
CORNELL UNIVERSITY 

Using I2C on an NXP 
Microcontroller 

Ruina Biomechanics Lab 
 

Michael Digman – Senior – ECE – MAE 4900 – 3 Credits 

4/29/2011 
 

 

 

Author Contact Information 
Address: 232 E. Irvin Ave., Hagerstown MD 21742 
Phone: 814-634-4626 
Email: mad277@cornell.edu 



1 
 

Abstract 
This report walks through the implementation of the ܫଶܥ protocol on a microcontroller with the purpose 
of establishing communication with a color sensor.  The basics of ܫଶܥ communication are presented. 
Details of ܫଶܥ necessary to the communication with the color sensor are provided in full. This report 
provides register-level detail on the steps necessary to drive an NXP ܫଶܥ controller as a master in order 
to communicate with a color sensor acting as a slave on an ܫଶܥ bus. Processing results from the color 
sensor is additionally discussed.   
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Introduction  

Motivation of Report 
The intent of this work is to enable the reader to implement the basic elements of the ܫଶܥ 
communication protocol on a microcontroller so that communication with a color sensor can be 
established. The ܫଶܥ protocol will be discussed with enough detail to understand the communication 
necessary to request and to receive readings from a slave color sensor.  This report walks the reader 
though the integration of the ADJD-S371-QR99 Digital Color Sensor with an NXP LPC2194 
microcontroller. Methods for processing the results received from the Avago color sensor are discussed. 
This enables the reader to understand the process involved in integrating, debugging and improving 
color sensor readings received over ܫଶܥ.  

Hardware Used and Implied Limitations 
The color sensor used for this project is the ADJD-S371-QR99 Digital Color Sensor Module from Avago 
Technologies. This color sensor features only one communication bus that uses the ܫଶܥ protocol at a 
max speed of 100 kbit/s. The sensor takes readings of red, green, blue and clear color values. The NXP 
LPC2194 microcontroller features a 32-bit ARM7TDMI-S processor and with an ܫଶܥ bus capable of 
communication at 400 kbit/s. To ensure no data loss and no corruption, 100kbit/s is the maximum 
speed at which the communication between the microcontroller and the color sensors should be 
conducted. The result of running the ܫଶܥ bus at a rate higher than 100 kbit/s is discussed in Methods 
and Results. Additionally, because the Avago color sensor has a static ܫଶܥ slave address, only one color 
sensor may be attached on the same ܫଶܥ bus. This means that it is not possible to connect more than 
one Avago color sensor to the same ܫଶܥ port on the LPC2194 microcontroller. 

Please note that the same ܫଶܥ peripheral is used in other NXP 2000 and 3000 series microcontrollers. 
The LPC2114, 2119, 2129, and 2194 all have identical ܫଶܥ bus hardware. This guide can function 
properly using any microcontroller with an identical ܫଶܥ bus controller. 

Physical Design and Intent of Color Sensor Use 
The Avago color sensor is housed in a custom casing that places the sensor behind a 2 inch Fresnel lens 
with a focal length of 1.5 inches. This can be seen in Figure 1. 
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Background 

I2C Communication Protocol 
The only communication protocol used by the Avago color sensor is ܫଶܥ. This means that the LPC2194 
microcontroller must use the ܫଶܥ capabilities of its hardware to receive data from the Avago color 
sensor. The scope of this section intends to educate the reader to the extent necessary to understanding 
the communication between the Avago color sensor and the microcontroller. The color sensor operates 
as a slave to the master microcontroller. As such, this section is written from the perspective of the 
master microcontroller.  

General Description 
 is a multi-master, single-ended, serial communication protocol developed by Philips for embedded ܥଶܫ
systems. As is shown later, ܫଶܥ is not—by default—a balanced differential communication protocol; any 
noise injected into a signal cannot be systematically removed at a later time. For use in this project, only 
two main tasks are completed though the use of ܫଶܫ .ܥଶܥ enables the microcontroller to receive sensor 
readings from the color sensor. ܫଶܥ also enables the microcontroller to set the value of configuration 
registers on the color sensor.  

Physical Description 
To operate an ܫଶܥ bus, two wires are required: SCL and SDA. SDA is the data line; its main purpose is to 
move data from across the bus. SCL is the clock line; its main purpose is to synchronize data transfers 
that occur on the bus. Every device using the ܫଶܥ bus is connected to SCL and SDA. Both SCL and SDA 
lines are considered to be open drain. This means that any device connected to an ܫଶܥ bus can drive the 
SCL and/or the SDA lines low, but they cannot drive either line high. The lines are driven high by two 

 

Figure 1. The physical casing of the Avago color sensor.  
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resistors connected from Vcc to SDA and from Vcc to SCL. The value of Vcc in this project is +5 V.  This 
setup is displayed in Figure 2Figure 2. .  

 

Device Operation: Master or Slave 
Each device on the ܫଶܥ bus operates in either master or slave mode. A master device drives the SCL 
clock line. Only a master can initiate a data transfer on the ܫଶܥ bus; slaves may only respond to requests 
by masters. The ܫଶܥ protocol supports multiple slaves and multiple masters on the same ܫଶܥ bus, 
however that complexity is beyond the scope of information necessary to understand communication 
between the LPC2194 microcontroller and the Avago color sensor.  Throughout this document the 
LPC2194 microcontroller functions as a master while the Avago color sensor functions as a slave. Due to 
constraints established by the color sensor, only one Avago color sensor may be connected to the same 
 .bus ܥଶܫ

Operating Modes 
The master in ܫଶܥ may be operating in one of two modes that describes its behavior in the software 
layer of the ܫଶܥ protocol. The master may enter Master Transmitter Mode. In Master Transmitter 
Mode, the master is sending data to a receiving slave device. The master may also enter Master 
Receiver Mode. In Master Receiver Mode, the master pulses the SCL line but allows a slave to write onto 
the SDA; the master receives data from a transmitting slave.  

Slaves enter states with similar behaviors. Slave devices may enter Slave Receiver Mode and Slave 
Transmitter Mode.  

Error codes are based on the current operating mode of a device. NXP, the manufacturer of the 
LPC2194, supplies a table of error codes that is segmented into sections for each of the possible modes 
of operation. For debugging purposes, it is very important to know what operating mode the master is 
in. 

Slave Device Addressing 
All slaves on an ܫଶܥ bus must have two address: one to read from and one to write to. These addresses 
differ by one bit. Addresses in ܫଶܥ are used, in the context of this project, to alert slaves of a data 
transfer request and to notify slaves of an impending write. Addresses in the ܫଶܥ protocol are eight bits 

 

Figure 2. The basic setup of the ܫଶܥ communication protocol. Source: 
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html 
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wide. This implies that up to 64 slaves can be on a single ܫଶܥ bus. Address bits 1:7 can be considered the 
slave locator; these bits uniquely identify a device on the bus. Address bit 8 is an indicator of the desire 
to read or write. This address scheme can be seen in Figure 3. If bit 8 is set to zero it signifies a desire to 
write to the address in bits 1:7, if bit eight is set to one is signifies a desire to read from the address in 
bits 1:7.  

 

It is important to note that the Avago color sensor, described under Introduction, has a permanent 
device locator (address bits 1:7), in hex, of 0x74. This means that to write to the color sensor registers 
the address, in hex, of 0xE8 must be used. To read from the color sensor registers the address, in hex, of 
0xE9 must be used. The other implication of a permanent device locator is that only one Avago color 
sensor may be placed on a ܫଶܥ bus. Every slave attached to an ܫଶܥ bus must have a unique address. The 
address of the color sensor cannot be modified so it is not possible to have two Avago color sensors on 
the same ܫଶܥ bus, because they both would have the same device locator.  

Physical Layer Protocol Description 
The master initializes and stops all data transfers. To signal the beginning of data transfer, in ܫଶܥ, the 
master must issue a START condition. This is defined as a high to low transition on SDA while the SCL is 
high. The master may terminate the current data transfer by issuing a STOP condition. This is defined as 
a low to high transition on SDA while SCL is high. The repeated START condition may also be sent; it is 
used when transferring modes (Master Receiver to Master Transmitter) without the need to send a 
STOP condition. The START and repeated START conditions are functionally identical, but the use of a 
repeated START condition prevents the unnecessary signaling of a STOP condition. 

Data is transferred in sequences of eight bits or one byte. The bits are placed on the SDA line (by either 
the master or the slave), with the most significant bit going first. During the data transfer the master 
holds the SCL line low, and releases the SCL—on clock cycles—to make it go high. This effectively creates 
a clock. The value of the SDA line, when SCL goes high, is the bit transferred.  

For every eight bits transferred an acknowledgement bit is send from recipient to sender. This means 
that nine SCL pulses are used for every eight bits of data sent. This acknowledgment bit is used to 
identify potential errors that may have occurred during transfer.  

 

Figure 3. Slave addressing. A6:A0 refers to the device locator. R/W refers to the read or write 
bit. Source: http://www.sparkfun.com/datasheets/Sensors/Imaging/AV02-0314EN.pdf 
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Software Layer Protocol Description: Writing Data to Slave 
To provide configuration settings to the color sensor, it is necessary to have the ability to write to 
registers on the color sensor. Assuming that the color sensor has implemented ܫଶܥ properly, all the 
master has to do is tell the slave (at a certain address) what register it wishes to write to and what value 
the slave should put into that register. Note that due to the limitations of data transfer it is possible, but 
more complicated to write to registers that are larger than one byte in size. 

The ܫଶܥ protocol requires the master to complete the following steps in chronological order to write to 
a slave. This process is depicted in Figure 5. 

1. The master issues a START condition.  
a. If the line is still busy (a start condition has been issued previously, but no stop condition 

has been issued yet) the master will issue a repeated START condition. 
2. The master puts the slave address on SDA and waits for the ACK from the addressed slave. 

a. The address of the slave must contain zero in the eighth bit to signify the desire to write. 
3. On receipt of ACK in step 2, the master puts the register address it wishes to write to, on the 

slave from the address in step 2, on the SDA. The master then waits for the ACK from the slave 
with the address from step 2. 

4. On receipt of ACK, the master puts the value of the register it wishes to write into the slave’s 
register from step 3. The master then waits for the ACK from the slave with the address from 
step 2. 

5. On receipt of the ACK, the master issues a STOP condition. 

 

Figure 4. Example of the Transfer of Two Bytes of Data. The second data byte was followed 
by a NO ACK, meaning that an error occurred in transmission. Source: 
http://www.sparkfun.com/datasheets/Sensors/Imaging/AV02-0314EN.pdf 
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Figure 5 shows that it takes 8*3+4=28 bits to write to a register on a slave device. 

Software Layer Protocol Description: Reading Data from a Slave 
In order to retrieve data from the color sensor, it is necessary to have the ability to read from registers 
on the color sensor. Assuming that the color sensor designers have properly implemented ܫଶܥ, the 
master will need to notify the slave color sensor (at a certain address) which register it wishes to read 
from. In order to send the register address to the slave, the master must make the slave believe it will 
be written to. After writing to inform the slave what register the master wishes to read, the master must 
request to read from the slave. The slave then enters transmitter mode (although the master still 
controls the clock) and writes requested register’s value onto the SDA line.  

Note that if the slave’s requested register is larger than eight bits wide, a mapping will occur between 
the register address and bits within the register.  In the case of the Avago color sensor, the color sensor 
measurement registers are 10 bits wide. Unique register addresses are assigned to bits 0:7 and bits 8:9.  

The ܫଶܥ protocol requires the master to complete the following steps in chronological order to read 
from a slave. This process is depicted in Figure 6. 

1. The master issues a START condition.  
a. If the line is still busy (a start condition has been issued previously, but no stop condition 

has been issued yet) the master will issue a repeated START condition. 
2. The master puts the slave address on SDA and waits for the ACK from the addressed slave. 

a. The address of the slave must contain zero in the eighth bit to signify the desire to write. 
Writing is necessary here as the master must send the address of the register that it 
desires to read. 

3. On receipt of ACK, the master puts the register address it wishes to read from, on the slave from 
the address in step 2, on the SDA. It then waits for the ACK from the slave with the address from 
step 2. 

4. On receipt of the ACK, the master issues a repeated START condition. 
5. The master puts the slave address on SDA and waits for the ACK from the addressed slave. 

a. The address of the slave must be set to one in the eighth bit to signify the desire to read. 
6. On receipt of the ACK, the master must pulse SCL eight times. This allows the slave to put the 

value of the requested register, from 2, on to SDA to be received by the master. Once the 

 

Figure 5. Diagram depicting the process followed for a master to write to a slave device. Source: 
http://www.sparkfun.com/datasheets/Sensors/Imaging/AV02-0314EN.pdf 
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master has received all necessary data it puts a NOT ACK onto SDA to tell the slave, that just 
transferred data, that all information has been properly received. 

7. The master issues a STOP condition. 

 

Figure 6 shows that it takes 4*8+7=39 bits to complete the reading of one register from a slave device. 

I2C Debugging, Errors and Problem Resolution 
Sending and receiving data using the ܫଶܥ protocol is not flawless; errors may occur.  However, after 
every byte is sent an ACK or NOT ACK is returned by the recipient. If a NOT ACK is returned when a 
master is sending data to a slave, the master knows to resend the previous byte. For this project, 
information on errors is made available through status registers associated with the ܫଶܥ hardware on 
the LPC2194 microcontroller. This ensures that if communication between master and slave is 
functioning, any noticeable problems will be reported.  

Color Sensor Gain Adjustment 
The color readings outputted by the color sensor are a function of eight parameters set by the user. In 
this work it is assumed that the values read from the color sensor obey the following relationship: 

ݐݑ݌ݐݑܱ	ݎ݋ݏ݊݁ܵ = ܩ ∙  ܴ݃݊݅݀ܽ݁	݈ܽ݊ݎ݁ݐ݊ܫ

Here, G is known as the gain of the color sensor. The gain is a function of the eight parameters 
mentioned above.  

