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Abstract:  

Controlling a complex system such as a bipedal walking robot requires a sophisticated control 

algorithm with numerous feedback inputs and control outputs. The shortcomings of many off-

the-shelf microcontroller kits include large physical size, power inefficiency, small number of 

digital ports, and poor computation capability. A printed circuit board was designed around 

Freescale MC56F8347 16-bit microcontroller to address the shortcomings of commercially-

available robotics-oriented microcontroller boards. The physical pin configuration on the board 

makes it easy to develop an inexpensive custom daughter board, allowing the control “brain” of 

the robot to be specifically tailored to different actuator/sensor configurations. The board was 

successfully populated and tested to verify all specified functionalities. 
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Executive Summary 
 

Controlling a complex system such as a bipedal walking robot requires a sophisticated 

control algorithm with numerous feedback inputs and control outputs. The shortcomings of many 

off-the-shelf microcontroller kits include bulky size, power inefficiency, small number of digital 

ports, and poor computation capability. The problem caused by poor computation capability of 

an off-the-shelf Microchip 8-bit microcontroller-system has been observed in the Biorobotic 

Laboratory’s Marathon Walker, a 2-dimensional bipedal walking robot, in which side-to-side 

stability is mechanically guaranteed by a wide foot size. More computation capability will not 

only be desirable, but necessary in the future generation of “true” 3-dimensional bipedal walking 

robot designs. 

An H-bridge circuit board was designed around ST Microelectronics VNH2SP30 motor 

driver to replace bulky off-the-shelf H-bridges that have poor refresh rate, high on-resistance, 

and low current rating. Another printed circuit board, named Brain Board, was designed around 

Freescale MC56F83x7 series of 16-bit microcontrollers to address the shortcomings of 

commercially-available robotics-oriented electronics kits, and to add additional on-board 

functionality toward the design of “true” 3-dimensional bipedal robot. 

The physical pin configuration on the board makes it easy to develop an inexpensive 

custom daughter board, allowing the control “brain” of the robot to be specifically tailored to 

different actuator/sensor configurations. For example, the pulse-width modulation and digital 

output pins could be directly plugged into the receptacles on a daughter board that has H-bridge 

motor driver chips populated on it. Such customization would help to reduce the amount of 

external wiring required. The board was successfully populated and tested to verify all specified 

functionalities. 
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1. INTRODUCTION 
 

The 2-dimensional bipedal “Marathon Walker” robot designed at Cornell University’s 

Biorobotics Laboratory takes advantage of gravity to realize a pendulum-like walking 

locomotion. While power-efficient in principle, the walking cycle of the robot is inconsistent and 

unstable. A major factor that hinders a stable walking locomotion is the low refresh rate of the 

control variables in the microcontroller. 

The main electronic components of most robots include the main processing unit, 

actuators, and feedback sensors. The signal processing can be handled by a single 

microcontroller or a digital signal processor (DSP). Ideally, the processing unit would include 

such on-chip peripherals as analog-to-digital (A/D) and digital-to-analog (D/A) converters, 

pulse-width modulation (PWM) generators, quadrature decoders, and duplex data transmitters. 

Actuators on a robot may include various types of servos and DC motors. The feedback sensors 

may include tactile switches, potentiometers, accelerometers, gyroscopes, and quadrature 

encoders (usually embedded inside a motor). A/D conversion or quadrature-decoding of the 

feedback signals can be processed by the main processing unit, or off-chip integrated circuits 

(ICs). 

 
Figure 1: 2-Dimensional Bipedal Walker 

 

The main processing on the Marathon Walker robot is handled by the Innovation First, 

Inc.’s Robot Controller, which is a Microchip PIC18F8520 microcontroller-based system that 

runs at a core clock frequency of 40 MHz. Unfortunately, the Robot Controller suffers from a 

poor temporal resolution of the control: the main proportional-derivative (PD) control loop takes 
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over 10 ms to complete, which limits the control refresh rate to under 100 Hz. This system uses 

two PIC18F8520 microcontrollers, but the Innovation First’s documentation on how the two 

chips communicate and interact is not publicly available, so it is difficult to debug a software-

related problem when it arises. The potential performance of the robotics control could be 

greatly improved by switching the main controller to a faster digital signal processor, 

programming a more sophisticated control algorithm, and upgrading off-the-shelf hobbyist-level 

components to customized high-performance electronics. In the Biorobotic Lab’s upcoming 

design of a 3-dimensional, “true bipedal” walking robot, a faster processing unit is not only 

desirable, but necessary to perform control algorithms for the added degrees of freedom. 

 

 

2. PROJECT STATEMENT 
 
Build a controller board for a walking robot that is energy efficient, capable of fast 

computations and provides a three-dimensional orientation and roll information on-board. The 

specifications are as follows: 

 

• All active board components shall be powered by a single battery pack of supply voltage 

ranging from 7.5V to 25V. 

• The physical board size shall be 3.0” x 2.3” or smaller. 

• The board shall maximize power efficiency. 

• The controller on the board shall make use of analog feedback signals of both 3.3V and 

5V ranges. 

• The controller on the board shall use feedback data from various sensors (switches, 

analog voltage, potentiometers, optical encoders, RX-232, and serially-transferred data). 

• The controller on the board shall control multiple robotic actuators (DC motors, RC 

servos, solenoids) independently. 
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3. THEORY OF OPERATION 
 
The main controller of the robot must be able to interpret numerous sensor inputs that 

come in various signal formats, and drive the actuators accordingly. This section describes the 

common formats of signals used in robotics applications. 

 

 
3.1. GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PORTS 

 

Digital input/output signals are used to send or receive digital information. In the context 

of robotics control, a microcontroller could send a binary output signal to an H-bridge motor 

driver to specify a direction of output current (forward or reverse), or to drive or retract solenoid 

shafts. Configured as inputs, the microcontroller digital ports can receive signals from such 

binary sensors as mechanical or optical switches. 

 

 
3.2. ANALOG-TO-DIGITAL CONVERTER (ADC) 

 

An ADC is an electronic circuit that converts an analog input voltage to discrete digital 

numbers. The ADC has a given input voltage range, and an ADC with n-bit resolution evenly 

divides that analog voltage range into 2n discrete “counts.” For instance, a 10-bit ADC with an 

input voltage range of 0V-5V would express the input analog voltage as a digital number 

between 0 and 1,023: an input voltage of 3V would be expressed as 614, assuming perfect 

accuracy and zero noise. Some sensors that output analog voltage feedback signals are 

gyroscopes, accelerometers, and potentiometers mechanically coupled to the joint of two 

materials.  
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Figure 2: Conversion Graph for a 12-bit ADC w/ 3.3V Range 

 

 

3.3. QUADRATURE DECODER 
 

A rotary quadrature encoder is a digital electronic device used to convert the angular 

position of a shaft to a digital signal. The encoder usually consists of a circular disk that is 

mechanically coupled to a shaft. It has a series of radial slots cut into it, so that when a light 

generated by a light emitting diode (LED) passes through the slot, a photodetector such as a 

photodiode would generate an electrical pulse. A quadrature signal consists of two signals, 

always 90 degrees offset in phase as the shaft turns, so that a simple hardware such as that 

described by the finite state machine in Figure 3 can count the number of positive or negative 

transitions. 
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Figure 3: Quadrature Decoding 
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 Rotary encoders are often coupled to motor shafts, and can have as many as, or greater 

than, 2,048 state transitions per revolution. 

 

 

3.4. PULSE WIDTH MODULATION (PWM) 
 

Pulse width modulation is a digital means of controlling an analog component. A pulse 

width modulated signal is a constant-frequency, adjustable duty cycle square pulse. In the 

context of robotics control, it is used to control the torque output of DC motors and the position 

of RC servos. 

For example, a torque output of a DC motor could be controlled by adjusting the analog 

voltage level of the power supply. This task could also be accomplished digitally by switching 

the supply on and off at a high frequency with variable pulse width. In some H-bridge motor 

drivers, the pulse width can determine both the maximum torque and the direction of the DC 

motor. 

The position of an RC servo axle can be controlled by sending a single pulse width 

between 0.5 ms (for 0 degree position) and 2.5 ms (for 270 degrees position). The position would 

reset unless the same pulse width is sent periodically, so setting up a PWM signal with one duty 

cycle would refresh the shaft position of an RC servo automatically. 
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Figure 4: PWM Signal Examples 
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3.5. SERIAL PERIPHERAL INTERFACE (SPI) 
 

SPI is a 4-wire duplex digital protocol for chip-to-chip communication. The four wires 

are generally specified as RX (receive), TX (transmit), SCLK (serial clock), and CS or SS 

(chip/slave select). In this communication protocol, the “master” chip, the “slave” chip, and the 

number of bits to transfer must be explicitly specified. The master sends a constant clock to the 

slave chip, and drives CS signal low to begin communication with the slave chip: for example, in 

a 16-bit SPI protocol, 16 bits of information would be sent or received in the first 16 rising- or 

falling- edges of the SCLK (the edge trigger specification may differ depending on the chip 

model). After the transfer is complete, the master would set the CS signal high. The CS signal 

could be driven low for longer than the number of SCLK cycles to receive or send all bits 

without corrupting the data transfer, since the important n-bits of information is transferred in the 

first n SCLK cycles. 

