

Robot Brain Board: A Microcontroller Board Design for

Robotics-Oriented Motor Controls

A Design Project Report

Presented to the Engineering Division of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

by

Ko Ihara

Project Advisor: Professor Andy Ruina

Degree Date: May, 2006

Abstract

Master of Electrical Engineering Program

Cornell University

Design Project Report

Project Title:

Brain Board: A Microcontroller Board Design for Robotics-Oriented Motor Control

Author:

Ko Ihara

Abstract:

Controlling a complex system such as a bipedal walking robot requires a sophisticated control

algorithm with numerous feedback inputs and control outputs. The shortcomings of many off-

the-shelf microcontroller kits include large physical size, power inefficiency, small number of

digital ports, and poor computation capability. A printed circuit board was designed around

Freescale MC56F8347 16-bit microcontroller to address the shortcomings of commercially-

available robotics-oriented microcontroller boards. The physical pin configuration on the board

makes it easy to develop an inexpensive custom daughter board, allowing the control “brain” of

the robot to be specifically tailored to different actuator/sensor configurations. The board was

successfully populated and tested to verify all specified functionalities.

Report Approved by

Project Advisor: ______________________________________Date: _______________

3

Executive Summary

Controlling a complex system such as a bipedal walking robot requires a sophisticated

control algorithm with numerous feedback inputs and control outputs. The shortcomings of many

off-the-shelf microcontroller kits include bulky size, power inefficiency, small number of digital

ports, and poor computation capability. The problem caused by poor computation capability of

an off-the-shelf Microchip 8-bit microcontroller-system has been observed in the Biorobotic

Laboratory’s Marathon Walker, a 2-dimensional bipedal walking robot, in which side-to-side

stability is mechanically guaranteed by a wide foot size. More computation capability will not

only be desirable, but necessary in the future generation of “true” 3-dimensional bipedal walking

robot designs.

An H-bridge circuit board was designed around ST Microelectronics VNH2SP30 motor

driver to replace bulky off-the-shelf H-bridges that have poor refresh rate, high on-resistance,

and low current rating. Another printed circuit board, named Brain Board, was designed around

Freescale MC56F83x7 series of 16-bit microcontrollers to address the shortcomings of

commercially-available robotics-oriented electronics kits, and to add additional on-board

functionality toward the design of “true” 3-dimensional bipedal robot.

The physical pin configuration on the board makes it easy to develop an inexpensive

custom daughter board, allowing the control “brain” of the robot to be specifically tailored to

different actuator/sensor configurations. For example, the pulse-width modulation and digital

output pins could be directly plugged into the receptacles on a daughter board that has H-bridge

motor driver chips populated on it. Such customization would help to reduce the amount of

external wiring required. The board was successfully populated and tested to verify all specified

functionalities.

4

TABLE OF CONTENTS

1. INTRODUCTION..7
2. PROJECT STATEMENT...8
3. THEORY OF OPERATION...9

3.1. GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PORTS ..9
3.2. ANALOG-TO-DIGITAL CONVERTER (ADC) ...9
3.3. QUADRATURE DECODER ...10
3.4. PULSE WIDTH MODULATION (PWM)..11
3.5. SERIAL PERIPHERAL INTERFACE (SPI) ..12

4. H-BRIDGE BOARD DESIGN..13
5. BRAIN BOARD MICROCONTROLLER PCB DESIGN..13

5.1. COMPONENT SELECTION ...16
5.1.1. Microcontroller..16
5.1.2. Voltage Regulator..17
5.1.3. Analog-To-Digital Converter (ADC)...19
5.1.4. Accelerometer ..19
5.1.5. Gyroscope..20

5.2. DESIGN PROCESS...20
6. TESTING..24

6.1. H-BRIDGE BOARD TESTING...24
6.2. BRAIN BOARD TESTING...25

7. ERRATA...28
7.1. TOP-SIDE SILKSCREEN TYPO...28
7.2. MMA7260 SLEEP PIN ERROR ...28
7.3. MMA7260Q G-SELECT ERROR ..28

8. ACKNOWLEDGEMENTS...29
APPENDIX A: H-BRIDGE BOARD SCHEMATIC ...30
APPENDIX B: H-BRIDGE BOARD LAYOUT...31
APPENDIX C: BRAIN BOARD SCHEMATICS ..32
APPENDIX D: BRAIN BOARD LAYOUT..37
APPENDIX E: BRAIN BOARD BILL OF MATERIALS ..41
APPENDIX F: MC56F8347 PORT FUNCTIONALITIES ...42
APPENDIX G: H-BRIDGE BOARD TEST PROGRAM ...47
APPENDIX H: PERIPHERAL SETUP FOR H-BRIDGE BOARD TEST...52
APPENDIX I: BRAIN BOARD TEST PROGRAM ..55
APPENDIX J: PERIPHERAL SETUP FOR BRAIN BOARD TEST ...60

5

LIST OF FIGURES

FIGURE 1: 2-DIMENSIONAL BIPEDAL WALKER...7
FIGURE 2: CONVERSION GRAPH FOR A 12-BIT ADC W/ 3.3V RANGE ...10
FIGURE 3: QUADRATURE DECODING ..10
FIGURE 4: PWM SIGNAL EXAMPLES ..11
FIGURE 5: POPULATED H-BRIDGE BOARD..13
FIGURE 6: POPULATED BRAIN BOARD (TOP) ..15
FIGURE 7: POPULATED BRAIN BOARD (BOTTOM)...16
FIGURE 8: SCHEMATIC SYMBOL FOR FREESCALE 56F83X7 ..21
FIGURE 9: PHYSICAL LANDS FOR FREESCALE 56F83X7 ...21
FIGURE 10: BRAIN BOARD LAYOUT WITH AIRWIRES..22
FIGURE 11: BRAIN BOARD LAYOUT AFTER TRACES DRAWN..22
FIGURE 12: H-BRIDGE BOARD TEST CIRCUIT...24
FIGURE 13: H-BRIDGE TEST RESULT FOR "STEP" TARGET PROFILE ...25
FIGURE 14: H-BRIDGE TEST RESULTS FOR "ZIGZAG" TARGET PROFILE...25
FIGURE 15: H-BRIDGE BOARD SCHEMATIC ..30
FIGURE 16: H-BRIDGE BOARD LAYOUT ...31
FIGURE 17: CORE SCHEMATIC..32
FIGURE 18: VOLTAGE REGULATOR SCHEMATIC...33
FIGURE 19: EXTERNAL ADC SCHEMATIC ..34
FIGURE 20: ACCELEROMETER/GYROSCOPE SCHEMATIC ..35
FIGURE 21: PORT SCHEMATIC ..36
FIGURE 22: MICROCONTROLLER BOARD LAYOUT (TOP)..37
FIGURE 23: MICROCONTROLLER BOARD LAYOUT (BOTTOM) ..38
FIGURE 24: COMPONENT PLACEMENT (TOP) ..39
FIGURE 25: COMPONENT PLACEMENT (BOTTOM)...40

6

LIST OF TABLES

TABLE 1: MC56F8347 ADC PERFORMANCE ...26
TABLE 2: AD7490 ADC PERFORMANCE ..27
TABLE 3: MICROCONTROLLER BOARD BILL OF MATERIALS ..41
TABLE 4: HEADER DESCRIPTION (PORTA GROUP)..42
TABLE 5: HEADER DESCRIPTION (PORTB GROUP)..42
TABLE 6: HEADER DESCRIPTION (PORTC GROUP)..42
TABLE 7: HEADER DESCRIPTION (PORTD GROUP)..43
TABLE 8: HEADER DESCRIPTION (PORTE GROUP) ..43
TABLE 9: HEADER DESCRIPTION (PORTF GROUP) ..43
TABLE 10: HEADER DESCRIPTION (PWMA GROUP) ..43
TABLE 11: HEADER DESCRIPTION (PWMB GROUP) ..44
TABLE 12: HEADER DESCRIPTION (ANA GROUP) ..44
TABLE 13: HEADER DESCRIPTION (ANB GROUP) ..44
TABLE 14: HEADER DESCRIPTION (AN_1/2 GROUP)..45
TABLE 15: HEADER DESCRIPTION (CAN GROUP) ..45
TABLE 16: HEADER DESCRIPTION (IRQ GROUP)..45
TABLE 17: HEADER DESCRIPTION (JTAG GROUP)...46
TABLE 18: HEADER DESCRIPTION (POWER GROUP) ...46
TABLE 19: PERIPHERAL SETUP FOR H-BRIDGE BOARD TEST 1...52
TABLE 20: PERIPHERAL SETUP FOR H-BRIDGE BOARD TEST 2...52
TABLE 21: PERIPHERAL SETUP FOR H-BRIDGE BOARD TEST 3 ..53
TABLE 22: PERIPHERAL SETUP FOR H-BRIDGE BOARD TEST 4 ..53
TABLE 23: PERIPHERAL SETUP FOR H-BRIDGE BOARD TEST 5...54
TABLE 24: PERIPHERAL SETUP FOR BRAIN BOARD TEST 1 ...60
TABLE 25: PERIPHERAL SETUP FOR BRAIN BOARD TEST 2 ...61
TABLE 26: PERIPHERAL SETUP FOR BRAIN BOARD TEST 3 ...62
TABLE 27: PERIPHERAL SETUP FOR BRAIN BOARD TEST 4 ...63
TABLE 28: PERIPHERAL SETUP FOR BRAIN BOARD TEST 5 ...63
TABLE 29: PERIPHERAL SETUP FOR BRAIN BOARD TEST 6 ...64
TABLE 30: PERIPHERAL SETUP FOR BRAIN BOARD TEST 7 ...65
TABLE 31: PERIPHERAL SETUP FOR BRAIN BOARD TEST 8 ...66

7

1. INTRODUCTION

The 2-dimensional bipedal “Marathon Walker” robot designed at Cornell University’s

Biorobotics Laboratory takes advantage of gravity to realize a pendulum-like walking

locomotion. While power-efficient in principle, the walking cycle of the robot is inconsistent and

unstable. A major factor that hinders a stable walking locomotion is the low refresh rate of the

control variables in the microcontroller.