Capacitors 
The first four parameters are the number of capacitors used to detect each color; the red, blue, green 
and clear sensors can use a minimum of 0 and maximum of 15 capacitors each. Using 0 capacitors, for 
any color, effectively sets any reading of that color to zero.  For values greater than 0, the color sensor 
application note states “a higher capacitance value will result in lower sensor output.”1 

Integration Time 
The last four parameters of gain adjustment deal with the integration time of each color: red, green, 
blue and clear. These parameters describe the length over which sensor data will be summed for each 

                                                             
1 http://www.sparkfun.com/datasheets/Sensors/Imaging/AV02-0359EN.pdf, page 2 

 

Figure 6. Diagram depicting the process followed for a master to read from a slave device. 
Source: http://www.sparkfun.com/datasheets/Sensors/Imaging/AV02-0314EN.pdf 
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color. Integration time values are limited to the decimal range of 0 to 4095. However, data sheets 
provided by the manufacturer do not state the relationship between time and the value set for 
integration time; it is guessed that the integration time setting refers to the number of clock cycles that 
occur within the color sensor. 

When is Gain Adjustment Necessary? 
The maximum reading possible for any color sensor output is limited by the 10 bits of resolution used to 
store each color’s reading. This implies that value of the sensor reading for each color can range from 0 
to 1023. If the current gain settings produce sensor readings of the value 1023, it is likely that the color 
sensor is being oversaturated because the current gain setting it too high. If the current gain settings 
produce sensor readings of the value 0, or close to it, gain is likely set too low. In either of these cases it 
is necessary to change the gain in order to get accuracy from sensor readings.  

Methods and Results 

Implementing I2C with the LPC2194 Microcontroller 

Basic Hardware Interface  
The NXP  ܫଶܥ interface is controlled by setting and reading values of registers reserved for the ܫଶܥ 
module. On the LPC2194 NXP microcontroller, seven registers are reserved to control the ܫଶܥ hardware 
interface. Page 177 of the user manual for the LPC2194 microcontroller contains the names, basic 
functionality, reset values and address of these registers. Throughout the rest of this section, registers 
will be referred to by the names listed by the user manual. For reference, the table is listed in Figure 7.  

 

I2CONSET is used to actively control most functionality of the ܫଶܥ hardware. I2STAT contains the a 
status code associated with an the most recent interrupt issued (from the SI bit in I2CONSET). I2DAT is 
written to when information is to be sent to a slave device, I2DAT also contains data received from slave 
devices. I2SCLH and I2SCLL are registers used to control the speed at which the ܫଶܥ interface operates. 

 

Figure 7. Names, basic functionality, reset value and addresses of registers assigned for the ܫଶܥ 
hardware on the LCP 2194. Source: 
http://www.keil.com/dd/docs/datashts/philips/user_manual_lpc2119_2129_2194_2292_2294.
pdf 
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I2CONCLR is the clear register for I2CONSET. The registers I2ADR is of no use to this project as the 
LPC2194 will never be operating as a slave. 

Interfacing with a Set Register 
I2CONSET’s access is described as “read/set.” Set access means that when writing to the register only 
values of one will be written, values of zero will not alter the register’s value. For example if a set access 
register’s current value, in binary, 0b10101010 and the value, in binary, 0b01010101 is written to it the 
stored value will be, in binary, 0b11111111. 

Interfacing with a Clear Register 
I2CONCLR’s access is described as “clear only.” I2CONCLR is the only way to set bits of the I2CONSET 
register to zero. Writing a 1 to any bit of I2CONCLR will clear the corresponding bit in I2CONSET. For 
example, writing 1 to bit 5 of I2CONCLR will set bit 5 of I2CONSET to 0. Clear registers do not store any 
information, and can be thought of as a means to issue a command. This means that to clear bits 4 and 6 
(numbering begins at 0) of I2CONSET the value, in binary of 0b01010000 can be written to I2CONCLR. 
However, because I2CONCLR does not store values, the same effect can be achieved by writing, in 
binary, 0b01000000 to I2CONCLR followed by writing, in binary, 0b00010000 to I2CONCLR. 

I2C Control Register Overview 
Each bit used to control the ܫଶܥ module on the LPC2194 has a name that describes its functions. These 
names can be found on page 169 of the LPC2194 user manual. For reference, these names and the 
corresponding bits are listed in Figure 8. Bits 7, 1 and 0 of I2CONSET are reserved bits and should not be 
written to or read from as the resulting behavior is undocumented.  

 

Bit 6: I2EN 
When I2EN is high the ܫଶܥ hardware is enabled. I2EN must be set to 1 for any of the functions of ܫଶܥ to 
work properly. 

Bit 5: STA 
STA corresponds to the START condition. When STA is high the ܫଶܥ hardware generates a START 
condition or a repeated START condition, which are functionally identical. It is necessary to clear STA 
after receiving a status code that indicates that the START or repeated START condition has been sent on 
SDA. STA is cleared by writing 1 to bit 5 of I2CONCLR. 

 

Figure 8. Names and corresponding bits of the ܫଶܥ control register, I2CONSET. Source: 
http://www.keil.com/dd/docs/datashts/philips/user_manual_lpc2119_2129_2194_2292_2294.
pdf 
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Bit 4: STO 
STO corresponds to the STOP condition. When STO is 1, a STOP condition is transmitted on the I2C bus. 
When the bus detects the STOP condition, STO is cleared automatically; there is no need to clear the 
STO bit. 

Bit 3: SI 
SI corresponds to an interrupt flag. This bit is set high by the ܫଶܥ hardware when one of several events is 
detected. When SI is high the value of register I2STAT is set to a status code. This bit must be monitored 
to enable data transfer. Page 24 of the NXP user manual on their ܫଶܥ interface contains the full list of 
status codes that correspond to events detected by the ܫଶܥ hardware. To see more information on 
status codes and how they are used in the flow of data transfer see the Data Transfer Overview section.  

SI is cleared to continue operation of the ܫଶܥ hardware. SI should be cleared after it is set high by the 
 hardware and the status code in I2STAT is noted. SI is set to zero by writing a 1 to bit 3 of the ܥଶܫ
I2CONCLR register.  

Bit 2: AA 
AA corresponds to the Assert Acknowledgment flag. For this project, the microcontroller will only be 
operating as a master. If only operating as a master, AA must always be set to 0. However, because 
I2CONSET is a set register, setting AA to 0 is only possible by writing a 1 to bit 2 of the I2CONCLR 
register.  

Setup of I2C Hardware 
For any of the functionality of the ܫଶܥ hardware to be operational bit 6, I2EN, of I2CONSET must be set 
high.  

In addition, the rate at which the ܫଶܥ hardware operates needs to be set by writing to the I2SCLH and 
I2SCLL registers. The Avago color sensor is limited to a transmission speed of 100 kHz, so for this project 
the ܫଶܥ interface on the LPC2194 microcontroller is set to 100 kHz. Details on setting the 
microcontroller for other speeds can be found on page 175 of the LPC2194 user manual. For the use of 
this project the microcontroller was set to use no VPB Clock Dividers. 

Data Transfer Overview: Monitoring SI and Checking for Proper Status Codes 
The flow of a data transfer operation hinges on the value of the SI bit in the register I2CONSET. SI is set 
high by the ܫଶܥ hardware when one of several events is detected. After every step in the data transfer 
process, the microcontroller must monitor SI to see if the operation was completed successfully (by 
checking the status code in I2STAT) and only then may the microcontroller continue transferring data. 

Status codes are issued by ܫଶܥ hardware after the interrupt bit, SI, is set high. Status codes differ for the 
mode in which the master is operating; see Operating Modes in the ܫଶܥ Communication Protocol for 
more information. The statuses of interest to this project are:  

 Successful sending of a START condition  
 Successful sending of a repeated START condition  
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 Slave address transmitted and ACK received  
 Slave address transmitted and NOT ACK received  
 Data byte transmitted and ACK received  
 Data byte transmitted and NOT ACK received 
 Data byte received and ACK returned  
 Data byte received and NOT ACK returned 

Note that there is no status code associated with the successful sending of a STOP condition. After 
sending a STOP condition the SI bit will not be set high. 

Writing Data to a Slave Device 
As an example of how SI and status codes are used, Figure 9 shows the steps the microcontroller should 
perform in order to write data to a slave over ܫଶܥ. See the Background section on the Software Layer 
Protocol Description for writing data to a slave to understand the general procedure.  

 

 

Figure 9. Flow chart detailing what the microcontroller must do in order to control the ܫଶܥ 
hardware interface to write data to a slave device. 
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Note that, as mentioned in the section on Bit 5: STA, the STA must be set to 0 after successfully sending 
a START condition. As long as the STA bit is high the ܫଶܥ interface will attempt to send START or 
repeated START conditions. 

Reading Data from a Slave Device 
Figure 10  shows the steps the microcontroller should perform to read from a slave device over ܫଶܥ.  
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See the Background section on the Software Layer Protocol Description for reading data from a slave to 
understand the general procedure. 

 

Figure 10. Flow chart detailing what the microcontroller must do in order to control the ܫଶܥ 
hardware interface to read data from a slave device. 
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Abstracting the I2C Communication Protocol  
To make interfacing with the ܫଶܥ protocol simple, it is necessary to abstract the physical layer 
commands to high-level. Proper abstraction will allow a single line for the master to request and recover 
data from the Avago color sensor. 

The transfer of data in ܫଶܥ always begins with a START condition and ends with either a repeated START 
(to signal a change of the master's mode) or a STOP condition. As the intent of a user may not be known, 
when abstracting the ܫଶܥ protocol it is simplest to give the user direct control sending START, repeated 
START and STOP signals. Additionally, hardware requires that data be present on the SDA line before the 
master microcontroller will begin sending data. It is possible to abstract this up to the function level so 
that the user is capable of sending (loading SDA, then setting proper control bits of microcontroller) 
data. 

These functions can be joined together to perform the operation of reading and writing to a slave, as 
described in the Background section under ܫଶܥ Software Layer Protocol. 

Finally, these operations can be joined together to form several read and write operations that allow for 
a single function to read all values of the color sensor or write all settings to the color sensor. 

Effect of Noise on I2C Communication 
Noise injected on a standard ܫଶܥ bus is not removed by differential amplification. The standard ܫଶܥ bus 
is not balanced, so noise spikes look like signal to devices attached to the bus. This noise can induce 
random effects during transmission. It is important to note that there is no timeout in ܫଶܥ 
communication. Once a START condition has been sent, the bus is considered busy until an END 
condition is sent. For this reason, if noise is a concern, it is good practice to start a timer when waiting 
for the event interrupt, for the SI bit to go high. If the timer counts past a predefined timeout value this 
likely means that the master and/or slave device is waiting for an event to happen that has already 
occurred, but could not be detected (or was falsely detected) because of noise. At this point, resetting 
the ܫଶܥ hardware interface is a potential solution. 

Noise was an issue for the Avago color sensor ܫଶܥ  interface in this project. The LPC2194 microcontroller 
and ܫଶܥ bus is mounted close to a motor that could potentially draw high currents over short periods of 
time. These currents produced large electric and magnetic fields physically close to the ܫଶܥ interface of 
the LPC2194 microcontroller, and evidently led to electromagnetic interference on the ܫଶܥ bus. This 
noise was frequently found to stop communication between the microcontroller and the Avago color 
sensor. Implementing a timeout, while waiting for the SI bit to go high, solved the problem. 

Processing Results from the Avago Color Sensor 

Removing Influence of Gain: Effect of Capacitors and Integration Time 
In some fashion, gain is a function of both the number of capacitors enabled and the integration time 
over which a color sensor sums readings. For more information on the operation of the Avago color 
sensor see the Background section on Color Sensor Gain Adjustment. Multiple experiments were 
conducted to compare the influence of capacitors and integration time on gain.  
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The first experiment required the setup of a white LED pointed directly at the Avago color sensor in a 
dark room. The number of capacitors for all colors was set at 1 while the integration time was swept 
from about 125 until a color sensor reached a maximum output of 1023. The results are displayed in 
Figure 11.  

 

Figure 11 shows a highly linear relationship between integration time and each sensor’s output.  Note 
that the LSQR of every color of the color sensor produced a model with a non-zero y-intercept. Multiple 
experiments showed that this y-intercept varied in ways unpredictable to the author for every color of 
the color sensor. However, the magnitude of this y-intercept is, on average, approximately 7. Because 
the magnitude of the y-intercept is small compared to sensor values (that normally range from 50 to 
900), the y-intercept of every LSQR model was forced to zero. Setting the y-intercept to 0, the smallest 
ܴଶ value encountered was 0.9993 using LSQR. 

The second experiment also required the setup of a white LED pointed directly at the Avago color sensor 
in a dark room. In this case the gain was kept constant and the number of capacitors was changed.  No 
observable influence was detected, as the sensor’s output values were approximately constant.  

While more throughout testing would be required to determine the exact relationship of the number of 
capacitors and the integration time had on gain, this information was enough to construct a simple 
model that would allow for comparison of values of different gains.  These experiments showed that any 
influence that the number of capacitors had on the gain was minimal. It was therefore assumed that the 
gain was a function of only integration time.  

 

Figure 11. Each color displayed a highly linear relationship when the 
number of capacitors was constant and the integration time of each 
color was swept from 125 until the maximum reading was encountered.  
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ܩ ∝  ݁݉݅ܶ	݊݋݅ݐܽݎ݃݁ݐ݊ܫ

This means that the integration time is directly proportional to the sensor output, any other 
proportional constants are assumed to be constant among all sensors and is embodied in the variable ߚ. 
This can be expressed as: 

ݐݑ݌ݐݑܱ	ݎ݋ݏ݊݁ܵ = (݁݉݅ܶ	݊݋݅ݐܽݎ݃݁ݐ݊ܫ)ߚ ∙  ܴ݃݊݅݀ܽ݁	݈ܽ݊ݎ݁ݐ݊ܫ

To compare sensor outputs, assuming ߚ is constant for all colors in the color sensor, all that is necessary 
is to divide the sensor output by integration time. This, assuming all the assumptions made before are 
correct, means that it is possible to remove the effect of gain on sensor readings.  

