optimization) the fine-grid

optimization of total energy use (see chapter 5, section 5.3). We tried implementing the

coarse-grid control representation on the physical robot. Unsurprisingly we found that

in this nearly open-loop mode the robot could not walk reliably; it always fell down

in a few steps. A look at the sensor outputs revealed that the outer legs swung slower

than the inner ones. This was confirmed by further physical measurements that showed

that the outer legs have a higher moment of inertia than the inner legs. Note that the

same commands are given to the outer and inner legs. The result was that the outer legs
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Figure 7.2: Recovering from pulls. At the 0 th step the mid-stance velocity is
decreased by 50% a pulling disturbance. The robot is back on the
nominal trajectory in about 4 steps

did not swing fast enough to break the forward fall of the robot. Next, we switched

our discrete intermittent feedback controller on and tried walking the robot. The feed-

back controller compensated for the slow speed of the outer hips and the robot realized

successful walking.

Figure 7.3 compares the joint angle, motor current and motor power predicted by the

open loop coarse grid optimization (solid blue) with those obtained on the physical robot

with feedback (red dashed). The spikes in figure d and g are from the feedback controller

compensating for the robot asymmetry. Of course, we could have tried to learn this or

precompensate, but we chose to let the feedback control do what it is supposed to do,

compensate for errors, including model errors.

The robot’s total power of 10.7 W was used by sensors, processors and communica-

tions (49%), motor dissipation (30%) and positive mechanical work (21%). In this final
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implementation the TCOT was 0.19 (compared to a human’s TCOT of about 0.3) or,

subtracting the electrical overhead, the COT was 0.1 (compared to a COT for humans

of about 0.2 if the resting metabolic costs are subtracted). Ranger’s mechanical cost

of transport, based on positive motor work, was MCOT = 0.04 (compared to MCOT

≈ 0.05 for the Collins robot and for humans). For comparison, recall that the TCOT of

most other legged robots is well over 1, at least 3 times more.

7.3.3 Comparison between fine-grid simulation, coarse-grid simu-

lation, and experiment

Table 7.1 lists the various gait parameters and energetics for the fine-grid trajectory

control problem, the coarse-grid control representation and the experimental robot data.

Gait Parameter Fine-grid Coarse-grid Experiment
Total COT 0.167 0.180 0.190
Motor COT 0.087 0.100 0.110

Overhead COT 0.083 0.080 0.080
Hip COT 0.019 0.018 0.030

Ankle COT (push-off) 0.029 0.052 0.046
Ankle COT (foot-flip) 0.039 0.029 0.034

Step Length 0.38 0.39 0.38
Step Velocity 0.64 0.66 0.62

Step Time 0.60 0.60 0.61
Double Stance (% of cycle) 9.5 5.0 3.0

Number of Control Parameters 126 15 30

Table 7.1: Comparisons between fine-grid optimization, coarse-grid control
optimization and experiment (mean values). The energetics, con-
trols and gait parameters.

The energetic cost of control. We see that in going from the optimal trajectory control

of a simulated robot to our coarse-grid control with stabilizing control of a physical
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robot, we have reduced the parameters from 126 to 30 and added gait reliability, but

at the cost of increasing the TCOT from 0.167 to 0.19, a 14% increase. That is, the

incremental cost of simplifying the trajectory description over the fine-grid calculated

trajectory was about 8%, as calculated in simulation. The cost of stabilization was about

6%, as calculated by comparing the physical robot with the simulation. The latter is

a less reliable estimate because it also includes modeling errors. Nonetheless, for this

simple walking task the energetic cost of simplifying the controller is small. And the

energetic cost of adding stability seems to be not far from the theoretical prediction that

stability (in the absence of disturbances) should have no cost.

The TCOT of the physical robot of 0.19 makes our robot probably a little more

energy-effective than the Collins walker, which had a measured TCOT of about 0.2.

Robustness. One issue noted in testing resulted in a change in our description of the

swing-foot logical-state transition. The fine-grid optimization is always time-based. In

the conversion to the coarse-grid optimization we thus had a parameter for the time

when push-off should start. From theory we know that the timing of push-off has a

huge effect; a factor of 4 difference in simple models, depending on the exact timing

[62, 92]. Thus we originally used as a trigger the time until the extrapolated time of

heel-strike (based on velocity and height of the foot). Because the optimal gait had a

nearly grazing collision, on the robot this led to a high sensitivity to sensor errors and

to ground height fluctuations; a small ground-height change would substantially change

the time of push-off relative to heel-strike and thus dramatically affect the speed of the

next step. Thus to increase the robustness we changed the push-off transition to be at a

critical height of the swing foot. When this was given as a parameter to the optimization

the optimization chose a gait with swing-leg retraction prior to heel-strike and thus a

higher vertical velocity of the swing foot before heel-strike. Note that this robustness

97



from leg retraction is unrelated to the stability that leg retraction can provide in open

loop control, as in [94, 110].

The final machine was robust enough to work reliably on a running track where the

maximum slopes were about 1◦ and maximum step-to-step variation was a few mm, but

not much more.
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Figure 7.3: Comparing forward simulation of the robot with experimental
data for the same controller. The simulation (solid blue) is periodic,
the data (dashed red) is not. The biggest discrepancies are the spikes
in hip current and hip power. These are from the stabilizing controller
attempting to compensate for differences between model and machine.
The horizontal offsets visible above are because the step period of the
machine does not exactly match the period of the model.
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7.3.4 Long distance walking record

The broad goal of the Ranger project [12] is to develop a reliable robot capable of

walking long distances on minimal amounts of energy. We set ourselves the goal of

making Ranger walk a marathon distance of 26.2 miles or 42.2 kilometers, without

falling down, without stopping, and without recharging.

The feat of walking a marathon was achieved in stages. Ranger was built in the fall

of 2006 [58]. In December 2006, it walked 1 km or 0.6 mi non-stop with a TCOT of 1.6

[9], setting a legged distance record then. Further improvements in the hardware and

walking controller led to longer walks. In April 2008, it walked 9 km or 5.6 mi with a

TCOT of 0.6 [10]. In July 2010, it walked 23 km or 14.3 mi with a TCOT of 0.49 [11].

On 1-2 May 2011, before we had implemented all steps of the optimization in the

energy-effective controller presented earlier in this paper, Ranger walked 40.5 miles or

65 kilometers, non-stop, and on a single battery charge (beating BigDog’s record of

12.6 mi set in 2008 by more than a factor of 3). Ranger took 186,076 steps at a leisurely

pace of 2.12 kilometers per hour or 1.32 miles per hour to set this distance record. The

total energy consumption for Ranger for this walk was 493 watt-hours1. For this ultra-

marathon Ranger had a TCOT of 0.28. As noted, this was later reduced to TCOT =

0.19. Thus, we believe Ranger could now walk (0.28/0.19)*65 km = 95 km on a single

charge, well over two full marathons.

1Electricity costs 11.2 cents per kilo-watt-hour in United States for the year 2011. Ranger’s 493 watt-
hours of battery charge can be bought for only 5.5 cents (0.493 × 11.2 = 0.55) in the United States.
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Figure 7.4: Ranger’s ultra-marathon walk. On 1-2 May 2011 [12], Ranger
walked non-stop for 40.5 miles (65 km) on Cornell’s Barton Hall track
without recharging or being touched by a human. Some of the crew
that worked on Ranger are shown walking behind Ranger during the
65 km walk. Basic data are in the table below.

Total steps 186,076
Total time 110,942 s (= 30 hrs 49 min 2 sec)
Number of laps 307.75
Lap distance 212 m (= 0.132 miles)
Total distance 65,243 m (= 65.24 km = 40.54 mi)
Average time per step 0.6 s
Average distance per step 0.35 m (= 13.78 in)
Average speed 0.59 m/s (= 2.12 km/h = 1.32 mph)
Total power 16 W
Power used by motors 11.3 W
Power used by computers and sensors 4.7 W
Total energy used 493 watt-hours
Battery 25.9 V Li-ion
Total robot mass 9.91 kg (= 21.85 lb)
Battery mass 2.8 kg (= 6.3 lb)
Total cost of transport (TCOT) 0.28 (later lowered to 0.19)

Table 7.2: Statistics of Ranger’s 40.5 mile ultra-marathon walk on 1-2 May
2011.
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CHAPTER 8

CONCLUDING REMARKS

8.1 Thesis summary ∗

This thesis presented a model based control design framework for bipedal robots that

combines energy efficiency with stability and demonstrated its application on the custom

built bipedal robot called the Ranger.

First in chapter 2, we give a peek at our control design algorithm that starts with

a hi-fidelity robot model, and proceeds with a trajectory generator to get the nominal

gait and finally a stabilizing controller that stabilizes the nominal gait. We applied our

stabilizing controller idea to balance of a simple inverted pendulum with a controller

bandwidth slower than the characteristic time scale of the system.

In chapter 3, we presented a model for the robot and its actuators. In chapter 4,

we presented bench experiments that helped fit the parameters of the assumed model.

In particular, we found that the simple ideal DC motor description inadequate. The

motor brush resistance was almost twice than what was reported by the manufacturer

and there was substantial brush-commutator contact resistance. The gear-box had a

load dependent friction which we approximated as a current dependent friction.

In chapter 5, we formulated an energy-optimal trajectory control problem. Our en-

ergy metric was the total cost of transport (TCOT) and is defined as the energy used per

weight per unit distance travelled. We decoupled the motion of the foot of the swinging

leg in single stance phase (that does the ground clearance) from the rest of the walk.

These helped us write the TCOT as a sum of COT to power the computers and others

electronics, COT for foot-flip and COT for walking. We considered minimization of
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the various COT’s as a function of step length and step velocity. The COT to run the

computers and electronics is step velocity dependent and favors fast speeds. The COT

for foot-flip is step length dependent and favors big steps. The COT for walking has a

strong step time dependence and favors walking at the natural frequency of the swing

legs. After summing the COT we found that minimum TCOT is 0.163 (Total Watts =

10.2) and occurs at a step length of 0.48 m and step velocity of 0.77 m/s. In the optimal

solution, 49 % of the energy goes to power the computer and electronics, 23% is used

to do the foot-flip for ground clearance and the rest 28 % is used in taking a step.

