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Foreword 

 
This report outlines the work done by Max Wasserman (MAE ’09, Cornell University) and 

myself in the Bio-robotics and Locomotion lab, while solving the problem of equalizing the 

mass properties of the two legs on the Cornell Ranger – a dynamic-walking bi-ped robot. 

This equalization will need to be done every time a major change is made to the mass 

properties of the robot and hence this report will also serve as a guideline on how to do this.  

 
Chapter 1 introduces the reader to the problem at hand while also outlining relevant design 

details of the robot. Chapter 2 states the conditions on the mass properties that need to be 

equalized while Chapter 3 outlines the apparatus, experiments and calculations used to 

measure relevant properties of the robot. Chapter 4 gives an overview of the MATLAB 

programs used to achieve symmetry between inner and outer legs. Conclusions are in 

Chapter 5.  

 

We worked approximately ten hours a week on the project – starting with planning and 

designing an apparatus for measuring the relevant mass properties of the robot, taking 

measurements, writing the required programs for the robot, keeping track of the changes 

made to the robot (in terms of these mass properties) and finally recommending a mass 

distribution for the robot in its current configuration that will equalize the mass properties 

of the two legs.  
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1. Introduction 
 

The Cornell Ranger unofficially holds the world record for the largest distance traveled by 

a walking robot or walking toy without help, falling over or having to recharge its batteries. 

It can be aptly described as a ‘four-legged bi-ped’, having two inner legs that are joined at 

the bottom by a short steel bar, and two outer legs on the outside that are joined at the top 

by a long aluminum bar (Fig. 1). One description of the walking ‘cycle’ of the Ranger is as 

follows – First, say, the inner leg is the pivot or stance leg, while the outer leg is swung 

forward, by the hip-motor and a push-off mechanism on the outer leg (actuated by the foot 

motor on the outer leg). After the foot on the outer leg lands, it is now the stance leg and 

the inner leg is swung. Thus each leg swings once every cycle.  

 

One area where there is room for improvement is the ‘symmetry’ of the walk - that is, 

currently, the size of the steps are not equal for the two ‘half-cycles’, on applying the same 

input (i.e. identical torque histories to hip motor in both half cycles, and same torque 

histories to individual feet motors).  

                     
 

      Fig. 1.1 – A CAD drawing of the ‘Cornell Ranger’ and its essential parts 
(from Daniel Karssen’s internship report (Jan 2007), ‘Design and construction of the Cornell Ranger, a world 

record distance walking robot’)  
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2. Conditions for Symmetry  
 

Given that we apply the same control law and inputs to both feet motors, and the same 

control law and the same inputs to the hip motor in both half-cycles, to get a ‘symmetric 

walk’ or identical motion during both half-cycles, the two legs must be dynamically similar.  

 

For the legs to be dynamically similar: 

 

(1). the governing equations of motion of the legs must be the same in the two half-cycles, 

and 

 

(2). additionally, all couplings between the two legs must be equivalent, for e.g. the springs 

joining the foot motor to the foot on each leg must have equal spring constants.  

 

Condition (1) requires that the equations 2.1 – 2.3 (below) need to hold. Our project goals 

were to satisfy these conditions and to get a procedure in place so that in future, if changes to 

the robot are made, anybody can use this procedure to get the robot back into a symmetric 

configuration.  

 

 

Iin/h = Iout/h                                                                                                                  …… Eqn. 2.1 
                 

minyin = moutyout           ….. Eqn. 2.2 
      

min zin = mout zout             ……. Eqn. 2.3 

  
where, 

 

yin (yout) = distance of the centre of mass of the inner leg (outer leg) from the hip-axis, as 

measured along the leg. 

 

zin (zout) = distance of the centre of mass of the inner leg (outer leg) from the hip-axis as 

measured perpendicular to the plane of the leg. 

 

min (mout) = mass of the inner (outer) leg.  

 

Iin/h (Iout/h) = moment of inertia of the inner (outer) leg about the hip-axis. 