The validity of this statement can be tested by taking the results from the first experiment, shown in 
Figure 11, and dividing the sensor output by the integration time. The result should be a constant value 

because the input light source does not change. This is shown in Figure 12. The ୱୣ୬ୱ୭୰	୴ୟ୪୳ୣୱ	
௜௡௧௘௚௥௔௧௜௢௡	௧௜௠௘

 are 

approximately constant for all integration times. Variations in the curve likely come from assuming that 
the y-intercept of the lines in Figure 11 was 0 and that the number of capacitors used had no effect on 
the gain of the system. 

 

Automatic Gain Adjustment 
The Avago color sensor in this project was intended to be attached to a moving robot, potentially 
travelling through areas of bright or dim lighting. To accommodate for constant changes in the intensity 
of light seen by the color sensor an automatic gain adjustment algorithm was implemented. Because the 

 

Figure 12. The gain of the color sensor can be approximately 
removed by dividing the color sensor value by its corresponding 
integration time.  
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effect of the gain is removed by division of the integration time (see Removing Influence of Gain on 
Sensor Readings), it is possible to compare sensor readings for any gain setting. This means that the 
integration time can be switched at will with no apparent effect on the sensor readings, making 
automatic gain adjustment possible. 

A simple gain adjustment algorithm was implemented.  Gain adjustment is necessary when any sensor 
reading becomes close to 1 (increase gain) or close to the max value of 1023 (decrease gain).  The 
following algorithm was used: 

 If any sensor reading < 100  
o If 2 ∙ (݁݉݅ݐ	݊݋݅ݐܽݎ݃݁ݐ݊݅) ≤ 4095, multiply the current integration time of all colors by 

2. 
 This was implemented by checking to see if the integration time was ≤ 2047 
 If it was, then ݅݊݊݋݅ݐܽݎ݃݁ݐ	݁݉݅ݐ = ݁݉݅ݐ	݊݋݅ݐܽݎ݃݁ݐ݊݅ ≪ 2 

o Otherwise, the minimum resolution of the sensor has been reached. It is not possible to 
get a better reading. 

 If any sensor reading is > 900 

o If  ௜௡௧௘௚௥௔௧௜௢௡	௧௜௠௘
ଶ

≥ 2, divide the current integration time of all colors by 2 

 This was implemented by checking to see if the integration time was ≥ 2 
 If it was, then ݅݊݊݋݅ݐܽݎ݃݁ݐ	݁݉݅ݐ = ݁݉݅ݐ	݊݋݅ݐܽݎ݃݁ݐ݊݅ ≫ 2 

o Otherwise, the maximum resolution of the sensor has been reached. It is not possible to 
get a better reading. 

This algorithm is initialized by assigning the same integration time value to all sensors. The initial 
integration time value is such that it normally produces color sensor values within the range 0 to 1023 
under standard room lightning conditions. This gain adjustment algorithm was run every time any of the 
sensor’s outputted readings were less than 100 or greater than 900. Note that it is possible to run 
separate gain adjustments on each of the individual color channels. For the sake of simplicity, gain 
adjustments are applied uniformly to each color of the color sensor.  

Fastest Color Sensor Sampling Speed 
At the best, assuming no errors in transmission, it takes 28 bits to write to a register on a slave and 39 
bits to read from a register on a slave (see the Background section on ܫଶܥ Communication Protocol). To 
request and receive sensor readings from the Avago color sensor the following operations need to be 
completed: 

1. Write to the Avago color sensor control register to request reading 
2. Read from the Avago color sensor control register to see if sensor values are ready 
3. Read from the red low register (readings are 10 bits wide) 
4. Read from the red high register 
5. Read from the blue low register 
6. Read from the blue high register 
7. Read from the green low register 
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8. Read from the green high register 
9. Read from the white low register 
10. Read from the white high register 

This totals 1 write operation and 9 read operations or 1*28+39*9=379 bits to take readings from all 
colors on the color sensor. The Avago color sensor can, at maximum, operate its ܫଶܥ bus at 100kbit/s. At 
the absolute best, assuming no lag between any of read or write operations and 0 seconds required for 

the color sensor to generate readings, the fastest the device could operate is ଷ଻ଽ
ଵ଴଴∗ଵ଴య

= 3.79 ms to 

request and receive one reading: this which is equivalent to about 264 Hz.  

Please note that reading from the low or high red, blue, green and white color sensor value registers 
while the Avago color sensor is currently taking measurements is unsupported. Reading should not be 
done in parallel with waiting for the interrupt. 

Attenuating Influence of Fluorescent Light Flickering on Color Readings 
In the United States, due to the frequency of AC power provided, fluorescent lights ramp from zero light 
to full intensity and back down to zero at a rate of about 120 Hz. Using the Avago color sensor, 
amplitude flickering can be detected in every color of the color sensor at about 120Hz when the color 
sensor is placed under fluorescent lighting conditions. Efforts were made to sample the light at an 
interval that would severely retard the amplitude of the swing induced by the flickering of the 
fluorescent lights. If perfect timing was possible, aliasing of the signal could be completed such that the 
sensor readings appeared as if no sinusoid was present.  

Sampling at ௦݂ = ଶ௙
ே

= ଶ∗ଵଶ଴
ே

 Hz, where N is a positive non-zero integer, will produce an output aliased so 

that the effect of the light swing will be removed. Setting ܰ = 1, ௦݂ =  retains the maximum ݖܪ	240
number of samples. This is shown in Figure 13. Even when noise is injected in the sample times (at a 

fraction of ଵ
௙ೞ

 ) very little disturbance in amplitude is seen.  
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However, as shown in the Minimum Speed of Operation section, this speed is close to the theoretical 
maximum so it is unlikely possible to operate the Avago color sensor at this speed. Setting ܰ = 13, ௦݂ =
 was applicable in our project after all delays were accounted for. Note that this low speed ݖܪ	18.462
was used to accommodate for integration time necessary for low light settings. Using internal clocks on 
the LPC2194 it was possible to achieve a sampling rate of approximately 18.5 Hz.  

Assuming ௦݂ =  the aliased data appears sinusoidal with an envelope. Every sample swings ,ݖܪ	18.5
across the DC component of the sinusoid.  For example, sample 10 is above the DC component while 
sample 11 is below the DC component. Using an averager on data with rapid swings allows for the DC 
component to be converged upon quickly. Implementing an exponential averager on the sampled data 
reduced the amplitude of the sinusoid to approximately 3% of its original value. This can be seen in 
Figure 14. 

 

Figure 13. Sampling a sinusoid at ௦݂ = 2݂ = 2 ∗  produces ݖܪ	120
an aliased result that appears constant.  
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Overclocking the Color Sensor’s I2C Port 
The Avago color sensor’s spec sheet lists its maximum transmission speed at 100kbit/s. Several attempts 
were made to run the Avago color sensor at speeds greater than 100kbit/s. In all circumstances, 
randomly timed spikes would appear in sensor output. The amplitude of these spikes was the maximum 
value attainable from any color sensor reading: 1023. Consistent data from the color sensor was needed 
over time, so the speed of the ܫଶܥ had to be reduced to 100kbit/s. In applications where random data 
spikes may not be influential, it is possible to overclock the Avago color sensor’s ܫଶܥ port. 

Effect of Light Source on Color Readings 
Light incident on a surface changes its apparent color. The value of colors sensed on a surface 
illuminated with an overhead fluorescent light is different than the value of colors sensed on the same 
surface that is exposed to natural light. Incident light has some color component.  

Using color sensors in an area that has a light source which is changing over time (like fluorescent to 
natural) will bring about complications. The red, green and blue components that specify a green floor 
segment at time ݐଵmay be different than at time ݐଶ. This makes ratios of colors unstable over time. 

 

Figure 14. Sampling a sinusoid at ௦݂ =  produces a sinusoid a high frequency sinusoid with an ݖܪ	18.5
envelope that is 2 seconds long. Using an exponential averager (pictured is of length 16) it is possible to 
reduce the amplitude of the fluorescent sinusoid to about 3% of the original amplitude.  
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Experimentation under all possible light sources is necessary to understand how colors will change over 
time. 

The initial purpose of integrating this color sensor with an NXP LPC2194 was to aid in the driving of a 
robot autonomously on an indoor track over extremely long lengths of time. This track was Barton hall 
at Cornell University. The hall is illuminated during day time with natural light; at night fluorescent light 
fills the room. Due to the fact that color sensor readings changed with time, it became very difficult to 
determine a method of uniquely identifying a color at any one time because of the unstable color 
readings.  

Conclusions 
Implementing ܫଶܥ to interface between one master and a slave device is possible using the contents of 
this report. This report shows the efficacy of using an NXP LPC2194 microcontroller to interface with the 
ADJD-S371-QR99 Digital Color Sensor from Avago. Readings from the Avago color sensor can be 
processed to remove the influence of gain therefore making sensor values comparable. By sampling 
correctly it is possible to attenuate the effect of fluorescent light flickering on color sensor readings. If 
monitoring content where the light intensity fluctuates, it is possible to have the color sensor adjusted 
automatically so that no readings are over saturated or under saturated. 

The hope of this report is also to educate readers on what cannot be done with the Avago color sensor 
and LPC2194 interface. It is theoretically impossible to receive every color reading from the color sensor 
at a rate faster than about 264 Hz. Overclocking the Avago color sensor ܫଶܥ bus produces spikes in 
readings. Environmental noise cannot always be ignored; it may require the use a timeout to ensure that 
operation continues successfully. 

The ܫଶܥ protocol has more capability than what is represented in this document. For example, ܫଶܥ has a 
protocol to deal with multiple masters. The LPC2194 may also act as a slave on an ܫଶܥ bus. Similarly, the 
Avago color sensor contains more features than those detailed in this document. For example, the color 
sensor allows for a user supplied offset to be subtracted from all readings. The Avago color sensor also 
has a low power mode in which it may operate. 

Despite these short comings, it is the belief of the author that this document contains all information 
essential to enable the LPC2194 microcontroller to request and receive data from the ADJD-S371-QR99 
Digital Color Sensor from Avago.  

Appendix 
Content in the appendix is placed in this order: 

1. Code used in project to abstract I2C interface 
2. Portion of the NXP LPC2194 user manual on the ܫଶܥ interface 
3. Status codes assigned to I2STAT on the NXP LPC2194 
4. Avago ADJD-S371-QR99 Digital Color Sensor Datasheet 
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5. Avago ADJD-S371-QR99 Register List 
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/**

@file i2c_color.c
Contains i2c communication procedure
Runs gain optimization
Returns r,g and b values from color sensor

@author Michael Digman
@date December 2010

*/

#include <includes.h>

//define global variables
unsigned long int i2c_clear_data;
unsigned long int i2c_red_data;
unsigned long int i2c_blue_data;
unsigned long int i2c_green_data;
unsigned long int i2c_clear_data_avg;
unsigned long int i2c_red_data_avg;
unsigned long int i2c_blue_data_avg;
unsigned long int i2c_green_data_avg;
short int state_color_update;
short int step;
short int state_send_data;
short int state_request_receive_colors;
unsigned long timestampo = 0;
unsigned short int integration_time = INT_ALL_VAL;

void i2c_color_update(void){
unsigned char debug = 0;

switch(state_color_update){
case 0: //1) check for color sensor
/*debug = find_sensor();

      //if(debug == 0xFF){ //sensor is found
        //state_color_update = 1; //move to next state
        //step = 0;  //reset current step
      }*/

state_color_update = 1;
break;

case 1: //2) perform gain optimization
debug = gain_optimization(integration_time);
if(debug == 0xf0){ //gain complete
state_color_update = 2;
step = 0;
state_request_receive_colors = 0;

}
break;

case 2: //3) return currently visible colors
debug = request_receive_colors();
if( debug == 0xfe ){ //color request cycle complete, restart!

state_request_receive_colors = 0;
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//1) are any of the visible colors over the maximum value or below minimum?
if( i2c_clear_data >= MAX_OK_VALUE ||

i2c_red_data >= MAX_OK_VALUE ||
i2c_blue_data >= MAX_OK_VALUE ||
i2c_green_data >= MAX_OK_VALUE ){ //readjust gain optimization

if(integration_time >= MIN_INT_TIME){
integration_time = integration_time>>1; //divide by 2
state_color_update = 4;

} else { //the integration time cannot be fixed, just collect data
avg_colors();

}
} else if ( i2c_clear_data <= MIN_OK_VALUE ||

i2c_red_data <= MIN_OK_VALUE ||
i2c_blue_data <= MIN_OK_VALUE ||
i2c_green_data <= MIN_OK_VALUE ) {

if(integration_time <= MAX_INT_TIME){
integration_time = integration_time<<1; //mult by 2
state_color_update = 4;

} else { //the integration time cannot be fixed, just collect data
avg_colors();

}

}else { //if the colors readings are great, average them!
avg_colors();

}
}
break;

case 3: //4) wait until timer says to resample
if( T0TC < timestampo ){
state_color_update = 2;

}
break;

case 4: //5) CALL GAIN OPTIMIZATION
debug = gain_optimization(integration_time);
if(debug == 0xf0){ //gain complete
state_color_update = 2;
step = 0;
state_request_receive_colors = 0;

}
break;

}
}

void avg_colors(void){
//remove dependance on integration time
i2c_clear_data = get_absolute_reading(i2c_clear_data);
i2c_red_data = get_absolute_reading(i2c_red_data);
i2c_blue_data = get_absolute_reading(i2c_blue_data);
i2c_green_data = get_absolute_reading(i2c_green_data);

//average
i2c_clear_data_avg = i2c_clear_data_avg - (i2c_clear_data_avg>>SHIFT) + (i2c_clear_data);
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i2c_red_data_avg = i2c_red_data_avg - (i2c_red_data_avg>>SHIFT) + (i2c_red_data);
i2c_blue_data_avg = i2c_blue_data_avg - (i2c_blue_data_avg>>SHIFT) + (i2c_blue_data);

i2c_green_data_avg = i2c_green_data_avg - (i2c_green_data_avg>>SHIFT) + (i2c_green_data);
timestampo = T0TC;

//debug overrides
//i2c_clear_data_avg = integration_time<<SHIFT;

//get more colors!
state_color_update = 3;

}

unsigned long int get_absolute_reading(unsigned long int reading){
return (reading<<12)/integration_time;