Next, we turn to implementation on the robot. In the later half of chapter 5, we

re-parameterized the optimal solution with the goal of simplifying the control represen-

tation. Our approximate representation yields the nominal trajectory and reduces the

original 126 parameters in the fine grid solution to about 15 parameters while increasing

the cost by about 7%. In order to stabilize the nominal trajectory, we first motivated an

energy based control of a 2-D point-mass model of walking in chapter 6. The central

idea here is that we are interested in regulating the kinetic energy of the robot’s center of

mass in the upright position. We identify two means of doing so; using an ankle push-

off control and using step length control. Further analysis reveals that ankle push-off

control works best to regulate slow walking while step length works best to regulate fast

walking.

Using the approximate coarse-grid controller representation (chapter 5) and the sta-

bilizing control ideas (chapter 6), we implement the simulation based controller on the

biped platform Ranger. We show that using our control framework Ranger walks sta-

bly with a TCOT of 0.19 (about 14 % more than the fine grid optimal solution), more

energy-efficient than any legged robot built-to-date. Also, using a slightly less energy-

efficient version of approximate controller than the one presented here, Ranger walked
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non-stop for 40.5 miles or 65 km on a single battery charge, setting a legged robot dis-

tance record.

8.2 Discussion and conclusion

Our overall design and control approach can be summarized as this:

• Design and build a modelable robot. This precludes flat feet, which can have inde-

terminate collisions, and high-gain control, which can excite poorly characterized

vibration modes. Similarly, friction and play need to be minimized, as both are

hard to model.

• Make and verify a high-fidelity simulation. This requires that all robot parts be

well-characterized, particularly the motors and transmissions, and checking a sim-

ulated walking cycle with a real walking cycle.

• Make a fine-grid trajectory optimization (in our case, minimizing TCOT). This

optimization includes some events necessitated by discontinuities in the model

description (when contacts are made or broken).

• Pull out features of the fine-grid optimization to define a coarse-grid parameteri-

zation of the trajectories. The discretization of the coarse-grid description defines

new events and new logical states. Then, offline, use this coarse-grid description

for a new trajectory optimization. Tune the description to minimize complexity

and maximize closeness of the objective to the fine-grid objective.

• Define a plausible reflex-based (discrete) controller with a manageably small

number of free parameters. These measure the dynamical state at logical state

transitions and use the values to adjust the parameters in the motor program in
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the next logical state. Tune the free parameters of the feedback, in simulation, to

maximize simplicity and minimize gains and errors as desired, using, e.g., DLQR.

• Implement the controller on the robot, comparing simulation with experiment so

as to check for physical machine, simulation or optimization problems.

In this list, there is no part that we believe is novel. The benefit of this approach to

discrete (reflex) control, as summarized above is, that it allows:

• Low gains are possible because extended time is available to make corrections.

High gains demand higher machine stiffness to prevent excitation of control os-

cillations or higher vibration modes.

• Use of a manageably low number of parameters in the trajectory and stabilizing

control, with a small resultant energy penalty (compared to the best physically

obtainable optimal-energy gait).

• Ability to be progressively refined so as to better approximate full state feedback

control.

While we made a machine that was reliable for its purpose, the biggest defect in the

approach, as implemented so far, is that it has no means of systematically maximizing

the sizes of allowable disturbances and modeling errors.

Three uses of events. Discrete events have been used for three purposes in the con-

troller design. First, the fine-grid optimization needs to change its form when the gov-

erning equations change form. This occurs when contacts are made or broken. Second,

the coarse-grid optimization introduces new logical state transitions (at the grid points)

and new logical states (between grid points). Finally, the discrete feedback uses the
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same transitions (same events) as the coarse-grid optimization does, and then uses the

dynamical state at that time to adjust the parameters used during the time span of the

next logical state.

Four kinds of feedback. We think of the primary stabilizing feedback as the adjust-

ment to parameters at state transitions. However, in reality there are three other forms of

feedback. First, having sensor-based state transitions of any kind is a form of feedback.

Second, within each logical state the motors are run by simple continuous-time (ap-

proximately, actually a 2 kHz digital control) compliant controllers. Third, each motor

has an inner feedback loop, constantly adjusting the PWM signal to impose a specified

motor current.

Extensions and improvements. Ways to make the robot better include using more

efficient electronics and adding knees so that energy can be saved using the natural

dynamics to provide foot clearance. Although this machine was designed to walk well, it

should also be capable of some other simple behaviors (e.g., starting, stopping, walking

backwards, balancing on two feet) and higher (meta) states for different behaviors (to

switch between, say, walking forwards and backwards). While we had relative success

with brushed DC motors, a major modeling issue was the brush contact resistance; the

issue would be eliminated by using brushless motors. This would also improve motor

efficiency.

Most importantly, the control approach also can be further developed. There are

several steps in our controller design that depended on human insight. Some of these

could be automated. These include the selection of the coarse-grid parameterization

and the architecture of the discrete stabilizing controller. Because the overall control

architecture is perhaps more appropriate to motor control than, say, a more general neu-
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ral network, it may thus be more manageable (i.e., require fewer free parameters for a

given quality of control) for optimization in simulation or for offline or online learning.

Though the system we have is reliable in a limited context, we have yet to determine

how robust it can be made to disturbances and terrain variation.
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APPENDIX A

NOTATION AND EQUATIONS OF MOTION

In this chapter we describe our notation and followed by derivation of the equations of

motion.

A.1 Notation

Variables used in this appendix are listed here, some with respect to the side-view robot

schematic figure A.1. The main internal degrees of freedom are the hinges at the ankles

(A1, A2) and hip (H). Because the ankle drive cables are elastic, the motors at A∗1 and

A∗2 add two additional internal degrees of freedom.

Robot parameters

Symbol Value Parameter description

! 0.96 m Leg length.

r 0.2 m Foot radius.

d 0.11 m Ankle eccentricity.

w 0 Fore-aft distance of COM.

c 0.15 m Distance of COM from hip along the leg.

kh 7.6 N m/rad Hip Spring constant.

ks 14 N m/rad Ankle Spring constant.

J! 0.45 kg m2 Inertia of legs about COM.

Jhip 0.55 kg m2 Inertia of legs about hip hinge.

m 4.96 kg Mass of a leg.
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Mtot 9.91 kg Total robot mass.

g 9.81m/s2 Gravitational constant.

γ 0 Ground slope (positive value is downhill).

C1FW 0.05 N s/m Coefficient of viscous friction between ground and stance leg.

C2FW 0.05 N s/m Coefficient of viscous friction between ground and trailing leg...

in double stance.

Motor parameters

Symbol Value Parameter description

GH 66 Hip gear ratio.

GA 34 Ankle gear ratio.

K 0.018 N m/AMotor torque constant.

R 1.3 Ω Motor terminal resistance.

Vc 0.7 V Contact voltage of the brush-commutator interface.

Jm 0.002 kg m2 Motor inertia.

µH 0.1 Coefficient of current dependent constant friction: hip motor.

µA 0.1 Coefficient of current dependent constant friction: ankle motor.

CH1 0.01 N s/m Coefficient of viscous friction: hip motor.

CH0 0.1 N Coefficient of constant friction: hip motor.

CA1 0.01 N s/m Coefficient of viscous friction: ankle motor.

CA0 0.1 N Coefficient of constant friction: ankle motor.

Pfixed 5.15 W Power used by microprocessors, sensors and motor controller.
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Other variables

Symbol Variable description

t time.

q1, r1 absolute angle made of stance foot wrt. vertical after and before heelstrike.

q2, r2 relative angle between stance foot and stance leg after and before heelstrike.

q3, r3 relative angle between legs; also hip angle after and before heelstrike.

q4, r4 relative angle between swing foot and swing leg after and before heelstrike.

q2m, q4m motor angles at points A$1 and A$2 after heel-strike respectively.

r2m, r4m motor angles at points A$1 and A$2 before heel-strike respectively.

x, y world reference frame, x in walking direction and y is against gravity.

xh, yh x and y co-ordinate of the hip joint respectively.

Ii Motor current. i = 2, 3, 4 at the points A$1 , H and A$2 respectively.

dstep Step length.

tstep Step time.

vstep Step velocity.

M Mass at the hip (for benchmarks in appendices B and D).

E Energy.

P Power.

Ni Number of grid points, i = ss (single stance) or i = ds (double stance).

χ Robot state vector and includes angles and angular rates.

T1FW Torque between ground and stance foot. (T1FW = −C1FWq̇1).

T2FW Torque between ground and trailing stance foot in double stance...

(T2FW = −C2FW(q̇1 + q̇2 − q̇3 − q̇4)).

T3 Hip Motor Output Torque (= GHKI3 − T f H(I3, q̇3))

T f H(I3, q̇3) Hip Motor Friction Torque (= µHsgn(q̇3)GHK|I3| +CH1q̇3 +CH0sgn(q̇3)).

T f A(Ii, q̇im) Ankle Motor Friction Torque ...

109



(= µAsgn(q̇im)GAK|Ii| +CA1q̇im +CA0sgn(q̇im)) where i = 2, 4.

T2S Ankle Spring Torque (T2S = ks(q2m − q2)).

T3S Hip Spring Torque (T3S = khq3).

T4S Ankle Spring Torque (T4S = ks(q4m − q4)).

F2S , F ′2S Tensional force in the ankle cables at joint associated with dof. q2.

F4S , F ′4S Tensional force in the ankle cables at joint associated with dof. q4.

Hi, Vi Horizontal and vertical reaction forces respectively at joint i.