 

 

Note that, perhaps surprisingly, we do not need min = mout, nor do we need Iin/h = Iout/h. In 

particular adding any point mass to either leg at the hip does not affect dynamic similarity.  
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3. Measurements  
 

It is not a co-incidence that the quantities that need to be equalized for dynamic similarity 

(ref. Eqns. 2.1 – 2.3) of the two legs are all measurable without disassembly of the robot. For 

example, min & mout and Iin/com & Iout/com cannot be measured without disassembly. 

Experiments were devised to help us measure the relevant mass properties for each leg. Say 

that we want to calculate these quantities for the outer leg - the recipe for calculation of the 

relevant quantities (Eqns. 2.1 – 2.3) for each leg is as follows.  

 

• First, the inner leg is clamped and the outer leg is left free to swing (Setup I, Fig. 3.1) and 

the deflection of the outer leg from the vertical is noted (θ0) at equilibrium.  

 

• Next, the outer leg is swung and the average time-period (and hence, ω) is noted over ten 

cycles of forced, damped, small-angle oscillations where the amplitude of oscillation is kept 

constant. This can be done in two ways – a) We could try the ‘zero-torque method’ wherein 

the hip motor is engaged to the outer leg and the gains on the hip-motor controller are 

tweaked such that we get approximately stable motion that does not grow or decay much. 

This means that the motor torque is roughly equal and opposite to the friction torque – Fig. 

3.2 has graphs of hip-encoder output vs. time in a typical case.  b) In the second method, 

where the motor is disengaged, the pendulum is left from a position slightly displaced from 

equilibrium and is given constant periodic forcing such that we get constant-amplitude small-

angle oscillations – if the leg is left to swing naturally it will come to complete rest in about 

five oscillations.  

 

• We next compute the quantity moutrout, where rout is the distance of the centre of mass of the 

outer leg from the hip-axis. The procedure to find moutrout is explained under Set-up II (Fig. 

3.3) – the same set-up allows us to take measurements from which we calculate moutyout and 

mout zout.  

 

• Once we know the values of ω and moutrout we calculate the value of Iout/h using Eqn. 3.2. 

 

Iout/hα(t) = - moutroutgsin(θ(t)) = -moutroutgθ(t)    …. Eqn (3.1)  
 

where, α(t) = angular acceleration 

         θ(t) = angular deflection from equilibrium position 

 

On solving Eqn. 3.1, we get, ω = (moutroutg/I)
(1/2) 

 = 2π/Tu
  

…. Eqn (3.2) 

  

We approximate the dynamics of swinging motion to that of an un-damped, unforced simple 

pendulum performing small-angle oscillations under gravity. Appendix 1 outlines a 

procedure for error analysis, where we tried to estimate the error in our ω calculations due to 

the above approximation and found that the approximations were indeed reasonable. A 

similar procedure is followed in the computation of the relevant mass properties of the inner 

leg, and here the experimental set-ups are much simpler.  
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   Fig. 3.1 – Typical position data from hip-encoder (‘Zero-torque’ experiment) 

 

 

Set-up (I) - For measurement of moments of inertia (I) about the hip 

 

Outer leg inertia measurement set-up 

         
               Fig. 3.2 (a) – Front view       Fig. 3.2 (b) - Rear View 

      

Figs. 3.2 (a) and (b) show front and back views of the set-up used to measure outer leg 

inertia. Not seen here is that the long bar is clamped at the back to the wall. Also if the long 

bar is clamped properly and is perfectly horizontal (unlike as in Fig. 3.2 (a)), we do not need 

to support it at its front end. The set-up for measuring moment of inertia of the inner leg 

about the hip axis is a lot simpler, wherein we just screw a large piece of wood onto one of 

the outer legs and clamp this to the wall. A similar procedure is followed to obtain 

measurements.  
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Set-up (II) - For measurement of my, mz values.  