SPI is an ideal chip-to-chip communication protocol in situations where the shared I/O 

ports are too valuable to be used in a parallel communication protocol. In a 16-bit transfer of 

data, a parallel communication protocol would require 16 I/O ports, plus any necessary control 

bits. SPI communication is considered a very fast inter-chip communication protocol, since the 

SCLK frequency could be driven as high as the master and the slave can operate at that 

frequency. In a microcontroller design, the microcontroller is often configured as the master, 

sends data/instruction to, and receives data from the slave peripherals on the SPI bus. Many 

peripheral ICs such as electronically-erasable programmable read-only memory (EEPROM) and 

ADCs use the SPI protocol. 
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4. H-BRIDGE BOARD DESIGN 
 

The H-bridge driver used to drive the DC motors on the Marathon Walker robot is a 

rather bulky unit that has a significant on-resistance. A custom printed circuit board was 

designed around ST Microelectronics’ VNH2SP30-E H-bridge IC. This H-bridge adjusts the 

amplitude and polarity of the output current based on the duty cycle of the input PWM signal, 

and the values of the two “direction” input signals.1 Some of the benefits from using VNH2SP30 

include small surface-mount package, high current capability (absolute maximum of 40A), high 

refresh rate (compatible with 20 kHz PWM signals), simple interface, low on-resistance, and 

built-in current measurement output. The PCB was designed with CadSoft’s EAGLE Layout 

Editor. Refer to Appendices A and B for schematics and layout, respectively. 

 

 
Figure 5: Populated H-Bridge Board 

 

5. BRAIN BOARD MICROCONTROLLER PCB DESIGN  
 

The two microcontroller boards previous used and evaluated in the Biorobotics Lab are 

Innovation First, Inc.’s Robot Controller and New Micro, Inc.’s IsoPod microcontroller board. 

The main goals of the Brain Board design are to carry all the desirable design aspects, to 

                                                 

1 STMicroelectronics. “VNH2SP30-E Data Sheet.” 30 April, 2006.  
http://www.st.com/stonline/products/literature/ds/10832/vnh2.htm. 



 

14 

eliminate all the shortcomings from previously evaluated system, and to add new functionalities 

toward the design of a true 3-dimensional bipedal walking robot.  

 Innovation First’s Robot Controller is an 8-bit, dual Microchip PIC18F8520-based board. 

It is a popular off-the-shelf controller designed for robotics applications, and its header pins are 

configured to facilitate wiring with various sensors and actuators. The software is programmed 

in C language, under Microchip’s proprietary MPLABS environment. There are several 

shortcomings with this system: the 8-bit microcontrollers’ performance is rated at 10 million 

instructions per second (10 MIPS) at maximum, and this does not provide enough computation 

capability to run a single loop of proportional-derivative control algorithm for Marathon Walker 

under 10 ms. It has a poor minimum specified PWM refresh period of 2 ms. As mentioned 

before, the documentation on how the two microcontrollers communicate is not available, and 

the system appears much like a black box during software debugging. Lastly, the supply voltage 

regulation is inefficient, and the physical size is rather bulky at 3.4”x4.6”x0.75”.2 

 New Micro, Inc.’s IsoPod system is a microcontroller board for Freescale’s DSP56F805 

microcontroller. Compared to Microchip PIC18F8520, DSP56F805 is a much faster processor, 

with a native 16-bit support and 40 MIPS rating. The software is programmed in hybrid 

C/assembler in Metrowerks Codewarrior environment, which provides a set of tools to facilitate 

fast software development. The main shortcomings of this system are the inefficient linear 

voltage regulation, small number of unshared GPIO pins, relatively small 64 kB program flash 

memory (compared to other models in Freescale’s 56800E family), and ADC of only 8 channels 

compatible with only 3.3V-range inputs.3 

 The Brain Board design addresses all aforementioned design issues, and makes several 

improvements that makes it specifically geared towards advanced robotics-oriented actuator 

controls. The key hardware features that differentiate Brain Board from Robot Controller and 

IsoPod are listed below. 

• Efficient supply voltage regulation through switching voltage regulator. 

                                                 

2 Innovation First, Inc. “IFI Robotics – Mini Robot Controller.” 30 April, 2006. 
http://www.ifirobotics.com/edu-rc.shtml. 
3 New Micros, Inc. “IsoPod V2.” 30 April, 2006. http://www.newmicros.com/cgi-
bin/store/order.cgi?form=prod_detail&part=IsoPod_V2&id=HiGR7s40vl3e02T11IEMo165h3tX5C7C. 
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• Generation compatibility with Freescale MC56F8347, MC56F8357, and MC56F8367, 

with up to 512 kB of program memory. 

• 16-bit core with a 60 MIPS maximum rating. 

• 32 ADC channels: 16 channels compatible with 5V range, the other 16 channels 

compatible with 3.3V range. 

• Up to 7 hardware quadrature decoders. 

• Large number of dedicated GPIO ports, over 40 when external memory access mode is 

not used. 

• 3-dimensional orientation and roll information available via on-board accelerometers and 

gyroscopes. 

• Small physical size of 3.0”x2.3”. 

• A pin configuration facilitates the development of inexpensive daughter boards that 

makes the control system more customized to specific robotics sensor/actuator 

architecture. 

 
Figure 6: Populated Brain Board (Top) 
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Figure 7: Populated Brain Board (Bottom) 

 

 

5.1. COMPONENT SELECTION 
 

Much time was invested into selecting electronic components for the Brain Board after 

the design specifications were defined and the shortcomings of previously-used systems were 

identified. During parts research, the emphasis was particularly placed on design risk reduction, 

power efficiency, small size, and high computation performance. 

 

 

5.1.1. Microcontroller 
 

The evaluation of the Freescale-based IsoPod system during fall, 2005, found the 

DSP56F805 core to be more than fast enough for a PD- and PID-based control algorithm used 

for Marathon Walker. The set of tools in Metrowerks Codewarrior helped to make the software 

development process very fast. After reviewing the IsoPod system, we found the Freescale 

products very favorable. 

For the microcontroller core of the Brain Board, Freescale MC56F83474 was chosen for 

the following reasons. It is a native 16-bit machine that has a Harvard architecture, characterized 

                                                 

4 Freescale Semiconductor. “56F8347 and 56F8147 Data Sheet.” 30 April, 2006. 
http://www.freescale.com/files/dsp/doc/data_sheet/MC56F8347.pdf. 
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by separate instruction and data memories. It has a program flash memory of 128 KB, much 

larger than any compiled microcontroller software programmed in the lab, and the set of 

hardware peripherals specifically geared toward motor controls: 12 independent PWM channels, 

16 channels of 12-bit ADC, 16 8-bit timers of which 7 could be configured as quadrature 

decoders, and two sets of SPI interface signals. The complete list of the microcontroller’s 

hardware functionalities on the Brain Board is included in Appendix F. 

The Brain Board, designed initially for MC56F8347, will also be compatible with 

MC56F8357 and MC56F8367 microcontrollers, which have larger memories and will be 

available in summer 2006. A unique feature of Freescale’s 56800E family of microcontrollers is 

that they have an internal phase-locked loop (PLL) clock multiplier: for example, even though 

MC56F83x7 series’ logic core runs on 120 MHz, the external crystal clock only needs to be 8 

MHz, because the internal PLL multiplies the external input clock frequency. This feature 

isolates the high-frequency design risks from the printed circuit board (PCB) design. 

Even though there are faster microcontrollers/processors for embedded applications than 

MC56F82x7 series, they do not have nearly as many motor-control-oriented hardware 

peripherals, or unshared GPIO pins. A possible alternative was to use a faster microcontroller 

core that communicates with a field-programmable gate array (FPGA) that is programmed to 

perform all the hardware peripheral functions. However, having a single-chip processing core 

would reduce the necessary physical board size, hardware complexity, chance of failure, and 

debugging complexity. For the reasons stated above, Freescale MC56F8347 was chosen as a 

single-chip processing core of the Brain Board. 

 

 

5.1.2. Voltage Regulator 
 

The actuators (DC motors, RC servos, etc.) are usually driven by a single battery pack 

ranging between 9V-20V; usually of lithium-ion, Nickel-Metal-Hydride, or Nickel-Cadmium 

types that have low internal resistance. It is desirable to use the same battery pack to power the 

digital logic that controls the motion of the robot as well, rather than have a separate power 

source. However, the voltage level must be reduced down to 5V or 3.3V that most digital logics 

run on. 
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A common means of regulating the voltage level of the power supply is a linear voltage 

regulator such as 7805. Most linear regulators have low dropout voltage (the minimum required 

difference between input and output voltage); and are simple to use, requiring connections only 

to input voltage, reference ground, and output regulated voltage. Unfortunately, linear regulators 

are very inefficient, and all the power from voltage regulation is dissipated as heat: for instance, 

if a 9V power supply is regulated via a linear regulator to run a 5V digital logic that requires 

100mA, approximately 400mW of power is wasted in voltage regulation. This is not acceptable 

since the research robots in the Biorobotics Lab use higher-voltage battery packs, and power 

efficiency is one of the important agendas of the Lab. 