}

unsigned char i2c_check_output(unsigned char expected_status){
unsigned char debug = (((unsigned char)I2CONSET)&0x8)>>3;

if(debug == 1 && I2STAT == expected_status) {
debug = 0xff;

} else {
debug = I2STAT;

}// we have a problem! 

return debug;
}

void i2c_send_START(void){ I2CONSET = 0x20; } //set STA bit high to signify START signal
void i2c_send_STOP(void) { I2CONSET = 0x10; }
void i2c_clear_SI(void) { I2CONCLR = 0x08; } //set SIC high
void i2c_clear_STA(void) { I2CONCLR = 0x20; } //set STAC high
void i2c_hardware_reset(void) {
I2CONCLR = 0x6C; // sets AA to 0, SI to 0 STA to 0, I2EN to 0
I2CONSET = 0x40; //sets i2onset to -10000--

}

unsigned char find_sensor(void){
unsigned char debug = 0;
switch (step) {

case 0:
i2c_send_START(); //send a start message
step = 1; //move to the next state
break;

case 1: //wait for start SI
debug = i2c_check_output(I2C_START_TRANSMITTED);
if(debug == 0xff){//if start command is successfully transmitted

//place slave address on line.
I2DAT = SLAVE_WRITE_ADDR;
//clear SI 

i2c_clear_SI();
//move to the next state
step = 2;
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}
break;

case 2: //wait ACK to be returned on slave address transmission
debug = i2c_check_output(I2C_SLA_AND_W_ACKED);

if(debug == 0xff){
i2c_send_STOP();

debug = 0xFF; //flag that it worked
}

break;
}
return debug;

}

unsigned char i2c_get_data(unsigned char addr){
static unsigned int counter = 0;
unsigned char debug = 0;
switch (state_send_data) {

case 0: //send a start message
i2c_hardware_reset(); //reset
i2c_send_START();
state_send_data = state_send_data+1; //move to the next state
counter = 0;
break;

case 1: //wait for start SI
debug = i2c_check_output(I2C_START_TRANSMITTED);
if(debug == 0xff){//if start command is successfully transmitted

I2DAT = SLAVE_WRITE_ADDR;
i2c_clear_SI();
i2c_clear_STA();
state_send_data = state_send_data+1;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

case 2: //ensure that slave address has been acked
debug = i2c_check_output(I2C_SLA_AND_W_ACKED);
if(debug == 0xff){

I2DAT = addr;
i2c_clear_SI();
state_send_data = state_send_data+1;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

case 3:
debug = i2c_check_output(I2C_DATA_ACKED);
if(debug == 0xff){ //address has been sent properly!

//ENTER MASTER RX MODE
//RESEND START
i2c_send_START();
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i2c_clear_SI();
state_send_data = state_send_data+1;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

case 4:
debug = i2c_check_output(I2C_REPEATED_START_TRANSMITTED);
if(debug == 0xff){//if start command is successfully transmitted

I2DAT = SLAVE_READ_ADDR;
i2c_clear_STA();
i2c_clear_SI();
state_send_data = state_send_data+1;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
case 5:

debug = i2c_check_output(I2C_RX_SLA_AND_W_ACKED);
if(debug == 0xff){

I2DAT = addr;
i2c_clear_SI();
state_send_data = state_send_data+1;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

case 6:
debug = i2c_check_output(I2C_RX_DATA_REC_NOT_ACK_RET);
if(debug == 0xff){

i2c_send_STOP();
i2c_clear_SI();
debug = 0xee; //inform caller to read from i2dat
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

}
return debug;

}

unsigned char i2c_send_data(unsigned char data, unsigned char addr){
static unsigned int counter = 0;
unsigned char debug = 0;
switch (state_send_data) {

case 0: //send a start message
i2c_hardware_reset(); //reset
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i2c_send_START();
state_send_data = state_send_data+1; //move to the next state
counter = 0;
break;

case 1: //wait for start SI
debug = i2c_check_output(I2C_START_TRANSMITTED);
if(debug == 0xff){//if start command is successfully transmitted

I2DAT = SLAVE_WRITE_ADDR;
i2c_clear_SI();
i2c_clear_STA();
state_send_data = state_send_data+1;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

case 2: //ensure that slave address has been acked
debug = i2c_check_output(I2C_SLA_AND_W_ACKED);
if(debug == 0xff){

I2DAT = addr;
i2c_clear_SI();
state_send_data = state_send_data+1;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

case 3:
debug = i2c_check_output(I2C_DATA_ACKED);
if(debug == 0xff){ //address has been sent properly!

I2DAT = data;
i2c_clear_SI();
state_send_data = state_send_data+1;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

case 4:
debug = i2c_check_output(I2C_DATA_ACKED);
if(debug == 0xff){ //data has been sent properly!

i2c_send_STOP();
debug = 0xee;
counter = 0;

}else if(counter > MAX_CALLS){//interference problem, restart transmission from 0
i2c_send_STOP();
state_send_data = 0;

}else{counter=counter+1;}
break;

}
return debug;
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}

unsigned char gain_optimization(unsigned short int integration_time_value){
//**** STEP 1 **** 
//Write sensor gain registers, CAP_RED, CAP_GREEN, 
//CAP_BLUE and CAP_CLEAR to select the number of 
//capacitor. The values must range from 00H to 0FH. A 
//higher capacitance value will result in lower sensor 
//output
unsigned char debug = 0;
switch (step) {

case 0:
debug = i2c_send_data(CAP_RED_VAL, CAP_RED);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 1:
debug = i2c_send_data(CAP_BLUE_VAL, CAP_BLUE);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 2:
debug = i2c_send_data(CAP_GREEN_VAL, CAP_GREEN);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 3:
debug = i2c_send_data(CAP_CLEAR_VAL, CAP_CLEAR);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

/* STEP 2: Write sensor gain registers, INT_RED, INT_GREEN, INT_
  BLUE and INT_CLEAR to select the integration time. 
  The integration time registers is a 12-bit registers, 
  the values is range from 0 to 4095. A higher value in 
  integration time will generally result in higher sensor 
  digital value if the capacitance gain registers have the 
  same value(*/

case 4:
debug = i2c_send_data(integration_time_value&0xff, INT_RED_LO);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
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break;
case 5:

debug = i2c_send_data((integration_time_value&0xf00)>>8, INT_RED_HI);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 6:
debug = i2c_send_data(integration_time_value&0xff, INT_BLUE_LO);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 7:
debug = i2c_send_data((integration_time_value&0xf00)>>8, INT_BLUE_HI);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 8:
debug = i2c_send_data(integration_time_value&0xff, INT_GREEN_LO);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 9:
debug = i2c_send_data((integration_time_value&0xf00)>>8, INT_GREEN_HI);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 10:
debug = i2c_send_data(integration_time_value&0xff, INT_CLEAR_LO);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

case 11:
debug = i2c_send_data((integration_time_value&0xf00)>>8, INT_CLEAR_HI);
if(debug==0xee){
state_send_data = 0;
step = step + 1;

}
break;

/* STEP 3: Acquire sensor digital values by writing 01H to CTRL 
  register (address 00H). Then read CTRL register. When 
  the value is 00H, the sensor digital values are read 
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  from the sample data registers (address  40H to 47H). 
  If these sensor digital values are not optimum, do 
  another iteration loop consisting of step 2, 3 and 4*/

case 12:
debug = request_receive_colors();
if( debug == 0xfe) { //all colors received
//initalize average
i2c_red_data_avg = get_absolute_reading(i2c_red_data)<<SHIFT;
//i2c_red_data_avg =0;
i2c_blue_data_avg = get_absolute_reading(i2c_blue_data)<<SHIFT;
//i2c_blue_data_avg =0;
i2c_clear_data_avg = get_absolute_reading(i2c_clear_data)<<SHIFT;
//i2c_clear_data_avg =0;
i2c_green_data_avg = get_absolute_reading(i2c_green_data)<<SHIFT;
//i2c_green_data_avg =0;
state_send_data = 0;
state_request_receive_colors = 0;

//send end code
debug = 0xf0;

}
break;

}
return debug;

}

unsigned char request_receive_colors(void) {
unsigned char debug = 0;
switch(state_request_receive_colors){

case 0: //set control to 0x1 
debug = i2c_send_data(0x01, CTRL);
if(debug==0xee){
state_send_data = 0;
state_request_receive_colors = state_request_receive_colors +1;

}
break;

case 1: //read from control, is it 00?
debug = i2c_get_data(CTRL);
if(debug == 0xee) { //is control reading 00?

if(I2DAT == 0){
//yes! read the colors
state_send_data = 0;
state_request_receive_colors = state_request_receive_colors +1;

} else {
state_send_data = 0;

}
}
break;

case 2: //read from red low
debug = i2c_get_data( DATA_RED_LO);
if(debug == 0xee) {
i2c_red_data = I2DAT;
state_send_data = 0;
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state_request_receive_colors = state_request_receive_colors +1;
}
break;

case 3: //read from red high
debug = i2c_get_data( DATA_RED_HI);
if(debug == 0xee) {
i2c_red_data = ((I2DAT&0x3)<<8)|i2c_red_data; //merge colors
state_send_data = 0;
state_request_receive_colors = state_request_receive_colors +1;

}
break;

case 4: //read from blue low
debug = i2c_get_data( DATA_BLUE_LO);
if(debug == 0xee) {
i2c_blue_data = I2DAT;
state_send_data = 0;
state_request_receive_colors = state_request_receive_colors +1;

}
break;

case 5: //read from blue high
debug = i2c_get_data( DATA_BLUE_HI);
if(debug == 0xee) {
i2c_blue_data = ((I2DAT&0x3)<<8)|i2c_blue_data; //merge colors
state_send_data = 0;
state_request_receive_colors = state_request_receive_colors +1;

}
break;

case 6: //read from green low
debug = i2c_get_data( DATA_GREEN_LO);
if(debug == 0xee) {
i2c_green_data = I2DAT;
state_send_data = 0;
state_request_receive_colors = state_request_receive_colors +1;

}
break;

case 7: //read from green high
debug = i2c_get_data( DATA_GREEN_HI);
if(debug == 0xee) {
i2c_green_data = ((I2DAT&0x3)<<8)|i2c_green_data; //merge colors
state_send_data = 0;
state_request_receive_colors = state_request_receive_colors +1;

}
break;

case 8: //read from clear low
debug = i2c_get_data( DATA_CLEAR_LO);
if(debug == 0xee) {
i2c_clear_data = I2DAT;
state_send_data = 0;
state_request_receive_colors = state_request_receive_colors +1;

}
break;

case 9: //read from clear high
debug = i2c_get_data( DATA_CLEAR_HI);
if(debug == 0xee) {
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i2c_clear_data = ((I2DAT&0x3)<<8)|i2c_clear_data; //merge colors
state_send_data = 0;
debug = 0xfe;

}
break;

}
return debug;

}

//on implementation of public functions 
//use abstraction in data_nexus i2c_color section
//as it is directly called by the can_setup function
float i2c_get_white_data(void){

return (float) (i2c_clear_data_avg>>SHIFT);
}
float i2c_get_red_data(void){

return (float) (i2c_red_data_avg>>SHIFT);
}
float i2c_get_blue_data(void){

return (float) (i2c_blue_data_avg>>SHIFT);
//return i2c_get_red_data()/i2c_get_green_data();

}
float i2c_get_green_data(void){

return (float) (i2c_green_data_avg>>SHIFT);
}

void i2c_color_init(void){
//set internal state to 0
state_color_update = 0;
step = 0;

state_send_data = 0;
state_request_receive_colors = 0;
timestampo = 0;

//PINSEL0 &=~(3<<4);
//PINSEL0 &=~(3<<6);
//PINSEL0 |=1<<4;
//PINSEL0 |=1<<6;

//set up appropriate data rate
//I2SCLH defines the number of pclk cycles for SCL high, I2SCLL defines the number of pclk 
cycles for SCL low.
//see p 175 for more details
//I2SCLH = 300;
//I2SCLL = 300;

//turn i2onset
//make i2conset look like MSB: - 1 0 0 0 0 - - :LSB
//I2CONCLR = 0; // sets AA to 0, SI to 0 STA to 0, I2EN to 0
//I2CONSET = 1<<6; //sets i2onset to -10000--

}
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#ifndef __MOD_I2C_COLOR_H__
#define __MOD_I2C_COLOR_H__

//Gain Adjustment Guessing
//Capacitor 00H to 0FH. A higher capacitance value will result in lower sensor output.
#define CAP_ALL_VAL 0x15
#define CAP_RED_VAL CAP_ALL_VAL
#define CAP_BLUE_VAL CAP_ALL_VAL
#define CAP_GREEN_VAL CAP_ALL_VAL
#define CAP_CLEAR_VAL CAP_ALL_VAL
//Integration Time. 0 to 4095 (0xfff). A higher value in integration time will generally result 
in higher sensor 
//digital value if the capacitance gain registers have the same value.
#define INT_ALL_VAL 3095
#define INT_RED_VAL INT_ALL_VAL
#define INT_BLUE_VAL INT_ALL_VAL
#define INT_GREEN_VAL INT_ALL_VAL
#define INT_CLEAR_VAL INT_ALL_VAL
//Max/Min Accecptable Value for Gain Optimization
#define MAX_OK_VALUE 950
#define MIN_OK_VALUE 50
#define MIN_INT_TIME 2
#define MAX_INT_TIME 2047
//Operation Timeout Length in Number of Calls limited to max value of unsigned int
#define MAX_CALLS 1000

//Averager Length (2^x)
#define AVERAGER_LENGTH 2
#define SHIFT 4

/******************************************/
// ADJD-S371-QR999 I2C Addressing
/******************************************/
// Address of Color Sensor is static / 7-bits witout RW bit in LSB is 0x74h
//RW bit = 0 means master will write data to slave
#define SLAVE_WRITE_ADDR 0xE8
//RW bit = 1 means master will read data from slave
#define SLAVE_READ_ADDR 0xE9