 

 

      
 

   Fig. 3.3 – To measure my, mz values 
 

Fig. 3.3 shows not only the set-up that allows eventual computation of moutyout and 

moutzout but also outlines a method that will allow for precise and fast computation of these 

values. We horizontally rest both ends of the inner leg on a set of 2-by-4’s. The outer leg 

must be free to swing about the hip-axis, and using the value of θ0 calculated from Set-up I 

we lift and hold the inner leg such that its centre of mass (G1) lies on the horizontal passing 

through the hip axis. A force-measure is placed at a convenient place on the outer leg (say, 

at ‘l’ from the hip axis) and we compute moutyout, moutzout values from the procedure 

shown in Fig. 3.3. Note that we can also compute mr from the experiment above, where r is 

the distance of the centre of mass from the hip-axis.  

 

Also note that for the inner leg, θ0/in was found to be 3.9 degrees and for the outer leg, θ0 is 

approximately 0.7 degrees. Now, cos(3.9) = 0.9976, and hence, except for calculation of 

the values of mout zout and minzin, we can approximate θ0/out = θ0/in = 0 degrees for all 

practical purposes. Hence, for example, we need not bother lifting and holding the outer leg 

by exactly θ0/out as shown in Fig. 3.3.  
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4. Equalizing Mass Properties 
 

The robot properties were measured on 23
rd

 October, 2007 and showed the following 

values (Table 4.1):   

 

Inner Leg   Difference  Outer Leg 

 

my (kg.cm)     53.76   - 1.60   55.36 

mz (kg.cm)     4.17     3.53   0.64 

I/h (kg.cm
2
)     2480   -1606   4086 

 

      Table 4.1 

 

Since then the following changes were made to the robot: 

• Three boxes (~ 100gms each) have been added– one below each of the 3 steel cages 

of the robot, i.e., about 22 cm from the hip-axis. These house the satellite 

processors.  

• A new, stiffer bar (33gms) joining inner legs has replaced the previous one (about 

20gms), at around 95 cm from the hip.  

• Hip-spring assembly moved down by 31cm (initially the top-ends of the higher pair 

of springs were at 23 cm, now they are at about 54 cm).  

• Small electronics parts added inside the steel cages. 

• An inertial measurement unit (IMU) was added below the computer box on the 

inner leg, which weighed about 60gms, and would be roughly located at 25 cm 

from the hip.  

• Two identical pairs of hip-springs are being used currently – each spring of about 

16gms each, and rest length 12cm. Earlier, we had only one of these pairs of springs 

along with a heavier pair of springs (45 gms each, rest length of 16cm and placed 

below the lighter springs). These heavier springs also had much higher pre-tension 

that the lighter springs.  

• A small part was removed from the bottom of the outer leg (35gms, at about 87 cm 

from the hip axis).  

 

The following values were obtained after the changes when the measurements were taken 

using the zero-torque experiment on December 5
th

 2007 (Table 4.2) – note that the I/h and 

my values of the inner leg have now increased above the values of the outer leg, as most of 

the changes were made to the inner leg.  

 

Inner Leg           Difference    Outer Leg 

 

my (kg.cm) 70.3   4.14        65.86 

mz (kg.cm)    4.17   3.51     0.66  

I/h (kg.cm
2
)    4584.5  279.8        4304.7 

 

Table 4.2 
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So starting with the values in Table 4.2 we must move to a symmetric configuration with 

the following constraints in mind: 

 

• Iin/h (>Iout/h) must not increase further by much (preferably should decrease). If Iin/h  

increases by too much we would have to increase Iout/h as well in order to match 

them up. In turn, cycle-time would increase and the robot would walk a lesser 

distance, as batteries would get exhausted much faster.  

• The new mass distribution should be relatively easy to implement (e.g. adding 

masses too far out from the plane of the robot will be difficult; neither must we add 

masses above the hip axis). 

• We must accommodate specific needs (e.g. another battery must be added and so 

on). 

• Must not affect other projects on robot (e.g. hip-springs must still be able to give 

desired torque (6N.m) in new configuration as well). 

 

Two MATLAB programs were used to in solving the problem of getting to a symmetrical 

configuration.   