H$i , V$i Horizontal and vertical impulse respectively at joint i.
→
g gravity vector (= g sin(γ)ı̂ − g cos(γ) ̂).
→
ω1 Absolute angular velocity of G1 after heelstrike (ω1 = q̇1 + q̇2).
→
ω2 Absolute angular velocity of G2 after heelstrike (ω2 = q̇1 + q̇2 − q̇3).
→
ω′1 Absolute angular velocity of G1 before heelstrike (ω′1 = ṙ1 + ṙ2).
→
ω′2 Absolute angular velocity of G2 before heelstrike (ω′2 = ṙ1 + ṙ2 − ṙ3).
→
α1 Absolute angular acceleration of G1, the stance leg (α1 = q̈1 + q̈2).
→
α2 Absolute angular acceleration of G2, the swing leg (α2 = q̈1 + q̈2 − q̈3).
→
v H Velocity of point H after heelstrike, (= ẋhı̂ + ẏh ̂).
→
v H′ Velocity of point H before heelstrike, (= ẋh′ ı̂ + ẏh′ ̂).
→
aH Acceleration of point H (= ẍhı̂ + ÿh ̂).
→
vG1 Velocity of point G1 after heelstrike (=

→
v H +

→
ω1 ×

→
r G1/H).

→
vG′1 Velocity of point G1 before heelstrike (=

→
v H′ +

→
ω
′
1 ×

→
r G′1/H

′).
→
aG1 Acceleration of point G1 (=

→
aH −ω2

1
→
r G1/H +

→
α1 ×

→
r G1/H).

→
aG2 Acceleration of point G2 (=

→
aH −ω2

2
→
r G2/H +

→
α2 ×

→
r G2/H).

→
vG2 Velocity of point G2 after heelstrike (=

→
v H +

→
ω2 ×

→
r G2/H).

→
vG′2 Velocity of point G2 before heelstrike (=

→
v H′ +

→
ω
′
2 ×

→
r G′2/H

′).
→
r H/P1 Position vector from point P1 to point H and so on.
→
P Force on the trailing foot from ground in double stance (= Px ı̂ + Py ̂).
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→
P$ Impulse on the trailing foot from ground in double stance (= P$x ı̂ + P$y ̂).
→
H/P1 Angular momentum about point P1 and so on.
→̇
H/P1 Rate of change of angular momentum about point P1 and so on.
→
M/P1 External angular moment about point P1 and so on.

|.| Absolute value function (|x| = x for x > 0 and |x| < −x for x ≤ 0).

[.]+ Ramp function ([x]+ = x for x > 0 and [x]+ = 0 for x ≤ 0).

sgn(.) Signum function (sgn(x) = x/|x|).

A.2 Equations of motion

The robot model is described in chapter 3, section 3.2 and shown in figure 3.1 therein.

The dimensions are shown in figure A.1. Reference frames and angles are shown in

figure A.2.

Coordinates. During double stance we can write the co-ordinates of the hip xh, yh,

using the fixed (Newtonian) coordinate system xy in two ways (see figure A.2): 1)

using the path OP1A1H, and 2) using the path OP2A2H. We thus have two kinematic

restrictions (constraints) on the joint angles (q2, q3 and q4), the absolute angle of the
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Figure A.1: Robot dimensions and feet geometry. The feet bottoms are roughly
circular arcs with radius r. The ankle joints A1 and A2 are offset from
the center of circle by the distance d. As dictated by the geometry
of circles the contact points P1 and P2 are always directly below the
center of the circles C1 and C2, respectively, in level-ground walking.
There is one foot configuration in which the ankle joint lies on the
line joining the center of the circle and the contact point. For vertical
ground forces this is a natural equilibrium position for the feet; it takes
no ankle torque to hold the foot in this position. The contact point is
then that part of the foot circular arc that is closest to the ankle. We
call this point on the foot the ‘sweet-spot’. The ankle motors are
connected to the ankle joints via cables that we approximate as linear
springs. The ankle motors (A∗1, A∗2) are actually nearly coincident
with the hip H, but are separated in this diagram for clarity.
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Figure A.2: Robot reference frames and degrees of freedom used in the
derivation of the equations of motion. The absolute angle made
by the lead foot on the ground with the vertical is q1. Joint angles
are q2, q3 and q4. Hip motor angle is the same as hip joint angle q3.
Ankle motor angles associated with the joint A$1 is q2m and with joint
A$2 is q4m.

lead foot q1 and step length (xp2 − xp1) during double stance.

xh = xh

=⇒ xp1 + l sin(q1 + q2) − d sin(q1) − rq1 = xp2 − l sin(q3 − q1 − q2) . . .

− d sin(q1 + q2 − q3 − q4) . . .

− r(q1 + q2 − q3 − q4) (A.1)

yh = yh

=⇒ r − l cos(q1 + q2) + d cos(q1) = r − l cos(q3 − q1 − q2) . . .

+ d cos(q1 + q2 − q3 − q4) (A.2)113



A.2.1 Equations of motion during single and double stance

The governing differential equations are found using the free body diagrams (FBDs)

shown in figures A.3 and A.4, respectively, and using angular momentum balance about

judiciously chosen points that eliminate (at least some of) the constraint forces.

Double stance. In double stance the robot has 2 kinematic degrees of freedom and two

motor degrees of freedom. Releasing one foot from the ground and then constraining it,

we think of this rather as 4 kinematic degrees of freedom, 2 motor degrees of freedom

and 2 kinematic constraint equations. From figure A.3 we use the systems defined by the

free body diagrams (a) – (d). We then use angular momentum balance about the points

P1, A1,H and A2, respectively, to generate 4 equations. The motor degrees of freedom

are described with the motor equations (equations A.4 and A.5 below). Two additional

constraint equations for double stance are obtained by taking the second derivatives of

equations A.1 and A.2 to obtain equations A.6 and A.7,

−̇→
H /i =

−→
M/i where i = P1, A1,H, A2 (A.3)

T2S = GA(KI2 −GAJmq̈2m) − T f A(I2, q̇2m) (A.4)

T4S = GA(KI4 −GAJmq̈4m) − T f A(I4, q̇4m) (A.5)

ẍh = ẍh (A.6)

ÿh = ÿh (A.7)

−→
M/i and

−̇→
H /i are the sum of external torques and rate of change of angular momentum

about the point i. These expressions are shown expanded in section A.2.3. Note, from

the main text the spring torque at joint 2 is, T2S = F2S rp = kr2
p(q2m − q2) = ks(q2m − q2)

and spring torque at joint 4 is T4S = F4S rp = kr2
p(q4m − q4) = ks(q4m − q4). F2S and F4S

are the spring forces in the springs at joint 2 and 4 respectively, rp is the radius of the
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ankle pulley and k is the linear spring constant of the cable joining ankle to the ankle

motor. Please see section A.1 for definitions of terms.

Altogether we have 6 differential equations of motion and two differential equations

from differentiating the closed-linkage geometric constraint (equations A.3-A.7). From

these we can solve, at any instant in time, for the angular accelerations of each robot

part, both ankle motors, and the ground contact force at one foot.

Single stance. The swing-foot is airborne for the single stance phase. Because we

neglect the masses of the feet, the swing foot and swing motor have the same motions

and the swing foot does not have independent motion. This eliminates one degree of

freedom from the single stance phase. Thus, in the single stance phase we have five

degrees of freedom (stance ankle angle, hip angle, two motor angles and the stance foot

angle). Altogether we then have three kinematic degrees of freedom, and two motor

degrees of freedom.

Using figure A.4 we use the systems shown in the free body diagrams (a)–(c). With

these we use angular momentum balance about the points P1,H and A1 respectively, to

generate 3 equations of motion. Two more equations come from the two ankle motor

equations.

Thus, we have the following equations

−̇→
H/i =

−→
M/i where i = P1, A1,H (A.8)

T2S = GA(KI2 −GAJmq̈2m) − T f A(I2, q̇2m) (A.9)

0 = GA(KI4 −GAJmq̈4m) − T f A(I4, q̇4m) (A.10)

−→
M/i and

−̇→
H /i are the sums of the external torques and the rate of change of angular

momentum about the point i. In section A.2.3, we give the detailed expansions of these
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Figure A.3: Free Body Diagrams (FBD) to derive equations for double stance.
We have four free body diagrams. The arrows indicate all of the non-
neglected forces and torques acting on each of the four systems.

expressions. The equations above make up 5 differential equations for the angles of

three body parts (all but the swing foot) and the two motors.
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Figure A.4: Free Body Diagrams (FBD) to derive equation for single stance.
We have 3 free body diagrams. Because the feet are massless there is
no information in drawing a FBD of the swing foot.

Double stance equations in matrix form. Equations A.3 to A.7 can be re-arranged

to get the following equation for double stance,

AdsXds = bds (A.11)

where the unknown is the 8 × 1 vector, Xds = [q̈1 , q̈2 , q̈2m , q̈3 , q̈4 , q̈4m , Px , Py]′.

At a given dynamical state (given angles and rates) the 8 × 8 matrix Ads and the 8 × 1
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vector bds are known.

Extracting the elements of Ads and bds. There are various ways to find the elements

of Ads and bds. Here is our somewhat clumsy method. We use symbolic algebra to eval-

uate the eight equations given in equation A.3 to equation A.7. Our next goal is to com-

pute symbolic values of the individual elements of the matrices in Ads and vector bds.

The first element of bds i.e. b1 is obtained by setting Xds = [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]

and evaluating the first equation in A.3. Similarly, we can calculate the other elements

of bds. To get the first row and first column element of Ads i.e. A11, we evaluate first

equation in A.3 by putting Xds = [1 , 0 , 0 , 0 , 0 , 0 , 0 , 0] and from this value

subtract out b1. Following a similar procedure it is possible to get every element of the

matrix Ads. As pointed out by Manoj Srinivasan (private communication) the MATLAB

symbolic command JACOBIAN could have simplified this extraction.

Single stance equations in matrix form. Equations A.8 to A.10 can be re-arranged

to get the following equation for single stance.

AssXss = bss (A.12)

where the unknown is the 6 × 1 vector, Xss = [q̈1 , q̈2 , q̈2m , q̈3 , q̈4 , q̈4m ]′, while the

6 × 6 matrix Ass and the 6 × 1 vector bss are known and can be found in a similar way

as found for the double stance equations.

