
CORNELL UNIVERSITY BIOROBOTICS AND

LOCOMOTION LABORATORY

END-OF-YEAR PROGRESS REPORT

Jehhal Liu (jl589@cornell.edu)
Advisor: Professor Andy Ruina

May 15, 2009



Abstract—Cornells Biorobotics and Locomotion Labora-
tory is developing a walking bipedal robot, with the in-
tention of understanding the most versatile, robust, and
efficient way of controlling it. A very important aspect of
the control system is the electronics architecture, which
needs to be robust and versatile enough to adapt to
new mechanical robotic structures. Additionally, the data
collection subsystem needs to be fast and reliable so
that a substantial amount of information can be gathered
to further the research goal of the lab. In constructing
a walking bipedal robot, the lab hopes to expand the
knowledge of the details of human motion.

1 INTRODUCTION

The purpose of the research in the
biorobotics lab is to relate the controls
of the robot to the mechanics of human
locomotion, in hopes of expanding our
knowledge in this still unfamiliar field. In
knowing the nuances of an efficient control
structure for a human-like robot, details
about how the human body controls itself
can be better understood. The experiments
conducted in this lab can be used for
various medical applications, such as the
development of prosthetic body parts (par-
ticularly those directly related to walking).

Throughout the past year, the lab’s elec-
tronics team was responsible for redesign-
ing the hardware and software of the
electronic control system of the Cornell
Ranger. The purpose of the development
was to create a more robust, modular sys-
tem which could be implanted into dif-
ferent robots and quickly adapted to new
mechanical structures. This electronics re-
structuring is an intermediate step with the
long-term goal of introducing the system
into the lab’s new design for a two-legged
bipedal robot (instead of the current four
legged design).

As a member of the electronics team,
I had two main tasks for the past two
semesters. During the first semester, I de-
signed the carrier board for the ”Main-

Brain,” which is the ARM9 processor
that controls the overarching structure of
the software control architecture. During
the second semester, after working briefly
with programming with the User Interface
board, I moved onto a testing phase of the
bluetooth module, used in the robot for
data retrieval.

2 MAIN-BRAIN CARRIER BOARD

During the initial design process for the
system’s hardware architecture, the ARM9
processor used for the Main Brain was the
Phytec LPC3180. This processor required
a Carrier Board which allows the user to
utilize the various input/output features of
the processor, including the UART, SD, and
USB interfaces. This carrier board is used
for interfacing with the ARM9, connecting
the processor either to the other boards
on the robot or an outside computer for
programming purposes.

Note: This report describes the carrier
board for the LPC3180, however the sys-
tem was redesigned to use the LPC3250
ARM9 Processor. The interfacing infor-
mation is still relevant for both processor
types.

2.1 UART/RS-232

UART (Universal Asynchronous
Receiver/Transmitter) is a transmission
standard used to send and receive data
between two devices. The UART on
this communication board could be
used for several purposes, including
communicating with other boards, or
more importantly, communicating with
an outside computer using the RS-232
standard. In order to use the UART port of
the processor for RS-232 communication,
an RS-232 transceiver is required to control

1



the respective voltage levels, ensuring that
the PC serial port does not blow out the
input to the processor.

Both the LPC3180 and 3250 have 7
UARTs. Three UARTs are high speed,
meaning they are capable of baudrates of
up to 921600. Of the 7 available, 2 of the
UARTs have RS-232 transceivers and are
therefore capable of connecting to com-
puters. The connections for a female DB-9
cable, which is used to connect one of the
RS-232 UARTs to a computer’s serial port,
is shown in figure 1 and table 1.

Fig. 1: Pins on a female DB9 connec-
tor (front view). Soldered connections are
made in the back.

Pin Signal Description
1,4,6,9 No Connection

2 Received Data
3 Transmitted Data
5 Common Ground
7 Request to Send
8 Clear to Send

TABLE 1: Pin-out for interfacing the UART
with a female DB-9 connector.

The UARTs can be wired to the female
DB-9 connectors through Tyco’s standard
four or six pin Micro-MaTch connectors
on the carrier board. These connectors are
standard multi-pin connectors that can be
used for a variety of purposes. The corre-
sponding pins described in table 1 should
be wired to the correct pins on the Micro-
MaTch connection, allowing the board to
be connected to an outside device, such as
a computer.