1) A program (equality.m) to which the user inputs the locations of the masses to be added 

(must be three masses or more) and the differences in the relevant mass properties of the 

two legs is made exactly zero by the program (code in Appendix 2(a)). This program 

however has limited applicability – every time a change is made to the robot one must 

calculate manually the changes in the mass properties. Also, it fails to work with the 

constraints as described above and does not give the user an intuitive feel for solving the 

problem.  

 

2) Another program (equality_auto.m, Appendix 2(b)) overcomes both the disadvantages 

of the previous one and is also a guided-user interface (GUI). Essentially it requires the last 

set of properties as initial input, and prompts the user to add a mass wherever required. It 

then calculates the new differences (and individual values) in the mass properties while 

prompting if any further mass needs to be added. A sample session of this program is 

included in Appendix 2(c) – we have gone from the asymmetric configuration in Table 4.2 

to a symmetric configuration.  

 

In both these programs any masses that was added was modeled as a positive point mass 

being added at the concerned location. To move a particular mass a negative mass is to be 

added by the user at the old location and an equal positive point mass is to be added at the 

new location. The program would then be calculate the new mass properties. For instance 

when the mount holding the hip-springs was down by 31 cm on the inner leg, this change 

accounted for in the following way by the program: 

 

(minyin)new  = (minyin)old + mmountymount,f +  (-mmount)ymount,i 

where ymount,f  is the final y co-ordinate of the mount and ymount,i  is the initial position of the 

mount. Similarly, 

 

(minzin)new  = (minzin)old + mmountzmount,f  + (-mmount)zmount,I, and  

 

(Iin/h)new  = (Iin/h)old + mmount[(ymount,f )
 2 

+ (zmount,f )
 2

] + (-mmount) [(ymount,i)
 2 

+ (zmount,i )
 2

] 
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To minimize the values in column 2 of Table 4.2, it is found using the GUI that we need to 

place the second battery (split into two equal halves of about 375 gms each) at y = 7 cm, z 

= 4.5 cm from the hip-axis on the outer legs and move the whole hip-spring assembly up by 

about 10 cm from its current configuration.  

 

 

   Inner Leg   Difference  Outer Leg 

 

my (kg.cm)       68.77  0.12    68.65 

mz (kg.cm)       4.17   0.155   4.035 

I/h (kg.cm
2
)       4384.16    27.52    4356.64 

 

       Table 4.3 

 

The differences in the mass properties that we are interested in are small percentages of the 

individual values.  

 

 

5. Conclusions 
 

Clearly, through the various changes made to the robot since measurements made on 

October 23
rd

 2007, the robot is closer to symmetry. By the addition of an extra battery near 

the hip-axis on the outer legs and movement of we were really able to drive the differences 

down.  

 

Through the course of this project we also learnt that changes which are seemingly 

negligible, can make a large difference in the mass properties. For instance, the hip spring 

assembly is relatively light (overall weight is less than 200 gms), but since it is located far 

away from the axis and was moved down by a large distance (31 cm), it caused a large 

change in the inertia values of the inner leg.  

 

To solve this problem next time, we also have a convenient MATLAB program 

(equality_auto.m) which is essentially a GUI and helps the user intuitively decide what 

masses to add and move so as to obtain a more symmetric configuration.  

 

What remains is to implement the mass-distribution recommendation for symmetry and 

verify that the robot actually has identical half-cycles with the extra battery added and the 

hip springs moved up. When all the changes listed below Table 4.1 were being made to the 

robot, they were tracked by extrapolations made using equality_auto.m instead of 

measuring properties every time a change was made. The recommendations based on such 

extrapolations were very similar to the recommendations made based on measured values 

(Table 4.2) and hence one expects that when the changes recommended are actually 

implemented we will get a configuration that is reasonably close to what is predicted in 

Table 4.3.  
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Appendix 1.a) 
 

When the outer legs were swung without any forcing (with motor disengaged), they came 

to complete rest in just about five cycles – this complete stopping suggested the presence of 

solid friction. We want to get a sense of the approximation made when the swing motion in 

Setup I, was equated to un-damped, unforced motion of a simple pendulum under gravity. 