A.2.2 Collisional heel-strike equations

Here we consider the jump (the discontinuity) in angular rates when the swing foot

collides with the ground at heel-strike. We consider first the case when this is a transition
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Figure A.5: Angle swap for heel-strike derivations. The instant just before heel-
strike is denoted by − and the instant just after heel-strike is denoted
by +. We swap the names of the legs during heel-strike as shown. To
simplify notation the angles are named ri before collision and qi after
collision., where i is the joint number.

from a single-stance phase to a double-stance phase.

Figure A.5 shows the robot an instant before heel-strike, denoted by − and an instant

after heel-strike, denoted by +. We are interested in finding the angles after heelstrike,

i.e., [q] = [q1 , q2 , q2m , q3 , q4 , q4m]′ and angular velocities after heel-strike, i.e.,

[q̇+] = [q̇1 , q̇2 , q̇2m , q̇3 , q̇4 , q̇4m]′.

The angles after heel-strike are found by using figure A.5 and swapping the an-

gles to generate equation A.13. The velocities of joints after heel-strike are found by

conservation of angular momentum. Doing conservation of angular momentum about

appropriate points as shown in figure A.6 (a)–(d) we get equations A.14. We assume that

the motors (buffered by the ankle spring) do not participate in the heel-strike. We swap

the motor velocities to get equations A.15. Finally, two additional constraint equations
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Figure A.6: Free Body Diagrams (FBDs) for heel-strike discontinuity. The
case shown is for the transition to a double-stance phase; there are
impulses at both feet. The instant just before and after heel-strike is
indicated by − and + respectively. The collisional forces are shown in
the − configuration. We have four subsystems corresponding to the
four body parts. The ankle motors are buffered by the ankle springs
and do not participate in the collision; so the ankle motors and and
rates simply exchange values (i.e., keep their values and exchange
their names).

are generated by taking the first derivatives of equations A.1 and A.2 to give equation

A.16.

q1 = r1 + r2 − r3 − r4 q2 = r4

q2m = r4m q3 = −r3

q4 = r2 q4m = r2m

(A.13)
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−→
H
+

/P1
=
−→
H
−
/P′2
+
→
r P′1/P

′
2
×
→
P$

−→
H
+

/A1
=
−→
H
−
/A′2
+
→
r P′1/A

′
2
×
→
P$

−→
H
+

/H =
−→
H
−
/H′ +

→
r P′1/H ×

→
P$

−→
H
+

/A2
=
−→
H
−
/A′1
+
→
r P′1/A

′
1
×
→
P$

(A.14)

q̇2m = ṙ4m q̇4m = ṙ2m (A.15)

ẋh = ẋh ẏh = ẏh (A.16)

where
−→
H
−
/i and

−→
H
+

/i are the angular momentum about the point i before and after heel-

strke. In section A.2.3, we give the detailed expansions of these expressions.

The equations A.14 to A.16 can be re-arranged to give the following equation for

heel-strike phase,

AhsXhs = bhs (A.17)

where the unknown is the 8 × 1 vector, Xhs = [q̇1 , q̇2 , q̇2m , q̇3 , q̇4 , q̇4m , P$x , P$y ]′,

while the 8 × 8 matrix Ahs and the 8 × 1 vector bhs are known and can be found in a

similar way as found for the double stance equations.

Single-stance to single-stance collisional transition. The equations presented next

are for gait sequences that do not have any double stance; i.e., the gait sequence is

single stance→ heel-strike→ single stance. This sequence is not used on ranger, but is

used as a special case to benchmark the equations of motion (appendix B) and optimal

trajectory (appendix D).

The collisional jump equations for the single stance to single stance transition can

be derived by similar means as used for the single stance to double stance transition

as described before. We use the same figure A.5 for this derivation, but 1) leave off

the kinematic constraint that the former stance foot maintain contact; 2) leave off the

related constraint impulses (set the impulses on the former stance foot to zero). The
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jump equations are:

q1 = r1 + r2 − r3 − r4 q3 = −r3 (A.18)

q2m = r4m q2 = r4 (A.19)

q4 = r2 q4m = r2m (A.20)
−→
H
+

/P1
=
−→
H
−
/P′2

(A.21)
−→
H
+

/A1
=
−→
H
−
/A′2

(A.22)
−→
H
+

/H =
−→
H
−
/H′ (A.23)

q̇4 = ṙ2m q̇2m = ṙ4m q̇4m = ṙ2m (A.24)

−→
H
−
/i and

−→
H
+

/i are the angular momentum about the point i before and after heel-strke.

Formulas for these follow.

A.2.3 Full expansion of terms in the single stance, double stance

and heel-strike equations

The external moment
−→
M/i and rate of change of angular momentum

−̇→
H/i about different

points in the above equations are given next. We define δDS = 1 in double stance and

δDS = 0 in single stance in the equations below.

−→
M/P1 =

→
r G1/P1 ×m

→
g +

→
r G2/P1 ×m

→
g +

→
r P2/P1 × δDS

→
P + (T1FW + δDS T2FW)k̂

−̇→
H /P1 =

→
r G1/P1 ×m

→
aG1 +J!

→
α1 +

→
r G2/P1 ×m

→
aG2 +J!

→
α2

−→
M/A1 =

→
r G1/A1 ×m

→
g +

→
r G2/A1 ×m

→
g +

→
r P2/A1 × δDS

→
P + (T2S + δDS T2FW)k̂

−̇→
H /A1 =

→
r G1/A1 ×m

→
aG1 +J!

→
α1 +

→
r G2/A1 ×m

→
aG2 +J!

→
α2

−→
M/H =

→
r G2/H ×m

→
g +

→
r P2/H × δDS

→
P + (T3 − T3S + δDS T2FW)k̂

−̇→
H /H =

→
r G2/H ×m

→
aG2 +J!

→
α2
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−→
M/A2 =

→
r P2/A2 ×

→
P + (T4S + T2FW)k̂ Only in double stance

−̇→
H /A2 = 0 Only in double stance

The angular momentum
−→
H/i about different points in the heel-strike equations are given

next.

−→
H
+

/P1
=
→
r G1/P1 ×m

→
vG1 +J!

→
ω1 +

→
r G2/P1 ×m

→
vG2 +J!

→
ω2

−→
H
−
/P′2
=
→
r G′1/P

′
2
×m

→
vG′2 +J!

→
ω′1 +

→
r G′2/P

′
2
×m

→
vG′2 +J!

→
ω′2

−→
H
+

/A1
=
→
r G1/A1 ×m

→
v A1 +J!

→
ω1 +

→
r G2/A1 ×m

→
vG2 +J!

→
ω2

−→
H
−
/A′2
=
→
r G′1/A

′
2
×m

→
vG′2 +J!

→
ω′1 +

→
r G′2/A

′
2
×m

→
vG′2 +J!

→
ω′2

−→
H
+

/H =
→
r G2/H ×m

→
vG2 +J!

→
ω2

−→
H
−
/H′ =

→
r G′1/H

′ ×m
→
vG′1 +J!

→
ω′1

−→
H
+

/A2
=
−→
H
−
/A′1
=
→
0
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APPENDIX B

BENCHMARK TESTS OF THE EQUATIONS OF MOTION

To validate the equations of motion we consider various special cases about which

much is known. In particular, we reduced the equations of motion of Ranger to that

of a passive walker, introduced a ramp, found stable limit cycles and compared our

results with previously published results. Two special passive cases were considered: 1)

a rimless wheel [22, 71], and the simplest walker [41, 42]. Without such checks how are

we to trust our equations?

B.1 Recipe for analyzing passive dynamic walkers

A recipe for analyzing passive dynamic walkers has been presented in detail in Garcia’s

PhD thesis (see chapter 2 in [42]) and in Coleman’s PhD thesis (see chapter 1 in [22]).

Here is a summary.

1. Create a complete mechanical model of the walker. This includes defining model

assumptions, defining model parameters, and deriving the equations of motion of

the walker. The equations of motion generally involve smooth portions of the

walk like single stance phase and discontinuous portions like heel-strike.

2. Define a Poincare map (McGeer’s stride function) that maps the state of the system

from one step to the next. Here we used the map f from the state of the system

qn just after one heel-strike to the state qn+1 just after the next heel-strike. We use

numerical root finding (e.g. Newton-Raphson method or bisection method) to find

fixed points (roots of the function f (q) − q).

3. Find the Jacobian of the stride function at this root using numerical differentiation.

If the magnitude of the biggest eigenvalue of the Jacobian is smaller than one than
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β

β

θ

(a) (b)

locked

locked

locked

Figure B.1: 2-D rimless wheel. (a) 2-D rimless wheel analyzed by Coleman. (fig-
ure source: Coleman’s PhD thesis [22]) (b) Ranger model simplified
to a rimless wheel; The hip angle and ankle angles are locked and the
centers of mass of the leg are put at the hip.

the system is stable, otherwise it is not.

B.2 Reduction to 2-D rimless wheel

Figure B.1a shows the 2-D rimless wheel analyzed by Coleman. The mass at the center

is M, legs have inertia I!, legs length is ! and number of spokes is n. The inter-spoke

angle β is calculated from the number of spokes and is given by β = 2π/n. The ramp

slope is γ. Coleman found that the roots and Jacobian of the stride function depend on

the number of spokes n, the slope γ and the non-dimensional term λ2 = M!2/(I! +M!2).

Coleman reports analytical results for n = 6, γ = 0.2 and λ2 = 2/3 [23]. We will use

these parameters for the benchmark.
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Ranger model reduced to a rimless wheel. To derive the equations of motion we

proceed as follows. First, we assume the gait sequence; single stance phase followed

by heel-strike phase followed by single stance phase and so on. Next, we draw the

free body diagram for Ranger model shown in figure B.1b. Finally, we use angular

momentum balance about the foot contact points to derive the equations of motion.

Alternately, the equations of motion can be obtained from Ranger’s equations pre-

sented earlier. We ignore the equation for angular momentum balance of the swing leg

about the hip. And in all other equations we set the hip angle to be constant (no accel-

eration, no discontinuity in velocity at the collision). The equation of single stance are

obtained from equation A.8 with i = P1. The equation for heel-strike is obtained from

equations A.18 and A.21.