Switching regulators offer a higher-efficiency solution to voltage regulation. It consists of 

an integrated circuit that switches the load current on and off at a high frequency, and a set of 

capacitors and inductors to stabilize the output voltage. Although most switching regulators can 

achieve efficiency over 80%, it is not a single-chip solution and the external circuitry is 

necessarily complex. An external circuit design will impose considerable risk on a hardware 

designer who does not have prior experience with switching power supplies. 

Considering the benefits and design risks involved, I decided to use Linear Technology 

LT19405 switching regulator IC, which achieves about 85% regulation efficiency. This IC has a 

dual output and is thus capable of providing both 5V and 3.3V supplies from one IC. Compared 

to other switching regulator ICs from other companies such as National Semiconductors, 

LT1940 requires comparatively simple external circuit, and the output voltage levels are 

determined by simple voltage dividers. The theory of operation and design processes are 

thoroughly documented by the company, which greatly facilitate the circuit design. 

 

 

                                                 

5 Linear Technology. “Datasheet: LT1940/LT1940L – Dual Monolithic 1.4A, 1.1MHz  Step-Down Switching 
Regulator.” 30 April, 2006. 
http://www.linear.com/pc/productDetail.do?navId=H0,C1,C1003,C1042,C1032,C1064,P2241. 
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5.1.3. Analog-To-Digital Converter (ADC) 
 

The Freescale MC56F83x7 microcontroller has a 16-channel ADC, but it only has a 3.3V 

input range. The number of ADC channels may not be enough for complex robot architecture 

with numerous feedback sensors, and many sensors run on a 5V supply. Therefore, an external 

ADC that can accept 5V input voltage range and communicate with the microcontroller is 

necessary. 

Analog Devices AD74906 ADC was chosen for the board design among the company’s 

other offerings for the following reasons: this IC has the largest number of input channels (16) of 

Analog Devices’ ADCs that communicate on SPI interface. SPI is a 4-wire serial communication 

protocol, and depending on the master microcontroller capabilities, it can communicate at serial 

clock frequencies well over 1 MHz. SPI interface is much more desirable than parallel interface 

in the context of the Brain Board design, since it keeps greater number of I/O ports free on the 

microcontroller, and the communication rate is still very fast. AD7490 has 12-bit resolution, 

which makes the measurement precise to approximately 1.25mV for a 0V-5V analog input 

range. Lastly, the maximum sampling rate of AD7490 is 1,000,000 samples per second (1 Msps), 

which is much faster than is necessary. 

 

 

5.1.4. Accelerometer 
 

For a true 3-dimensional bipedal robot, it would be necessary to obtain 3-dimensional tilt 

feedback information. A 3-axis accelerometer can provide tilt information with respect to 

gravity, assuming no external jolt that can introduce noise. Companies such as Freescale, Analog 

Devices, and Kionix manufacture single-chip 3-axis accelerometers. Freescale MMA7260Q7 

was chosen for the Brain Board design because of selectable acceleration range, and larger pin 

pitch that facilitates the board population process. While accelerometers from Analog Devices 

and Kionix have constant acceleration range (usually between ±1g and ±10g), the MMA7260Q 

                                                 

6 Analog Devices, Inc. “AD7490 Data Sheet, Rev. A.” 30 April, 2006. 
http://www.analog.com/UploadedFiles/Data_Sheets/400753325AD7490_a.pdf. 
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accelerometers allows the user to select among ±1.5g, ±2g, ±4g, and ±6g depending on the 

digital input values on its two “g-select” pins. The physical pins on this IC have a pitch of 1 mm, 

as opposed to 0.65 mm and 0.5 mm pitches for Analog Device and Kionix ICs, respectively. A 

wider pin pitch reduces the risk of component placement errors during board population. 

 

 

5.1.5. Gyroscope 
 

For a true 3-dimensional bipedal robot, it would also be helpful to have a set of on-board 

3-axis gyroscopes that provide the roll information in three coordinate axes. Gyroscope ICs are 

rather complex micro electro-mechanical sensors (MEMS), and only Analog Devices and Kionix 

are well-known manufacturers of them. There is no single-chip device for 3-dimensional 

gyroscope measurement, except for MEMSense’s AccelRate3D8, a 0.7”x0.7”x0.4” unit that can 

provide 3-axis accelerometer and gyroscope measurements. However, this unit costs around 

$1,000 each, and is a rather bulky block. Analog Devices gyroscopes have an axis of rotation 

perpendicular to the chip surface, while Kionix gyroscopes have an axis of rotation parallel to 

the chip surface. Therefore, it is possible to obtain 3-dimensional gyroscope signals by using two 

Kionix gyros and one Analog Devices gyro. For this reason, Kionix KGF01 and Analog Devices 

ADXRS4019 gyros were selected. 

 

 

5.2. DESIGN PROCESS 
 

Both the H-bridge and the Brain Board were designed using CadSoft’s EAGLE PCB 

layout editor10. To minimize cost, the H-bridge board was designed with 2 layers, while the 

                                                                                                                                                             

7 Freescale Semiconductor. “MMA7260Q Data Sheet.” 30 April, 2006. 
http://www.freescale.com/files/sensors/doc/data_sheet/MMA7260Q.pdf. 
8 MemSense. “AccelRate3D Data Sheet.” 30 April, 2006. 
http://www.memsense.com/downloads/datasheets/AccelRate3D_SMT_Datasheet_revD1.pdf. 
9 Analog Devices, Inc. “ADXRS401 Data Sheet, Rev. 0.” 30 April, 2006. 
http://www.analog.com/UploadedFiles/Data_Sheets/279107307ADXRS401_0.pdf. 
10 CadSoft Online. “CadSoft Online: Home of the EAGLE Layout Editor.” April 30, 2006. 
http://www.cadsoftusa.com/. 



 

21 

Brain Board has 4 layers with two dedicated internal power and ground planes for uniform 

power distribution.  

First, a custom library of all necessary components was prepared in EAGLE. Each 

custom “device” in a library consists of a schematic symbol, and a corresponding physical layout 

“land.” Figure 8 and Figure 9 show the schematic symbol and the corresponding land for 

Freescale 56F83x7 device. Custom devices were created for all electronic components used that 

are not included in EAGLE’s default library. 

 

 
Figure 8: Schematic Symbol for Freescale 56F83x7 

 

 

Figure 9: Physical Lands for Freescale 56F83x7 
 

After all custom devices were created in the device library, pages of circuit schematics 

were drawn. In this process, the schematic symbols from the device libraries were laid out on 

several pages; and nets, or electrical connection among IC pins, are drawn. Specifications and 

recommended circuits from all IC datasheets were carefully reviewed for schematic creation. 

Refer to Appendix C for the Brain Board schematics. 
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After the schematics are drawn, the EAGLE performs “schematic capture” and places all 

the components’ layout lands in the layout drawing, with lines called “airwires” showing which 

pins are supposed to be physically connected together by metal traces. The positions, 

orientations, and layer (top or bottom layer) must be manually defined for each component land. 

Different component lands cannot overlap one another, and much effort was spent on land 

placement, so that it would be easy to draw traces between pads. Traces for different signal 

cannot overlap each other, so multiple metal layers, separated by electrically-insulating layers 

were used. For the Brain Board, four layers were used, with top and bottom layers as component 

and routing layers, and two internal layers as power and ground planes. 

 

 
Figure 10: Brain Board Layout with Airwires 

 

 

Figure 11: Brain Board Layout after Traces Drawn 
 

On the Brain Board, “pseudo planes” were created for analog reference voltage signals. 

This can be observed in the top and bottom (red and blue, respectively) layers in Figure 11. 
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Because of very high trace density, the signal traces were all laid out manually, without any help 

of EAGLE’s autorouter feature. 

After all airwires were replaced with signal traces, a computer-aided manufacturing 

(CAM) file was generated from the board layout. The CAM file format must be compatible with 

the manufacturing system used by the printed circuit boardhouse. For this project, the board 

manufacturing was contracted to Advanced Circuits, and the compatible CAM file in GERBER 

274-X format, generated by EAGLE, was electronically sent to the company for manufacturing. 

It would be very difficult, if not impossible, so solder all components on the Brain Board 

by hand. Mistakes in circuit board population would be costly, as some components such as 

gyroscopes costs over $50. The board population was contracted to MPL Incorported, a 

company that specializes in circuit board assembly. For board assembly, MPL used the 

GERBER 274-X files to make a stencil, a thin metal foil with lands cut out, so that it could be 

placed over the printed circuit board and solderpaste can be poured precisely on the land pads. 