/******************************************/
// Registers addresses on ADJD-S371-QR999 Color Sensor
/******************************************/
#define CTRL 0x0
#define CONFIG 0x1 
#define CAP_RED 0x06
#define CAP_GREEN 0x07
#define CAP_BLUE 0x08
#define CAP_CLEAR 0x09
#define INT_RED_LO 0x0A
#define INT_RED_HI 0x0B
#define INT_GREEN_LO 0x0C
#define INT_GREEN_HI 0x0D
#define INT_BLUE_LO 0x0E
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#define INT_BLUE_HI 0x0F
#define INT_CLEAR_LO 0x10
#define INT_CLEAR_HI 0x11
#define DATA_RED_LO 0x40
#define DATA_RED_HI 0x41
#define DATA_GREEN_LO 0x42
#define DATA_GREEN_HI 0x43
#define DATA_BLUE_LO 0x44
#define DATA_BLUE_HI 0x45
#define DATA_CLEAR_LO 0x46
#define DATA_CLEAR_HI 0x47
#define OFFSET_RED 0x48
#define OFFSET_GREEN 0x49
#define OFFSET_BLUE 0x4A
#define OFFSET_CLEAR 0x4B

/******************************************/
// Possible I2C status codes
/******************************************/
#define I2C_START_TRANSMITTED 0x08
#define I2C_REPEATED_START_TRANSMITTED 0x10
#define I2C_SLA_AND_W_ACKED 0x18
#define I2C_SLA_AND_W_NOT_ACKED 0x20
#define I2C_DATA_ACKED 0x28
#define I2C_DATA_NOT_ACKED 0x30
#define I2C_RX_SLA_AND_W_ACKED 0x40
#define I2C_RX_SLA_AND_W_NOT_ACKED 0x48
#define I2C_RX_DATA_REC_ACK_RET 0x50
#define I2C_RX_DATA_REC_NOT_ACK_RET 0x58

//Critical Functions
void i2c_color_update(void);
void i2c_color_init(void);

//High Level Functions
unsigned char find_sensor(void);
unsigned char gain_optimization(unsigned short int);
unsigned char request_receive_colors(void);

//Data Manipulation Functions
unsigned long int get_absolute_reading(unsigned long int);
void avg_colors(void);

//External Data Capture Functions
float i2c_get_white_data(void);
float i2c_get_red_data(void);
float i2c_get_green_data(void);
float i2c_get_blue_data(void);

//i2c operation functions
unsigned char i2c_send_data(unsigned char, unsigned char);
unsigned char i2c_check_output(unsigned char);
void i2c_send_START(void);
void i2c_send_STOP(void);
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void i2c_clear_SI(void);
void i2c_clear_STA(void);
void i2c_hardware_reset(void);

#endif  //__MOD_I2C_COLOR__
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12. I2C INTERFACE

FEATURES
• Standard I2C compliant bus interface.
• Easy to configure as Master, Slave, or Master/Slave.
• Programmable clocks allow versatile rate control.
• Bidirectional data transfer between masters and slaves.
• Multi-master bus (no central master).
• Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
• Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
• Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
• The I2C bus may be used for test and diagnostic purposes.

APPLICATIONS
• Interfaces to external I2C standard parts, such as serial RAMs, LCDs, tone generators, etc.

DESCRIPTION
A typical I2C bus configuration is shown in Figure 24. Depending on the state of the direction bit (R/W), two types of data transfers 
are possible on the I2C bus: 

•  Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next      
follows a number of data bytes. The slave returns an acknowledge bit after each received byte. 

• Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is transmitted by the master. The
slave then returns an acknowledge bit. Next follows the data bytes transmitted by the slave to the master. The master returns 
an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a “not acknowledge”
is returned. The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended 
with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning of the 
next serial transfer, the I2C bus will not be released.

This device provides a byte oriented I2C interface. It has four operating modes: master transmitter mode, master receiver mode, 
slave transmitter mode and slave receiver mode.
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Figure 24: I2C Bus Configuration

I2C Operating Modes

Master Transmitter Mode:

In this mode data is transmitted from master to slave. Before the master transmitter mode can be entered, I2CONSET must be 
initialized as shown in Figure 25. I2EN must be set to 1 to enable the I2C function. If the AA bit is 0, the I2C interface will not 
acknowledge any address when another device is master of the bus, so it can not enter slave mode. The STA, STO and SI bits 
must be 0. The SI Bit is cleared by writing 1 to the SIC bit in the I2CONCLR register.

Figure 25: Slave Mode Configuration

The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this mode the 
data direction bit (R/W) should be 0 which means Write. The first byte transmitted contains the slave address and Write bit. Data
is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are 
output to indicate the beginning and the end of a serial transfer. 

The I2C interface will enter master transmitter mode when software sets the STA bit. The I2C logic will send the START condition 
as soon as the bus is free. After the START condition is transmitted, the SI bit is set, and the status code in I2STAT should be
08h. This status code must be used to vector to an interrupt service routine which should load the slave address and Write bit to 
I2DAT (Data Register), and then clear the SI bit. SI is cleared by writing a 1 to the SIC bit in the I2CONCLR register.

SDA
Other Device with I2C

Interface

SDA

I2C Bus

RP RP

Other Device with I2C
Interface

SCL

SCL

LPC2119/2129/2194
LPC2292/2294

I2CONSET I2EN STA STO SI AA -

0 01 0- --0

- -

3 26 57 014
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When the slave address and R/W bit have been transmitted and an acknowledgment bit has been received, the SI bit is set again, 
and the possible status codes now are 18h, 20h, or 38h for the master mode, or 68h, 78h, or 0B0h if the slave mode was enabled 
(by setting AA=1). The appropriate actions to be taken for each of these status codes are shown in Table 3 to Table 6 in "80C51
Family Derivatives 8XC552/562 Overview" datasheet available on-line at 

http://www.semiconductors.philips.com/acrobat/various/8XC552_562OVERVIEW_2.pdf.

Figure 26: Format in the master transmitter mode

Master Receiver Mode:

In the master receiver mode, data is received from a slave transmitter. The transfer is initiated in the same way as in the master
transmitter mode. When the START condition has been transmitted, the interrupt service routine must load the slave address 
and the data direction bit to I2C Data Register (I2DAT), and then clear the SI bit.

When the slave address and data direction bit have been transmitted and an acknowledge bit has been received, the SI bit is 
set, and the Status Register will show the status code. For master mode, the possible status codes are 40H, 48H, or 38H. For 
slave mode, the possible status codes are 68H, 78H, or B0H. Refer to Table 4 in "80C51 Family Derivatives 8XC552/562 
Overview" datasheet available on-line at 

http://www.semiconductors.philips.com/acrobat/various/8XC552_562OVERVIEW_2.pdf 

for details.

Figure 27: Format of master receiver mode

After a repeated START condition, I2C may switch to the master transmitter mode. 

"0" - Write
"1" - Read

Data Transferred
(n Bytes + Acknowledge)

From Master to Slave
From Slave to Master

A = Acknowledge (SDA low)
A = Not Acknowledge (SDA high)
S = START condition
P = STOP Condition

S Slave Address AR/W DATA A DATA PA/A

"0" - Write
"1" - Read

Data Transferred
(n Bytes + Acknowledge)

From Master to Slave
From Slave to Master

A = Acknowledge (SDA low)
A = Not Acknowledge (SDA high)
S = START condition
P = STOP Condition

S Slave Address R DATA A DATA PA A
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Figure 28: A master receiver switch to master transmitter after sending repeated START

Slave Receiver Mode: 

In the slave receiver mode, data bytes are received from a master transmitter. To initialize the slave receiver mode, user should 
write the Slave Address Register (I2ADR) and write the I2C Control Set Register (I2CONSET) as shown in Figure 29.

Figure 29: Slave Mode Configuration

I2EN must be set to 1 to enable the I2C function. AA bit must be set to 1 to acknowledge its own slave address or the general 
call address. The STA, STO and SI bits are set to 0.

After I2ADR and I2CONSET are initialized, the I2C interface waits until it is addressed by its own address or general address 
followed by the data direction bit. If the direction bit is 1(R), it enters slave transmitter mode. After the address and direction bit 
have been received, the SI bit is set and a valid status code can be read from the Status Register(I2STAT). Refer to Table 5 in
"80C51 Family Derivatives 8XC552/562 Overview" datasheet available on-line at 

http://www.semiconductors.philips.com/acrobat/various/8XC552_562OVERVIEW_2.pdf 

for the status codes and actions.

P

A = Acknowledge (SDA low)
A = Not Acknowledge (SDA high)
S = START condition
P = STOP Condition
SLA = Slave Address
RS = Repeat START condition

S R ASLA A A RS W ADATA DATA SLA DATA A

Data Transferred
(n Bytes + Acknowledge)

From Master to Slave
From Slave to Master

I2CONSET I2EN STA STO SI AA -

0 11 0- -0

- -

3 26 57 014

- -
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Figure 30: Format of slave receiver mode

Slave Transmitter Mode:

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will indicate that the 
transfer direction is reversed. Serial data is transmitted via SDA while the serial clock is input through SCL. START and STOP 
conditions are recognized as the beginning and end of a serial transfer. In a given application, I2C may operate as a master and 
as a slave. In the slave mode, the I2C hardware looks for its own slave address and the general call address. If one of these 
addresses is detected, an interrupt is requested. When the microcontroller wishes to become the bus master, the hardware waits 
until the bus is free before the master mode is entered so that a possible slave action is not interrupted. If bus arbitration is lost 
in the master mode, I2C switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

Figure 31: Format of slave transmitter mode

PIN DESCRIPTION
Table 101: I2C Pin Description

Pin Name Type Description

SDA Input/
Output

Serial Data. I2C data input and output. The associated port pin has an open drain output in 
order to conform to I2C specifications.

SCL Input/
Output

Serial Clock. I2C clock input and output. The associated port pin has an open drain output in 
order to conform to I2C specifications.

"0" - Write
"1" - Read

Data Transferred
(n Bytes + Acknowledge)

From Master to Slave
From Slave to Master

A   = Acknowledge (SDA low)
A   = Not Acknowledge (SDA high)
S   = START condition
P   = STOP Condition
RS = Repeated START Condition

S Slave Address W DATA A DATA P/RSA/AA

"0" - Write
"1" - Read

Data Transferred
(n Bytes + Acknowledge)

From Master to Slave
From Slave to Master

A = Acknowledge (SDA low)
A = Not Acknowledge (SDA high)
S = START condition
P = STOP Condition

S Slave Address R DATA A DATA PA A
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REGISTER DESCRIPTION
The I2C interface contains 7 registers as shown in Table 102. below.

*Reset Value refers to the data stored in used bits only. It does not include reserved bits content.

Table 102: I2C Register Map

Name Description Access Reset Value* Address

I2CONSET I2C Control Set Register Read/Set 0 0xE001C000

I2STAT I2C Status Register Read Only 0xF8 0xE001C004

I2DAT I2C Data Register Read/Write 0 0xE001C008

I2ADR I2C Slave Address Register Read/Write 0 0xE001C00C

I2SCLH SCL Duty Cycle Register High Half Word Read/Write 0x04 0xE001C010

I2SCLL SCL Duty Cycle Register Low Half Word Read/Write 0x04 0xE001C014

I2CONCLR I2C Control Clear Register Clear Only NA 0xE001C018
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I2C Control Set Register (I2CONSET - 0xE001C000)

AA is the Assert Acknowledge Flag. When set to 1, an acknowledge (low level to SDA) will be returned during the acknowledge 
clock pulse on the SCL line on the following situations:

1.  The address in the Slave Address Register has been received. 
2.  The general call address has been received while the general call bit(GC) in I2ADR is set. 
3.  A data byte has been received while the I2C is in the master receiver mode. 
4.  A data byte has been received while the I2C is in the addressed slave receiver mode 

The AA bit can be cleared by writing 1 to the AAC bit in the I2CONCLR register. When AA is 0, a not acknowledge (high level to 
SDA) will be returned during the acknowledge clock pulse on the SCL line on the following situations: 

1.  A data byte has been received while the I2C is in the master receiver mode. 
2.  A data byte has been received while the I2C is in the addressed slave receiver mode. 

SI is the I2C Interrupt Flag. This bit is set when one of the 25 possible I2C states is entered. Typically, the I2C interrupt should 
only be used to indicate a start condition at an idle slave device, or a stop condition at an idle master device (if it is waiting to use 
the I2C bus). SI is cleared by writing a 1 to the SIC bit in I2CONCLR register.

STO is the STOP flag. Setting this bit causes the I2C interface to transmit a STOP condition in master mode, or recover from an 
error condition in slave mode. When STO is 1 in master mode, a STOP condition is transmitted on the I2C bus. When the bus 
detects the STOP condition, STO is cleared automatically.

In slave mode, setting this bit can recover from an error condition. In this case, no STOP condition is transmitted to the bus. The 
hardware behaves as if a STOP condition has been received and it switches to "not addressed" slave receiver mode. The STO 
flag is cleared by hardware automatically.

STA is the START flag. Setting this bit causes the I2C interface to enter master mode and transmit a START condition or transmit 
a repeated START condition if it is already in master mode.

When STA is 1and the I2C interface is not already in master mode, it enters master mode, checks the bus and generates a 
START condition if the bus is free. If the bus is not free, it waits for a STOP condition (which will free the bus) and generates a 
START condition after a delay of a half clock period of the internal clock generator. If the I2C interface is already in master mode 
and data has been transmitted or received, it transmits a repeated START condition. STA may be set at any time, including when 
the I2C interface is in an addressed slave mode. 

STA can be cleared by writing 1 to the STAC bit in the I2CONCLR register. When STA is 0, no START condition or repeated 
START condition will be generated.

If STA and STO are both set, then a STOP condition is transmitted on the I2C bus if it the interface is in master mode, and 
transmits a START condition thereafter. If the I2C interface is in slave mode, an internal STOP condition is generated, but is not 
transmitted on the bus.
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I2EN I2C Interface Enable. When I2EN is 1, the I2C function is enabled. I2EN can be cleared by writing 1 to the I2ENC bit in the 
I2CONCLR register. When I2EN is 0, the I2C function is disabled.