Single stance (continuous):
−̇→
H /P1 =

−→
M/P1

Heel-strike (instantaneous): q1 = r1 − r3 q3 = −r3

−→
H
+

/P1
=
−→
H
−
/P′2

Table B.1 gives the parameters of the 2-D rimless wheel Ranger model.

Comparison of fixed points. We analyzed the simplified Ranger model with the pa-

rameters given in table B.1 and using the recipe presented in section B.1.

The fixed points based on analytical solutions is given in [23] and is

(θ∗1,θ̇∗1) = (π/n, −0.4603411266094583). Using an adaptive step integrator (Runge-Kutta

45) with integration tolerance of 10−13 and a similar root finder accuracy, we calcu-

lated the fixed points as (q∗1,q̇∗1) = (0.523598775598278, −0.460341126609482) which

is accurate to the 13th decimal place.
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(a) Rimless wheel
Parameter Value

! 1 m
r 0
d 0
w 0
c 0
kh Not in equations
ks Not in equations
J! 0.25 kg m2

m 0
M 1 kg
g 1 m/s2

γ 0.2
C1FW 0
C2FW Not in equations

(b) Simplest walker
Parameter Value

! 1 m
r 0
d 0
w 0
c 1 m
kh Not in equations
ks Not in equations
J! 0
m 1 kg
M 106 kg
g 1 m/s2

γ 0.009
C1FW 0
C2FW Not in equations

Table B.1: Reduction of Ranger to simpler cases. (a) Values of Ranger parame-
ters for model reduction to a 2-D rimless wheel. (b) Ranger parameters
for model reduction to simplest walker.

Comparison of eigenvalues. The biggest eigenvalue based on analytical solution [23]

is σ = 4/9 = 0.44444444444444̄. Using fixed point found earlier and using perturba-

tion of 10−5, we calculated the Jacobian of the linearized map using central difference.

We computed the biggest eigenvalues as σ = 0.444444444411274. Our Ranger-based

eigen-value is accurate to 10th decimal place.

B.3 Reduction to 2-D simplest walker

A more stringent comparison is with ‘The Simplest Walker’ which has a non-locked

swing leg.

Figure B.2 (a) shows the 2-D simplest walker analyzed by Garcia [41]. The simplest

walker has a point-mass M at the hip. The legs of length ! are nearly massless, but
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locked

locked

φ

θ

(a) (b)

Figure B.2: 2-D simplest walker. (a) Simplest walker analyzed by Garcia (figure
source: Garcia’s PhD thesis [42]) (b) Ranger model simplified to the
simplest walker

there is a point-mass m 0 M at the end of the swing leg. Garcia considered the case,

m/M = 0. He found that the non-dimensional equations of motion are functions of

a single parameter; the slope of the ramp γ. Garcia [41] does not report benchmark

results for the simplest walker. So, using the equations derived by him and for a slope

of γ = 0.009, we computed the fixed points and eigenvalues. These values are reported

here and are used as benchmarks.

Ranger model reduced to the simplest walker. To derive the equations of motion we

proceed as follows. First, we assume the gait sequence; single stance phase followed

by heel-strike phase followed by single stance phase and so on. Next, we draw the

free body diagram for Ranger model shown in figure B.2b. Finally, we use angular

momentum balance about appropriate points to derive equations of motion.
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Alternately, the equations of motion can be obtained from Ranger’s equations of

motion presented earlier. The equation of single stance are obtained from A.8 with

i = P1,H. The equation for heel-strike is obtained from equations A.18, A.21 and A.23

and A.21.

Single stance (continuous):
−̇→
H /P1 =

−→
M/P1

−̇→
H /H =

−→
M/H

Heel-strike (instantaneous): q1 = r1 − r3 q3 = −r3

−→
H
+

/P1
=
−→
H
−
/P′2

−→
H
+

/H =
−→
H
−
/H′

Table B.1 gives the parameters for the reduced Ranger model to match up with Garcia’s

simplest walker model.

Comparison of Ranger’s reduction to the simplest walker. We analyzed the simpli-

fied Ranger model using the parameters given in table B.1 and using the recipe presented

in section B.1.

Comparison of fixed points. First using MATLAB’s ODE45 (mixed 4th and

5th order Runge Kutta algorithm) with integration and root finder tolerance of

10−13, and with Garcia’s equations of motion [42], we calculated a fixed point,

(θ∗,θ̇∗,φ∗,φ̇∗) = (0.200310900544287, −0.199832473004977, 0.400621801088574,

−0.015822999948318).

Next, using the same tolerances for integration and root finder, but with Ranger’s re-

duced equations of motion, we re-calculated the fixed points. We found the fixed point to

be, (q∗1,q̇∗1,q∗3,q̇∗3) = (0.200310750572992, −0.199832546623645, 0.400621501145995,

−0.015822982402157). The fixed points differ in the 6th decimal place. This is consis-

tent with the m/M = 10−6 ! 0 that we used.
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Comparison of eigenvalues. Using the fixed point from Garcia’s equations of motion

and using a perturbation of 10−5, we calculated the Jacobian of the linearized map using

central difference. The non-zero eigenvalues of the linearized map were found to be,

σ1 = −0.190099639087901 + 0.557599274928213i and σ2 = −0.190099639087901 −

0.557599274928213i.

Using Ranger’s reduced equations of motion and the above method to calculate the

Jacobian, we got the following non-zero eigenvalues, σ1 = −0.190106213101483 +

0.557586570259502i and σ2 = −0.190106213101483 − 0.557586570259502i. The

eigenvalues agree to 3 decimals.
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APPENDIX C

SMOOTHINGS FOR SIMULATIONS AND OPTIMIZATIONS

Because of the reversals of contact voltage at current reversals and of friction force

at velocity reversals various terms in the simulations and optimizations are not smooth.

There is some subtlety in the reason for the lack of smoothness in the differential

equations to survive to the optimization objective function. If the discontinuities were

simply crossed they would not lead to discontinuities in the objective function. But

because the optimal trajectories tend to sit on the discontinuities for extended times, not

just passing through them, they do survive to the optimizations.

To eliminate the related numerical issues, especially problems with convergence of

the optimization software, we smooth such discontinuities.

The smoothings are also needed in our benchmark optimizations based on mechan-

ical power, which, assuming no regeneration, has a discontinuity at x = 0.

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

[x]

Smoothed

+

a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

sgn(x) =  

Smoothed

|x|

_x

b)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

|x|

Smoothed

c)

Figure C.1: Smoothings for discontinuous functions. The smoothings for (a)
the unit ramp function, (b) the step function and (c) the absolute value
function are shown. Here dotted black lines represents the true func-
tion while solid red lines represents our approximation.
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Smoothing for [x]+. Steps (Heaviside functions) in voltage and force only lead to

ramps (integral of Heaviside function) in the electrical power (which is integrated to

obtain our objective function). So our main concern is with smoothing ramp functions.

The unit ramp function [x]+ is zero for negative x and simply x for positive x:

[x]+ =




x if x > 0

0 if x ≤ 0
(C.1)

The function has a kink at x = 0. A smooth approximation to [x]+ is given in by

[96, 102].

[x]+ ≈
x +
√

x2 + ε21

2
(C.2)

As a rule we use ε1 = 0.01. Figure C.1a compares the smooth approximation with the

actual function.

Smoothing for sgn(x). When needed we also smooth the signum function sgn(x):

sgn(x) =




1 if x > 0

0 if x = 0

−1 if x < 0

(C.3)

The function is discontinuous at x = 0. A smooth, continuous approximation of sgn(x)

is in [30].

sgn(x) ≈ tanh
(

x
ε2

)
(C.4)

We generally use ε2 = 0.01. Figure C.1b compares the smooth approximation with the

actual function.
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Smoothing for |x|. The absolute value function can be defined as:

|x| =




x if x > 0

−x if x ≤ 0
(C.5)

This function also has a kink at x = 0. A smooth approximation to |x| is given in equation

by [96, 102] as

|x| ≈
√

x2 + ε23 (C.6)

Again we generally us ε3 = 0.01. Figure C.1c compares the smooth approximation with

the actual function.
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APPENDIX D

BENCHMARKS FOR OPTIMAL TRAJECTORY CONTROL

The trajectories used on Ranger are based on optimizations. To check the veracity of

our optimization calculations we optimize situations in which we already have some

understanding of the optima and which also can be made to conform to the overall

Ranger governing equations and framework, namely:

1. passive dynamic walking [70], and

2. point-mass energy-optimal walking [98].

These tests are explained below.

D.1 Discovering passive dynamic walking

McGeer showed that a 2D 2-legged robot with suitable mass distribution can walk down

a shallow slope with no actuation [70]. For the first validation of the Ranger simulation

we keep (and optimize) the hip motor (but neglect friction). To keep this check simple

we locked the ankles. We know from previous passive-dynamics research that on a small

slope this model has periodic solutions with zero hip torque and thus, with a simplified

motor model, zero hip current. We also know that for the motor model the minimum

conceivable energy use is zero, with zero current and thus zero torque at all times. Thus

the optimal control solution should be one with zero hip current for all time, namely

passive-dynamic walking. Here is how we checked for the optimization’s ability to

make this discovery.
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locked

locked

Figure D.1: Passive dynamic walking validation. Ranger with ankles locked on
a shallow slope. The hip motor can power walking.

Model used for ‘discovery’ of passive dynamic walking. The robot model is shown

in figure D.1. The equations of motion are simplified from Ranger’s governing equa-

tions. The equation of single stance is obtained from A.8 by putting i = P1,H. The

equation for heel-strike is obtained from equations A.18, A.21 and A.23. Note that we

a priori preclude a double-stance phase.

For this optimization we use a simplified (i.e., frictionless) motor model

Power model: P = I2R +GHKIω

Torque model: T = GHKI

where the hip power is P, the hip torque is T , hip motor current is I, hip motor speed

ω, motor resistance is R, motor constant is K, and hip motor gear ratio is GH. Note that

this model is torque-free when the electrical power (and current) is zero.
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Parameter Value
! 0.96 m
r 0.2 m
d 0.11 m
kh 0
ks Not in equation
J! 0.24 kg m2

m 2 kg
M 4.5 kg
w 0 m
c 0.3 m
g 10 m/s2

γ 0.005
C1FW 0
C2FW Not in equation

Table D.1: Ranger parameter values for discovering passive dynamic walk-
ing.