All the components were then placed on the solderpaste-covered lands and placed into a reflow 

soldering oven. 
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6. TESTING 
 

Functional testing was performed for both H-Bridge board and the Brain Board, to verify 

functionalities and to evaluate performance. 

 

 

6.1. H-BRIDGE BOARD TESTING 
 

New Micros IsoPod system was used to test the H-bridge board. The test experiment uses 

the angular position feedback from the DC motor’s embedded quadrature encoder to make the 

DC motor follow a time-based profile programmed on the IsoPod’s DSP56F805 microcontroller. 
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Figure 12: H-Bridge Board Test Circuit 

 

Figure 13 shows the time-based performance of the PID control algorithm for a “step” 

target profile. As show in the figure the system has a rise and fall times of approximately 50 ms 

to make a -360-to-360 degree turn. The maximum overshoot is less than 1%. 
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PID control: "step"  target pattern
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Figure 13: H-Bridge Test Result for "Step" Target Profile 

 

The PID control’s performance is even better when it is programmed to follow a 

smoother target profile. For a periodic “zigzag” target profile, the temporal delay of the 

measured position from the target position is under 10 ms. This experiment simulates the 

performance of the H-bridge board for a DC motor with very low natural damping, such as a DC 

motor with a light load or with very high gear ratio. 

PID control: time-based "zigzag" pattern
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Figure 14: H-Bridge Test Results for "Zigzag" Target Profile 

 

 

6.2. BRAIN BOARD TESTING 
 

With MC56F8247 running, the 3.3V output of the switching voltage regulator was 

measured with a voltmeter to provide an average of 3.31V, with an RMS noise of 0.2mV. The 
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5V output side was measured to have an average output of 4.99V, with a negligible RMS noise 

not measurable by the voltmeter or the oscilloscope. 

GPIO ports PORTA7:0, PORTB7:0, PORTC7:0, PORTD7:0, PORTE10, PORTE9, 

PORTE7:0, PORTF15:0 have all been tested and validated for both input and output 

functionalities by connecting each pin to the oscilloscope. 

PWM functionality on ports PWMA5:0 and PWMB5:0 were tested and verified with an 

oscilloscope for a constant 20 kHz frequency operation. With a PWM peripheral clock of 60 

MHz, the duty cycle value was adjustable from 0 to 3000, across 0% to 100% duty cycle. 

Therefore, the precision on the duty cycle is 0.033% when the PWM peripherals are set up for 20 

kHz frequency. 

The on-chip ADC on MC56F8347 was measured to have a standard deviation of 1 count 

across 1,000 measurements of a stable potentiometer wiper voltage of 1.645V, and less than 1 

count across 1,000 measurements of MMA7260Q accelerometer outputs. 

 
Table 1: MC56F8347 ADC Performance 

 

The off-chip AD7490 ADC was measured to have a standard deviation of less than 1 

count across 1,000 measurements of a stable potentiometer wiper voltage of 2.51V, and also a 

standard deviation of less than 1 count across 1,000 measurements of a stable ADXRS401 

gyroscope output (average value of 1913 counts). No SPI synchronization error was observed. 



 

27 

 
Table 2: AD7490 ADC Performance 
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7. ERRATA 
 

Even though there was no single mistake that caused a complete loss of any functionality 

on the Brain Board, there is one modification that must be made to activate the 3-axis 

accelerometer functionality on the board. There is one silkscreen typo and a hardwiring error 

caused by a typo on the manufacture datasheet. 

 

 

7.1. TOP-SIDE SILKSCREEN TYPO 
 

On the top side, there is a silkscreen for R24, although this is really supposed to be C24. 

 

 

7.2. MMA7260 SLEEP PIN ERROR 
 

The Sleep pin on the MMA7260 IC is left open, while it should be connected to logic 1 

for correct functionality. This problem can be resolved by shorting pin 12 to pin 2 or 3. 

Optionally, the Sleep pin could be tied to one of the unshared GPIO pins to make the sleep 

feature controllable by software. 

 

 

7.3. MMA7260Q G-SELECT ERROR 
 

g-Select1 and g-Select2 pins of Freescale MMA7260Q IC are hardwired to logic 0 and 1, 

respectively, for ±2g acceleration range. However Freescale’s MMA7260Q datasheet, revision 

2.0 (2/2006), has an error in the g-select table, and this hardwire configuration sets the IC in ±4g 

mode. I pointed this error after testing, and this typo has been corrected in datasheet 3.0 

(4/2006). In the future revisions of the Brain Board it may be desirable to tie g-Select pins to two 

of the unshared GPIO pins to make the acceleration range software-selectable. 
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APPENDIX A: H-BRIDGE BOARD SCHEMATIC 
 

 

Figure 15: H-Bridge Board Schematic 
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APPENDIX B: H-BRIDGE BOARD LAYOUT 
 

 
Figure 16: H-Bridge Board Layout 
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APPENDIX C: BRAIN BOARD SCHEMATICS 
 

 
Figure 17: Core Schematic 
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Figure 18: Voltage Regulator Schematic 
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Figure 19: External ADC Schematic



 

35 

 
Figure 20: Accelerometer/Gyroscope Schematic
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Figure 21: Port Schematic 
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APPENDIX D: BRAIN BOARD LAYOUT 
 

 
Figure 22: Microcontroller Board Layout (Top) 
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Figure 23: Microcontroller Board Layout (Bottom) 
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Figure 24: Component Placement (Top) 
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Figure 25: Component Placement (Bottom) 
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APPENDIX E: BRAIN BOARD BILL OF MATERIALS 
 

Quantity Number Type Digikey part number

26
C1-8, C18-19, C25, C30-33, C39-
40, C44-45, C49-51, C56-59 Ceramic 0.1uF cap (0603, X7R) PCC2398CT-ND

4 C9-12 Ceramic 2.2uF cap (0603, X5R) PCC2397CT-ND
2 C13, C27 Ceramic 0.01uF cap (0603, X7R) PCC1784CT-ND
2 C14, C24 Ceramic 1nF cap (0603, X7R) PCC1772CT-ND
1 C15 Ceramic 0.1nF cap (0603, NPO) PCC101ACVCT-ND
2 C16-17 Ceramic 4.7uF cap (0805, X5R) PCC2321CT-ND
2 C20-21 Ceramic 22uF cap (1206, X5R) PCC2332CT-ND
2 C22-23 Ceramic 330pF cap (0603, X7R) PCC1949CT-ND
2 C34-35 Ceramic 10uF cap (0805, X5R) PCC2403CT-ND
4 C36-37, C41, C46 Ceramic 1uF cap (0603, X5R) PCC2224CT-ND
1 C38 Ceramic 1.2nF cap (0603, X7R) PCC1773CT-ND
2 C42, C47 Ceramic 0.22uF cap (0603, X5R) PCC1749CT-ND
5 C43, C48, C52-54 Ceramic 22nF cap (0603, X7R) PCC1767CT-ND
1 C55 Ceramic 1uF cap (0805, X5R) PCC2319CT-ND
1 C28 Tantalum 10uF cap (EIA A) 493-2351-1-ND
1 C26, C29 Tantalum 47uF cap (EIA C) 493-2362-1-ND
1 CN1 Ceramic 0.1uF cap network (1206) P11148CT-ND
1 R1 Thick film 10k res (0402) P10.0KLCT-ND
1 R2 Thick film 1M res (0603) P1.00MHCT-ND
4 R3-4, R7-8 Thick film 10k res (0603) P10.0KHCT-ND
1 R5 Thick film 30.1k res (0603) P30.1KHCT-ND
1 R6 Thick film 16.5k res (0603) P16.5KHCT-ND
2 R9-10 Thick film 15k res (0603) P15.0KHCT-ND
1 R13 Thick film 10 res (0402) P10.0LCT-ND
3 R11-12, R14 Thick film 330 res (0603) P332HCT-ND
3 R15-17 Thick film 1k res (0603) P1.00KHCT-ND
1 RN1 10k res network (EXB-D) U9103CT-ND
1 L1 Sumida CR43-4R7 inductor 308-1123-1-ND
1 L2 Sumida CR43-2R2 inductor 308-1119-1-ND
3 L3-6 Panasonic EXC-CL3225U1 P9811CT-ND
2 D3, D4 UPS140 diode UPS140E3CT-ND
2 D1, D2 CMDSH-3 diode
1 Q1 8MHz crystal (CS20) 300-8126-1-ND
1 IC1 Freescale 56F8347 LQFP-160
1 IC2 Analog Devices AD7490 (TSSOP28) AD7490BRUZ-ND
2 IC3-4 Kionix KGF01 SOIC-24 DO NOT POPULATE
1 IC5 Analog Devices ADXRS401 BGA-32 ADXRS401ABG-ND
1 IC6 Freescale MMA7260Q QFN-16 MMA7260Q-ND
1 U1 Linear Technology LT1940 (TSSOP-16)
1 U2 ON Semiconductor MC33269 (3.3V, SOIC8) MC33269D-3.3OS-ND
1 U3 Burr-Brown REG113NA (3.3V, SOT) REG113NA-3.3/3KCT-ND
1 U4 Analog Devices AD780 (SOIC8) AD780BR-ND
1 U5 Dual OR gate (SSOP-8) TC7WH32FUTCT-ND
1 U6 Triple inverter (SSOP8) 296-13278-1-ND
1 LED1 0603 LED (green) 160-1443-1-ND
1 LED2 0603 LED (yellow) 160-1449-1-ND
1 LED3 0603 LED (red) 160-1442-1-ND  