I2C Control Clear Register (I2CONCLR - 0xE001C018)

Table 103: I2C Control Set Register (I2CONSET - 0xE001C000)

I2CONSET Function Description Reset 
Value

0 Reserved Reserved, user software should not write ones to reserved bits. The value read from 
a reserved bit is not defined. NA

1 Reserved Reserved, user software should not write ones to reserved bits. The value read from 
a reserved bit is not defined. NA

2 AA Assert acknowledge flag 0

3 SI I2C interrupt flag 0

4 STO STOP flag 0

5 STA START flag 0

6 I2EN I2C interface enable 0

7 Reserved Reserved, user software should not write ones to reserved bits. The value read from 
a reserved bit is not defined. NA

Table 104: I2C Control Clear Register (I2CONCLR - 0xE001C018)

I2CONCLR Function Description Reset 
Value

0 Reserved Reserved, user software should not write ones to reserved bits. The value read from 
a reserved bit is not defined. NA

1 Reserved Reserved, user software should not write ones to reserved bits. The value read from 
a reserved bit is not defined. NA

2 AAC
Assert Acknowledge Clear bit. Writing a 1 to this bit clears the AA bit in the I2CONSET 
register. Writing 0 has no effect.

NA

3 SIC I2C Interrupt Clear Bit. Writing a 1 to this bit clears the SI bit in the I2CONSET 
register. Writing 0 has no effect. NA

4 Reserved Reserved, user software should not write ones to reserved bits. The value read from 
a reserved bit is not defined. NA

5 STAC Start flag clear bit. Writing a 1 to this bit clears the STA bit in the I2CONSET register. 
Writing 0 has no effect. NA

6 I2ENC I2C interface disable. Writing a 1 to this bit clears the I2EN bit in the I2CONSET 
register.Writing 0 has no effect. NA

7 Reserved Reserved, user software should not write ones to reserved bits. The value read from 
a reserved bit is not defined. NA
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I2C Status Register (I2STAT - 0xE001C004)

This is a read-only register. It contains the status code of the I2C interface. The least three bits are always 0. There are 26 
possible status codes. When the code is F8H, there is no relevant information available and the SI bit is not set. All other 25 status 
codes correspond to defined I2C states. When any of these states entered, SI bit will be set. Refer to Table 3 to Table 6 in "80C51 
Family Derivatives 8XC552/562 Overview" datasheet available on-line at 

http://www.semiconductors.philips.com/acrobat/various/8XC552_562OVERVIEW_2.pdf 

for a complete list of status codes.

I2C Data Register (I2DAT - 0xE001C008)

This register contains the data to be transmitted or the data just received. The CPU can read and write to this register while it is 
not in the process of shifting a byte. This register can be accessed only when SI bit is set. Data in I2DAT remains stable as long
as the SI bit is set. Data in I2DAT is always shifted from right to left: the first bit to be transmitted is the MSB (bit 7), and after a 
byte has been received, the first bit of received data is located at the MSB of I2DAT.

I2C Slave Address Register (I2ADR - 0xE001C00C)

This register is readable and writable, and is only used when the I2C is set to slave mode. In master mode, this register has no 
effect. The LSB of I2ADR is the general call bit. When this bit is set, the general call address (00h) is recognized.

Table 105: I2C Status Register (I2STAT - 0xE001C004)

I2STAT Function Description Reset 
Value

2:0 Status These bits are always 0 0

7:3 Status Status bits 1

Table 106: I2C Data Register (I2DAT - 0xE001C008)

I2DAT Function Description Reset 
Value

7:0 Data Transmit/Receive data bits 0

Table 107: I2C Slave Address Register (I2ADR - 0xE001C00C)

I2ADR Function Description Reset 
Value

0 GC General Call bit 0

7:1 Address Slave mode address 0
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I2C SCL Duty Cycle Registers (I2SCLH - 0xE001C010 and I2SCLL - 0xE001C014)

Software must set values for registers I2SCLH and I2SCLL to select the appropriate data rate. I2SCLH defines the number of 
pclk cycles for SCL high, I2SCLL defines the number of pclk cycles for SCL low. The frequency is determined by the following 
formula:

Bit Frequency = fCLK / (I2SCLH + I2SCLL)

Where fCLK is the frequency of pclk.

The values for I2SCLL and I2SCLH don’t have to be the same. Software can set different duty cycles on SCL by setting these 
two registers. But the value of the register must ensure that the data rate is in the I2C data rate range of 0 through 400KHz. So 
the value of I2SCLL and I2SCLH has some restrictions. Each register value should be greater than or equal to 4.

Table 108: I2C SCL High Duty Cycle Register (I2SCLH - 0xE001C010)

I2SCLH Function Description Reset 
Value

15:0 Count Count for SCL HIGH time period selection 0x 0004

Table 109: I2C SCL Low Duty Cycle Register (I2SCLL - 0xE001C014)

I2SCLL Function Description Reset 
Value

15:0 Count Count for SCL LOW time period selection 0x 0004

Table 110: I2C Clock Rate Selections for VPB Clock Divider = 1

I2SCLL+
I2SCLH

Bit Frequency (kHz) At fCCLK (MHz) & VPB Clock Divider = 1 

16 20 40 60

8 - - - -

10 - - - -

25 - - - -

50 320.0 400.0 - -

75 213.333 266.667 - -

100 160.0 200.0 400.0 -

160 100.0 125.0 250.0 375.0

200 80.0 100.0 200.0 300.0

320 50.0 62.5 125.0 187.5

400 40.0 50.0 100.0 150.0

510 31.373 39.216 78.431 117.647

800 20.0 25.0 50.0 75.0

1280 12.5 15.625 31.25 46.875
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Table 111: I2C Clock Rate Selections for VPB Clock Divider = 2

I2SCLL+
I2SCLH

Bit Frequency (kHz) At fCCLK (MHz) & VPB Clock Divider = 2 

16 20 40 60

8 - - - -

10 - - - -

25 320.0 400.0 - -

50 160.0 200.0 400.0 -

75 106.667 133.333 266.667 400.0

100 80.0 100.0 200.0 300.0

160 50.0 62.5 125.0 187.5

200 40.0 50.0 100.0 150.0

320 25.0 31.25 62.5 93.75

400 20.0 25.0 50.0 75.0

510 15.686 19.608 39.216 58.824

800 10.0 12.5 25.0 37.5

1280 6.25 7.813 15.625 23.438

Table 112: I2C Clock Rate Selections for VPB Clock Divider = 4

I2SCLL+
I2SCLH

Bit Frequency (kHz) At fCCLK (MHz) & VPB Clock Divider = 4

16 20 40 60

8 500.0 - - -

10 400.0 - - -

25 160.0 200.0 400.0 -

50 80.0 100.0 200.0 300.0

75 53.333 66.667 133.333 200.0

100 40.0 50.0 100.0 150.0

160 25.0 31.25 62.5 93.75

200 20.0 25.0 50.0 75.0

320 12.5 15.625 31.25 46.875

400 10.0 12.5 25.0 37.5

510 7.843 9.804 19.608 29.412

800 5.0 6.25 12.5 18.75

1280 3.125 3.906 7.813 11.719
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ARCHITECTURE

Figure 32: I2C Architecture
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Table 3. Master Transmitter Mode

STATUS STATUS OF THE APPLICATION SOFTWARE RESPONSESTATUS
CODE

(S1STA)

STATUS OF THE
I2C BUS AND

SIO1 HARDWARE TO/FROM S1DAT
TO S1CON NEXT ACTION TAKEN BY SIO1 HARDWARE

(S1STA) SIO1 HARDWARE TO/FROM S1DAT
STA STO SI AA

08H A START condition has
been transmitted

Load SLA+W X 0 0 X SLA+W will be transmitted;
ACK bit will be received

10H A repeated START
condition has been 
transmitted

Load SLA+W or
Load SLA+R

X
X

0
0

0
0

X
X

As above
SLA+W will be transmitted;
SIO1 will be switched to MST/REC mode

18H SLA+W has been 
transmitted; ACK has
been received

Load data byte or

no S1DAT action or
no S1DAT action or

no S1DAT action

0

1
0

1

0

0
1

1

0

0
0

0

X

X
X

X

Data byte will be transmitted;
ACK bit will be received
Repeated START will be transmitted;
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a 
START condition will be transmitted;
STO flag will be reset

20H SLA+W has been 
transmitted; NOT ACK
has been received

Load data byte or

no S1DAT action or
no S1DAT action or

no S1DAT action

0

1
0

1

0

0
1

1

0

0
0

0

X

X
X

X

Data byte will be transmitted;
ACK bit will be received
Repeated START will be transmitted;
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a 
START condition will be transmitted;
STO flag will be reset

28H Data byte in S1DAT has
been transmitted; ACK
has been received

Load data byte or

no S1DAT action or
no S1DAT action or

no S1DAT action

0

1
0

1

0

0
1

1

0

0
0

0

X

X
X

X

Data byte will be transmitted;
ACK bit will be received
Repeated START will be transmitted;
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a 
START condition will be transmitted;
STO flag will be reset

30H Data byte in S1DAT has
been transmitted; NOT
ACK has been received

Load data byte or

no S1DAT action or
no S1DAT action or

no S1DAT action

0

1
0

1

0

0
1

1

0

0
0

0

X

X
X

X

Data byte will be transmitted;
ACK bit will be received
Repeated START will be transmitted;
STOP condition will be transmitted;
STO flag will be reset
STOP condition followed by a 
START condition will be transmitted;
STO flag will be reset

38H Arbitration lost in 
SLA+R/W or
Data bytes

No S1DAT action or

No S1DAT action

0

1

0

0

0

0

X

X

I2C bus will be released;
not addressed slave will be entered
A START condition will be transmitted when the
bus becomes free
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Table 4. Master Receiver Mode
STATUS STATUS OF THE APPLICATION SOFTWARE RESPONSE

CODE I2C BUS AND TO/FROM S1DAT TO S1CON NEXT ACTION TAKEN BY SIO1 HARDWARE

(S1STA) SIO1 HARDWARE STA STO SI AA

08H A START condition has
been transmitted

Load SLA+R X 0 0 X SLA+R will be transmitted;
ACK bit will be received

10H A repeated START
condition has been 
transmitted

Load SLA+R or
Load SLA+W

X
X

0
0

0
0

X
X

As above
SLA+W will be transmitted;
SIO1 will be switched to MST/TRX mode

38H Arbitration lost in 
NOT ACK bit

No S1DAT action or

No S1DAT action

0

1

0

0

0

0

X

X

I2C bus will be released;
SIO1 will enter a slave mode
A START condition will be transmitted when the
bus becomes free

40H SLA+R has been 
transmitted; ACK has
been received

No S1DAT action or

no S1DAT action

0

0

0

0

0

0

0

1

Data byte will be received;
NOT ACK bit will be returned
Data byte will be received;
ACK bit will be returned

48H SLA+R has been 
transmitted; NOT ACK
has been received

No S1DAT action or

no S1DAT action or

no S1DAT action

1

0

1

0

1

1

0

0

0

X

X

X

Repeated START condition will be transmitted

STOP condition will be transmitted;
STO flag will be reset
STOP  condition followed by a 
START condition will be transmitted;
STO flag will be reset

50H Data byte has been 
received; ACK has been
returned

Read data byte or

read data byte

0

0

0

0

0

0

0

1

Data byte will be received;
NOT ACK bit will be returned
Data byte will be received;
ACK bit will be returned

58H Data byte has been 
received; NOT ACK has
been returned

Read data byte or

read data byte or

read data byte

1

0

1

0

1

1

0

0

0

X

X

X

Repeated START condition will be transmitted

STOP condition will be transmitted;
STO flag will be reset
STOP  condition followed by a 
START condition will be transmitted;
STO flag will be reset
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ADJD-S371-QR999
Miniature Surface-Mount
RGB Digital Color Sensor Module

Data Sheet 

Description

ADJD-S371-QR999 is a cost effective, 4 channel digital 
output RGB+CLEAR sensor in miniature surface-mount 
package with a mere size of 3.9 x 4.5 x 1.8 mm. It is  
an IC module with combination of White LED and 
CMOS IC with integrated RGB filters + Clear channel and 
analog-to-digital converter front end. 

It is ideal for applications like color detection, mea-
surement, illumination sensing for display backlight 
adjustment such as colors, contrast and brightness 
enhancement in mobile devices which demand higher 
package integration, small footprint and low power 
consumption. 

The 2-wire serial output allows direct interface to 
microcontroller or other logic control for further signal 
processing without additional component such as 
analog to digital converter. With the wide sensing 
range of 100 lux to 100,000 lux, the sensor can be used 
for many applications with different light levels by 
adjusting the gain setting. Additional features include 
a selectable sleep mode to minimize current con-
sumption when the sensor is not in use. 

Features

•	 Four channel integrated light to digital converter  
(Red, Green, Blue and Clear).