The actual motion was under the action of a gentle, periodic force which made sure that the 

damping in the system is balanced and the motion was at constant amplitude.  

 

Error Analysis 
 

My approach was to compare damped, unforced motion to un-damped, unforced 

motion and compare the frequencies in both cases. If the difference in these frequencies is 

negligible compared to the un-damped frequency, then it would be reasonable to assume 

that the difference in frequency of the actual motion (damped and forced) and the un-

damped, unforced motion will also be negligible compared to the un-damped frequency. 

Thus we could just use the frequency of the actual motion, as calculated from Eqn. (3.2) – 

which applied for un-damped motion - and calculate inertia from this. Also, if this 

approximation was a reasonable one for the outer leg, then it would be also be reasonable 

for the inner leg since it was observed that the inner leg only came to a stop in around 10 

cycles when left to oscillate naturally as compared to 5 cycles for the outer leg. 

 

The idea was to simulate and compare damped, unforced and un-damped, unforced 

motions in MATLAB and thus we needed to have are the same set of values of mr and I to 

compare the two frequencies in the damped, unforced and un-damped, unforced cases. For 

want of another way of doing it, we use the moutrout as calculated from Set-up II, and use 

this moutrout value and the experimentally observed ω value to compute the Iout/h value we 

need for comparison (again from Eqn (3.2)). The whole procedure could be thought of as 

having some physical object which we know has the corresponding mr and I/h values and 

we’re comparing its natural oscillations, with and without damping.  

 

The following equations of motion describe the damped, unforced case: 

 

Iout/hα(t) = - c*sign(d(θ(t))/dt) - moutroutgθ(t)     …. Eqn (6.1) 

 

The code for the simulations is in Appendix 1 b). MATLAB has trouble solving the above 

differential equation, basically due to the discontinuity of the signum function at ‘0’. The 

logistic function (Eqns. 6.2, 6.3) was used to get roughly the same behavior for friction but 

with a continuous nature at ‘0’. The value of c was tuned until the motion came to a stop in 

about five cycles – as observed.  

 

Iout/hα(t) = - c(1 - y)/(1 + y) - moutroutgθ(t)   …. Eqn (6.2) 

 

y = exp(-εd(θ(t))/dt), ε = 100.      …. Eqn (6.3) 

The plot for friction torque in the two cases is shown in Fig. 6.1.  
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        Fig. 6.1 – Solid friction Torque vs. Angular Velocity 

 
                    Fig. 6.2.1 – θ vs t     Fig. 6.2.2 – f vs t 

 

Figs. 6.2.1 and 6.2.2 show the results of the simulation with c = 0.15 – the pendulum comes 

to rest in about 5 cycles and has about the same frequency as the un-damped case. It was 

found that: 

Tu  - Td < 0.01sec < .6% of Tu,   Where Tu = 1.721 seconds (from Eqn. 3.2).   

 

Hence our approximation to find I/hip (from Eqn. 3.2) seems like a reasonable one to make.  
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Appendix 1.b) 
 

This appendix has the MATLAB code that simulates the motion of a forced, damped 

pendulum where only solid friction is assumed to be the dissipating torque and the solid 

friction term is approximated by the logistic function.  

 
function pend_coul_frixn 
% Author : Rohit Hippalgaonkar - 10/29/2007 
clc; 

  
% parameters - all in MKS units 
mr = 0.6125; % m – mass, r – distance of COM from hip-axis 
g = 9.81; 
I = 0.4503; % inertia about the hip axis 
c = 0.15; % co-efficient of solid friction 
eps1 = 100; 

  
% initial conditions on position 
theta0 = pi/30; 
% initial conditions on velocity 
theta0dot = 0; 
zzero = [theta0 theta0dot]; 

  
tspan = linspace(0, 100, 100000); 
tol = 1e-6; 
options = odeset('reltol',tol,'abstol',tol);  
[t zarray] = ode45(@rhs, tspan, zzero, options, mr, g, I, c); 