The main electronic components of most robots include the main processing unit,

actuators, and feedback sensors. The signal processing can be handled by a single

microcontroller or a digital signal processor (DSP). Ideally, the processing unit would include

such on-chip peripherals as analog-to-digital (A/D) and digital-to-analog (D/A) converters,

pulse-width modulation (PWM) generators, quadrature decoders, and duplex data transmitters.

Actuators on a robot may include various types of servos and DC motors. The feedback sensors

may include tactile switches, potentiometers, accelerometers, gyroscopes, and quadrature

encoders (usually embedded inside a motor). A/D conversion or quadrature-decoding of the

feedback signals can be processed by the main processing unit, or off-chip integrated circuits

(ICs).

Figure 1: 2-Dimensional Bipedal Walker

The main processing on the Marathon Walker robot is handled by the Innovation First,

Inc.’s Robot Controller, which is a Microchip PIC18F8520 microcontroller-based system that

runs at a core clock frequency of 40 MHz. Unfortunately, the Robot Controller suffers from a

poor temporal resolution of the control: the main proportional-derivative (PD) control loop takes

8

over 10 ms to complete, which limits the control refresh rate to under 100 Hz. This system uses

two PIC18F8520 microcontrollers, but the Innovation First’s documentation on how the two

chips communicate and interact is not publicly available, so it is difficult to debug a software-

related problem when it arises. The potential performance of the robotics control could be

greatly improved by switching the main controller to a faster digital signal processor,

programming a more sophisticated control algorithm, and upgrading off-the-shelf hobbyist-level

components to customized high-performance electronics. In the Biorobotic Lab’s upcoming

design of a 3-dimensional, “true bipedal” walking robot, a faster processing unit is not only

desirable, but necessary to perform control algorithms for the added degrees of freedom.

2. PROJECT STATEMENT

Build a controller board for a walking robot that is energy efficient, capable of fast

computations and provides a three-dimensional orientation and roll information on-board. The

specifications are as follows:

• All active board components shall be powered by a single battery pack of supply voltage

ranging from 7.5V to 25V.

• The physical board size shall be 3.0” x 2.3” or smaller.

• The board shall maximize power efficiency.

• The controller on the board shall make use of analog feedback signals of both 3.3V and

5V ranges.

• The controller on the board shall use feedback data from various sensors (switches,

analog voltage, potentiometers, optical encoders, RX-232, and serially-transferred data).

• The controller on the board shall control multiple robotic actuators (DC motors, RC

servos, solenoids) independently.

9

3. THEORY OF OPERATION

The main controller of the robot must be able to interpret numerous sensor inputs that

come in various signal formats, and drive the actuators accordingly. This section describes the

common formats of signals used in robotics applications.

3.1. GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PORTS

Digital input/output signals are used to send or receive digital information. In the context

of robotics control, a microcontroller could send a binary output signal to an H-bridge motor

driver to specify a direction of output current (forward or reverse), or to drive or retract solenoid

shafts. Configured as inputs, the microcontroller digital ports can receive signals from such

binary sensors as mechanical or optical switches.

3.2. ANALOG-TO-DIGITAL CONVERTER (ADC)

An ADC is an electronic circuit that converts an analog input voltage to discrete digital

numbers. The ADC has a given input voltage range, and an ADC with n-bit resolution evenly

divides that analog voltage range into 2n discrete “counts.” For instance, a 10-bit ADC with an

input voltage range of 0V-5V would express the input analog voltage as a digital number

between 0 and 1,023: an input voltage of 3V would be expressed as 614, assuming perfect

accuracy and zero noise. Some sensors that output analog voltage feedback signals are

gyroscopes, accelerometers, and potentiometers mechanically coupled to the joint of two

materials.

10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3
Analog voltage (V)

Digital
counts

Figure 2: Conversion Graph for a 12-bit ADC w/ 3.3V Range

3.3. QUADRATURE DECODER

A rotary quadrature encoder is a digital electronic device used to convert the angular

position of a shaft to a digital signal. The encoder usually consists of a circular disk that is

mechanically coupled to a shaft. It has a series of radial slots cut into it, so that when a light

generated by a light emitting diode (LED) passes through the slot, a photodetector such as a

photodiode would generate an electrical pulse. A quadrature signal consists of two signals,

always 90 degrees offset in phase as the shaft turns, so that a simple hardware such as that

described by the finite state machine in Figure 3 can count the number of positive or negative

transitions.

S
ta

te
 0

S
ta

te
 1

S
ta

te
 2

S
ta

te
 3

State 0 State 1

State 3 State 2

Next == State 1
Count++

Next == State 0
Count--

Next == State 2
Count--

Next == State 3
Count++

N
ex

t =
=

S
ta

te
 0

C
ou

nt
++

N
ex

t =
=

S
ta

te
 3

C
ou

nt
--

N
ext == S

tate 2
C

ount++

N
ext == S

tate 1
C

ount--

Figure 3: Quadrature Decoding

11

 Rotary encoders are often coupled to motor shafts, and can have as many as, or greater

than, 2,048 state transitions per revolution.

3.4. PULSE WIDTH MODULATION (PWM)

Pulse width modulation is a digital means of controlling an analog component. A pulse

width modulated signal is a constant-frequency, adjustable duty cycle square pulse. In the

context of robotics control, it is used to control the torque output of DC motors and the position

of RC servos.

For example, a torque output of a DC motor could be controlled by adjusting the analog

voltage level of the power supply. This task could also be accomplished digitally by switching

the supply on and off at a high frequency with variable pulse width. In some H-bridge motor

drivers, the pulse width can determine both the maximum torque and the direction of the DC

motor.

The position of an RC servo axle can be controlled by sending a single pulse width

between 0.5 ms (for 0 degree position) and 2.5 ms (for 270 degrees position). The position would

reset unless the same pulse width is sent periodically, so setting up a PWM signal with one duty

cycle would refresh the shaft position of an RC servo automatically.

Timer value

D
ut

y
cy

cl
e

(7
5%

)
P

W
M

 p
er

io
d

PWM value

Timer value

D
ut

y
cy

cl
e

(2
5%

)

PW
M

 p
er

io
d

PWM value

Figure 4: PWM Signal Examples

12

3.5. SERIAL PERIPHERAL INTERFACE (SPI)

SPI is a 4-wire duplex digital protocol for chip-to-chip communication. The four wires

are generally specified as RX (receive), TX (transmit), SCLK (serial clock), and CS or SS

(chip/slave select). In this communication protocol, the “master” chip, the “slave” chip, and the

number of bits to transfer must be explicitly specified. The master sends a constant clock to the

slave chip, and drives CS signal low to begin communication with the slave chip: for example, in

a 16-bit SPI protocol, 16 bits of information would be sent or received in the first 16 rising- or

falling- edges of the SCLK (the edge trigger specification may differ depending on the chip

model). After the transfer is complete, the master would set the CS signal high. The CS signal

could be driven low for longer than the number of SCLK cycles to receive or send all bits

without corrupting the data transfer, since the important n-bits of information is transferred in the

first n SCLK cycles.

SPI is an ideal chip-to-chip communication protocol in situations where the shared I/O

ports are too valuable to be used in a parallel communication protocol. In a 16-bit transfer of

data, a parallel communication protocol would require 16 I/O ports, plus any necessary control

bits. SPI communication is considered a very fast inter-chip communication protocol, since the

SCLK frequency could be driven as high as the master and the slave can operate at that

frequency. In a microcontroller design, the microcontroller is often configured as the master,

sends data/instruction to, and receives data from the slave peripherals on the SPI bus. Many

peripheral ICs such as electronically-erasable programmable read-only memory (EEPROM) and

ADCs use the SPI protocol.

13

4. H-BRIDGE BOARD DESIGN

The H-bridge driver used to drive the DC motors on the Marathon Walker robot is a

rather bulky unit that has a significant on-resistance. A custom printed circuit board was

designed around ST Microelectronics’ VNH2SP30-E H-bridge IC. This H-bridge adjusts the

amplitude and polarity of the output current based on the duty cycle of the input PWM signal,

and the values of the two “direction” input signals.1 Some of the benefits from using VNH2SP30

include small surface-mount package, high current capability (absolute maximum of 40A), high

refresh rate (compatible with 20 kHz PWM signals), simple interface, low on-resistance, and

built-in current measurement output. The PCB was designed with CadSoft’s EAGLE Layout

Editor. Refer to Appendices A and B for schematics and layout, respectively.

Figure 5: Populated H-Bridge Board

5. BRAIN BOARD MICROCONTROLLER PCB DESIGN

The two microcontroller boards previous used and evaluated in the Biorobotics Lab are

Innovation First, Inc.’s Robot Controller and New Micro, Inc.’s IsoPod microcontroller board.

The main goals of the Brain Board design are to carry all the desirable design aspects, to

1 STMicroelectronics. “VNH2SP30-E Data Sheet.” 30 April, 2006.
http://www.st.com/stonline/products/literature/ds/10832/vnh2.htm.