Parameter Value
GA Not in equation
GH 66
K 0.017 N m/A
R 1.3 Ω
Vc 0
Jm Not in equation
µH 0
µA 0

CH1 0
CH0 0
CA1 0
CA0 0
Pfixed Not in equation

Table D.2: Motor parameter values for discovering passive dynamic walking.
Symbols A and H denote ankle and hip respectively.

Optimization problem for ‘discovery’ of passive dynamic walking. We seek a con-

trol strategy (hip motor current as a function of time) and initial conditions, that mini-
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mize the cost

COT =
Energy used per step
Weight × Step length

=

∫ t=tstep

t=0

|P|dt
Mtot g dstep

(D.1)

subject to the following constraints: periodicity, namely that the state vector at the be-

ginning of single stance should be equal to the state vector just after heel-strike; and the

vertical reaction forces on the grounded legs should be positive at all times.

The absolute value of hip power P in the COT expression above is not smooth, so

we smooth it in such a way that our gradient-based optimization software will perform

better (see appendix C).

Parameterization of the optimal trajectory. The optimization parameters are:

• The state at beginning of single stance (χi
ss(t = 0));

χi
ss(t = 0) = [q1 , q3, q̇1 , q̇3]ss(t = 0).

• Step time (tstep)

• The currents in the hip motor in single stance (I(t)). We assume piecewise linear-

in-time currents. In single stance, we divide time into N intervals; t0, t1, . . . , tN .

Here ti+1 − ti = 1/N, i = 0, 1, ...,N, t0 = 0 and tN = tstep. This means we have

2(N + 1) unknowns for currents in single stance; I(t = t0), I(t = t1), . . . , I(t = tN).

Constraints. The optimization proceeds subject to various constraints on the opti-

mization parameters and things calculated from those parameters:

• The periodicity constraints of the state at the beginning of single stance should

match the state just after heel-strike; χi
ss(t = 0) = χ+hs(t = tstep).
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• The transition from single stance to heel-strike takes place when the swinging

leg’s foot hits the ground at time t = tstep, as expressed in equation A.2 .

• Vertical ground reaction force for the foot on the ground in single stance should

be positive and this is enforced at the grid points. This gives N + 1 inequality

constraints.

Method of optimization. With the initial conditions in single stance χi
ss(t = 0), we

integrate equations of motion for single stance till we reach the end of single stance at

time t = tstep. The torques for use in the single stance equations are obtained from the

motor’s torque equation using the assumed piecewise linear currents in single stance.

Integration is from grid point to grid point so there are no discontinuities during an

integration step.

After the integration reaches the end of single stance, we apply the heel-strike con-

dition to get the state after heel-strike χ+hs(t = tstep).

For each integration of a full step the total energy cost is evaluated. The optimiza-

tion software varies the various optimization parameters attempting to minimize this

cost (equation D.1), while respecting the various constraints described above. We used

the sequential quadratic programming package SNOPT [43] to solve the optimization

problem.

Results

Passive walking. First, without any optimization, we looked for passive solu-

tions for the set of Ranger’s parameters assumed here using the root-finding pro-

cedure outlined in section B.1. We found two such passive solutions. The

138



first solution had a step time of tstep = 0.79329202031544, and fixed points

of (q∗1,q̇∗1,q∗3,q̇∗3) = (2.99716718892289, −0.54617378605291, −0.28885092932654,

−0.53131730110868). The second solution had a step time of tstep = 0.93624752862330,

and fixed points of (q∗1,q̇∗1,q∗3,q̇∗3) = (2.96417643512919, −0.65228639005082,

−0.35483243689880, −0.02749381544188). Generally people find two periodic solu-

tions for the passive dynamic walkers [42, 70] for a given slope.

Passive walking is discovered. Next, we ran the trajectory optimization starting with

initial guesses far from the passive solutions. Each time the optimization converged to

one of the above two solutions and with zero current for all time. Thus the trajectory

optimization successfully discovered passive-dynamic walking.

D.2 Discovering optimal level-ground walking of a point-mass

model

Srinivasan, Ruina [98] and Srinivasan [96] present a point-mass legged locomotion

model. Using energy-optimal trajectory control, they show that the model chooses to

walk at low speeds, run at fast speeds, and at intermediate speeds discovers a new kind

of walk, which they call the pendular-run. For this benchmark we are only interested

in the walking solution. In particular, the optimal strategy for walking is an impulsive

push-off just before heel-strike followed by a stance phase consisting of motion as a

simple inverted pendulum. For this second validation, we approximate the point-mass

model by putting most of Ranger’s mass on the hip, and making the legs light. We leave

the foot eccentricity non-zero but make the foot zero radius. In effect this makes the

leg extensible, running between the hip and the infinitesimal foot (which is not inline
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Figure D.2: Point-mass level walking validation. (a) Point-mass model ana-
lyzed by Srinivasan (figure source: Srinivasan’s PhD thesis [96]) (b)
Ranger model simplified to a point-mass model by various special pa-
rameter values. In particular the foot radius r is set to zero, making
the foot a point at a distance d from the ankle.

with the leg). We then see if the optimization discovers optimum level walking with an

impulsive push-off just before heel-strike.

Model for comparison with point-mass locomotion. The model is shown in figure

D.2b. We obtain the equations of motion from Ranger’s equations of motion. The

equations for single stance are obtained from A.8 with i = P1, A1,H. The equations for
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Parameter Value
! 1 m
r 0
d 0.05 m
kh 0
ks Not in equation
J! Not in equation
m 0.01 kg
M 1 kg
w 0
c 0.5 m
g 1 m/s2

γ 0
C1FW 0
C2FW Not in equation

Table D.3: Ranger parameter values used to discover energy-optimal level
walking.

heel-strike are obtained from equations A.18 to A.23.

Single stance (continuous):
−̇→
H /i =

−→
M/i where i = P1, A1,H

Heel-strike (instantaneous): q1 = r1 − r3 q3 = −r3

q2 = r4 q4 = r2

−→
H
+

/P1
=
−→
H
−
/P′2

−→
H
+

/A1
=
−→
H
−
/A′2

−→
H
+

/H =
−→
H
−
/H′

Optimal trajectory control problem for comparison with the point-mass model.

We assume a walking sequence given by these phases: single stance, heel-strike, single

stance, repeat. We seek a control strategy that includes finding initial conditions in single

stance, and torque in the hip and stance ankle motor as a function of time, that minimize
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the cost given by,

COT =
Energy used per step
Weight × Step length

(D.2)

We use the following constraints: periodicity requires that the state vector at the be-

ginning of single stance should be equal to the state vector just after heel-strike; step

length and step velocity are specified; and the vertical reaction forces on the grounded

legs should be positive at all times. Because the solution we are trying to discover has

infinite forces, the numerics are helped by constraining hip and ankle motor torques to

be within given bounds. Convergence to the singular solution is inferred by the torques

always using the bounds, no matter how high (as explained in [98]).

Numerical formulation of point-mass optimal trajectory problem

Cost. The cost is the energy metric cost of transport and is defined as,

COT =
∫ t=tstep

t=0

{|T2u2| + |T3u3|}dt
Mtot g dstep

(D.3)

The ankle and hip torques are T2 and T3 respectively. The ankle and hip speeds are u2

and u3 respectively. The absolute value is not a smooth function; it has a kink at 0. So

we smooth this function as shown in appendix C. The numerator in equation D.3 is the

mechanical power at the joints, counting negative and positive power equally.

Parameters. The optimization parameters are:

• State at beginning of single stance (χi
ss(t = 0));

χi
ss(t = 0) = [q1 , q2 , q3, q̇1 , q̇2 , q̇3]ss(t = 0).

• Note that we ignore foot scuffing altogether and that we do not model the motion

of the foot attached to the swinging leg’s foot. However, we do need to specify

142



the touchdown angle of the swinging leg’s foot (qhs
4 ) at heel-strike and this is an

optimization parameter.

• Step time (tstep)

• Torque in the motors in single stance (T2(t), T3(t)). We assume piecewise linear

torques. In single stance, we divide time into N intervals; t0, t1, . . . , tN . Here

ti+1 − ti = 1/N, i = 0, 1, ...,N, t0 = 0 and tN = tstep. This means we have 2(N + 1)

unknowns for torques in single stance; T j(t = t0),T j(t = t1), . . . ,T j(t = tN), where

j = 2, 3.

Constraints. The optimization constraints are:

• Periodicity constraints: the state at the beginning of single stance should match

the state just after heel-strike; χi
ss(t = 0) = χ+hs(t = tstep).

• Step velocity is specified, vstep = V .

• Step length is specified, dstep = D.

• Transition from single stance to heel-strike takes place when the swinging leg’s

foot hits the ground at time t = tstep. This constraint is given by equation A.2.

• Vertical ground reaction force for the foot on the ground in single stance should be

positive. This is enforced at the grid points. This gives N+1 inequality constraints.

• Torques in the hip and ankle motors have to be within the actuator limits These

are enforced at grid points and correspond to 2(N + 1) inequality constraints.

• There are singularities in the governing equations and in the behavior of the op-

timal solution near q2 or q4 equal zero or π. To avoid this the ankle angle was

constrained to be π/2 at heel strike, i.e., qhs
4 = π/2.
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Method of optimization. With the initial conditions in single stance χi
ss(t = 0), we

integrate equations of motion for single stance till we reach the end of single stance at

time t = tstep. After we reach the end of single stance, we apply the heel-strike condition

to get the state after heel-strike χ+hs(t = tstep). The optimization software varies the var-

ious optimization parameters listed above, in an attempt to minimize the cost given in

equation D.3, while respecting the various constraints described earlier. Again, we used

the sequential quadratic programming package SNOPT [43] which we use later for our

controlled-robot optimization.