Table 3: Microcontroller Board Bill of Materials 
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APPENDIX F: MC56F8347 PORT FUNCTIONALITIES 
 

 
Table 4: Header Description (PORTA Group) 

 

 
Table 5: Header Description (PORTB Group) 

 

 
Table 6: Header Description (PORTC Group) 
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Table 7: Header Description (PORTD Group) 

 
Table 8: Header Description (PORTE Group) 

 

 
Table 9: Header Description (PORTF Group) 

 

 
Table 10: Header Description (PWMA Group) 
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Table 11: Header Description (PWMB Group) 

 

 
Table 12: Header Description (ANA Group) 

 

 
Table 13: Header Description (ANB Group) 
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Table 14: Header Description (AN_1/2 Group) 

 

 
Table 15: Header Description (CAN Group) 

 

 
Table 16: Header Description (IRQ Group) 
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Table 17: Header Description (JTAG Group) 

 

 
Table 18: Header Description (Power Group) 



 

47 

APPENDIX G: H-BRIDGE BOARD TEST PROGRAM 
 
Robo.c 
 
/** ################################################################### 
**     Filename  : Robo.C 
**     Project   : Robo 
**     Processor : 56F805 
**     Version   : Driver 01.07 
**     Compiler  : Metrowerks DSP C Compiler 
**     Date/Time : 10/23/2005, 10:44 PM 
**     Abstract  : 
**         Main module.  
**         Here is to be placed user's code. 
**     Settings  : 
**     Contents  : 
**         No public methods 
** 
**     (c) Copyright UNIS, spol. s r.o. 1997-2004 
**     UNIS, spol. s r.o. 
**     Jundrovska 33 
**     624 00 Brno 
**     Czech Republic 
**     http      : www.processorexpert.com 
**     mail      : info@processorexpert.com 
** ###################################################################*/ 
/* MODULE Robo */ 
 
/* Including used modules for compilling procedure */ 
#include "Cpu.h" 
#include "GPIO_A.h" 
#include "GPIO_B.h" 
#include "GPIO_E.h" 
#include "PWM1.h" 
#include "AS1.h" 
#include "FC1.h" 
#include "QD1.h" 
 
/* Include shared modules, which are used for whole project */ 
#include "PE_Types.h" 
#include "PE_Error.h" 
#include "PE_Const.h" 
#include "IO_Map.h" 
 
#include <stdlib.h>  // Custom addition: standard library 
#include <stdio.h>  // Custom addition: standard i/o 
#include <math.h>  // Custom addition: mathematic protocols 
#include <string.h>  // Custom addition: handles strings 
#include <float.h>  // Custom addition: floating point 
 
#include "CustomFunctions.h" // Custom functions library 
 
void main(void) 
{ 
  int i; 
  char strTarget[6], strPosition[6], strDuty[6]; 
   
  // PID variables 
  long  target  = 0; 
  long  err[]  = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 
  long  dErr = 0; 
  long  iErr = 0; 
  float Kp = 0.2; 
  float Ki = 0.01; 
  float Kd = 5; 
   
  // Quadrature decoder variables (module QD1) 
  TStateValues QDcounter; 
  long position    = 0; // Position (from quadrature decoder QD1) 
  long  prevPosition= 0; // Position in the previous program loop 
  int revolution  = 0; // Number of revolution 
  int prevRevolution = 0; // Number of revolution in the prev program loop 
  int posPerRev  = 2048; // 2048 positions in 1 revolution 
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  // PWM-related variables (module PWM1) 
  float dutyPercent = 0; // PWM duty cycle (in %) 
   
  // Time-related variables (module FC1, free counter) 
  word prgmLoopUS = 0; // Microseconds to complete a single program loop 
  word tArithmeticEnd; // Time marker (in us) at end of arithmetic operation 
  word tSerialEnd;  // Time marker (in us) at end of serial communication 
  word tenthUS = 0;  // 1/10 microseconds in the free counter 
  int countMS = 0;  // Counts the number of milliseconds 
  int period = 1000;  // Number of milliseconds in one "cycle" 
   
  // Mathematical constants 
  const double PI = 3.141592653; 
   
  /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/ 
  PE_low_level_init(); 
  /*** End of Processor Expert internal initialization.                    ***/ 
 
 
  /* Write your code here */ 
 
  FC1_Reset();   // Reset the free counter 
  QD1_SetPosition(0);  // Reset QD counter 
  QD1_SetRevolution(0); // Reset QD counter 
  GPIO_A_ClrBit(0);  // Initialize H-bridge polarity 
  GPIO_A_SetBit(1); 
   
  while(TRUE) 
  { 
   FC1_GetCounterValue(&tenthUS); 
   tArithmeticStart = tenthUS/10; 
    
   // STEP 1: calculate new target 
   target = Target_Step(countMS, period); 
   //target = Target_ZigZag(countMS, period); 
   //target = Target_Sine(countMS, period); 
   
   // STEP 2: obtain latest position feedback 
   for(i=10; i>0; i--) 
   { 
    err[i]=err[i-1];      // Shift the err 
history by 1 
   } 
   prevPosition = position;  // Save previous position 
   prevRevolution = revolution;  // Save previous revolution 
    
   QD1_GetCounters(&QDcounter);   // Save latest QD info into QDcounter 
   position = (long)((&QDcounter)->Position); // Extract new position 
   revolution = (int)(position/posPerRev); // Calculate new revolution 
 
   err[0] = target - position;  // Calculate new error 
   dErr = err[0]-err[1];   // Calculate d(err) for derivative 
   iErr = err[0]; 
   for(i=1; i < 10; i++) 
   { 
    iErr += err[i];  // Calculate i(err) for integral 
   } 
    
   // STEP 3: calculate new duty cycle (in %) 
   dutyPercent = (float)(Kp*err[0] + Kd*dErr + Ki*iErr); 
   SetDutyPercent(fabsf(dutyPercent)); 
   if(dutyPercent < 0)  // For negative duty cycle, reverse polarity 
   { 
    GPIO_A_SetBit(0);  // GPIOA[1:0] = 2b'01 for negative polarity 
    GPIO_A_ClrBit(1); 
   } 
   else 
   { 
    GPIO_A_ClrBit(0);  // GPIOA[1:0] = 2b'10 for positive polarity 
    GPIO_A_SetBit(1); 
   } 
    
   FC1_GetCounterValue(&tenthUS); 
   tArithmeticEnd = tenthUS/10; // Time marker at end of arithmetic operation 
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   // STEP 4: parse number into character arrays and transmit over serial port 
   ParseLong(strTarget, target); 
   Print(strTarget); 
   Print("\t"); 
   ParseLong(strPosition, position); 
   Print(strPosition); 
   Print("\r\n"); 
    
   if (countMS<period) countMS++; // If countMS hasn't reached period, add 1 
   else   countMS=0; // If countMS has reached period, reset it 
    
   FC1_GetCounterValue(&tenthUS); // Get the number of 0.1 microseconds in counter 
   prgmLoopUS = tenthUS/10;  // How many microsecounds did the prgm loop take? 
   while (tenthUS <= 10000)  // Has 1 ms passed in free counter? 
   { 
    FC1_GetCounterValue(&tenthUS);// No, get counter value again and keep waiting 
   } 
   FC1_Reset();          
 // Yes, exit the loop and reset the counter 
  } 
   
  // END MY CODE 
 
} 
 
/* END Robo */ 
/* 
** ################################################################### 
** 
**     This file was created by UNIS Processor Expert 2.95 [03.58] 
**     for the Freescale 56800 series of microcontrollers. 
** 
** ################################################################### 
*/ 
 
 
CustomFunctions.h 
 
// Prototypes 
int ParseLong(char *s, long number); 
void Print(char *); 
long Target_Step(int countMS, int period); 
long Target_ZigZag(int countMS, int period); 
//long Target_Sine(int countMS, int period); 
void SetDutyPercent(float percent); 
 