2.2 Micro SD Card

A micro Secure Digital (SD) card is a for-
mat for a small flash memory card, which
is used in many portable devices for data
storage or transfer purposes. The card itself
is 15mm x 11mm, and can generally hold
gigabytes of information.

Note that as the SD card specification
has changed over the years, and as higher
capacity cards were being released, com-
patibility issues have occurred relating to
which cards could be read in a particu-
lar device. The SD card interface follows
the SD Memory Card Specification version
1.01. This implies that SDHC cards are not
compatible. These cards use a new format
to allow for capacities above 4GB.

Additionally, standard MicroSD format
cards with above 1GB storage employ a
different identification syntax which can-
not be interpreted by the current SD driver
on the LPC3250. As a result, the inter-
face can only communicate with cards that
have a capacity less than or equal to 1GB.

The microcontroller can readily inter-
face with microSD card slots by sending
direct lines from the card reader to the
MCU. The SD card employs a synchronous
read/write format, and is clocked for data
transmission, sending four bits of data
during each clock cycle. The clock speed
is dependent on the speed grade for the
card, which can be one of three values
as indicated in table 2. These speeds re-
fer to minimum write speeds for when
no memory unit on the card is occupied.
Otherwise, data fragmentation could alter
performance speeds.

The signal descriptions for each of the
8 pins of a microSD card are described in
figure 2 and table 3. Signals sent through
the command line are used to initiate
certain operations from the controller to

2



Speed Grade Transfer Rate
Class 2 2 MB/s
Class 4 4 MB/s
Class 6 6 MB/s

TABLE 2: Speed grades for microSD cards.

the reader. More information on SD cards
in general and how to use them can be
found in the SD Card Specification at
www.sdcard.org.

Fig. 2: Pins on a microSD card.

Pin Signal Description
1 Data bit 2
2 Data bit 3
3 Command Line
4 Supply voltage
5 Clock
6 Common Ground
7 Data bit 0
8 Data bit 1

TABLE 3: MicroSD pins.

2.3 USB

The Universal Serial Bus (USB) is a con-
nection standard for linking a peripheral
to a host device. The microcontroller unit
contains an on-board USB transceiver that
is capable of allowing the MCU to act as a
host to other USB-capable devices.

Fig. 3: Pins of MicroUSB connectors.

Micro USB connections require five pins
for communication. The pins on the recep-
tacles are shown in figure 3 and described
in table 4.

Pin Signal Description
1 Supply voltage
2 Data-
3 Data+
4 ID
5 Common ground

TABLE 4: MicroUSB pin descriptions.

Though the USB cable has two data
transmission lines, USB is still a half-
duplex transmission model. The two lines
are inverted versions of the same signal. As
such, the signals are differentiated at the
receiving end, allowing the common noise
to be wiped off from the signal. The ID pin
is used to specify whether the device is on
the A side or the B side of the communi-
cation line, which typically designate the
host or device end of the USB connection.

USB devices are typically connected
with a designated master/slave (or
host/device). New USB2.0 devices which
support USB On-The-Go (OTG) allow
two devices to connect to one another
without having a specified host. In an
OTG connection, one of the two devices
would act as the host, which is responsible
for scheduling and configuring the data
transmission between the two devices.
The LPC3180 (and the LPC3250) is capable
of USB OTG connections, and is also able
to act as either a host or device in the

3



communication scheme.

2.4 Final Design for LPC3180

The final design for the LPC3180 (figure 4),
which I completed last semester and built
at the beginning of this semester, consisted
of the communication standards described
in the previous subsections as well as
various other components for interfacing
with the other capabilities of the MCU.
Such components included more Micro-
MaTch connectors for the MCU’s on-board
analog-to-digital converter, the MCU’s SPI
communication pins, and the power input
from the 5 volt CAN bus line. A bluetooth
module resides on the carrier board and
communicates with the ARM9 via one of
the UART lines. This wireless module is
used for data collection purposes, and is
described in more detail in section 3. Ad-
ditionally, a battery is included as a backup
power supply for the on-board MCU clock.

Fig. 4: The populated LPC3180 Carrier
Board.