Results

We present results obtained for the step velocity of V = 0.4 and step length of D = 0.4.

Srinivasan [96] pp. 24-25 gives formulas for calculating the COT at various step length

and step velocity combinations. Using his formulas, we calculated the ideal point-mass

COT to be 0.009882649139799 at V = D = 0.4.

Using Ranger’s reduced point-mass model and using a grid size N = 12, we calcu-

lated the COT to be 0.010113205021986. The error between our result and analytical

calculations is about 2%. This error is consistent with numerical optimization results

presented by Srinivasan [96] on pp. 66 Table 3.1, also taking account that this model, as

opposed to the point-mass comparison, has a small, but non-zero leg swing cost.

Figure D.3 shows the trajectories for the ankle joints position and velocity, the ac-

tuator torques and the mechanical power versus time. The hip motion is low power

throughout, due to the light legs. Almost all the energy for walking goes to the ankles

to generate the push-off. By increasing the grid size N, we found that that the push-off

becomes more pre-emptive, decreasing its duration and increasing the peak. This results
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Figure D.3: Ankle trajectory and controls for point-mass model limit of the
Ranger model. The results of the optimization of the Ranger model,
with parameters chosen to mimic a point-mass model, are shown. (a)
The ankle angle shows sudden lengthening at push-off; (b) The an-
kle rate, being near constant for the small-angle inverted-pendulum
phase; (c) The ankle torque, which has no cost in this model when the
ankle rate is zero, the optimizations seeming attempt to discover an
impulse is shown by the spike at the right; and (d) The ankle power,
which is effectively zero but for a sudden, seemingly-attempting-to-
be-singular rise at push off.

suggests that the push-off tends to an impulse as the grid is made to grow infinitely big.

These results are in agreement with those found by Srinivasan and Ruina [98].
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APPENDIX E

TRAJECTORY OPTIMIZATION OF ROBOT: FINE-GRID

We use the same optimization software and same general approach described in the

appendix D to optimize energy use based on the full robot and motor models. As de-

scribed in chapter 5, we first do a fine-grid optimization, described in here, and then a

coarse-grid optimization (appendix F) for use on the robot.

The trajectory optimization for the full robot is infinite dimensional. We resort to a

discrete approximation of the problem but with a grid that is fine enough so that, within

our model and measurement accuracy, we have achieved an optimum.

E.1 Foot-flip energy optimization

Cost. We are interested in minimizing the energy for foot-flip and given by,

Efoot-flip = 2
∫ t=t f=0.25s

t=t0=0

[
Pfoot-flip

]+ dt (E.1)

Pfoot-flip is the power in the motor that turns the foot attached to the swing leg in single

stance. The factor 2 accounts for flip up and flip down. We assume that our batteries

cannot regenerate and to accommodate this fact we define the function [P]+ as follows:

[P]+ = P, if P ≥ 0 and [P]+ = 0, if P < 0. The function [P]+ is non smooth at P = 0. We

smooth the function using equation C.2 as shown in appendix C. Also, in the equation

above we have heuristically assigned the flip up time to be 0.25 s. This implies that foot

flip up and flip down takes a total time of 0.5 s, with additional swing time in the flip

up configuration. Consequently, the single stance time has to be at least 0.5 s to prevent

foot scuffing.
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Parameters. The optimization parameters are the motor current as a function of time.

We parameterize the current as piecewise linear functions of time. We divide the time

into N f intervals i.e. t0 = 0, t1, . . . , t
f
N = t f , where ti+1 − ti = 1/N f and i = 0, 1, ...,N f .

Thus we have (N f + 1) unknowns for the current, I f
4 (t = t0), I f

4 (t = t1), . . . , I f
4 (t = tN f =

t f ).

Constraints. The optimization constraints are as follows:

q4m(t = 0) = 0 (E.2)

q4m(t = t f ) = 1.7 rad (E.3)

q̇4m(t = 0) = 0 (E.4)

q̇4m(t = t f ) = 0 (E.5)

−8 A ≤ I f
4 (ti) ≤ 8 A where i = 0, 1, ...,N f (E.6)

where q4m and q̇4m are the motor position and motor velocity respectively. The 1.7 rad

in equation E.3 is the angle by which we want the swinging leg’s feet to turn in order to

clear the worst case obstacle. The actuator current limit of 8 A is specified in constraint

equation E.6.

Methods. With the initial conditions for the motor angle and motor velocity given in

E.2 and E.4, we integrate the equation of motion (see equation A.10) of the motor at-

tached to the swinging leg’s foot. The output motor torque for use in the equation of

motion is calculated using the piecewise linear current profile. The optimization soft-

ware varies the current parameters at the grid points, while respecting the current bounds

in equation E.6. The goal of the optimization is to meet the terminal time constraints

given in equations E.3 and equation E.5 and also minimizing the cost Efoot-flip. Again we

used SNOPT [43].
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E.2 ‘Walk’ COT optimization

Cost. We are interested in minimizing the Total Cost of Transport, one term of which

is given by

COTwalk =
Ewalk

Mtot g dstep

=

∫ t=tstep

t=0

∑
[Pwalk]+ dt

Mtot g dstep

(E.7)

Pwalk is the power used by the motors but excluding the swing leg’s ankle motor in sin-

gle stance (whose power has already been accounted for in the foot-flip optimization in

section E.1). We assume that our electronics and batteries cannot regenerate; to accom-

modate this we define the function [P]+ as follows: [P]+ = P, if P ≥ 0 and [P]+ = 0,

if P < 0. The function [P]+ is non smooth at P = 0. We smooth the function using

equation C.2 as shown in appendix C.

Parameters. The optimization parameters are as follows:

• State at beginning of single stance (χi
ss(t = 0)) (see figure E.1a).

χi
ss(t = 0) = [q1 , q2 , q2m , q3, q̇1 , q̇2 , q̇2m , q̇3]ss(t = 0). We have skipped

the variables q4, q4m, q̇4, q̇4m as the swinging leg’s foot is decoupled from the rest

of the robot in single stance.

• State at the instant before heel-strike (χ−hs(t = αtstep)) (see figure E.1a).

χ−hs(t = αtstep) = [q1 , q2 , q2m , q3 , q4 , q4m , q̇1 , q̇2 , q̇2m , q̇3 , q̇4 , q̇4m]−hs(t =

αtstep). As the feet are taken to be massless, we assume that the swinging leg’s foot

motor angle coincides with the swinging leg’s ankle angle just before heel-strike.

Thus we have q4 = q4m and q̇4 = q̇4m. Further, we assume that the motor attached
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Figure E.1: Multiple shooting method to solve optimal trajectory control
problem. (a) Initial condition at the beginning of single stance phase
χi

ss and just before heelstrike χ−hs are the state space optimization pa-
rameters. The step time is tstep and fraction of time spent in single
stance is α. (b) To enforce periodicity we equate the state in the be-
ginning of single stance to that at the end of the double stance, i.e.
χi

ss(t = 0) = χ f
ds(t = tstep) and the state at the instant before heel-strike

to that at the end of single stance χ−hs(t = αtstep) = χ
f
ss(t = αtstep). That is

the optimization drives the defects, shown as discontinuities between
red solid line and blue dashed curves in the figure, to zero.
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to the swinging leg’s foot and swinging leg’s ankle are at rest just before heel-

strike. Thus q̇4 = q̇4m = 0. The initial conditions before heel-strike simplifies to,

χ−hs(t = αtstep) = [q1 , q2 , q2m , q3 , q4 , q4 , q̇1 , q̇2 , q̇2m , q̇3 , 0 , 0]−hs(t = αtstep).

• Step time (tstep)

• Percentage of time spent in single stance (α)

• Current in the motors in double stance (Ids
2 (t), Ids

3 (t), Ids
4 (t)). We assume piecewise

linear currents. In double stance, we divide time into Nd intervals; td
0 , t

d
1 , . . . , t

d
Nd .

Here td
i+1 − td

i = 1/Nd, i = 0, 1, ...,Nd, td
0 = αtstep and td

Nd = tstep. This means we have

3(Nd + 1) unknowns for currents in double stance; Id
j (t = t0), Id

j (t = t1), . . . , Id
j (t =

td
N), where j = 2, 3, 4.

• Current in the motors in single stance (Iss
2 (t), Iss

3 (t)). We assume piecewise linear

currents. In single stance, we divide time into Ns intervals; ts
0, t

s
1, . . . , t

s
Ns . Here

ts
i+1−ts

i = 1/Ns, i = 0, 1, ...,Ns, ts
0 = 0 and ts

Ns = αtstep. This means we have 2(Ns+1)

unknowns for currents in single stance; Is
j (t = ts

0), Is
j (t = ts

1), . . . , Is
j (t = ts

Ns), where

j = 2, 3.

Constraints. The optimization constraints are as follows:

• Periodicity constraints; χi
ss(t = 0) = χ f

ds(t = tstep) (see figure E.1b).

• Periodicity constraints; χ−hs(t = αtstep) = χ
f
ss(t = αtstep) (see figure E.1b).

• Transition from single stance to double stance takes place when the swinging

leg’s foot hits the ground at time t = αtstep. This constraint is given by yh = yh in

equation A.2.

• Transition from double stance to single stance takes place when the vertical reac-

tion force on trailing foot goes to zero at time t = tstep.
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• The current at the motors is continuous in the transition from double stance to

single stance; (Id
j (t = tstep) = Is

j (t = 0) where j = 2, 3).

• Step velocity is specified, vstep = V .

• Step length is specified, dstep = D.

• To prevent scuffing at the beginning of single stance phase we impose that the

absolute velocity of the hip at the beginning of single stance should not be in the

walking direction.

• Vertical ground reaction force for the foot on the ground in single stance should

be positive and this is enforced at the grid points. This gives Ns + 1 inequality

constraints.

• Vertical ground reaction force on both the feet in double stance should be positive,

except on the trailing leg at the double stance to single stance transition when it

should be zero. These constraints are enforced at the grid points. This gives us

2Nd + 1 inequality constraints.