14

eliminate all the shortcomings from previously evaluated system, and to add new functionalities

toward the design of a true 3-dimensional bipedal walking robot.

 Innovation First’s Robot Controller is an 8-bit, dual Microchip PIC18F8520-based board.

It is a popular off-the-shelf controller designed for robotics applications, and its header pins are

configured to facilitate wiring with various sensors and actuators. The software is programmed

in C language, under Microchip’s proprietary MPLABS environment. There are several

shortcomings with this system: the 8-bit microcontrollers’ performance is rated at 10 million

instructions per second (10 MIPS) at maximum, and this does not provide enough computation

capability to run a single loop of proportional-derivative control algorithm for Marathon Walker

under 10 ms. It has a poor minimum specified PWM refresh period of 2 ms. As mentioned

before, the documentation on how the two microcontrollers communicate is not available, and

the system appears much like a black box during software debugging. Lastly, the supply voltage

regulation is inefficient, and the physical size is rather bulky at 3.4”x4.6”x0.75”.2

 New Micro, Inc.’s IsoPod system is a microcontroller board for Freescale’s DSP56F805

microcontroller. Compared to Microchip PIC18F8520, DSP56F805 is a much faster processor,

with a native 16-bit support and 40 MIPS rating. The software is programmed in hybrid

C/assembler in Metrowerks Codewarrior environment, which provides a set of tools to facilitate

fast software development. The main shortcomings of this system are the inefficient linear

voltage regulation, small number of unshared GPIO pins, relatively small 64 kB program flash

memory (compared to other models in Freescale’s 56800E family), and ADC of only 8 channels

compatible with only 3.3V-range inputs.3

 The Brain Board design addresses all aforementioned design issues, and makes several

improvements that makes it specifically geared towards advanced robotics-oriented actuator

controls. The key hardware features that differentiate Brain Board from Robot Controller and

IsoPod are listed below.

• Efficient supply voltage regulation through switching voltage regulator.

2 Innovation First, Inc. “IFI Robotics – Mini Robot Controller.” 30 April, 2006.
http://www.ifirobotics.com/edu-rc.shtml.
3 New Micros, Inc. “IsoPod V2.” 30 April, 2006. http://www.newmicros.com/cgi-
bin/store/order.cgi?form=prod_detail&part=IsoPod_V2&id=HiGR7s40vl3e02T11IEMo165h3tX5C7C.

15

• Generation compatibility with Freescale MC56F8347, MC56F8357, and MC56F8367,

with up to 512 kB of program memory.

• 16-bit core with a 60 MIPS maximum rating.

• 32 ADC channels: 16 channels compatible with 5V range, the other 16 channels

compatible with 3.3V range.

• Up to 7 hardware quadrature decoders.

• Large number of dedicated GPIO ports, over 40 when external memory access mode is

not used.

• 3-dimensional orientation and roll information available via on-board accelerometers and

gyroscopes.

• Small physical size of 3.0”x2.3”.

• A pin configuration facilitates the development of inexpensive daughter boards that

makes the control system more customized to specific robotics sensor/actuator

architecture.

Figure 6: Populated Brain Board (Top)

16

Figure 7: Populated Brain Board (Bottom)

5.1. COMPONENT SELECTION

Much time was invested into selecting electronic components for the Brain Board after

the design specifications were defined and the shortcomings of previously-used systems were

identified. During parts research, the emphasis was particularly placed on design risk reduction,

power efficiency, small size, and high computation performance.

5.1.1. Microcontroller

The evaluation of the Freescale-based IsoPod system during fall, 2005, found the

DSP56F805 core to be more than fast enough for a PD- and PID-based control algorithm used

for Marathon Walker. The set of tools in Metrowerks Codewarrior helped to make the software

development process very fast. After reviewing the IsoPod system, we found the Freescale

products very favorable.

For the microcontroller core of the Brain Board, Freescale MC56F83474 was chosen for

the following reasons. It is a native 16-bit machine that has a Harvard architecture, characterized

4 Freescale Semiconductor. “56F8347 and 56F8147 Data Sheet.” 30 April, 2006.
http://www.freescale.com/files/dsp/doc/data_sheet/MC56F8347.pdf.

17

by separate instruction and data memories. It has a program flash memory of 128 KB, much

larger than any compiled microcontroller software programmed in the lab, and the set of

hardware peripherals specifically geared toward motor controls: 12 independent PWM channels,

16 channels of 12-bit ADC, 16 8-bit timers of which 7 could be configured as quadrature

decoders, and two sets of SPI interface signals. The complete list of the microcontroller’s

hardware functionalities on the Brain Board is included in Appendix F.

The Brain Board, designed initially for MC56F8347, will also be compatible with

MC56F8357 and MC56F8367 microcontrollers, which have larger memories and will be

available in summer 2006. A unique feature of Freescale’s 56800E family of microcontrollers is

that they have an internal phase-locked loop (PLL) clock multiplier: for example, even though

MC56F83x7 series’ logic core runs on 120 MHz, the external crystal clock only needs to be 8

MHz, because the internal PLL multiplies the external input clock frequency. This feature

isolates the high-frequency design risks from the printed circuit board (PCB) design.

Even though there are faster microcontrollers/processors for embedded applications than

MC56F82x7 series, they do not have nearly as many motor-control-oriented hardware

peripherals, or unshared GPIO pins. A possible alternative was to use a faster microcontroller

core that communicates with a field-programmable gate array (FPGA) that is programmed to

perform all the hardware peripheral functions. However, having a single-chip processing core

would reduce the necessary physical board size, hardware complexity, chance of failure, and

debugging complexity. For the reasons stated above, Freescale MC56F8347 was chosen as a

single-chip processing core of the Brain Board.

5.1.2. Voltage Regulator

The actuators (DC motors, RC servos, etc.) are usually driven by a single battery pack

ranging between 9V-20V; usually of lithium-ion, Nickel-Metal-Hydride, or Nickel-Cadmium

types that have low internal resistance. It is desirable to use the same battery pack to power the

digital logic that controls the motion of the robot as well, rather than have a separate power

source. However, the voltage level must be reduced down to 5V or 3.3V that most digital logics

run on.

18

A common means of regulating the voltage level of the power supply is a linear voltage

regulator such as 7805. Most linear regulators have low dropout voltage (the minimum required

difference between input and output voltage); and are simple to use, requiring connections only

to input voltage, reference ground, and output regulated voltage. Unfortunately, linear regulators

are very inefficient, and all the power from voltage regulation is dissipated as heat: for instance,

if a 9V power supply is regulated via a linear regulator to run a 5V digital logic that requires

100mA, approximately 400mW of power is wasted in voltage regulation. This is not acceptable

since the research robots in the Biorobotics Lab use higher-voltage battery packs, and power

efficiency is one of the important agendas of the Lab.

Switching regulators offer a higher-efficiency solution to voltage regulation. It consists of

an integrated circuit that switches the load current on and off at a high frequency, and a set of

capacitors and inductors to stabilize the output voltage. Although most switching regulators can

achieve efficiency over 80%, it is not a single-chip solution and the external circuitry is

necessarily complex. An external circuit design will impose considerable risk on a hardware

designer who does not have prior experience with switching power supplies.

Considering the benefits and design risks involved, I decided to use Linear Technology

LT19405 switching regulator IC, which achieves about 85% regulation efficiency. This IC has a

dual output and is thus capable of providing both 5V and 3.3V supplies from one IC. Compared

to other switching regulator ICs from other companies such as National Semiconductors,

LT1940 requires comparatively simple external circuit, and the output voltage levels are

determined by simple voltage dividers. The theory of operation and design processes are

thoroughly documented by the company, which greatly facilitate the circuit design.

5 Linear Technology. “Datasheet: LT1940/LT1940L – Dual Monolithic 1.4A, 1.1MHz Step-Down Switching
Regulator.” 30 April, 2006.
http://www.linear.com/pc/productDetail.do?navId=H0,C1,C1003,C1042,C1032,C1064,P2241.

19

5.1.3. Analog-To-Digital Converter (ADC)

The Freescale MC56F83x7 microcontroller has a 16-channel ADC, but it only has a 3.3V

input range. The number of ADC channels may not be enough for complex robot architecture

with numerous feedback sensors, and many sensors run on a 5V supply. Therefore, an external

ADC that can accept 5V input voltage range and communicate with the microcontroller is

necessary.

Analog Devices AD74906 ADC was chosen for the board design among the company’s

other offerings for the following reasons: this IC has the largest number of input channels (16) of

Analog Devices’ ADCs that communicate on SPI interface. SPI is a 4-wire serial communication

protocol, and depending on the master microcontroller capabilities, it can communicate at serial

clock frequencies well over 1 MHz. SPI interface is much more desirable than parallel interface

in the context of the Brain Board design, since it keeps greater number of I/O ports free on the

microcontroller, and the communication rate is still very fast. AD7490 has 12-bit resolution,

which makes the measurement precise to approximately 1.25mV for a 0V-5V analog input

range. Lastly, the maximum sampling rate of AD7490 is 1,000,000 samples per second (1 Msps),

which is much faster than is necessary.