// Custom Functions 
 
/** ################################################################### 
** Function : ParseLong 
** Input  : char *s 
**      long number 
** Output  : integer 0 
** 
** ParseLong takes a long and converts it into a 6-byte character 
** string. The formatting is as follows: 
** " #####" for positive number, and 
** "-#####" for negative number.      
** ###################################################################*/ 
int ParseLong(char *s, long number) 
{ 
 int absNum = abs(number); // Absolute value of the argument long 
 int digit; 
 int div = 10000; 
 int i; 
  
 if(number < 0)  // If number is negative number, 
 {     //  insert a '-' sign 
  s[0] = '-'; 
 } 
 else    // Else, 
 {     //  insert a blankspace ' ' character 
  s[0] = ' '; 
 } 
 for(i=0; i<5; i++) 
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 { 
  digit = (absNum/div)%10; 
  switch(digit) 
  { 
   case 1: 
    s[i+1] ='1'; 
    break; 
   case 2: 
    s[i+1] ='2'; 
    break; 
   case 3:  
    s[i+1] ='3'; 
    break; 
   case 4: 
    s[i+1] ='4'; 
    break; 
   case 5: 
    s[i+1] ='5'; 
    break; 
   case 6: 
    s[i+1] ='6'; 
    break; 
   case 7: 
    s[i+1] ='7'; 
    break; 
   case 8: 
    s[i+1] ='8'; 
    break; 
   case 9: 
    s[i+1] ='9'; 
    break; 
   case 0: 
    s[i+1] ='0'; 
    break; 
   default: 
    s[i+1] = ' '; 
    break;    
  } 
  div = div/10; 
 } 
 s[6] = '\0';  // Insert a void character 
 return 0; 
} 
 
/** ################################################################### 
** Function : Print 
** Input  : char String[] 
** 
** Print takes a character string, and sends it out via 
** asynchronous transmitter AS1. Use this funciton in this manner: 
** Print("Hello World!"); or 
** Print(message);   where message is a character array     
** ###################################################################*/ 
void Print(char String[]) 
{ 
 int i; 
 int N = strlen(String); 
  
 for(i=0; i<N; i++) 
 { 
  AS1_SendChar(String[i]);  // Send String[i] across the SCI bus 
    while(AS1_GetCharsInTxBuf() != 0); // Wait until Tx buffer cleared 
 } 
} 
 
/** ################################################################### 
** Function : Target_Step 
** Input  : int countMS 
**      int period 
** Output  : long target 
** 
** Target_Step takes countMS (millisecond counter) and period (in ms) 
** and generates a "step" target profile that switches between 2048 
** and 0 every period/2.     
** ###################################################################*/ 
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long Target_Step(int countMS, int period) 
{ 
 long target; 
 if(countMS < period/2) 
 { 
  target = 2048; 
 } 
 else 
 { 
  target = 0; 
 } 
 return target; 
} 
 
/** ################################################################### 
** Function : Target_ZigZag 
** Input  : int countMS 
**      int period 
** Output  : long target 
** 
** Target_ takes countMS (millisecond counter) and period (in ms) 
** and generates a linear "zigzag" target profile that rises from 0 to 
** between 0<countMS<period/2 and decreases from 2048 to 0 betwen 
** period/2<countMS<period.    
** ###################################################################*/ 
long Target_ZigZag(int countMS, int period) 
{ 
 long target; 
 if(countMS < period/2) 
 { 
  target = (long)2048*2*(((double)countMS)/((double)period)); 
 } 
 else 
 { 
  target = (long)2048*2*(1-((double)countMS)/((double)period)); 
 } 
 target = target; 
 return target; 
} 
 
/*long Target_Sine(int countMS, int period) 
{ 
 long target; 
 const double PI = 3.141592653; 
 target = (long)512*sin(2*PI*((double)countMS)/((double)period)); 
 
 return target; 
}*/ 
 
/** ################################################################### 
** Function : SetDutyPercent 
** Input  : float percent 
** 
** SetDutyPercent takes a floating-point "percent" value (between 0 and 
** 100) and sets the duty cycle of the PWM1 module. There is a "clamp" 
** feature which keeps the duty cycle between 0 and PWM frequency. 
** IMPORTANT NOTE: this function assumes a 20 kHz PWM frequency, or 
**     a 400 clock ticks which translate to 50 us. 
** ###################################################################*/ 
void SetDutyPercent(float percent) 
{ 
 if(percent > 99.75) 
 { 
  PWM1_SetDutyTicks32(399); 
 } 
 else if(percent < 0.25) 
 { 
  PWM1_SetDutyTicks32(1); 
 } 
 else 
 { 
  PWM1_SetDutyTicks32((unsigned long)(400*percent/100)); 
 } 
} 
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APPENDIX H: PERIPHERAL SETUP FOR H-BRIDGE BOARD TEST 
 

GPIO_A
GPIOA
autoselected pull
no open drain
Input/Output

Init direction Output
Init value 0

yes

GPIO_B
GPIOB
autoselected pull
no open drain
Input

GPIO_E
GPIOE
autoselected pull
no open drain
Input/Output

Init direction Output
Init value 0

yes

Direction

Port

Open drain

Direction
Initialization

Safe mode

Safe mode

Bean name
Port
Pull resistor
Open drain

Bean name

Pull resistor

Initialization
Direction
Open drain
Pull resistor
Port
Bean name

 
Table 19: Peripheral Setup for H-Bridge Board Test 1 

 
PWM1
PWModA0
PWMA0
PWM_A
Disabled

PWMA prescaler 1
20 kHz
0.025 us
high
1
no
yes

Enabled in init code yes
Events enabled in init yes

Bean name
PWM or PPG timer
Output pin
Counter
Interrupt service/event
PWMA

Safe peiod in modes
Bean uses entire timer
Initialization

Period
Starting pulse width
Initial polarity
Iterations before action/event

 
Table 20: Peripheral Setup for H-Bridge Board Test 2 
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Bean name AS1
Channel SCI1
Interrupt service/event Disabled
Settings

Parity none
Width 8bits
Stop bit 1
SCI output mode Normal
Receiver Disabled
Transmitter Enabled

TxD GPIOD6_TXD1
TxD pin signal

Baud rate 230400 baud
Break signal Disabled
Wakeup condition Idle line wakeup
Transmitter output Not inverted
Stop in wait mode no

Initialization
Enabled in init code yes
Events enabled in init yes  

Table 21: Peripheral Setup for H-Bridge Board Test  3 
 

Bean name FC1
Timer TMRD0_Compare
Counter TMRD0
Interrupt service/event Disabled
Prescaler 4
Period 52428 ticks
Same resolution in modes yes
Same resolution in modes no
Initialization

Enabled in init code yes
Events enabled in init yes  

Table 22: Peripheral Setup for H-Bridge Board Test  4 
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Bean name QD1
Device Quad_Decoder1
Interrupt service/event Disabled
Phase A pin PHASEA1_TB0
Phase B pin PHASEB1_TB1
Index INDEX1_TB2
Index edge positive edge
Index initialization no
Home HOME1_TB3
Home edge positive edge
Home initialization no
Watchdog Disabled
Bypass decoder no
Reverse counting no
SwitchMatrix 1

Mode Raw input
FIR value 0
Filter frequency (kHz) 0

Initialization
Events enabled in init yes  

Table 23: Peripheral Setup for H-Bridge Board Test 5 
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APPENDIX I: BRAIN BOARD TEST PROGRAM 
 

/** ################################################################### 
**     Filename  : Brain01.C 
**     Project   : Brain01 
**     Processor : 56F8347 
**     Version   : Driver 01.09 
**     Compiler  : Metrowerks DSP C Compiler 
**     Date/Time : 4/19/2006, 2:38 PM 
**     Abstract  : 
**         Main module.  
**         Here is to be placed user's code. 
**     Settings  : 
**     Contents  : 
**         No public methods 
** 
**     (c) Copyright UNIS, spol. s r.o. 1997-2004 
**     UNIS, spol. s r.o. 
**     Jundrovska 33 
**     624 00 Brno 
**     Czech Republic 
**     http      : www.processorexpert.com 
**     mail      : info@processorexpert.com 
** ###################################################################*/ 
/* MODULE Brain01 */ 
 
/* Including used modules for compiling procedure */ 
#include "Cpu.h" 
#include "Events.h" 
#include "A.h" 
#include "B.h" 
#include "C.h" 
#include "D.h" 
#include "F.h" 
#include "SPI0Sel.h" 
#include "ChipSelect.h" 
#include "LED.h" 
#include "ANA.h" 
#include "ANB.h" 
#include "MSInt.h" 
#include "Math.h" 
#include "PulseA.h" 
#include "PulseB.h" 
#include "SPI.h" 
/* Include shared modules, which are used for whole project */ 
#include "PE_Types.h" 
#include "PE_Error.h" 
#include "PE_Const.h" 
#include "IO_Map.h" 
#include <math.h> 
 
#define t1 1000; 
 