As a final note, as mentioned previously,
the board pictured in this section is a car-
rier board for the LPC3180; however the
board was later modified to be compati-
ble with the LPC3250. Both products are

ARM9 processors and have similar capa-
bilities. The switch from one product to
another came after a decision to alter the
software architecture that would eventu-
ally be programmed into this module.

3 BLUETOOTH

Bluetooth is a wireless communication pro-
tocol that is used for relatively short dis-
tance (100m) connections. This standard
is widely used for what is called ”cable-
replacement,” allowing device peripherals
(i.e. a computer mouse, or printer) to be
connected without the wiring that was pre-
viously required.

The purpose of the bluetooth module
in our robot electronics infrastructure is
to remotely retrieve data that was col-
lected during the robot’s operation. This
data can be used to analyze the movement
and control of the robot and further our
research initiative. Currently, the Ranger
uses the Radiotronix WI232DTS wireless
module that can send a wide range of
variables back to the receiving computer.
However, the throughput on the imple-
mented system can be increased using a
new module, allowing more data to be sent
for analysis.

3.1 Module

The module that is currently being tested
is the Roving Networks RN-21 bluetooth
module. This module currently resides on
the carrier board of the main brain, and
can interface with the processor using one
of the UARTs.

On the other end of the connection is the
Roving Networks RN-24 module which
acts as a stand-alone device. This module
contains the RN-21 module onboard a cus-
tom board with status LEDs, an antenna

4



jack, and easily solderable general-purpose
input/output pins for communication or
interface tweaking.

The RN-21 module has two modes of
communication through the UART: SPP
and HCI. The claimed SPP data transfer
rate when sending from the master de-
vice to the slave device is 300Kbps. The
claimed HCI sustained data transfer rate is
1.5Mbps. The devices used in lab, as dis-
covered after purchasing the devices, are
only capable of SPP communication and
thus cannot achieve the desired 1.5Mbps
transfer rates. The RN-21 module has sev-
eral different models, each of which has
a different communication protocol for the
different interfacing standards (SPP or HCI
for UART or USB). The RN-21H model al-
lows HCI communication through UART,
which is what should be used for data
transmission on the new robot, if this de-
vice is chosen for the final product.

3.1.1 Auto-Connect Feature

The module is capable of storing a partic-
ular address in memory and automatically
connecting to that device upon startup.
This mode can be configured in the com-
mand mode by altering a few settings (In-
formation on how to enter command mode
can be found in the RN-21 datasheet from
Roving Networks’ online website).

To configure a module to automatically
connect to another device, the module
must first be configured to run in Auto-
Master mode. Next, the address of the
secondary device should be stored in the
master module’s memory, using the appro-
priate command in command mode. Once
the master module has been reset, the de-
vices will connect if in range. Note that the
master module can never enter command mode
if it has established a bluetooth connection.

The address of a particular device can

also be found easily in command mode by
using the appropriate command sequence
GB. More information on other get and set
commands can be found in the datasheet
on the Roving Networks website.

3.2 Throughput Testing Procedure

Two testing methods have been used to
determine the maximum throughput be-
tween two of these devices. The first
method is strictly done through the Win-
dows’ hyperterminal and involves no cod-
ing. The second involves transmitting data
using matlab, and determining the differ-
ence between the time of arrival of the
first byte sent and the last byte sent. The
testing methods are described in the next
two sections.

The RS-232 pins on the stand-alone RN-
24 module were fed to a female DB-9 con-
nector (which was described in section 2.1.
This connection was subsequently fed into
a serial-to-USB adapter which was then
connected to one of the USB ports on the
computer test bench. Both testing methods
were performed using the same two RN-24
modules configured to a UART baudrate of
460800.

3.2.1 Hyperterminal Testing

Windows XP’s Hyperterminal can display
incoming traffic to a particular serial port,
and can send outgoing traffic to the same
port. This testing method involved con-
necting two RN-24 devices to the same
computer, and using two hyperterminals
to monitor incoming and outgoing traffic
for both devices. The steps taken in this
procedure are as follows:

1) Connect two RN-24 modules to the
host computer using the serial-to-
USB adapters. These modules should

5



be connected via bluetooth using the
auto-connect feature described in sec-
tion 3.1.1.