5.1.4. Accelerometer

For a true 3-dimensional bipedal robot, it would be necessary to obtain 3-dimensional tilt

feedback information. A 3-axis accelerometer can provide tilt information with respect to

gravity, assuming no external jolt that can introduce noise. Companies such as Freescale, Analog

Devices, and Kionix manufacture single-chip 3-axis accelerometers. Freescale MMA7260Q7

was chosen for the Brain Board design because of selectable acceleration range, and larger pin

pitch that facilitates the board population process. While accelerometers from Analog Devices

and Kionix have constant acceleration range (usually between ±1g and ±10g), the MMA7260Q

6 Analog Devices, Inc. “AD7490 Data Sheet, Rev. A.” 30 April, 2006.
http://www.analog.com/UploadedFiles/Data_Sheets/400753325AD7490_a.pdf.

20

accelerometers allows the user to select among ±1.5g, ±2g, ±4g, and ±6g depending on the

digital input values on its two “g-select” pins. The physical pins on this IC have a pitch of 1 mm,

as opposed to 0.65 mm and 0.5 mm pitches for Analog Device and Kionix ICs, respectively. A

wider pin pitch reduces the risk of component placement errors during board population.

5.1.5. Gyroscope

For a true 3-dimensional bipedal robot, it would also be helpful to have a set of on-board

3-axis gyroscopes that provide the roll information in three coordinate axes. Gyroscope ICs are

rather complex micro electro-mechanical sensors (MEMS), and only Analog Devices and Kionix

are well-known manufacturers of them. There is no single-chip device for 3-dimensional

gyroscope measurement, except for MEMSense’s AccelRate3D8, a 0.7”x0.7”x0.4” unit that can

provide 3-axis accelerometer and gyroscope measurements. However, this unit costs around

$1,000 each, and is a rather bulky block. Analog Devices gyroscopes have an axis of rotation

perpendicular to the chip surface, while Kionix gyroscopes have an axis of rotation parallel to

the chip surface. Therefore, it is possible to obtain 3-dimensional gyroscope signals by using two

Kionix gyros and one Analog Devices gyro. For this reason, Kionix KGF01 and Analog Devices

ADXRS4019 gyros were selected.

5.2. DESIGN PROCESS

Both the H-bridge and the Brain Board were designed using CadSoft’s EAGLE PCB

layout editor10. To minimize cost, the H-bridge board was designed with 2 layers, while the

7 Freescale Semiconductor. “MMA7260Q Data Sheet.” 30 April, 2006.
http://www.freescale.com/files/sensors/doc/data_sheet/MMA7260Q.pdf.
8 MemSense. “AccelRate3D Data Sheet.” 30 April, 2006.
http://www.memsense.com/downloads/datasheets/AccelRate3D_SMT_Datasheet_revD1.pdf.
9 Analog Devices, Inc. “ADXRS401 Data Sheet, Rev. 0.” 30 April, 2006.
http://www.analog.com/UploadedFiles/Data_Sheets/279107307ADXRS401_0.pdf.
10 CadSoft Online. “CadSoft Online: Home of the EAGLE Layout Editor.” April 30, 2006.
http://www.cadsoftusa.com/.

21

Brain Board has 4 layers with two dedicated internal power and ground planes for uniform

power distribution.

First, a custom library of all necessary components was prepared in EAGLE. Each

custom “device” in a library consists of a schematic symbol, and a corresponding physical layout

“land.” Figure 8 and Figure 9 show the schematic symbol and the corresponding land for

Freescale 56F83x7 device. Custom devices were created for all electronic components used that

are not included in EAGLE’s default library.

Figure 8: Schematic Symbol for Freescale 56F83x7

Figure 9: Physical Lands for Freescale 56F83x7

After all custom devices were created in the device library, pages of circuit schematics

were drawn. In this process, the schematic symbols from the device libraries were laid out on

several pages; and nets, or electrical connection among IC pins, are drawn. Specifications and

recommended circuits from all IC datasheets were carefully reviewed for schematic creation.

Refer to Appendix C for the Brain Board schematics.

22

After the schematics are drawn, the EAGLE performs “schematic capture” and places all

the components’ layout lands in the layout drawing, with lines called “airwires” showing which

pins are supposed to be physically connected together by metal traces. The positions,

orientations, and layer (top or bottom layer) must be manually defined for each component land.

Different component lands cannot overlap one another, and much effort was spent on land

placement, so that it would be easy to draw traces between pads. Traces for different signal

cannot overlap each other, so multiple metal layers, separated by electrically-insulating layers

were used. For the Brain Board, four layers were used, with top and bottom layers as component

and routing layers, and two internal layers as power and ground planes.

Figure 10: Brain Board Layout with Airwires

Figure 11: Brain Board Layout after Traces Drawn

On the Brain Board, “pseudo planes” were created for analog reference voltage signals.

This can be observed in the top and bottom (red and blue, respectively) layers in Figure 11.

23

Because of very high trace density, the signal traces were all laid out manually, without any help

of EAGLE’s autorouter feature.

After all airwires were replaced with signal traces, a computer-aided manufacturing

(CAM) file was generated from the board layout. The CAM file format must be compatible with

the manufacturing system used by the printed circuit boardhouse. For this project, the board

manufacturing was contracted to Advanced Circuits, and the compatible CAM file in GERBER

274-X format, generated by EAGLE, was electronically sent to the company for manufacturing.

It would be very difficult, if not impossible, so solder all components on the Brain Board

by hand. Mistakes in circuit board population would be costly, as some components such as

gyroscopes costs over $50. The board population was contracted to MPL Incorported, a

company that specializes in circuit board assembly. For board assembly, MPL used the

GERBER 274-X files to make a stencil, a thin metal foil with lands cut out, so that it could be

placed over the printed circuit board and solderpaste can be poured precisely on the land pads.

All the components were then placed on the solderpaste-covered lands and placed into a reflow

soldering oven.

24

6. TESTING

Functional testing was performed for both H-Bridge board and the Brain Board, to verify

functionalities and to evaluate performance.

6.1. H-BRIDGE BOARD TESTING

New Micros IsoPod system was used to test the H-bridge board. The test experiment uses

the angular position feedback from the DC motor’s embedded quadrature encoder to make the

DC motor follow a time-based profile programmed on the IsoPod’s DSP56F805 microcontroller.

1
2
3
4
5

O
ut

A

VC
C

G
N

D

O
ut

B

M
otor+

M
otor-

6V

+5
V

G
N

D
En

ab
le

A
In

A
P

W
M

C
S

ST Microelectronics
VNH2SP30-E

En
ab

le
B

In
B

G
N

D
+5

V

+5V
G

N
D

G
PIO

A1
+5V

P
W

M
A

0
G

PIO
A0

+5V
G

N
D

+5V

DC Motor

Q
ua

d
D

ec
od

er

GND
INDEX1

PHASEA1
PHASEB1

+5V
Aluminum

cube

Figure 12: H-Bridge Board Test Circuit

Figure 13 shows the time-based performance of the PID control algorithm for a “step”

target profile. As show in the figure the system has a rise and fall times of approximately 50 ms

to make a -360-to-360 degree turn. The maximum overshoot is less than 1%.

25

PID control: "step" target pattern

-500

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700

Time (ms)

Po
si

tio
n

(c
ou

nt
s)

Target position
Quadrature-decoded position

Figure 13: H-Bridge Test Result for "Step" Target Profile

The PID control’s performance is even better when it is programmed to follow a

smoother target profile. For a periodic “zigzag” target profile, the temporal delay of the

measured position from the target position is under 10 ms. This experiment simulates the

performance of the H-bridge board for a DC motor with very low natural damping, such as a DC

motor with a light load or with very high gear ratio.

PID control: time-based "zigzag" pattern

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

Time (ms)

Po
si

tio
n

(c
ou

nt
s)

Target position
Quadrature-decoded position

Figure 14: H-Bridge Test Results for "Zigzag" Target Profile

6.2. BRAIN BOARD TESTING

With MC56F8247 running, the 3.3V output of the switching voltage regulator was

measured with a voltmeter to provide an average of 3.31V, with an RMS noise of 0.2mV. The

26

5V output side was measured to have an average output of 4.99V, with a negligible RMS noise

not measurable by the voltmeter or the oscilloscope.

GPIO ports PORTA7:0, PORTB7:0, PORTC7:0, PORTD7:0, PORTE10, PORTE9,

PORTE7:0, PORTF15:0 have all been tested and validated for both input and output

functionalities by connecting each pin to the oscilloscope.

PWM functionality on ports PWMA5:0 and PWMB5:0 were tested and verified with an

oscilloscope for a constant 20 kHz frequency operation. With a PWM peripheral clock of 60

MHz, the duty cycle value was adjustable from 0 to 3000, across 0% to 100% duty cycle.

Therefore, the precision on the duty cycle is 0.033% when the PWM peripherals are set up for 20

kHz frequency.

The on-chip ADC on MC56F8347 was measured to have a standard deviation of 1 count

across 1,000 measurements of a stable potentiometer wiper voltage of 1.645V, and less than 1

count across 1,000 measurements of MMA7260Q accelerometer outputs.

Table 1: MC56F8347 ADC Performance

The off-chip AD7490 ADC was measured to have a standard deviation of less than 1

count across 1,000 measurements of a stable potentiometer wiper voltage of 2.51V, and also a

standard deviation of less than 1 count across 1,000 measurements of a stable ADXRS401

gyroscope output (average value of 1913 counts). No SPI synchronization error was observed.

27

Table 2: AD7490 ADC Performance

28

7. ERRATA

Even though there was no single mistake that caused a complete loss of any functionality

on the Brain Board, there is one modification that must be made to activate the 3-axis

accelerometer functionality on the board. There is one silkscreen typo and a hardwiring error

caused by a typo on the manufacture datasheet.