• Currents in the motors have to be within the actuator limits (−8A ≤ Ii
j ≤ 8A,

i = ss, ds; for ds j = 2, 3, 4 and for ss j = 2, 3). These are enforced at grid points

and correspond to 3(Nd + 1) + 2(Ns + 1) inequality constraints.

Methods. With the initial conditions in single stance χi
ss(t = 0), we integrate equations

of motion for single stance till we reach the end of single stance at time t = αtstep.

The torques for the single stance equations are obtained using the assumed piecewise

linear currents in single stance. Similarly, we take the initial conditions just before heel-

strike χ−hs(t = αtstep) and first apply the heel-strike condition to get the initial condition

at the beginning of double stance. With the initial conditions in double stance, we

integrate equations of motion for double stance till we reach the end of double stance
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at time t = tstep. The torques for use in the equations of motion are obtained using the

assumed piecewise linear currents in double stance. The optimization software varies

the various optimization parameters listed above, in an attempt to minimize the cost E.7,

while respecting the various constraints described earlier. We used sequential quadratic

programming package SNOPT [43], to solve the optimization problem. The results of

this optimization are shown and described in chapter 5.
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APPENDIX F

TRAJECTORY OPTIMIZATION: COARSE-GRID

To simplify the control implemented by the main brain (ARM 9), the motor current

trajectories are defined with far few parameters than are used in the fine-grid optimiza-

tion. Rather than try to approximate the fine-grid trajectories with the coarse-grid tra-

jectories, a new optimization is done with the coarse-grid description. This is described

in chapter 5, section 5.3 with some more details provided here.

F.1 Problem formulation.

We simplify the problem by separating the foot flip-up and flip-down (during swing)

optimization from the optimization of other costs. This is a reasonable approximation

because the feet have such low mass that their motions during swing are negligibly

coupled to the other motion of the robot.

We carry out two sequential optimizations as follows.

1. We approximate the current profile needed to do the foot-flip optimization. This

optimization gives us the energy needed to do the foot-flip using the approximate

control representation (Econst
coarse-grid-foot-flip).

2. Using the energy for flip-foot optimization (Econst
coarse-grid-foot-flip) and using an approxi-

mation to the converged current profile for the walk optimization presented in E.2

we minimize the total cost of transport (TCOT).

We elaborate on the details of these optimization in the next two sections.
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F.2 Foot-flip energy optimization

Cost, constraints and methods. These are the same as those presented in E.1. The

result of this optimization will give the energy needed for doing the foot-flip using the

approximate representation Econst
coarse-grid-foot-flip.

Parameters. We want the foot on the swinging leg to get to a prescribed position for

foot clearance. Hence we chose to do a proportional derivative control on motor position

for the foot-flip. Thus, we have three parameters; proportional gain, derivative gain, and

reference angle.

F.3 Total Cost of Transport minimization

Cost. We are interested in minimizing the total cost of transport (COT) and defined as,

TCOT =
Energy used per step
Weight × Step length

=
Pfixedtstep + Econst

coarse-grid-foot-flip + Ewalk

Mtot g dstep

=

Pfixedtstep + Econst
coarse-grid-foot-flip +

∫ t=tstep

t=0

∑
[Pwalk]+ dt

Mtot g dstep

Here Pfixed is the power need to run the sensors, microprocessors, and motor controllers

and is fixed at 5.15 W. Econst
coarse-grid-foot-flip is the energy needed to flip the foot on the swing leg

to do ground clearance, is a constant per step, and is obtained from foot-flip optimization

presented in F.2. Ewalk is the energy needed to take a step. This is calculated by taking

time integral of the sum of power of motors involved in taking a step.
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i) Single stance ii) Push-off
(P-D abs-foot position)

(P abs-foot-position)

iv) Flip-up

(P-D foot position)
v) Flip-down

(P-D foot position)

iii) Double stance

(passive)

vi) Double stance

(P-D abs-foot-position)

d) Double stance

(P-D abs-foot-position)

a single step = one cycle (see equation 3.1)

Figure F.1: Finite state machine used to do the coarse-grid optimization. We
show the state machine for only one step. A step is divided into single
stance and double stance using the parameter α (0 < α < 1 ). α
denotes the fraction of step time spent in single stance. Further, the
single stance phase is divided into three phases using the parameters
β and γ (0 < β, γ < 1). Each state is given a name, e.g., pre-mid
swing, push-off. The control action associated with the state is shown
in parenthesis. State transitions conditions are written on the time axis.
Note that the foot-flip is decoupled and the necessary optimization is
done separately.

Parameters. The optimization parameters are as follows:

• State at beginning of single stance (χi
ss(t = 0)) (see figure E.1a).

χi
ss(t = 0) = [q1 , q2 , q2m , q3, q̇1 , q̇2 , q̇2m , q̇3]ss(t = 0)

• State at the instant before heel-strike (χ−hs(t = αtstep)) (see figure E.1a).

χ−hs(t = αtstep) = [q1 , q2 , q2m , q3 , q4 , q4 , q̇1 , q̇2 , q̇2m , q̇3 , 0 , 0]−hs(t = αtstep)
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• Step time (tstep)

• Fraction of time spent in different phases; α, β, γ; 0 < α, β, γ < 1 (see figure F.1).

• We divide the walking cycle into a finite state machine as shown in figure F.1; one

for the hip and one for each foot. Each state machine is divided into a state and

given a name (e.g. pre-mid swing, push-off). Each state has a suitable current

parameterization and is shown in the parenthesis. Transitions for states are shown

along the time axis.

Hip state machine (top panel): is divided into three states; a pre-mid swing

state, a post-mid state, and a double stance state. In the pre-mid swing state

we apply a constant current, while the post-mid swing and double stance

states are both passive. We start with pre-mid swing state. When the robot’s

stance leg is vertical (in the single stance phase), the pre-mid swing to post-

mid swing transition occurs. On heel-strike, we get the post-mid swing to

double stance state transition. Finally, the double stance to pre-mid swing

transition leading to the next step occurs when the vertical reaction force on

the trailing leg goes to zero (also called the toe-off).

Foot state machine (middle panel): is the state machine for the foot which stays

on the ground for the full step. This foot has three states; single stance, push-

off, and double stance. For single stance we do a Proportional-Derivative (P-

D) control on the absolute foot angle. For the push-off we do a Proportional

(P) control on the absolute foot angle. The double stance state is passive. We

start with the state single stance. When the swinging leg’s ankle reaches a

critical height the single stance to push-off transition occurs. On heel-strike,

the push-off to double stance transition occurs. Finally, when the vertical

reaction force on the trailing leg goes to zero i.e. on toe-off, we get the

double stance to flip-up transition leading to the next step.
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Foot state machine (bottom panel): is the state machine for the foot that is in

the air during single stance and is on the ground during double stance. This

foot has three states; flip-up, flip-down, and double stance. For double stance

we do a P-D control on absolute foot angle. In the flip-up and flip-down we

do a P-D control on the foot angle. Since the foot is massless, we decoupled

the motion of the swinging leg’s foot from the rest of the robot simulation.

We did a separate optimization for the flip-up and flip-down states and is pre-

sented in section F.2. We start with flip up position for this foot at time t=0.

We transition from flip-up to flip-down state when the hip reaches a certain

critical angle. On heel-strike, we transition from flip down to double stance

state. The double stance to single stance transition occurs when the vertical

reaction force on trailing legs goes to zero (also called toe-off) leading to the

next step.

Constraints. The constraints for this optimization are same as those presented for the

optimal control problem presented in section E.2 but with a few exceptions. We do not

have the step length and step velocity constraint. Instead, we bound the hip angle at heel-

strike to have a maximum value of 0.4 rad (to prevent robot wear and tear associated with

big step lengths). We do not have a grid to enforce the vertical ground reaction force

and current constraints. So, we create a grid of size Ns1 for time interval 0 ≤ t ≤ γβαtstep,

Ns2 for time interval γβαtstep ≤ t ≤ βαtstep, and Ns3 for time interval βαtstep ≤ t ≤ αtstep, all

these are in single stance phase. We also create a grid of size Nd for the time interval

αtstep ≤ t ≤ tstep in double stance phase. Now we enforce the reaction force and current

constraints on this grid in a similar way as that presented in section E.2.

Methods. Same as those presented in section E.2.

157



APPENDIX G

FINITE STATE MACHINE FOR HIGH LEVEL WALK CONTROL

We use a concurrent, hierarchical finite state machine to code our combined coarse-

grid and reflex based discrete controller on the robot. These are shown below.

Outer Hip Pre-mid Swing

(coarse grid: constant current)

Outer Hip Post-mid Swing

(stabilization: two constant
amplitudes for 0.15 sec each)

Outer Hip Double Stance

(coarse-grid: zero current)

(coarse-grid: zero current)

Inner Hip Pre-mid Swing

(coarse grid: constant current)

Inner Hip Post-mid Swing

(stabilization: two constant
amplitudes for 0.15 sec each)

Inner Hip Double Stance

(coarse-grid: zero current)

(coarse-grid: zero current)

Inner leg vertical 
   (mid-stance)

Outer foot 
  toe-off

Outer foot
heel-strike

Inner foot 
  toe-off

Outer leg vertical 
   (mid-stance)

Inner foot
heel-strike

Figure G.1: Hip finite state machine.
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Outer foot at 
critical height

Outer foot
heel-strike

Inner foot 
  toe-off

   Hip at a 
critical angle

Outer foot 
  toe-off

Inner foot
heel-strike

Inner Foot Single Stance

(coarse grid: proportional-derivative 
control on absolute foot position)

Inner Foot Push-off
(coarse grid: proportional control 
     on absolute foot position)

(stabilization: change in reference angle  
of the proportional-derivative controller)

Inner Foot Double stance

(coarse grid: proportional-derivative 
control on absolute foot position)

Inner Foot Double stance

(coarse grid: zero current)

Inner Foot Flip-up

(coarse grid: proportional-derivative 
       control on foot position)

Inner Foot Flip-down

(coarse grid: proportional-derivative 
       control on foot position)

Figure G.2: Inner foot finite state machine. The outer foot finite state machine
is similar.
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