•	1 0 bit digital output resolution
•	 Independent gain selection for each channel
•	 Wide sensitivity coverage: 0.1 klux - 100 klux
•	 Two wire serial communication
•	 Built in oscillator/selectable external clock
•	 Low power mode (sleep mode)
•	 Small 3.9 x 4.5 x 1.8 mm module
•	 Integrated solution with sensor, LED and separator  

in module for ease of design
•	 Lead free

Applications

•	 Mobile appliances
•	 Consumer appliances
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Absolute Maximum Ratings (Sensor) [1, 2]

Parameter Symbol Minimum Maximum Units Notes

Storage Temperature TSTG_ABS -40 85 °C

Digital Supply Voltage, DVDD to DVSS VDDD_ABS 2.5 3.6 V

Analog Supply Voltage, AVDD to AVSS VDDA_ABS 2.5 3.6 V

Input Voltage VIN_ABS 2.5 3.6 V All I/O pins

Human Body Model ESD Rating ESDHBM_ABS 2 kV All pins, human body 
model per JESD22-A114

Functional Block Diagram

Electrical Specifications

Absolute Maximum Ratings at TA = 25°C (LED)
Parameter Symbol Minimum Maximum Units

DC Forward Current IF 10 mA

Power Dissipation 39 mW

Reverse Voltage @ IR = 100 µA VR 5 V

Operating Temperature Range -20 85 °C

Storage Temperature Range -40 85 °C

DIGITAL
OUTPUT

ADC
SAMPLING

BLOCK

LED
ANODE

CLEAR

R

G

B
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Recommended Operating Conditions (Sensor)
Parameter Symbol Minimum Typical Maximum Units

Free Air Operating Temperature TA 0 25 70 °C

Digital Supply Voltage, DVDD to DVSS VDDD 2.5 2.6 3.6 V

Analog Supply Voltage, AVDD to AVSS VDDA 2.5 2.6 3.6 V

Output Current Load High IOH 3 mA

Output Current Load Low IOL 3 mA

Input Voltage High Level[4] VIH 0.7 VDDD VDDD V

Input Voltage Low Level[4] VIL  0 0.3 VDDD V
       

Electrical Characteristics at TA = 25°C (LED)
Parameter Symbol Minimum Typical Maximum Units

DC Forward Voltage @ IF = 5 mA VF 2.85 3.35 V

Reverse Breakdown Voltage @ IR = 100 µA VR 5 V

DC Electrical Specifications (Sensor)
Over Recommended Operating Conditions (unless otherwise specified)

Parameter Symbol Conditions Minimum Typical[3] Maximum Units

Output Voltage High Level[5] VOH IOH = 3 mA VDDD - 0.4 V

Output Voltage Low Level[6] VOL IOH = 3 mA 0.2 V

Supply Current[7] IDD_STATIC (Note 8) 3.8 5 mA

Sleep-Mode Supply Current[7] IDD_SLP (Note 8) 2 µA

Input Leakage Current ILEAK -10 10 µA

AC Electrical Specifications (Sensor)
Over Recommended Operating Conditions (unless otherwise specified)

Parameter Symbol Conditions Minimum Typical[3] Maximum Units

Internal Clock Frequency f_CLK_int 26 MHz

External Clock Frequency f_CLK_ext 16 40 MHz

2-Wire Interface Frequency f_2wire 100 kHz
 

Optical Specification (Sensor)
Parameter Symbol Conditions Minimum Typical[3] Maximum Units

Dark Offset VD Ee = 0 20 LSB
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Minimum Sensitivity [3]						    
Parameter Symbol Conditions Minimum Typical (Note 3) Maximum Units

Irradiance 
Responsivity Re

lP = 460 nm
Refer Note 9

B 152

 LSB/(mW cm-2)  

lP = 542 nm
Refer Note 10

G 178

lP = 645 nm
Refer Note 11

R 254

lP = 645 nm
Refer Note 11

Clear 264

 

 
Maximum Sensitivity [3]

Parameter Symbol Conditions Minimum Typical (Note 3) Maximum Units

Irradiance 
Responsivity Re

lP = 460 nm
Refer Note 9

B 3796

LSB/(mW cm-2)

lP = 542 nm
Refer Note 10

G 4725

lP = 645 nm
Refer Note 11

R 6288

lP = 645 nm
Refer Note 11

Clear 6590

 

 
Saturation Irradiance for Minimum Sensitivity [12]

Parameter Symbol Conditions Minimum Typical (Note 3) Maximum Units

Saturation 
Irradiance

lP = 460 nm
Refer Note 9

B 6.73

mW/cm2

lP = 542 nm
Refer Note 10

G 5.74

lP = 645 nm
Refer Note 11

R 4.03

lP = 645 nm
Refer Note 11

Clear 3.87
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Saturation Irradiance for Maximum Sensitivity [12]

Parameter Symbol Conditions Minimum Typical (Note 3) Maximum Units

Saturation 
Irradiance

lP = 460 nm 
Refer Note 9

B 0.27 mW/cm2

lP = 542 nm 
Refer Note 10 

G 0.22

lP = 645 nm 
Refer Note 11 

R 0.16

lP = 645 nm 
Refer Note 11 

Clear 0.16

Notes:
 1 .  The “Absolute Maximum Ratings” are those values beyond which damage to the device may occur. The device should not be operated at 

these limits. The parametric values defined in the “Electrical Specifications” table are not guaranteed at the absolute maximum ratings. The 
“Recommended Operating Conditions” table will define the conditions for actual device operation.

  2.  Unless otherwise specified, all voltages are referenced to ground.
  3.  Specified at room temperature (25°C) and VDDD = VDDA = 2.5 V.
  4.  Applies to all DI pins.
  5.  Applies to all DO pins. SDASLV go tri-state when output logic high. Minimum VOH depends on the pull-up resistor value.
  6.  Applies to all DO and DIO pins. 
  7.  Refers to total device current consumption.
  8.  Output and bidirectional pins are not loaded.
  9.  Test condition is blue light of peak wavelength (lP) 460 nm and spectral half width (l1/2) 25 nm.
10.  Test condition is green light of peak wavelength (lP) 542 nm and spectral half width (l1/2) 35 nm.
11.  Test condition is red light of peak wavelength (lP) 645 nm and spectral half width (l1/2) 20 nm.
12.  Saturation irradiance = (MSB)/(Irradiance responsivity).
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Figure 1. Typical spectral response when the gains for all the color channels are set at equal
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Serial Interface Timing Information
Parameter Symbol Minimum Maximum Units

SCL Clock Frequency fscl 0 100 kHz

(Repeated) START Condition Hold Time tHD:STA 4 - µs

Data Hold Time tHD:CAT 0 3.45 µs

SCL Clock Low Period tLOW 4.7 - µs

SCL Clock High Period tHIGH 4.0 - µs

Repeated START Condition Setup Time tSU:STA 4.7 - µs

Data Setup Time tSU:DAT 250 - µs

STOP Condition Setup Time tSU:STD 4.0 - µs

Bus Free Time Between START and STOP Conditions tBUF 4.7 - µs

Figure 2. Serial interface bus timing waveforms

Serial Interface Reference

Description
The programming interface to the ADJD-S371-QR999 is 
a 2-wire serial bus. The bus consists of a serial clock (SCL) 
and a serial data (SDA) line. The SDA line is bi-directional 
on ADJD-S371-QR999 and must be connected through 
a pull-up resistor to the positive power supply. When the 
bus is free, both lines are HIGH.

The 2-wire serial bus on ADJD-S371-QR999 requires one 
device to act as a master while all other devices must be 
slaves. A master is a device that initiates a data transfer 
on the bus, generates the clock signal and terminates 
the data transfer while a device addressed by the master 
is called a slave. Slaves are identified by unique device 
addresses.

Both master and slave can act as a transmitter or a 
receiver but the master controls the direction for data 
transfer. A transmitter is a device that sends data to the 
bus and a receiver is a device that receives data from 
the bus.

The ADJD-S371-QR999 serial bus interface always oper-
ates as a slave transceiver with a data transfer rate of up 
to 100kbit/s.

START/STOP Condition
The master initiates and terminates all serial data 
transfers. To begin a serial data transfer, the master must 
send a unique signal to the bus called a START condition. 
This is defined as a HIGH to LOW transition on the SDA 
line while SCL is HIGH.

tLOW tHD:DAT tHD:STA tSU:STO

tHIGH
tSU:DATtHD:STA tBUF

tSU:STA

SDA

SCL
S Sr P S
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The master terminates the serial data transfer by sending 
another unique signal to the bus called a STOP condition. 
This is defined as a LOW to HIGH transition on the SDA 
line while SCL is HIGH.

The bus is considered to be busy after a START (S) 
condition. It will be considered free a certain time after 

the STOP (P) condition. The bus stays busy if a repeated 
START (Sr) is sent instead of a STOP condition. 

The  START  and  repeated START conditions are 
functionally identical. 

Figure 3. START/STOP condition

Data Transfer
The master initiates data transfer after a START condition. 
Data is transferred in bits with the master generating 
one clock pulse for each bit sent. For a data bit to be 

valid, the SDA data line must be stable during the HIGH 
period of the SCL clock line. Only during the LOW period 
of the SCL clock line can the SDA data line change state 
to either HIGH or LOW.

Figure 4. Data bit transfer

SCL

SCL

S

START CONDITION

P

STOP CONDITION

SCL

SDA

DATA VALID DATA CHANGE
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The SCL clock line synchronizes the serial data transmis-
sion on the SDA data line. It is always generated by the 
master. The frequency of the SCL clock line may vary 
throughout the transmission as long as it still meets the 
minimum timing requirements.

The master by default drives the SDA data line. The 
slave drives the SDA data line only when sending an 
acknowledge bit after the master writes data to the 
slave or when the master requests the slave to send 
data.

The SDA data line driven by the master may be 
implemented on the negative edge of the SCL clock 
line. The master may sample data driven by the slave on 
the positive edge of the SCL clock line. Figure shows an 
example of a master implementation and how the SCL 
clock line and SDA data line can be synchronized.

Figure 5. Data bit synchronization

A complete data transfer is 8-bits long or 1-byte. Each 
byte is sent most significant bit (MSB) first followed by 
an acknowledge or not acknowledge bit. Each data 
transfer can send an unlimited number of bytes 
(depending on the data format).

Figure 6. Data byte transfer

SCL

SDA

SDA data sampled on the
positive edge of SCL

SDA data driven on the
negative edge of SCL

SDA MSB MSBLSB LSBACK NO
ACK

SCL
S
or
Sr

P

Sr

Sr
or
P

1 2 8 9 1 2 8 9

START or repeated
START CONDITION

STOP or repeated
START CONDITION
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Acknowledge/Not Acknowledge
The receiver must always acknowledge each byte sent 
in a data transfer. In the case of the slave-receiver and 
master-transmitter, if the slave-receiver does not send 
an acknowledge bit, the master-transmitter can either 
STOP the transfer or generate a repeated START to start 
a new transfer.

Figure 7. Slave-receiver acknowledge

In the case of the master-receiver and slave-transmitter, 
the master generates a not acknowledge to signal 
the end of the data transfer to the slave-transmitter. 
The master can then send a STOP or repeated START 
condition to begin a new data transfer. 

In all cases, the master generates the acknowledge or 
not acknowledge SCL clock pulse.

Figure 8. Master-receiver acknowledge

SCL
(MASTER)

SDA
(MASTER-TRANSMITTER)

SDA
(SLAVE-RECEIVER)

ACKNOWLEDGE

ACKNOWLEDGE
CLOCK PULSE

98

LSB SDA left HIGH
by transmitter

SDA pulled LOW
by receiver

SCL
(MASTER)

SDA
(SLAVE-TRANSMITTER)

SDA
(MASTER-RECEIVER)

ACKNOWLEDGE
CLOCK PULSE

NOT
ACKNOWLEDGE

9

P

Sr

8

LSB SDA left HIGH
by transmitter

SDA left HIGH
by receiver

STOP or repeated
START condition
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Addressing
Each slave device on the serial bus needs to have a unique 
address. This is the first byte that is sent by the master-
transmitter after the START condition. The address is 
defined as the first seven bits of the first byte.

The eighth bit or least significant bit (LSB) determines 
the direction of data transfer. A ‘one’ in the LSB of the first 
byte indicates that the master will read data from the 
addressed slave (master-receiver and slave-transmitter). 

A ‘zero’ in this position indicates that the master will 
write data to the addressed slave (master-transmitter 
and slave-receiver).

A device whose address matches the address sent by 
the master will respond with an acknowledge for the 
first byte and set itself up as a slave-transmitter or slave-
receiver depending on the LSB of the first byte.

The slave address on ADJD-S371-QR999 is 0x74 (7-bits).

Data Format
ADJD-S371-QR999 uses a register-based programming 
architecture. Each register has a unique address and 
controls a specific function inside the chip. 

To write to a register, the master first generates a START 
condition. Then it sends the slave address for the device 
it wants to communicate with. The least significant bit 
(LSB) of the slave address must indicate that the master 

wants to write to the slave. The addressed device will 
then acknowledge the master.

The master writes the register address it wants to access 
and waits for the slave to acknowledge. The master 
then writes the new register data. Once the slave 
acknowledges, the master generates a STOP condition 
to end the data transfer.

Figure 9. Slave addressing

Figure 10. Register byte write protocol

A6 A5 A4 A3 A2 A1 A0

1 1 1 0 1 0 0
R/W

SLAVE ADDRESS

MSB LSB

S A6 A5 A4 A3 A2 A1 A0 W A D7 D6 D5 D4 D3 D2 D1 D0 A D7 D6 D5 D4 D3 D2 D1 D0 A P

START CONDITION MASTER WILL WRITE DATA STOP CONDITION

MASTER SENDS
SLAVE ADDRESS

MASTER WRITES
REGISTER ADDRESS

MASTER WRITES
REGISTER DATA

SLAVE ACKNOWLEDGE SLAVE ACKNOWLEDGE SLAVE ACKNOWLEDGE
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To read from a register, the master first generates a START 
condition. Then it sends the slave address for the device 
it wants to communicate with. The least significant bit 
(LSB) of the slave address must indicate that the master 
wants to write to the slave. The addressed device will 
then acknowledge the master.

The master writes the register address it wants to access 
and waits for the slave to acknowledge. The master then 
generates a repeated START condition and resends the 

slave address sent previously. The least significant bit 
(LSB) of the slave address must indicate that the master 
wants to read from the slave. The addressed device will 
then acknowledge the master.

The master reads the register data sent by the slave and 
sends a no acknowledge signal to stop reading. The 
master then generates a STOP condition to end the data 
transfer.

Figure 11. Register byte read protocol

S A6 A5 A4 A3 A2 A1 A0 W A D7 D6 D5 D4 D3 D2 D1 D0 A Sr A6 A5 A4 A3 A2 A1 A0 R A D7 D6 D5 D4 D3 D2 D1 D0 A P

START
CONDITION MASTER WILL WRITE DATA MASTER WILL READ DATA

REPEATED START
CONDITION

STOP
CONDITION

MASTER SENDS
SLAVE ADDRESS

MASTER SENDS
SLAVE ADDRESS

MASTER WRITES
REGISTER ADDRESS

MASTER READS
REGISTER DATA

SLAVE ACKNOWLEDGE SLAVE ACKNOWLEDGE SLAVE ACKNOWLEDGE MASTER NOT
ACKNOWLEDGE
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Pin Name Description

1 LED -VE LED cathode

2 NC No connection

3 LED +VE LED anode 

4 SDA Bidirectional data pin. A pull-up resistor should be tied to SDA because it goes tri-state to 
output logic 1

5 DVDD Digital power pin

6 SCL Serial interface clock 

7 AVDD Analog power pin 

8 SLEEP Sleep pin. When SLEEP = 1, the device goes into sleep mode. In sleep mode, all analog circuits 
are powered down and the clock signal is gated away from the core logic resulting in very low 
current consumption.