7.1. TOP-SIDE SILKSCREEN TYPO

On the top side, there is a silkscreen for R24, although this is really supposed to be C24.

7.2. MMA7260 SLEEP PIN ERROR

The Sleep pin on the MMA7260 IC is left open, while it should be connected to logic 1

for correct functionality. This problem can be resolved by shorting pin 12 to pin 2 or 3.

Optionally, the Sleep pin could be tied to one of the unshared GPIO pins to make the sleep

feature controllable by software.

7.3. MMA7260Q G-SELECT ERROR

g-Select1 and g-Select2 pins of Freescale MMA7260Q IC are hardwired to logic 0 and 1,

respectively, for ±2g acceleration range. However Freescale’s MMA7260Q datasheet, revision

2.0 (2/2006), has an error in the g-select table, and this hardwire configuration sets the IC in ±4g

mode. I pointed this error after testing, and this typo has been corrected in datasheet 3.0

(4/2006). In the future revisions of the Brain Board it may be desirable to tie g-Select pins to two

of the unshared GPIO pins to make the acceleration range software-selectable.

29

8. ACKNOWLEDGEMENTS

I would like to first thank Professor Andy Ruina of Theoretical and Applied Mechanics

for granting a green light on the Brain Board development, and for trusting me with a rather

high-risk PCB design. This project would not have been alive if it were not for his approval.

Secondly, I would like to thank Jason Cortell, the Biorobotics Lab Manager, for his

priceless support throughout the design specification, parts research, and board development

process. I owe much to Jason for the success and timely completion of this project.

I would like to acknowledge all the corporate sponsors who provided the component

samples for this project, including Freescale Semiconductor; Analog Devices, Inc.; Central

Semiconductor; and Kionix, Inc. My special thanks goes to Kionix, Inc. for their generous gifts

and extensive support.

Lastly, I would like to thank my teammates Andre Harrison, Mike Tosto, Matt

Haberland, Sarah Bates, Greg Stiesberg, and Justin Webb, for pointing out the shortcomings in

Innovation First Robot Controller system. Their inputs were important to avoid repeating the

past mistakes in the Brain Board design.

30

APPENDIX A: H-BRIDGE BOARD SCHEMATIC

Figure 15: H-Bridge Board Schematic

31

APPENDIX B: H-BRIDGE BOARD LAYOUT

Figure 16: H-Bridge Board Layout

32

APPENDIX C: BRAIN BOARD SCHEMATICS

Figure 17: Core Schematic

33

Figure 18: Voltage Regulator Schematic

34

Figure 19: External ADC Schematic

35

Figure 20: Accelerometer/Gyroscope Schematic

36

Figure 21: Port Schematic

37

APPENDIX D: BRAIN BOARD LAYOUT

Figure 22: Microcontroller Board Layout (Top)

38

Figure 23: Microcontroller Board Layout (Bottom)

39

Figure 24: Component Placement (Top)

40

Figure 25: Component Placement (Bottom)

41

APPENDIX E: BRAIN BOARD BILL OF MATERIALS

Quantity Number Type Digikey part number

26
C1-8, C18-19, C25, C30-33, C39-
40, C44-45, C49-51, C56-59 Ceramic 0.1uF cap (0603, X7R) PCC2398CT-ND

4 C9-12 Ceramic 2.2uF cap (0603, X5R) PCC2397CT-ND
2 C13, C27 Ceramic 0.01uF cap (0603, X7R) PCC1784CT-ND
2 C14, C24 Ceramic 1nF cap (0603, X7R) PCC1772CT-ND
1 C15 Ceramic 0.1nF cap (0603, NPO) PCC101ACVCT-ND
2 C16-17 Ceramic 4.7uF cap (0805, X5R) PCC2321CT-ND
2 C20-21 Ceramic 22uF cap (1206, X5R) PCC2332CT-ND
2 C22-23 Ceramic 330pF cap (0603, X7R) PCC1949CT-ND
2 C34-35 Ceramic 10uF cap (0805, X5R) PCC2403CT-ND
4 C36-37, C41, C46 Ceramic 1uF cap (0603, X5R) PCC2224CT-ND
1 C38 Ceramic 1.2nF cap (0603, X7R) PCC1773CT-ND
2 C42, C47 Ceramic 0.22uF cap (0603, X5R) PCC1749CT-ND
5 C43, C48, C52-54 Ceramic 22nF cap (0603, X7R) PCC1767CT-ND
1 C55 Ceramic 1uF cap (0805, X5R) PCC2319CT-ND
1 C28 Tantalum 10uF cap (EIA A) 493-2351-1-ND
1 C26, C29 Tantalum 47uF cap (EIA C) 493-2362-1-ND
1 CN1 Ceramic 0.1uF cap network (1206) P11148CT-ND
1 R1 Thick film 10k res (0402) P10.0KLCT-ND
1 R2 Thick film 1M res (0603) P1.00MHCT-ND
4 R3-4, R7-8 Thick film 10k res (0603) P10.0KHCT-ND
1 R5 Thick film 30.1k res (0603) P30.1KHCT-ND
1 R6 Thick film 16.5k res (0603) P16.5KHCT-ND
2 R9-10 Thick film 15k res (0603) P15.0KHCT-ND
1 R13 Thick film 10 res (0402) P10.0LCT-ND
3 R11-12, R14 Thick film 330 res (0603) P332HCT-ND
3 R15-17 Thick film 1k res (0603) P1.00KHCT-ND
1 RN1 10k res network (EXB-D) U9103CT-ND
1 L1 Sumida CR43-4R7 inductor 308-1123-1-ND
1 L2 Sumida CR43-2R2 inductor 308-1119-1-ND
3 L3-6 Panasonic EXC-CL3225U1 P9811CT-ND
2 D3, D4 UPS140 diode UPS140E3CT-ND
2 D1, D2 CMDSH-3 diode
1 Q1 8MHz crystal (CS20) 300-8126-1-ND
1 IC1 Freescale 56F8347 LQFP-160
1 IC2 Analog Devices AD7490 (TSSOP28) AD7490BRUZ-ND
2 IC3-4 Kionix KGF01 SOIC-24 DO NOT POPULATE
1 IC5 Analog Devices ADXRS401 BGA-32 ADXRS401ABG-ND
1 IC6 Freescale MMA7260Q QFN-16 MMA7260Q-ND
1 U1 Linear Technology LT1940 (TSSOP-16)
1 U2 ON Semiconductor MC33269 (3.3V, SOIC8) MC33269D-3.3OS-ND
1 U3 Burr-Brown REG113NA (3.3V, SOT) REG113NA-3.3/3KCT-ND
1 U4 Analog Devices AD780 (SOIC8) AD780BR-ND
1 U5 Dual OR gate (SSOP-8) TC7WH32FUTCT-ND
1 U6 Triple inverter (SSOP8) 296-13278-1-ND
1 LED1 0603 LED (green) 160-1443-1-ND
1 LED2 0603 LED (yellow) 160-1449-1-ND
1 LED3 0603 LED (red) 160-1442-1-ND

Table 3: Microcontroller Board Bill of Materials

42

APPENDIX F: MC56F8347 PORT FUNCTIONALITIES

Table 4: Header Description (PORTA Group)

Table 5: Header Description (PORTB Group)

Table 6: Header Description (PORTC Group)

43

Table 7: Header Description (PORTD Group)

Table 8: Header Description (PORTE Group)

Table 9: Header Description (PORTF Group)

Table 10: Header Description (PWMA Group)

44

Table 11: Header Description (PWMB Group)

Table 12: Header Description (ANA Group)

Table 13: Header Description (ANB Group)

45

Table 14: Header Description (AN_1/2 Group)

Table 15: Header Description (CAN Group)

Table 16: Header Description (IRQ Group)

46

Table 17: Header Description (JTAG Group)

Table 18: Header Description (Power Group)

47

APPENDIX G: H-BRIDGE BOARD TEST PROGRAM

Robo.c

/** ###
** Filename : Robo.C
** Project : Robo
** Processor : 56F805
** Version : Driver 01.07
** Compiler : Metrowerks DSP C Compiler
** Date/Time : 10/23/2005, 10:44 PM
** Abstract :
** Main module.
** Here is to be placed user's code.
** Settings :
** Contents :
** No public methods
**
** (c) Copyright UNIS, spol. s r.o. 1997-2004
** UNIS, spol. s r.o.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
** http : www.processorexpert.com
** mail : info@processorexpert.com
** ###*/
/* MODULE Robo */

/* Including used modules for compilling procedure */
#include "Cpu.h"
#include "GPIO_A.h"
#include "GPIO_B.h"
#include "GPIO_E.h"
#include "PWM1.h"
#include "AS1.h"
#include "FC1.h"
#include "QD1.h"

/* Include shared modules, which are used for whole project */
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

#include <stdlib.h> // Custom addition: standard library
#include <stdio.h> // Custom addition: standard i/o
#include <math.h> // Custom addition: mathematic protocols
#include <string.h> // Custom addition: handles strings
#include <float.h> // Custom addition: floating point

#include "CustomFunctions.h" // Custom functions library

void main(void)
{
 int i;
 char strTarget[6], strPosition[6], strDuty[6];

 // PID variables
 long target = 0;
 long err[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 long dErr = 0;
 long iErr = 0;
 float Kp = 0.2;
 float Ki = 0.01;
 float Kd = 5;