  
% Unpacking the solution  
theta = zarray(:,1); 
omega = zarray(:,2); 

  
r = - c*(1 - exp(-eps1*omega))./(1 + exp(-eps1*omega)); 

  
subplot(121) 
plot(t, theta); 
title('\theta vs time'); 

  
subplot(122) 
plot(t, r) 
title('Friction torque vs time'); 

  
end 
 

% RHS file in ode45 (ode solver) 
function zdot = rhs(t, z, mr, g, I, c) 
eps1 = 100; theta = z(1);omega = z(2); 

  
alpha = - (mr*g/I)*(theta) - c*(1 - exp(-eps1*omega)./(1 + exp(-

eps1*omega))); zdot = [omega alpha]';   
end      
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Appendix 2.a) 
 

This appendix has the MATLAB code for the first program we used in trying to solve the 

problem of getting to a symmetric configuration from an asymmetric configuration. It 

essentially takes in the locations of masses that you would like to add at various places on 

the robot and outputs the values of each mass to be added while driving the new difference 

in the mass properties to zero. We must add three or more masses for the difference to go 

down to zero.  

 
 

function masses = equality_max_batt(locs) 

  
%valsIn and valsOut are arrays of four elements  
%vals(1) = m*y 
%vals(2) = m*z 
%vals(3) = I 
% these values must be known from experiment 

  
% masses in kg, distance in cm, inertia in kg.(cm^2) 
valsIn(1) = 61.16; % m*y of inner leg with battery 

(0.64*96*(cos(3.9*pi/180))^2 -> measured 
valsIn(2) = 4.17; % m*z of outer leg with battery (m*y*tan(3.9*pi/180)) 
valsIn(3) = 4147.9; % inertia (from measured time period and m*y values) 

  
valsOut(1) = 61.24; % m*y of outer leg  
valsOut(2) = .64; % m*z of outer leg  
valsOut(3) = 4365.4; % inertia of outer leg about hip 

  
%Each row of locs represents the position for each individual added mass 
%locs(:,1) = which leg? (0 = outer, 1 = inner) 
%locs(:,2) = y-location 
%locs(:,3) = z-location 

  
eqIn = [valsIn(1); valsIn(2); valsIn(3)]; 
eqOut = [valsOut(1); valsOut(2); valsOut(3)]; 
eqDiff = eqOut - eqIn; 

  
b = eqDiff; 
ck = (2*locs(:,1)-1)'; 
A = [locs(:,2)'.*ck;locs(:,3)'.*ck;(locs(:,2).^2+locs(:,3).^2)'.*ck]; 

  
m = A\b; 

  
newIn = eqIn + A*(locs(:,1).*m); 
newOut = eqOut + A*((locs(:,1)-1).*m); 
newDiff = newOut-newIn; 

  
masses = [m; newDiff]; 
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Appendix 2.b) 
 

This section includes the code for the second program we used in going from an 

asymmetric distribution to a symmetric distribution. It is essentially a GUI that computes 

the new differences in the mass properties every time the user inputs an old set of values of 

the properties and a mass at a particular location on a particular leg. It is a tool that helps 

the user intuitively reach the symmetric configuration.  

 
function [masses,finIn,finOut] = equality_auto(eqIn,eqOut) 

  
%valsIn and valsOut should be arrays of four elements 
%vals(1) = m 
%vals(2) = l_y 
%vals(3) = l_z 
%vals(4) = I 

  
%Each row of locs represents a different position for an added mass 
%locs(:,1) = which leg? (0 = outer, 1 = inner) 
%locs(:,2) = y-location 
%locs(:,3) = z-location 