#define PutYellow(a)  a ? LED_SetBit(0) : LED_ClrBit(0) 
#define GetYellow()  LED_GetBit(0) 
#define PutGreen(a)  a ? LED_SetBit(1) : LED_ClrBit(1) 
#define GetGreen()  LED_GetBit(1) 
#define PutRed(a)  a ? LED_SetBit(2) : LED_ClrBit(2) 
#define GetRed()  LED_GetBit(2) 
#define SetDutyPercentA(ch,val)  PulseA_SetDuty(ch,(int)(3000*(long)val/100)) 
#define SetDutyPercentB(ch,val) PulseB_SetDuty(ch,(int)(3000*(long)val/100)) 
 
void task1(void); 
 
unsigned int time1; 
 
unsigned int upPWM, duty; 
unsigned int ANAVal[8], ANBVal[8], ANVal[16]; 
 
extern unsigned int data; 
 
int main(void) 
{ 
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 int i, j; 
 unsigned int temp[1000]; 
 long sum, avg, stdev; 
  
 unsigned int local[16]; 
 
  /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/ 
  PE_low_level_init(); 
  /*** End of Processor Expert internal initialization.                    ***/ 
 
  /* Write your code here */ 
 time1 = t1; 
  
 /* Initialization for PWM "sweep" test */ 
 duty = 0;  //Initial duty cycle value for PWM 
 upPWM = 1;  //Variable for PWM "sweep" test - upcount from 0 to 100% first 
  
 /* Initialization for SPI ADC */ 
 for(i=0; i<16; i++) local[i] = 0; //Initialize local probe array 
 for(i=0; i<16; i++) ANVal[i] = 0; //Initialize count storage 
 SPI0Sel_ClrBit(0); 
 SPI0Sel_ClrBit(1); 
  
 /* BEGIN A/C performance test for average and stdev */ 
 for (i = 0; i < 1000; i++) 
 { 
  ANB_Measure(1);         
 //Perform A/D for all channels, ANB15:0 
  ANB_GetChanValue16(0, &temp[i]); //Save one channel value in temp[i] 
  temp[i] >>= 4; 
 } 
 sum = 0;   //Accumulator for A/D counts 
 for (i = 0; i < 1000; i++) 
  sum += temp[i]; //Sum A/D counts 
 avg = sum/1000;  //Calc avg A/D count across 1000 samples 
 sum = 0;   //Sum (sample[i]-avg)^2 
 for (i = 0; i < 1000; i++) 
  sum += ((long)temp[i]-avg)*((long)temp[i]-avg); 
 stdev = Math_mfr32Sqrt(sum<<1); 
 stdev = stdev/999;  //Calc stdev across 1000 samples 
 asm(NOP); 
 /* END A/D performance test */ 
  
 //Send dummy conversion to AD7490 
 ChipSelect_ClrVal(); 
 while(ERR_OK != SPI_SendChar(0xffff)) ;      
 //Dummy conversions 
  
 //Configure AD7490 
 ChipSelect_ClrVal(); 
 while(ERR_OK != SPI_SendChar(0b1111111110010000)) ; //Write to control reg 
 
 /* BEGIN AD7490 SPI performance test for average and stdev */ 
 j = 0; 
 for(i=0; i<16000; i++) 
 { 
  ChipSelect_ClrVal(); 
  while(ERR_OK != SPI_SendChar(0)) ; 
  while(FALSE==ChipSelect_GetVal()) ;  //Wait until CS cleared by ISR 
 
  if(((0xf000 & data)>>12)==15) 
  { 
   temp[j] = data & 0x0fff; 
   j++; 
  } 
 } 
 sum = 0;   //Accumulator for A/D counts 
 for(i = 0; i < j; i++) 
  sum += temp[i]; //Sum A/D counts 
 avg = sum/j;   //Calc avg A/D count across j samples 
 sum = 0;   //Sum (sample[i]-avg)^2 
 for(i = 0; i < j; i++) 
  sum += ((long)temp[i]-avg)*((long)temp[i]-avg); 
 stdev = Math_mfr32Sqrt(sum<<1); 
 stdev = stdev/(j-1);  //Calc stdev across j-1 samples 
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 asm(NOP); 
 /* END AD7490 SPI performance test for average and stdev */ 
  
 
  while(1) 
  { 
   if(time1 == 0) task1();   //Run task1 every t1 milliseconds 
   for(i=0; i<16; i++) local[i] = ANVal[i]; //Get AD7490 results in local 
  } 
} 
 
//-------------------------------------------------- 
void task1(void) 
{ 
 char probe; 
 time1 = t1; 
  
 //AD7490 conversion 
 ChipSelect_ClrVal(); 
 while(ERR_OK != SPI_SendChar(0)) ; 
 ChipSelect_SetVal(); 
  
 /* Store ADC results from previous run */ 
 ANA_GetValue16(&ANAVal[0]); 
 ANB_GetValue16(&ANBVal[0]); 
  
 /* Start next ADC */ 
 ANA_Measure(1); 
 ANB_Measure(1); 
   
 /* LED blink test code */ 
 PutYellow(!GetYellow()); 
 PutGreen(!GetGreen()); 
 PutRed(!GetRed()); 
  
 B_PutVal(~B_GetVal()); 
  
 /* PWM sweep test code */ 
 duty += (upPWM != 0) ? 1.8 : -1.8; 
 upPWM = (upPWM) ? !(duty >= 100) : (duty <= 0); 
  SetDutyPercentA(0,duty); 
  PulseA_Load(); 
   
 /* PORT A-F output test code */ 
 A_PutVal((unsigned char)~A_GetVal()); 
 B_PutVal((unsigned char)~B_GetVal()); 
 C_PutVal((unsigned char)~C_GetVal()); 
 D_PutVal((unsigned char)~D_GetVal()); 
 E_PutVal((unsigned char)~E_GetVal()); 
 F_PutVal(~F_GetVal()); 
} 
 
/* END Brain01 */ 
/* 
** ################################################################### 
** 
**     This file was created by UNIS Processor Expert 2.96 [03.65] 
**     for the Freescale 56800 series of microcontrollers. 
** 
** ################################################################### 
*/ 
 
 
/** ################################################################### 
**     Filename  : Events.C 
**     Project   : Brain01 
**     Processor : 56F8347 
**     Beantype  : Events 
**     Version   : Driver 01.02 
**     Compiler  : Metrowerks DSP C Compiler 
**     Date/Time : 4/19/2006, 2:59 PM 
**     Abstract  : 
**         This is user's event module. 
**         Put your event handler code here. 
**     Settings  : 
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**     Contents  : 
**         MSInt_OnInterrupt - void MSInt_OnInterrupt(void); 
** 
**     (c) Copyright UNIS, spol. s r.o. 1997-2004 
**     UNIS, spol. s r.o. 
**     Jundrovska 33 
**     624 00 Brno 
**     Czech Republic 
**     http      : www.processorexpert.com 
**     mail      : info@processorexpert.com 
** ###################################################################*/ 
/* MODULE Events */ 
 
#include "Cpu.h" 
#include "Events.h" 
 
extern int time1; 
extern int ANVal[16]; 
unsigned int data; 
 
/* 
** =================================================================== 
**     Event       :  MSInt_OnInterrupt (module Events) 
** 
**     From bean   :  MSInt [TimerInt] 
**     Description : 
**         When a timer interrupt occurs this event is called (only 
**         when the bean is enabled - "Enable" and the events are 
**         enabled - "EnableEvent"). 
**     Parameters  : None 
**     Returns     : Nothing 
** =================================================================== 
*/ 
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers' 
property */ 
                         /* is set to 'yes' (#pragma interrupt saveall is generated before the 
ISR)      */ 
void MSInt_OnInterrupt(void) 
{ 
  /* Write your code here ... */ 
  if(time1 > 0) time1--; 
} 
 
/* 
** =================================================================== 
**     Event       :  SPI_OnRxChar (module Events) 
** 
**     From bean   :  SPI [SynchroMaster] 
**     Description : 
**         This event is called after a correct character is 
**         received. 
**         DMA mode: 
**         If DMA controller is available on the selected CPU and 
**         the receiver is configured to use DMA controller then 
**         this event is disabled. Only OnFullRxBuf method can be 
**         used in DMA mode. 
**     Parameters  : None 
**     Returns     : Nothing 
** =================================================================== 
*/ 
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers' 
property */ 
                         /* is set to 'yes' (#pragma interrupt saveall is generated before the 
ISR)      */ 
void SPI_OnRxChar(void) 
{ 
  /* Write your code here ... */ 
  //unsigned int data; 
   
  while(ERR_OK != SPI_RecvChar(&data)) ; 
  ANVal[(0xf000 & data)>>12] = data & 0x0fff; 
  ChipSelect_SetVal(); 
} 
 
/* 
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** =================================================================== 
**     Event       :  SPI_OnTxChar (module Events) 
** 
**     From bean   :  SPI [SynchroMaster] 
**     Description : 
**         This event is called after a character is transmitted. 
**     Parameters  : None 
**     Returns     : Nothing 
** =================================================================== 
*/ 
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers' 
property */ 
                         /* is set to 'yes' (#pragma interrupt saveall is generated before the 
ISR)      */ 
void SPI_OnTxChar(void) 
{ 
  /* Write your code here ... */ 
   