 // Quadrature decoder variables (module QD1)
 TStateValues QDcounter;
 long position = 0; // Position (from quadrature decoder QD1)
 long prevPosition= 0; // Position in the previous program loop
 int revolution = 0; // Number of revolution
 int prevRevolution = 0; // Number of revolution in the prev program loop
 int posPerRev = 2048; // 2048 positions in 1 revolution

48

 // PWM-related variables (module PWM1)
 float dutyPercent = 0; // PWM duty cycle (in %)

 // Time-related variables (module FC1, free counter)
 word prgmLoopUS = 0; // Microseconds to complete a single program loop
 word tArithmeticEnd; // Time marker (in us) at end of arithmetic operation
 word tSerialEnd; // Time marker (in us) at end of serial communication
 word tenthUS = 0; // 1/10 microseconds in the free counter
 int countMS = 0; // Counts the number of milliseconds
 int period = 1000; // Number of milliseconds in one "cycle"

 // Mathematical constants
 const double PI = 3.141592653;

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /* Write your code here */

 FC1_Reset(); // Reset the free counter
 QD1_SetPosition(0); // Reset QD counter
 QD1_SetRevolution(0); // Reset QD counter
 GPIO_A_ClrBit(0); // Initialize H-bridge polarity
 GPIO_A_SetBit(1);

 while(TRUE)
 {
 FC1_GetCounterValue(&tenthUS);
 tArithmeticStart = tenthUS/10;

 // STEP 1: calculate new target
 target = Target_Step(countMS, period);
 //target = Target_ZigZag(countMS, period);
 //target = Target_Sine(countMS, period);

 // STEP 2: obtain latest position feedback
 for(i=10; i>0; i--)
 {
 err[i]=err[i-1]; // Shift the err
history by 1
 }
 prevPosition = position; // Save previous position
 prevRevolution = revolution; // Save previous revolution

 QD1_GetCounters(&QDcounter); // Save latest QD info into QDcounter
 position = (long)((&QDcounter)->Position); // Extract new position
 revolution = (int)(position/posPerRev); // Calculate new revolution

 err[0] = target - position; // Calculate new error
 dErr = err[0]-err[1]; // Calculate d(err) for derivative
 iErr = err[0];
 for(i=1; i < 10; i++)
 {
 iErr += err[i]; // Calculate i(err) for integral
 }

 // STEP 3: calculate new duty cycle (in %)
 dutyPercent = (float)(Kp*err[0] + Kd*dErr + Ki*iErr);
 SetDutyPercent(fabsf(dutyPercent));
 if(dutyPercent < 0) // For negative duty cycle, reverse polarity
 {
 GPIO_A_SetBit(0); // GPIOA[1:0] = 2b'01 for negative polarity
 GPIO_A_ClrBit(1);
 }
 else
 {
 GPIO_A_ClrBit(0); // GPIOA[1:0] = 2b'10 for positive polarity
 GPIO_A_SetBit(1);
 }

 FC1_GetCounterValue(&tenthUS);
 tArithmeticEnd = tenthUS/10; // Time marker at end of arithmetic operation

49

 // STEP 4: parse number into character arrays and transmit over serial port
 ParseLong(strTarget, target);
 Print(strTarget);
 Print("\t");
 ParseLong(strPosition, position);
 Print(strPosition);
 Print("\r\n");

 if (countMS<period) countMS++; // If countMS hasn't reached period, add 1
 else countMS=0; // If countMS has reached period, reset it

 FC1_GetCounterValue(&tenthUS); // Get the number of 0.1 microseconds in counter
 prgmLoopUS = tenthUS/10; // How many microsecounds did the prgm loop take?
 while (tenthUS <= 10000) // Has 1 ms passed in free counter?
 {
 FC1_GetCounterValue(&tenthUS);// No, get counter value again and keep waiting
 }
 FC1_Reset();
 // Yes, exit the loop and reset the counter
 }

 // END MY CODE

}

/* END Robo */
/*
** ###
**
** This file was created by UNIS Processor Expert 2.95 [03.58]
** for the Freescale 56800 series of microcontrollers.
**
** ###
*/

CustomFunctions.h

// Prototypes
int ParseLong(char *s, long number);
void Print(char *);
long Target_Step(int countMS, int period);
long Target_ZigZag(int countMS, int period);
//long Target_Sine(int countMS, int period);
void SetDutyPercent(float percent);

// Custom Functions

/** ###
** Function : ParseLong
** Input : char *s
** long number
** Output : integer 0
**
** ParseLong takes a long and converts it into a 6-byte character
** string. The formatting is as follows:
** " #####" for positive number, and
** "-#####" for negative number.
** ###*/
int ParseLong(char *s, long number)
{
 int absNum = abs(number); // Absolute value of the argument long
 int digit;
 int div = 10000;
 int i;

 if(number < 0) // If number is negative number,
 { // insert a '-' sign
 s[0] = '-';
 }
 else // Else,
 { // insert a blankspace ' ' character
 s[0] = ' ';
 }
 for(i=0; i<5; i++)

50

 {
 digit = (absNum/div)%10;
 switch(digit)
 {
 case 1:
 s[i+1] ='1';
 break;
 case 2:
 s[i+1] ='2';
 break;
 case 3:
 s[i+1] ='3';
 break;
 case 4:
 s[i+1] ='4';
 break;
 case 5:
 s[i+1] ='5';
 break;
 case 6:
 s[i+1] ='6';
 break;
 case 7:
 s[i+1] ='7';
 break;
 case 8:
 s[i+1] ='8';
 break;
 case 9:
 s[i+1] ='9';
 break;
 case 0:
 s[i+1] ='0';
 break;
 default:
 s[i+1] = ' ';
 break;
 }
 div = div/10;
 }
 s[6] = '\0'; // Insert a void character
 return 0;
}

/** ###
** Function : Print
** Input : char String[]
**
** Print takes a character string, and sends it out via
** asynchronous transmitter AS1. Use this funciton in this manner:
** Print("Hello World!"); or
** Print(message); where message is a character array
** ###*/
void Print(char String[])
{
 int i;
 int N = strlen(String);

 for(i=0; i<N; i++)
 {
 AS1_SendChar(String[i]); // Send String[i] across the SCI bus
 while(AS1_GetCharsInTxBuf() != 0); // Wait until Tx buffer cleared
 }
}

/** ###
** Function : Target_Step
** Input : int countMS
** int period
** Output : long target
**
** Target_Step takes countMS (millisecond counter) and period (in ms)
** and generates a "step" target profile that switches between 2048
** and 0 every period/2.
** ###*/

51

long Target_Step(int countMS, int period)
{
 long target;
 if(countMS < period/2)
 {
 target = 2048;
 }
 else
 {
 target = 0;
 }
 return target;
}

/** ###
** Function : Target_ZigZag
** Input : int countMS
** int period
** Output : long target
**
** Target_ takes countMS (millisecond counter) and period (in ms)
** and generates a linear "zigzag" target profile that rises from 0 to
** between 0<countMS<period/2 and decreases from 2048 to 0 betwen
** period/2<countMS<period.
** ###*/
long Target_ZigZag(int countMS, int period)
{
 long target;
 if(countMS < period/2)
 {
 target = (long)2048*2*(((double)countMS)/((double)period));
 }
 else
 {
 target = (long)2048*2*(1-((double)countMS)/((double)period));
 }
 target = target;
 return target;
}

/*long Target_Sine(int countMS, int period)
{
 long target;
 const double PI = 3.141592653;
 target = (long)512*sin(2*PI*((double)countMS)/((double)period));

 return target;
}*/

/** ###
** Function : SetDutyPercent
** Input : float percent
**
** SetDutyPercent takes a floating-point "percent" value (between 0 and
** 100) and sets the duty cycle of the PWM1 module. There is a "clamp"
** feature which keeps the duty cycle between 0 and PWM frequency.
** IMPORTANT NOTE: this function assumes a 20 kHz PWM frequency, or
** a 400 clock ticks which translate to 50 us.
** ###*/
void SetDutyPercent(float percent)
{
 if(percent > 99.75)
 {
 PWM1_SetDutyTicks32(399);
 }
 else if(percent < 0.25)
 {
 PWM1_SetDutyTicks32(1);
 }
 else
 {
 PWM1_SetDutyTicks32((unsigned long)(400*percent/100));
 }
}

52

APPENDIX H: PERIPHERAL SETUP FOR H-BRIDGE BOARD TEST

GPIO_A
GPIOA
autoselected pull
no open drain
Input/Output

Init direction Output
Init value 0

yes

GPIO_B
GPIOB
autoselected pull
no open drain
Input

GPIO_E
GPIOE
autoselected pull
no open drain
Input/Output

Init direction Output
Init value 0

yes

Direction

Port

Open drain

Direction
Initialization

Safe mode

Safe mode

Bean name
Port
Pull resistor
Open drain

Bean name

Pull resistor

Initialization
Direction
Open drain
Pull resistor
Port
Bean name

Table 19: Peripheral Setup for H-Bridge Board Test 1

PWM1
PWModA0
PWMA0
PWM_A
Disabled

PWMA prescaler 1
20 kHz
0.025 us
high
1
no
yes

Enabled in init code yes
Events enabled in init yes

Bean name
PWM or PPG timer
Output pin
Counter
Interrupt service/event
PWMA

Safe peiod in modes
Bean uses entire timer
Initialization

Period
Starting pulse width
Initial polarity
Iterations before action/event

Table 20: Peripheral Setup for H-Bridge Board Test 2

53

Bean name AS1
Channel SCI1
Interrupt service/event Disabled
Settings

Parity none
Width 8bits
Stop bit 1
SCI output mode Normal
Receiver Disabled
Transmitter Enabled