  
%eqIn = [valsIn(1)*valsIn(2);valsIn(1)*valsIn(3);valsIn(4)] 
%eqOut = [valsOut(1)*valsOut(2);valsOut(1)*valsOut(3);valsOut(4)] 

  
eqDiff = eqIn-eqOut; 

  
fprintf(1,'The differences in the leg measurents are:\n'); 
fprintf(1,'my: %5.5f   mx: %5.5f   I: %5.5f\n\n',eqDiff); 

  
cont = 'Y'; 
n = 0; 

  
while strncmpi(cont,'Y',1) 

  
    leg = input('To which leg do you want to add mass? (0 = outer, 1 = 

inner)'); 
    while leg ~= 0 && leg ~= 1 
        fprintf(1,'That is not a valid input.\n'); 
        leg = input('To which leg do you want to add mass? (0 = outer, 1 

= inner)'); 
    end 

  
    m = input('What is the mass you want to add?'); 
    y = input('What is the y-coordinate of the mass?'); 
    z = input('What is the z-coordinate of the mass?'); 

  
    if leg == 1 
        newIn = eqIn + m*[y;z;y^2+z^2]; 
        newOut = eqOut; 
        fprintf(1,'\nThe new inner leg measurents are:\n'); 
        fprintf(1,'my: %5.5f   mx: %5.5f   I: %5.5f\n\n',newIn); 

         
    elseif leg == 0 
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        newIn = eqIn; 
        newOut = eqOut + m*[y;z;y^2+z^2]; 
        fprintf(1,'\nThe new outer leg measurents are:\n'); 
        fprintf(1,'my: %5.5f   mx: %5.5f   I: %5.5f\n\n',newOut); 
    end 

  
    newDiff = newIn-newOut; 

  
    fprintf(1,'The new differences in the leg measurents are:\n'); 
    fprintf(1,'my: %5.5f   mx: %5.5f   I: %5.5f\n\n',newDiff); 

  
    keep = input('Do you want to keep this mass? (Y/N)  ','s'); 
    if strncmpi(keep,'Y',1) 
        eqIn = newIn; 
        eqOut = newOut; 
        n = n+1; 
        mss(n,:) = [leg m y z]; 
    end 

     
    cont = input('Do you want to add another mass? (Y/N)  ','s'); 
end 

  
masses = mss; 
finIn = eqIn; 
finOut = eqOut; 

  
end 

 

 

Appendix 2.c) 
 

This section contains a sample session of the GUI (code in Appendix 2.b) and shown here 

is how we went from the asymmetric configuration measured on Dec. 5
th

 (Table 4.2) to a 

symmetric configuration while keeping all the constraints in mind.  

 

>> equality_auto([70.3; 4.17; 4584.5],[63.4; 0.66; 4304.7]) 

% The first matrix is the my, mz and I/h values respectively of the inner leg as a column 

vector and the second matrix signify the same values in the same order for the outer leg.  

 

The differences in the leg measurents are: 

my: 6.90000   mz: 3.51000   I: 279.80000 

 

% Positive differences signify that the value is greater for the inner leg.  Clearly we must  

% try and reach at a symmetric configuration while keeping the constraints (Sec. 4, page 10) 

% in mind. We could try reducing the my and I/h values of the inner leg by moving the hip-

% spring assembly up and try to equalize the mz values simply by using the second battery  

% appropriately. 

 

% First, moving the hip-spring assembly up the inner leg 

% Note that the hip-spring assembly contains two mounts of 37.5 grams (both on inner  
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% leg), two hooks of six grams each, and two pairs of springs, that is each pair of springs 

% has a rest-length of 10 cm, and each spring has a mass of 16.5cm.  

 

% First, moving the mount : 

 

To which leg do you want to add mass? (0 = outer, 1 = inner)1 

What is the mass you want to add? 0.075 % adding a positive mass at new location  

What is the y-coordinate of the mass? 67 % new location of the mount 

What is the z-coordinate of the mass? 0 

 

The new inner leg measurents are: 

my: 75.32500   mx: 4.17000   I: 4921.17500 

 

The new differences in the leg measurents are: 

my: 11.92500   mx: 3.51000   I: 616.47500 

 

Do you want to keep this mass? (Y/N)  Y 

Do you want to add another mass? (Y/N)  Y 

To which leg do you want to add mass? (0 = outer, 1 = inner)-0.075 

That is not a valid input. 