} 
 
/* 
** =================================================================== 
**     Event       :  SPI_OnError (module Events) 
** 
**     From bean   :  SPI [SynchroMaster] 
**     Description : 
**         This event is called when a channel error (not the error 
**         returned by a given method) occurs. The errors can be 
**         read using <GetError> method. 
**     Parameters  : None 
**     Returns     : Nothing 
** =================================================================== 
*/ 
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers' 
property */ 
                         /* is set to 'yes' (#pragma interrupt saveall is generated before the 
ISR)      */ 
void SPI_OnError(void) 
{ 
  /* Write your code here ... */ 
} 
 
 
/* END Events */ 
 
/* 
** ################################################################### 
** 
**     This file was created by UNIS Processor Expert 2.96 [03.65] 
**     for the Freescale 56800 series of microcontrollers. 
** 
** ################################################################### 
*/ 
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APPENDIX J: PERIPHERAL SETUP FOR BRAIN BOARD TEST 
 

Type ByteIO
Bean name A
Port GPIOA_Low
Pull resistor pull up
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes

Type ByteIO
Bean name B
Port GPIOB
Pull resistor pull up
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes

Type ByteIO
Bean name C
Port GPIOC_Low
Pull resistor pull up
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes

Type ByteIO
Bean name D
Port GPIOD_LOW
Pull resistor pull up
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes  
Table 24: Peripheral Setup for Brain Board Test 1 
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Type WordIO
Bean name F
Port GPIOF
Pull resistor autoselected pull
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes

Type BitIO
Bean name ChipSelect
Pin for I/O GPIOE7_SS0B
Pin signal
Pull resistor autoselected pull
Open drain no open drain
Direction Output
Initialization

Init direction Output
Init value 1

Safe mode yes
Optimization for Speed  

Table 25: Peripheral Setup for Brain Board Test 2 



 

62 

Type ADC Type ADC
Bean name ANA Bean name ANB
A/D converter ADCA A/D converter ADCB
Sharing Disabled Sharing Disabled
Interrupt service/event Disabled Interrupt service/event Disabled
A/D channels 8 A/D channels 8

Channel0 Channel0
A/D channel (pin) ANA0 A/D channel (pin) ANB0
Mode select Single Ended Mode select Single Ended

Channel1 Channel1
A/D channel (pin) ANA1 A/D channel (pin) ANB1
Mode select Single Ended Mode select Single Ended

Channel2 Channel2
A/D channel (pin) ANA2 A/D channel (pin) ANB2
Mode select Single Ended Mode select Single Ended

Channel3 Channel3
A/D channel (pin) ANA3 A/D channel (pin) ANB3
Mode select Single Ended Mode select Single Ended

Channel4 Channel4
A/D channel (pin) ANA4 A/D channel (pin) ANB4
Mode select Single Ended Mode select Single Ended

Channel5 Channel5
A/D channel (pin) ANA5 A/D channel (pin) ANB5
Mode select Single Ended Mode select Single Ended

Channel6 Channel6
A/D channel (pin) ANA6 A/D channel (pin) ANB6
Mode select Single Ended Mode select Single Ended

Channel 7 Channel 7
A/D channel (pin) ANA7 A/D channel (pin) ANB7
Mode select Single Ended Mode select Single Ended

Queue Enabled Queue Enabled
A/D prescaler ADCA_ADCR2 A/D prescaler ADCB_ADCR2
A/D resolution 12 bits A/D resolution 12 bits
Conversion time 1.7 us Conversion time 1.7 us

Internal trigger Disabled Internal trigger Disabled
Volt ref recovery time 100 Volt ref recovery time 100
Power up delay 13 Power up delay 13
Power saving mode Disabled Power saving mode Disabled
Number of conversions 1 Number of conversions 1

Initialization Initialization
Enabled in init code yes Enabled in init code yes
Events enabled in init yes Events enabled in init yes  

Table 26: Peripheral Setup for Brain Board Test 3 
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Type BitsIO
Bean name SPI0Sel
Port GPIOA_High
Pins 2

Pin0
Pin GPIOA9_A1

Pin1
Pin GPIOA10_A2

Pull resistor autoselected pull
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Type BitsIO
Bean name LED
Port GPIOA_High
Pins 3

Pin0
Pin GPIOA11_A3

Pin1
Pin GPIOA12_A4

Pin2
Pin GPIOA13_A5

Pull resistor autoselected pull
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes
Optimization for speed  

Table 27: Peripheral Setup for Brain Board Test 4 

 
Type TimerInt
Bean name MSInt
Timer TMRA0_Compare
Counter TMRA0_Compare
Interrupt service/event Enabled

Interrupt INT_TMRA0
Interrupt priority medium priority
Interrupt preserve registers yes

Prescaler 1
Interrupt period 1 ms
Same period in modes yes
Bean uses entire timer no
Initialization

Enabled in init code yes
Events enabled in init yes  

Table 28: Peripheral Setup for Brain Board Test 5 
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Type PWMMC
Bean name PulseA
Device PWM_A
Align edge-aligned mode
Mode of PWM Pair 0 independent
Mode of PWM Pair 1 independent
Mode of PWM Pair 2 independent
Top-Side PWM Pair 0 Polarity Positive
Top-Side PWM Pair 1 Polarity Positive
Top-Side PWM Pair 2 Polarity Positive
Bottom-Side PWM Pair 0 Polarity Positive
Bottom-Side PWM Pair 1 Polarity Positive
Bottom-Side PWM Pair 2 Polarity Positive
Write Protect no
Output pads Enabled
Enable in Wait mode no
Enable in ENOnCE mode no
Frequency 20 kHz
Same frequency in modes no
PWMA

PWMA prescaler 1
Reload 1
Hardware acceleartion Disabled

Dead-time 0 us
Correction Disabled
Interrupt service/event Disabled
Channel 0

Channel PWModA0
Duty 50%
Output software control no
Mask channel no

Channel 1
Channel PWModA1
Duty 50%
Output software control no
Mask channel no

Channel 2
Channel PWModA2
Duty 50%
Output software control no
Mask channel no

Channel 3
Channel PWModA3
Duty 50%
Output software control no
Mask channel no

Channel 4
Channel PWModA4
Duty 50%
Output software control no
Mask channel no

Channel 5
Channel PWModA5
Duty 50%
Output software control no
Mask channel no  

Table 29: Peripheral Setup for Brain Board Test 6 
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Type PWMMC
Bean name PulseB
Device PWM_B
Align edge-aligned mode
Mode of PWM Pair 0 independent
Mode of PWM Pair 1 independent
Mode of PWM Pair 2 independent
Top-Side PWM Pair 0 Polarity Positive
Top-Side PWM Pair 1 Polarity Positive
Top-Side PWM Pair 2 Polarity Positive
Bottom-Side PWM Pair 0 Polarity Positive
Bottom-Side PWM Pair 1 Polarity Positive
Bottom-Side PWM Pair 2 Polarity Positive
Write Protect no
Output pads Enabled
Enable in Wait mode no
Enable in ENOnCE mode no
Frequency 20 kHz
Same frequency in modes no
PWMA

PWMA prescaler 1
Reload 1
Hardware acceleartion Disabled

Dead-time 0 us
Correction Disabled
Interrupt service/event Disabled
Channel 0

Channel PWModB0
Duty 50%
Output software control no
Mask channel no

Channel 1
Channel PWModB1
Duty 50%
Output software control no
Mask channel no

Channel 2
Channel PWModB2
Duty 50%
Output software control no
Mask channel no

Channel 3
Channel PWModB3
Duty 50%
Output software control no
Mask channel no

Channel 4
Channel PWModB4
Duty 50%
Output software control no
Mask channel no

Channel 5
Channel PWModB5
Duty 50%
Output software control no
Mask channel no  

Table 30: Peripheral Setup for Brain Board Test 7 
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Type SynchroMaster
Bean name SPI
Channel SPI0
Interrupt service/event Enabled

Interrupt from input INT_SPI0_RxFull
Interrupt input priority medium priority
Interrupt input preserve registers yes
Interrupt from output INT_SPI0_TxEmpty
Interrupt output priority medium priority
Interrupt output preserve registers yes
Input buffer size 0
Output buffer size 0

Settings
Width 16 bits
Input pin Enabled

Pin GPIOE6_MISO0
Output pin

Pin GPIOE5_MOSI0
Clock pin

Pin GPIOE4_CSLK0
Slave select pin Disabled
Clock edge rising edge
Shift clock rate 7.5 MHz
Empty character 0
Ignore empty char no
Send MSB first yes
Wired-OR mode Disabled
Shift clock idle polarity High
Fault mode Disabled

Initialization
Enabled in init code yes
Events enabled in init yes  

Table 31: Peripheral Setup for Brain Board Test 8 