2) Open two instances of hyperterminal.
Connect one instance to one of the
RN-24 devices and the other instance
to the other device.

3) On either instance of hyperterminal,
click the Send File option in the
Transfer menu.

4) Type the path of the file to transfer in
the Filename box. The file sent dur-
ing this experiment was sendData.txt,
which simply contained 10,000 rep-
etitions of the string ”0123456789”
(100,000 Bytes of data).

5) Select the Zmodem with Crash Re-
covery option in the protocol list and
click Send.

After hitting Send, a new window ap-
pears which contains transmission infor-
mation, including an output of the instan-
taneous throughput. A sample of this win-
dow is shown in figure 5. Notice in the
figure that the throughput (boxed in red) is
240640bps, meaning 240640 bits are being
sent per second. Each character (i.e. ’0’) is
equal to one byte, or 8 bits.

The received bitstream is then stored in
a separate text file by the receiving client.
This received file was checked against
the transmitted data file to ensure reli-
able transmission occurred (i.e. no cor-
rupt/altered data).

The sustained throughput claimed for
this device in SPP mode is 300Kbps when
sending from the master device to the
slave device, and 240Kbps when sending
from slave to master. The results showed
that the sustained throughput was roughly
240Kbps while sending from the master
(figure 5), and roughly 200Kbps when
sending from the slave (figure 6). These
two numbers were obtained in two dif-

Fig. 5: The transmission window displayed
when sending a file from the master to the
slave device.

Fig. 6: The transmission window displayed
when sending a file from the slave to the
master device.

ferent experiments during which one-way
transmission was performed.

3.2.2 Matlab Testing

Matlab’s serial port communication capa-
bilities were used to test the reliability and
throughput of this device. Matlab has a
built in serial object which can be used to
transmit or receive data from a particular
serial port on the computer.

Two instances of Matlab were used dur-
ing testing, since one instance of Matlab
cannot run two processes simultaneously.
The steps involved in throughput testing
are as follows:

1) Connect two RN-24 modules to the
host computer using the serial-to-

6



USB adapters. These modules should
be connected via bluetooth using the
auto-connect feature described in sec-
tion 3.1.1.

2) Open two instances of Matlab.
3) In one instance of Matlab, create a

serial object for the COM port that
corresponds with one of the blue-
tooth devices. In the other instance of
Matlab, create a serial object for the
COM port of the other device.

4) Open both connections using the
fopen(obj) command.

5) On the receiver side, flush the input
buffer and run a script that constantly
checks the size of its input buffer and
the time of the check. This will mon-
itor the time of arrival of the packets
of bytes as they are transmitted via
the wireless connection.

6) On the transmitter side, use the
fprintf(*) command to send a stream
of known characters to the serial ob-
ject.

7) When the receiver buffer size reaches
the size of the transmitted data, check
the timestamps to determine the time
it took for the receiver buffer size to
reach the size of the transmitted data,
starting from the time of reception of
the very first packet.

A copy of the code that runs this script
for both the transmitter side and the re-
ceiver side is in the appendix. During the
experiment, 50,000 bytes were sent, con-
sisting of 5000 repetitions of the string
”0123456789” in step 6.

Upon knowing the number of bytes
transmitted and the time it took for them
to enter the receiver input buffer, the
throughput of the communication can be
easily calculated. The steps above were
repeated 40 times. The mean transmission
rate for the 40 iterations was 157036bps
with a standard deviation of 2883bps.

The cause of the significantly worse re-
sults in the Matlab throughput testing is
unknown. It is possible that the fprintf(*)
command produces enough overhead that
the throughput is compromised. However,
it was proven via the hyperterminal test
that the bluetooth is capable of at least
200Kbps transmission rates. Testing the
throughput for when the device is actu-
ally implemented into the robot can be
completed once programming of the main-
brain (or a similar MCU) has begun.

3.3 Test Results

The results of both the Matlab testing and
the Hyperterminal testing both show that
transmission speeds could potentially sur-
pass the transmission speed of the data
retrieval system currently implemented on
the Ranger; however the reason for choos-
ing this particular device was to achieve
the 1.5Mbps sustained transmission rate
that was claimed in the datasheet.