To which leg do you want to add mass? (0 = outer, 1 = inner)1 

What is the mass you want to add?-0.075 % adding a negative mass at old location  

What is the y-coordinate of the mass?77 % old location of the mount 

What is the z-coordinate of the mass?0 

 

The new inner leg measurents are: 

my: 69.55000   mx: 4.17000   I: 4476.50000 % measurements of the inner leg after moving 

mount 

 

The new differences in the leg measurents are: 

my: 6.15000   mx: 3.51000   I: 171.80000 % new differences  

 

Do you want to keep this mass? (Y/N)  Y 

Do you want to add another mass? (Y/N)  Y 

 

% moving the hook up by 10 cm from its old location 

To which leg do you want to add mass? (0 = outer, 1 = inner)1 

What is the mass you want to add?.012 

What is the y-coordinate of the mass?63.5 

What is the z-coordinate of the mass?0 

 

The new inner leg measurements are: 

my: 70.31200   mz: 4.17000   I: 4524.88700 

 

The new differences in the leg measurements are: 

my: 6.91200   mz: 3.51000   I: 220.18700 

 

Do you want to keep this mass? (Y/N)  Y 
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Do you want to add another mass? (Y/N)  Y 

To which leg do you want to add mass? (0 = outer, 1 = inner)1 

What is the mass you want to add?-0.012 

What is the y-coordinate of the mass?73.5 

What is the z-coordinate of the mass?0 

 

The new inner leg measurents are: 

my: 69.43000   mz: 4.17000   I: 4460.06000 

 

The new differences in the leg measurements are: 

my: 6.03000   mz: 3.51000   I: 155.36000 

 

Do you want to keep this mass? (Y/N)  Y 

Do you want to add another mass? (Y/N)  Y 

To which leg do you want to add mass? (0 = outer, 1 = inner)1 

 

% moving the springs up by 10 cm from their old location  

What is the mass you want to add?0.066 

What is the y-coordinate of the mass?52.5 

What is the z-coordinate of the mass?0 

 

The new inner leg measurements are: 

my: 72.89500   mx: 4.17000   I: 4641.97250 

 

The new differences in the leg measurements are: 

my: 9.49500   mx: 3.51000   I: 337.27250 

 

Do you want to keep this mass? (Y/N)  Y 

Do you want to add another mass? (Y/N)  Y 

To which leg do you want to add mass? (0 = outer, 1 = inner)1 

What is the mass you want to add?-0.066 

What is the y-coordinate of the mass?62.5 

What is the z-coordinate of the mass?0 

 

The new inner leg measurements are: 

my: 68.77000   mx: 4.17000   I: 4384.16000 

 

The new differences in the leg measurements are: 

my: 5.37000   mx: 3.51000   I: 79.46000 

Do you want to keep this mass? (Y/N)  Y 

 

% Adding a second battery (750 gms) on the outer leg, split in two equal halves on  

% opposite sides of the outer leg. 

Do you want to add another mass? (Y/N)  Y 

To which leg do you want to add mass? (0 = outer, 1 = inner)0 

What is the mass you want to add? 0.75 

What is the y-coordinate of the mass? 7 

What is the z-coordinate of the mass? 4.5 
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The new outer leg measurements are: 

my: 68.65000   mx: 4.03500   I: 4356.63750 

 

The new differences in the leg measurements are: 

my: 0.12000   mx: 0.13500   I: 27.52250 

 

% really low differences! Hence this configuration works.  

 

Do you want to keep this mass? (Y/N)  Y 

Do you want to add another mass? (Y/N)  N 

 

ans = 

 

    1.0000    0.0750   67.0000         0 

    1.0000   -0.0750   77.0000         0 

    1.0000    0.0120   63.5000         0 

    1.0000   -0.0120   73.5000         0 

    1.0000    0.0660   52.5000         0 

    1.0000   -0.0660   62.5000         0 

         0    0.7500    7.0000    4.5000 