TxD GPIOD6_TXD1
TxD pin signal

Baud rate 230400 baud
Break signal Disabled
Wakeup condition Idle line wakeup
Transmitter output Not inverted
Stop in wait mode no

Initialization
Enabled in init code yes
Events enabled in init yes

Table 21: Peripheral Setup for H-Bridge Board Test 3

Bean name FC1
Timer TMRD0_Compare
Counter TMRD0
Interrupt service/event Disabled
Prescaler 4
Period 52428 ticks
Same resolution in modes yes
Same resolution in modes no
Initialization

Enabled in init code yes
Events enabled in init yes

Table 22: Peripheral Setup for H-Bridge Board Test 4

54

Bean name QD1
Device Quad_Decoder1
Interrupt service/event Disabled
Phase A pin PHASEA1_TB0
Phase B pin PHASEB1_TB1
Index INDEX1_TB2
Index edge positive edge
Index initialization no
Home HOME1_TB3
Home edge positive edge
Home initialization no
Watchdog Disabled
Bypass decoder no
Reverse counting no
SwitchMatrix 1

Mode Raw input
FIR value 0
Filter frequency (kHz) 0

Initialization
Events enabled in init yes

Table 23: Peripheral Setup for H-Bridge Board Test 5

55

APPENDIX I: BRAIN BOARD TEST PROGRAM

/** ###
** Filename : Brain01.C
** Project : Brain01
** Processor : 56F8347
** Version : Driver 01.09
** Compiler : Metrowerks DSP C Compiler
** Date/Time : 4/19/2006, 2:38 PM
** Abstract :
** Main module.
** Here is to be placed user's code.
** Settings :
** Contents :
** No public methods
**
** (c) Copyright UNIS, spol. s r.o. 1997-2004
** UNIS, spol. s r.o.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
** http : www.processorexpert.com
** mail : info@processorexpert.com
** ###*/
/* MODULE Brain01 */

/* Including used modules for compiling procedure */
#include "Cpu.h"
#include "Events.h"
#include "A.h"
#include "B.h"
#include "C.h"
#include "D.h"
#include "F.h"
#include "SPI0Sel.h"
#include "ChipSelect.h"
#include "LED.h"
#include "ANA.h"
#include "ANB.h"
#include "MSInt.h"
#include "Math.h"
#include "PulseA.h"
#include "PulseB.h"
#include "SPI.h"
/* Include shared modules, which are used for whole project */
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"
#include <math.h>

#define t1 1000;

#define PutYellow(a) a ? LED_SetBit(0) : LED_ClrBit(0)
#define GetYellow() LED_GetBit(0)
#define PutGreen(a) a ? LED_SetBit(1) : LED_ClrBit(1)
#define GetGreen() LED_GetBit(1)
#define PutRed(a) a ? LED_SetBit(2) : LED_ClrBit(2)
#define GetRed() LED_GetBit(2)
#define SetDutyPercentA(ch,val) PulseA_SetDuty(ch,(int)(3000*(long)val/100))
#define SetDutyPercentB(ch,val) PulseB_SetDuty(ch,(int)(3000*(long)val/100))

void task1(void);

unsigned int time1;

unsigned int upPWM, duty;
unsigned int ANAVal[8], ANBVal[8], ANVal[16];

extern unsigned int data;

int main(void)
{

56

 int i, j;
 unsigned int temp[1000];
 long sum, avg, stdev;

 unsigned int local[16];

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /* Write your code here */
 time1 = t1;

 /* Initialization for PWM "sweep" test */
 duty = 0; //Initial duty cycle value for PWM
 upPWM = 1; //Variable for PWM "sweep" test - upcount from 0 to 100% first

 /* Initialization for SPI ADC */
 for(i=0; i<16; i++) local[i] = 0; //Initialize local probe array
 for(i=0; i<16; i++) ANVal[i] = 0; //Initialize count storage
 SPI0Sel_ClrBit(0);
 SPI0Sel_ClrBit(1);

 /* BEGIN A/C performance test for average and stdev */
 for (i = 0; i < 1000; i++)
 {
 ANB_Measure(1);
 //Perform A/D for all channels, ANB15:0
 ANB_GetChanValue16(0, &temp[i]); //Save one channel value in temp[i]
 temp[i] >>= 4;
 }
 sum = 0; //Accumulator for A/D counts
 for (i = 0; i < 1000; i++)
 sum += temp[i]; //Sum A/D counts
 avg = sum/1000; //Calc avg A/D count across 1000 samples
 sum = 0; //Sum (sample[i]-avg)^2
 for (i = 0; i < 1000; i++)
 sum += ((long)temp[i]-avg)*((long)temp[i]-avg);
 stdev = Math_mfr32Sqrt(sum<<1);
 stdev = stdev/999; //Calc stdev across 1000 samples
 asm(NOP);
 /* END A/D performance test */

 //Send dummy conversion to AD7490
 ChipSelect_ClrVal();
 while(ERR_OK != SPI_SendChar(0xffff)) ;
 //Dummy conversions

 //Configure AD7490
 ChipSelect_ClrVal();
 while(ERR_OK != SPI_SendChar(0b1111111110010000)) ; //Write to control reg

 /* BEGIN AD7490 SPI performance test for average and stdev */
 j = 0;
 for(i=0; i<16000; i++)
 {
 ChipSelect_ClrVal();
 while(ERR_OK != SPI_SendChar(0)) ;
 while(FALSE==ChipSelect_GetVal()) ; //Wait until CS cleared by ISR

 if(((0xf000 & data)>>12)==15)
 {
 temp[j] = data & 0x0fff;
 j++;
 }
 }
 sum = 0; //Accumulator for A/D counts
 for(i = 0; i < j; i++)
 sum += temp[i]; //Sum A/D counts
 avg = sum/j; //Calc avg A/D count across j samples
 sum = 0; //Sum (sample[i]-avg)^2
 for(i = 0; i < j; i++)
 sum += ((long)temp[i]-avg)*((long)temp[i]-avg);
 stdev = Math_mfr32Sqrt(sum<<1);
 stdev = stdev/(j-1); //Calc stdev across j-1 samples

57

 asm(NOP);
 /* END AD7490 SPI performance test for average and stdev */

 while(1)
 {
 if(time1 == 0) task1(); //Run task1 every t1 milliseconds
 for(i=0; i<16; i++) local[i] = ANVal[i]; //Get AD7490 results in local
 }
}

//--
void task1(void)
{
 char probe;
 time1 = t1;

 //AD7490 conversion
 ChipSelect_ClrVal();
 while(ERR_OK != SPI_SendChar(0)) ;
 ChipSelect_SetVal();

 /* Store ADC results from previous run */
 ANA_GetValue16(&ANAVal[0]);
 ANB_GetValue16(&ANBVal[0]);

 /* Start next ADC */
 ANA_Measure(1);
 ANB_Measure(1);

 /* LED blink test code */
 PutYellow(!GetYellow());
 PutGreen(!GetGreen());
 PutRed(!GetRed());

 B_PutVal(~B_GetVal());

 /* PWM sweep test code */
 duty += (upPWM != 0) ? 1.8 : -1.8;
 upPWM = (upPWM) ? !(duty >= 100) : (duty <= 0);
 SetDutyPercentA(0,duty);
 PulseA_Load();

 /* PORT A-F output test code */
 A_PutVal((unsigned char)~A_GetVal());
 B_PutVal((unsigned char)~B_GetVal());
 C_PutVal((unsigned char)~C_GetVal());
 D_PutVal((unsigned char)~D_GetVal());
 E_PutVal((unsigned char)~E_GetVal());
 F_PutVal(~F_GetVal());
}

/* END Brain01 */
/*
** ###
**
** This file was created by UNIS Processor Expert 2.96 [03.65]
** for the Freescale 56800 series of microcontrollers.
**
** ###
*/

/** ###
** Filename : Events.C
** Project : Brain01
** Processor : 56F8347
** Beantype : Events
** Version : Driver 01.02
** Compiler : Metrowerks DSP C Compiler
** Date/Time : 4/19/2006, 2:59 PM
** Abstract :
** This is user's event module.
** Put your event handler code here.
** Settings :

58

** Contents :
** MSInt_OnInterrupt - void MSInt_OnInterrupt(void);
**
** (c) Copyright UNIS, spol. s r.o. 1997-2004
** UNIS, spol. s r.o.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
** http : www.processorexpert.com
** mail : info@processorexpert.com
** ###*/
/* MODULE Events */

#include "Cpu.h"
#include "Events.h"

extern int time1;
extern int ANVal[16];
unsigned int data;

/*
** ===
** Event : MSInt_OnInterrupt (module Events)
**
** From bean : MSInt [TimerInt]
** Description :
** When a timer interrupt occurs this event is called (only
** when the bean is enabled - "Enable" and the events are
** enabled - "EnableEvent").
** Parameters : None
** Returns : Nothing
** ===
*/
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers'
property */
 /* is set to 'yes' (#pragma interrupt saveall is generated before the
ISR) */
void MSInt_OnInterrupt(void)
{
 /* Write your code here ... */
 if(time1 > 0) time1--;
}