9 AGND Analog ground pin 

10 XRST Reset pin. Global, asynchronous, active-low system reset. When asserted low, XRST resets all 
registers. Minimum reset pulse low is 1us and must be provided by external circuitry.

11 DGND Digital ground pin 

12 XCLK External clock input

Mechanical Drawing

SENSOR

PCB

LIGHT SEPARATOR

LED

SECTION  A - A

1.80

A A

3.90

4.50

1
12 11 10

9

8

7
654

2

3

1

2

3

ORIENTATION MARK

0.80

BOTTOM SIDE

LED PAD
(AT TOP SIDE)

TOP SIDE
(LED AREA)

FOOTPRINT AT BOTTOM SIDE

12

4
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Description Nominal Tolerances

Body size (W, mm) 3.90 +0.6

Body size (L, mm) 4.50 ±0.2

Overall thickness (t, mm) 1.80 ±0.2 

Terminal pitch (mm) 0.8 ±0.08 
   

Figure 13: Luminous intensity vs forward current (LED)  Figure 12: Forward current vs forward voltage (LED)

Reflow Profile

It is recommended that Henkel Pb-free solder paste LF310 be used for soldering ADJD-S371-QR999. Below is the 
recommended reflow profile.

DELTACOOLING =
2°C/SEC. MAX.

DELTAFLUX = 2°C/SEC. MAX.

DELTARAMP = 
1°C/SEC. MAX.

tPRE =
40 to 60 SEC. MAX.

tREFLOW =
20 to 40 SEC. MAX.

T PEAK
230° ± 5°C

T REFLOW
218°C

TMAX
160°C

TMIN
120°C
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Recommended Land Pattern (on customer board)

Recommended Aperture Dimensions with Respect to Mounting Axis on Customer Board

2.20

2.10

5.00

3.00

0.80 (12x)

0.50 (12x)

2.101.602.404.40

R 0.50

MIN ∅ 4.50

WINDOW/ BOUNDARY FOR
OBSTACLE-FREE LIGHT PATH

LAND PATTERN
(ON CUSTOMER BOARD)

MIN. 2.90

CENTER OF THE FOOTPRINT
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Recommendations for Handling and Storage of ADJD-S371-QR999 

This product is qualified as Moisture Sensitive Level 3 per Jedec J-STD-020. Precautions when handling this moisture 
sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note AN5305 
Handling Of Moisture Sensitive Surface Mount Devices for details.

A. Storage before use
-	 Unopened moisture barrier bag (MBB) can be stored at 30°C and 90% RH or less for maximum 1 year.
-	 It is not recommended to open the MBB prior to assembly (e.g., for IQC).
-	 It should also be sealed with a moisture absorbent material (Silica Gel) and an indicator card (cobalt chloride) 

to indicate the moisture within the bag.

B. Control after opening the MBB
-	 The humidity indicator card (HIC) shall be read immediately upon opening of MBB.
-	 The components must be kept at <30°C/60% RH at all time and all high temperature related process including 

soldering, curing or rework need to be completed within 168 hrs.

C. Control for unfinished reel
-	 For any unused components, they need to be stored in sealed MBB with desiccant or desiccator at <5% RH.

D. Control of assembled boards
-	 If the PCB soldered with the components is to be subjected to other high temperature processes, the PCB 

need to be stored in sealed MBB with desiccant or desiccator at <5% RH to ensure no components have 
exceeded their floor life of 168 hrs.

E. Baking is required if:
-	  “10%” or “15%” HIC indicator turns pink.
-	 The components are exposed to condition of >30°C/60% RH at any time.
-	 The components floor life exceeded 168 hrs.
-	 Recommended baking condition (in component form): 125°C for 24 hrs.
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Package Tape and Reel Dimensions

Reel Dimensions

Carrier Tape Dimensions

Notes:
1. AO measured at 0.3mm above base of pocket
2. 10 pitches cumulative tolerance is ±0.2mm
3. Dimensions are in millimeters (mm)

(F
)5

.50
±0

.05

(E
1)

1.7
5±

0.1
0

(W
)1

2.0
0±

0.1
0

(P2)2.00±0.05

(PO)4.00±0.10

(P1)8.00±0.10

(T)0.30±0.05

(KO)1.95±0.10

Ø1.50± 0.00
0.10

(AO)4.20±0.10

R0.50

Ø1.50 Min

(R
ef

 1.
50

)

(Ref 0.75)

Note: 
1. Dimensions are in milimeters (mm)
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Appendix A: Typical Application Diagram

BUFFER

LED
DRIVER

10K

10K 10K10K

HOST SYSTEM

XRST

SDA

SCL

XRST

SDA

SCL

SLEEP XCLK

LED +VE

LED -VE

EXTERNAL OSCILLATOR IF EXTERNAL
CLOCK MODE IS SELECTED

DVDD

VOLTAGE
REGULATOR

VOLTAGE
REGULATOR

DVDD DGND AVDD
HOST

SYSTEM

DECOUPLING
CAPACITOR
(100 nF)

DECOUPLING
CAPACITOR
(100 nF)

AGND

COLOR SENSOR
MODULE

Note: 
1	  It is recommended to drive the LED with DC current at IF = 5mA
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Appendix B: Sensor Register List
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1) CTRL: Control Register

B7 B6 B5 B4 B3 B2 B1 B0

N/A GOFS GSSR

N/A Not available.

GSSR Get sensor reading. Active high and automatically cleared. Result is stored in registers 64-71 (DEC).

GOFS Get offset reading. Active high and automatically cleared. Result is stored in registers 72-75 (DEC).

2) CONFIG: Configuration Register

B7 B6 B5 B4 B3 B2 B1 B0

N/A CAP_RED[3:0]

B7 B6 B5 B4 B3 B2 B1 B0

N/A EXTCKL SLEEP TOFS

N/A Not available.

EXTCLK External clock mode. Active high.

SLEEP Sleep mode. Active high and external clock mode only. Automatically cleared if otherwise.

TOFS Trim offset mode. Active high.

B7 B6 B5 B4 B3 B2 B1 B0

N/A CAP_GREEN[3:0]

3) CAP_RED: Capacitor Settings Register for Red Channel

N/A Not available.

CAP_RED Number of red channel capacitors.

N/A Not available.

CAP_BLUE Number of blue channel capacitors.

4) CAP_GREEN: Capacitor Settings Register for Green Channel

N/A Not available.

CAP_GREEN Number of green channel capacitors.

5) CAP_BLUE: Capacitor Settings Register for Blue Channel

B7 B6 B5 B4 B3 B2 B1 B0

N/A CAP_BLUE[3.0]
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N/A Not available.

CAP_CLEAR Number of clear channel capacitors.

6) CAP_CLEAR: Capacitor Settings Register for Clear Channel

B7 B6 B5 B4 B3 B2 B1 B0

N/A CAP_CLEAR[3:0]

INT_RED Number of red channel integration time slots.

7) INT_RED:  Integration Time Slot Setting Register for Red Channel

B7 B6 B5 B4 B3 B2 B1 B0

CAP_RED[7:0]

B7 B6 B5 B4 B3 B2 B1 B0

N/A INT_RED[11:8]

INT_GREEN Number of green channel integration time slots.

8) INT_GREEN:  Integration Time Slot Setting Register for Green Channel

B7 B6 B5 B4 B3 B2 B1 B0

INT_GREEN[7:0]

B7 B6 B5 B4 B3 B2 B1 B0

N/A INT_GREEN[11:8]

INT_BLUE Number of blue channel integration time slots.

9) INT_BLUE: Integration Time Slot Setting Register for Blue Channel

B7 B6 B5 B4 B3 B2 B1 B0

INT_BLUE[7:0]

B7 B6 B5 B4 B3 B2 B1 B0

N/A INT_BLUE[11:8]
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INT_CLEAR Number of clear channel integration time slots.

10) INT_CLEAR: Integration Time Slot Setting Register for Clear Channel

B7 B6 B5 B4 B3 B2 B1 B0

INT_CLEAR[7:0]

B7 B6 B5 B4 B3 B2 B1 B0

N/A INT_CLEAR[11:8]

DATA_RED Red channel ADC data.

11) DATA_RED_LO: Low Byte Register of Red Channel Sensor ADC Reading 

B7 B6 B5 B4 B3 B2 B1 B0

DATA_RED[7:0]

N/A Not available.

DATA_RED Red channel ADC data.

12) DATA_RED_HI: High Byte Register of Red Channel Sensor ADC Reading

B7 B6 B5 B4 B3 B2 B1 B0

                            N/A DATA_RED[9:8]

DATA_GREEN Green channel ADC data.

13) DATA_GREEN_LO: Low Byte Register of Green Channel Sensor ADC Reading

B7 B6 B5 B4 B3 B2 B1 B0

DATA_GREEN[7:0]

N/A Not available.

DATA_GREEN Green channel ADC data.

14) DATA_GREEN_HI:  High Byte Register of Green Channel Sensor ADC Reading

B7 B6 B5 B4 B3 B2 B1 B0

                            N/A DATA_GREEN[9:8]
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DATA_BLUE Blue channel ADC data.

15) DATA_BLUE_LO: Low Byte Register of Blue Channel Sensor ADC Reading

B7 B6 B5 B4 B3 B2 B1 B0

DATA_BLUE[7:0]

N/A Not available.

DATA_BLUE Blue channel ADC data.

16) DATA_BLUE_HI: High Byte Register of Blue Channel Sensor ADC Reading

DATA_CLEAR Clear channel ADC data.

17) DATA_CLEAR_LO: Low Byte Register of Clear Channel Sensor ADC Reading

B7 B6 B5 B4 B3 B2 B1 B0

DATA_CLEAR[7:0]

N/A Not available.

DATA_CLEAR Clear channel ADC data.

18) DATA_CLEAR_HI: High Byte Register of Clear Channel Sensor ADC Reading

B7 B6 B5 B4 B3 B2 B1 B0

                            N/A DATA_CLEAR[9:8]

B7 B6 B5 B4 B3 B2 B1 B0

                            N/A DATA_BLUE[9:8]

19) OFFSET_RED: Offset Data Register for Red Channel

B7 B6 B5 B4 B3 B2 B1 B0

SIGN_RED OFFSET_RED[6:0]

SIGN_RED Sign bit. 0 = POSITIVE, 1 = NEGATIVE.

OFFSET_RED Red channel ADC offset data.
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20) OFFSET_GREEN: Offset Data Register for Green Channel

B7 B6 B5 B4 B3 B2 B1 B0

SIGN_GREEN OFFSET_GREEN[6:0]

SIGN_GREEN Sign bit. 0 = POSITIVE, 1 = NEGATIVE.

OFFSET_GREEN Green channel ADC offset data.

21) OFFSET_BLUE: Offset Data Register for Blue Channel

B7 B6 B5 B4 B3 B2 B1 B0

SIGN_BLUE OFFSET_BLUE[6:0]

SIGN_BLUE Sign bit. 0 = POSITIVE, 1 = NEGATIVE.

OFFSET_BLUE Blue channel ADC offset data.

22) OFFSET_CLEAR: Offset Data Register for Clear Channel

B7 B6 B5 B4 B3 B2 B1 B0

SIGN_CLEAR OFFSET_CLEAR[6:0]

SIGN_CLEAR Sign bit. 0 = POSITIVE, 1 = NEGATIVE.

OFFSET_CLEAR Clear channel ADC offset data.



Appendix 1: Sensor registers list

ADD 

(DEC)

ADD 

(HEX) MNEMONIC RESET ACCESS B7 B6 B5 B4 B3 B2 B1 B0

0 0 CTRL 0 R/W N/A GOFS GSSR

1 1 CONFIG 0 R/W N/A EXTCLK SLEEP TOFS

6 6 CAP_RED 15 R/W N/A CAP_RED[3:0]

7 7 CAP_GREEN 15 R/W N/A CAP_GREEN[3:0]

8 8 CAP_BLUE 15 R/W N/A CAP_BLUE[3:0]

9 9 CAP_CLEAR 15 R/W N/A CAP_CLEAR[3:0]

10 A INT_RED_LO 0 R/W INT_RED[7:0]

11 B INT_RED_HI 0 R/W  INT_RED[11:8]

12 C INT_GREEN_LO 0 R/W INT_GREEN[7:0]

13 D INT_GREEN_HI 0 R/W  INT_GREEN[11:8]

14 E INT_BLUE_LO 0 R/W INT_BLUE[7:0]

15 F INT_BLUE_HI 0 R/W  INT_BLUE[11:8]

16 10 INT_CLEAR_LO 0 R/W INT_CLEAR[7:0]

17 11 INT_CLEAR_HI 0 R/W  INT_CLEAR[11:8]

64 40 DATA_RED_LO 0 R DATA_RED[7:0]

65 41 DATA_RED_HI 0 R N/A DATA_RED[9:8]

66 42 DATA_GREEN_LO 0 R DATA_GREEN[7:0]

67 43 DATA_GREEN_HI 0 R N/A DATA_GREEN[9:8]

68 44 DATA_BLUE_LO 0 R DATA_BLUE[7:0]

69 45 DATA_BLUE_HI 0 R N/A DATA_BLUE[9:8]

70 46 DATA_CLEAR_LO 0 R DATA_CLEAR[7:0]

71 47 DATA_CLEAR_HI 0 R N/A DATA_CLEAR[9:8]

72 48 OFFSET_RED 0 R SIGN_RED OFFSET_RED[6:0]

73 49 OFFSET_GREEN 0 R SIGN_GREEN OFFSET_GREEN[6:0]

74 4A OFFSET_BLUE 0 R SIGN_BLUE OFFSET_BLUE[6:0]

75 4B OFFSET_CLEAR 0 R SIGN_CLEAR OFFSET_CLEAR[6:0]
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