It should be noted that the Zmodem
protocol employed by the hyperterminal
transmits files in 1024-byte data packets,
however the packets from the robot for
data transmission will be smaller, resulting
in more overhead which will affect the
throughput of the device. This testing sim-
ply shows the capabilities of the bluetooth
module, but may not reveal typical data
transmission speeds for when the commu-
nication is implemented into the software
control architecture.

The decision must now be made
whether to purchase the HCI-compatible
RN-21/24 modules for further testing, or
to purchase different wireless modules
which are capable of faster (greater than
240Kbps) transmission. Seeing as the
hyperterminal testing showed throughput
at roughly 80% of the claim, it could
be a safe assumption to say that the

7



HCI-compatible devices would perform at
roughly 80% of its maximum throughput
rating. Additionally, it must be taken
into consideration that the maximum
UART baudrate of the RN-21 module is
921600, which could limit the maximum
data transmission and reception rate by a
considerable amount.

4 CONCLUSION

While the new LPC3250 carrier board is
complete, it cannot be truly tested until the
coding has begun and the communication
between various boards is established. The
new electronics system is currently being
implanted into the Ranger to ensure that
the system can function correctly and ef-
ficiently. Once the new robot is designed
and constructed, the electronics system can
then be ported to the new design.

As for the bluetooth module for data
extraction, it has been established that the
device is capable of transmitting at high
speeds. However, the absence of the HCI-
mode compatibility is a drawback to the
use of the module. A module that is, at the
very least, capable of near 1Mbps transmis-
sion would be desirable. In the long run,
a higher throughput device is necessary
especially with the current state of the
work in the lab. At this transition point
between a new electronics design and a
new mechanical design, the data collection
portion of the experimentation is crucial
for providing the information that can help
further the knowledge of robot and human
motion.

5 APPENDIX

5.1 Online References

1) Roving Networks RN-21:
http://rovingnetworks.com/
bluetooth-modules.php

2) Roving Networks RN-24:
http://rovingnetworks.com/
bluetooth-super-modules.php

3) MicroUSB Connector: http:
//www.hirose.co.jp/cataloge hp/
e24200011.pdf

4) MicroSD Card Receptacle:
http://www.molex.com/molex/
products/datasheet.jsp?part=
active/5025700893 MEMORY
CARD SOCKET.xml&channel=
Products&Lang=en-US

5.2 Matlab Code

5.2.1 Transmitter

% Create a serial port object.
tx = serial(’COM3’,’BaudRate’,115200,’FlowControl’,’hardware’,’OutputBufferSize’,1e6);

% Create transmitted data
sendData = ’01234567890123456789012345678901234567890123456789’; % 50 Bytes

% Connect to serial.
fopen(tx);

% Flush the data in the input buffer.
flushinput(tx);

dataSize = 5e4;

for i=1:11
sendData=[sendData sendData];

end

fwrite(tx,[sendData(1:dataSize) 10]);

% Disconnect from serial.
fclose(tx);

% Clean up all objects.
delete(tx);
clear tx;

8



5.2.2 Receiver

% Create a serial port object.
rx = serial(’COM4’,’BaudRate’,115200,’FlowControl’,’hardware’,’InputBufferSize’,1e6);

% Connect to serial, tx.
fopen(rx);

% Flush the data in the input buffer.
flushinput(rx);

% Communicate with serial, tx.
dataLog = [];
dataSize=5e4;
buffer=0;

tic;
while buffer<dataSize

buffer=rx.BytesAvailable;
dataLog = [dataLog;toc,buffer];

end

data=fread(rx,rx.BytesAvailable);
if ˜any(find((uint8(sendData(1:dataSize))’==data(1:end-1))==0))

disp(’Data is correct’);
end

time = dataLog(find(dataLog(:,2)>=dataSize,1,’first’),1) - ...
dataLog(find(dataLog(:,2)==0,1,’last’),1);

disp(sprintf(’Time to transmit %d Bytes = %d’, dataSize, time));
disp(sprintf(’Transmission speed = %dbps’, dataSize*8/time));

tlog = [tlog;dataSize*8/time];

data=fread(rx,rx.BytesAvailable);

% Disconnect from instrument object, obj1.
fclose(rx);

% Clean up all objects.
delete(rx);
clear rx;

9