/*
** ===
** Event : SPI_OnRxChar (module Events)
**
** From bean : SPI [SynchroMaster]
** Description :
** This event is called after a correct character is
** received.
** DMA mode:
** If DMA controller is available on the selected CPU and
** the receiver is configured to use DMA controller then
** this event is disabled. Only OnFullRxBuf method can be
** used in DMA mode.
** Parameters : None
** Returns : Nothing
** ===
*/
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers'
property */
 /* is set to 'yes' (#pragma interrupt saveall is generated before the
ISR) */
void SPI_OnRxChar(void)
{
 /* Write your code here ... */
 //unsigned int data;

 while(ERR_OK != SPI_RecvChar(&data)) ;
 ANVal[(0xf000 & data)>>12] = data & 0x0fff;
 ChipSelect_SetVal();
}

/*

59

** ===
** Event : SPI_OnTxChar (module Events)
**
** From bean : SPI [SynchroMaster]
** Description :
** This event is called after a character is transmitted.
** Parameters : None
** Returns : Nothing
** ===
*/
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers'
property */
 /* is set to 'yes' (#pragma interrupt saveall is generated before the
ISR) */
void SPI_OnTxChar(void)
{
 /* Write your code here ... */

}

/*
** ===
** Event : SPI_OnError (module Events)
**
** From bean : SPI [SynchroMaster]
** Description :
** This event is called when a channel error (not the error
** returned by a given method) occurs. The errors can be
** read using <GetError> method.
** Parameters : None
** Returns : Nothing
** ===
*/
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers'
property */
 /* is set to 'yes' (#pragma interrupt saveall is generated before the
ISR) */
void SPI_OnError(void)
{
 /* Write your code here ... */
}

/* END Events */

/*
** ###
**
** This file was created by UNIS Processor Expert 2.96 [03.65]
** for the Freescale 56800 series of microcontrollers.
**
** ###
*/

60

APPENDIX J: PERIPHERAL SETUP FOR BRAIN BOARD TEST

Type ByteIO
Bean name A
Port GPIOA_Low
Pull resistor pull up
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes

Type ByteIO
Bean name B
Port GPIOB
Pull resistor pull up
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes

Type ByteIO
Bean name C
Port GPIOC_Low
Pull resistor pull up
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes

Type ByteIO
Bean name D
Port GPIOD_LOW
Pull resistor pull up
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes
Table 24: Peripheral Setup for Brain Board Test 1

61

Type WordIO
Bean name F
Port GPIOF
Pull resistor autoselected pull
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes

Type BitIO
Bean name ChipSelect
Pin for I/O GPIOE7_SS0B
Pin signal
Pull resistor autoselected pull
Open drain no open drain
Direction Output
Initialization

Init direction Output
Init value 1

Safe mode yes
Optimization for Speed

Table 25: Peripheral Setup for Brain Board Test 2

62

Type ADC Type ADC
Bean name ANA Bean name ANB
A/D converter ADCA A/D converter ADCB
Sharing Disabled Sharing Disabled
Interrupt service/event Disabled Interrupt service/event Disabled
A/D channels 8 A/D channels 8

Channel0 Channel0
A/D channel (pin) ANA0 A/D channel (pin) ANB0
Mode select Single Ended Mode select Single Ended

Channel1 Channel1
A/D channel (pin) ANA1 A/D channel (pin) ANB1
Mode select Single Ended Mode select Single Ended

Channel2 Channel2
A/D channel (pin) ANA2 A/D channel (pin) ANB2
Mode select Single Ended Mode select Single Ended

Channel3 Channel3
A/D channel (pin) ANA3 A/D channel (pin) ANB3
Mode select Single Ended Mode select Single Ended

Channel4 Channel4
A/D channel (pin) ANA4 A/D channel (pin) ANB4
Mode select Single Ended Mode select Single Ended

Channel5 Channel5
A/D channel (pin) ANA5 A/D channel (pin) ANB5
Mode select Single Ended Mode select Single Ended

Channel6 Channel6
A/D channel (pin) ANA6 A/D channel (pin) ANB6
Mode select Single Ended Mode select Single Ended

Channel 7 Channel 7
A/D channel (pin) ANA7 A/D channel (pin) ANB7
Mode select Single Ended Mode select Single Ended

Queue Enabled Queue Enabled
A/D prescaler ADCA_ADCR2 A/D prescaler ADCB_ADCR2
A/D resolution 12 bits A/D resolution 12 bits
Conversion time 1.7 us Conversion time 1.7 us

Internal trigger Disabled Internal trigger Disabled
Volt ref recovery time 100 Volt ref recovery time 100
Power up delay 13 Power up delay 13
Power saving mode Disabled Power saving mode Disabled
Number of conversions 1 Number of conversions 1

Initialization Initialization
Enabled in init code yes Enabled in init code yes
Events enabled in init yes Events enabled in init yes

Table 26: Peripheral Setup for Brain Board Test 3

63

Type BitsIO
Bean name SPI0Sel
Port GPIOA_High
Pins 2

Pin0
Pin GPIOA9_A1

Pin1
Pin GPIOA10_A2

Pull resistor autoselected pull
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Type BitsIO
Bean name LED
Port GPIOA_High
Pins 3

Pin0
Pin GPIOA11_A3

Pin1
Pin GPIOA12_A4

Pin2
Pin GPIOA13_A5

Pull resistor autoselected pull
Open drain no open drain
Direction Input/Output
Initialization

Init direction Output
Init value 0

Safe mode yes
Optimization for speed

Table 27: Peripheral Setup for Brain Board Test 4

Type TimerInt
Bean name MSInt
Timer TMRA0_Compare
Counter TMRA0_Compare
Interrupt service/event Enabled

Interrupt INT_TMRA0
Interrupt priority medium priority
Interrupt preserve registers yes

Prescaler 1
Interrupt period 1 ms
Same period in modes yes
Bean uses entire timer no
Initialization

Enabled in init code yes
Events enabled in init yes

Table 28: Peripheral Setup for Brain Board Test 5

64

Type PWMMC
Bean name PulseA
Device PWM_A
Align edge-aligned mode
Mode of PWM Pair 0 independent
Mode of PWM Pair 1 independent
Mode of PWM Pair 2 independent
Top-Side PWM Pair 0 Polarity Positive
Top-Side PWM Pair 1 Polarity Positive
Top-Side PWM Pair 2 Polarity Positive
Bottom-Side PWM Pair 0 Polarity Positive
Bottom-Side PWM Pair 1 Polarity Positive
Bottom-Side PWM Pair 2 Polarity Positive
Write Protect no
Output pads Enabled
Enable in Wait mode no
Enable in ENOnCE mode no
Frequency 20 kHz
Same frequency in modes no
PWMA

PWMA prescaler 1
Reload 1
Hardware acceleartion Disabled

Dead-time 0 us
Correction Disabled
Interrupt service/event Disabled
Channel 0

Channel PWModA0
Duty 50%
Output software control no
Mask channel no

Channel 1
Channel PWModA1
Duty 50%
Output software control no
Mask channel no

Channel 2
Channel PWModA2
Duty 50%
Output software control no
Mask channel no

Channel 3
Channel PWModA3
Duty 50%
Output software control no
Mask channel no

Channel 4
Channel PWModA4
Duty 50%
Output software control no
Mask channel no

Channel 5
Channel PWModA5
Duty 50%
Output software control no
Mask channel no

Table 29: Peripheral Setup for Brain Board Test 6

65

Type PWMMC
Bean name PulseB
Device PWM_B
Align edge-aligned mode
Mode of PWM Pair 0 independent
Mode of PWM Pair 1 independent
Mode of PWM Pair 2 independent
Top-Side PWM Pair 0 Polarity Positive
Top-Side PWM Pair 1 Polarity Positive
Top-Side PWM Pair 2 Polarity Positive
Bottom-Side PWM Pair 0 Polarity Positive
Bottom-Side PWM Pair 1 Polarity Positive
Bottom-Side PWM Pair 2 Polarity Positive
Write Protect no
Output pads Enabled
Enable in Wait mode no
Enable in ENOnCE mode no
Frequency 20 kHz
Same frequency in modes no
PWMA

PWMA prescaler 1
Reload 1
Hardware acceleartion Disabled

Dead-time 0 us
Correction Disabled
Interrupt service/event Disabled
Channel 0

Channel PWModB0
Duty 50%
Output software control no
Mask channel no

Channel 1
Channel PWModB1
Duty 50%
Output software control no
Mask channel no

Channel 2
Channel PWModB2
Duty 50%
Output software control no
Mask channel no

Channel 3
Channel PWModB3
Duty 50%
Output software control no
Mask channel no

Channel 4
Channel PWModB4
Duty 50%
Output software control no
Mask channel no

Channel 5
Channel PWModB5
Duty 50%
Output software control no
Mask channel no

Table 30: Peripheral Setup for Brain Board Test 7

66

Type SynchroMaster
Bean name SPI
Channel SPI0
Interrupt service/event Enabled

Interrupt from input INT_SPI0_RxFull
Interrupt input priority medium priority
Interrupt input preserve registers yes
Interrupt from output INT_SPI0_TxEmpty
Interrupt output priority medium priority
Interrupt output preserve registers yes
Input buffer size 0
Output buffer size 0

Settings
Width 16 bits
Input pin Enabled

Pin GPIOE6_MISO0
Output pin

Pin GPIOE5_MOSI0
Clock pin

Pin GPIOE4_CSLK0
Slave select pin Disabled
Clock edge rising edge
Shift clock rate 7.5 MHz
Empty character 0
Ignore empty char no
Send MSB first yes
Wired-OR mode Disabled
Shift clock idle polarity High
Fault mode Disabled

Initialization
Enabled in init code yes
Events enabled in init yes

Table 31: Peripheral Setup for Brain Board Test 8

