

Optimizing rotational acceleration curves
for minimum energy use in electric

motors.

12/15/06
Fall ’06 T&AM 491 Final Report, 3 Credits

Andrew Spielberg
Engineering Physics 2010

Contact Information:
E-mail: Aes89@Cornell.edu

Cornell Phone: 1-(516)-426-5809
Cornell Address: 5244 High Rise 5, Ithaca, NY, 14853

Home Phone: 1-(516)-221-2774
Home Address: 3036 Clovermere Road, Wantagh,

Purpose/Abstract:

The purpose of this project is to determine what the most efficient acceleration

path for rotating a wheel is; that is, we will see which acceleration curve uses the least
amount of energy. This report will present the four different methods for calculating the
minimum energy value and its corresponding accelerations, each more accurate than the
last as we factor in asymmetry, friction, and negligible generator effects. For the
purposes of this experiment, we will assume that we are rotating the motor an arbitrary 60
degrees in an arbitrary .5 seconds. The most important part of this experiment is to create
a working model to find the optimal efficiency of a motor for any input values of motor
constants, distance, or time. In every instance we will calculate the energy using a
summation of very small acceleration piecewise “steps.” Calculations are done with the
MATLAB function fminunc.

 Introduction:

 For walking robots that simulate humanoid gaits, oftentimes the goal is to
preserve the incredible efficiency that humans have in the translation. In the most recent
lab project, the goal was to make the world’s longest walking robot. This was a large
part of the inspiration to find which rotational acceleration curve for the used motors
would be most efficient. We really were not sure what the optimal acceleration curve
would be; all we had was the hypothesis that a constant acceleration would be optimal.
There was no evidence for this, and so we sought to compute the actual answer (which
would turn out to be different from our hypothesis).

For the actual task, we decided to simulate the energy cost of spinning a
hypothetical wheel on a motor. We chose the specific motor related constants used in
this experiment based on corresponding motors used in our lab for the walking robot
project. Other variables, such as the distance needed to rotate this wheel and the time
allowed for the rotation were chosen arbitrarily. We chose to measure the rotation of the
wheel 60 degrees over the time span of half a second. These values can easily be
changed to fit the need of the application with no necessary change in the method. Four
different methods were then implemented to determine the optimal acceleration path,
each with the intention of being more realistic and accurate than the last.
 I will now explain the basics between the four different methods implemented in
determining the optimal acceleration path. The first step was to make the problem as
simple as possible. This meant making a number of assumptions. Firstly, the
acceleration curves would be symmetrical. In other words, whatever was done in the first
half of the rotation would be mirrored in the second half of the rotation, but negated.
Secondly, there would be no motor friction. Thirdly, the motor does not act as a
generator (this is not really a simplification since it is probably true, as the specific motor
we are using in this experiment has a negligible generator effect. Later, however we will
assume the motor acts like a generator for computational reasons). This means that we
are only considering the first half of the symmetrical curve. After this first model, we
will then factor in asymmetry in the second model, and assume it acts like a complete

generator for computational purposes. The third model will modify the second model to
incorporate friction. Last, we will discuss the possibility of modifying the third model as
if the motor did not act like a generator.
 One other key simplification is made here though. Since the mathematics for
solving a single equation for the optimal acceleration over time is difficult, we will
instead model this through a large number of short constant acceleration curves. We will
therefore get a step-function that could be connected with a smooth line, and should
theoretically give us the smooth curve function for which we are looking.

Equations:

 We will begin by formulating our energy formula. The formula for the power
used by a motor is:

P=Ic
2R + Τω

Where P is the power, Ic is the current through the motor, R is the resistance, T is the
torque of the motor, and ω is the angular velocity. This is neglecting friction (other than
the Ic

2R term) or any external effects of the surroundings. By multiplying all values by
dt, we can obtain:

E= Ic
 2R dt + Τω dt

Where E is the energy, and dt is the length of one “step” of the acceleration curve. In this
simplification, dt is equal to the total time, one half a second, divided by 2n, where n is
the number of “steps” in the acceleration curve. The 2 is there since we are only dealing
with the first half of the curve (this is because of the symmetry. The 60 degree total
distance will be halved to 30 degrees as well).
 Next, we have a few motor equations.

Ic=T / K

Where K is a motor constant relating the input current to the output torque in Newton
meters per amp. Substituting this back into the energy equation:

E=T /K dt / K + Τω dt

Next, we know that T=Igα, where Ig is the moment of inertia (which we will assume to be
an arbitrary value, .1, for this model), and α is the rotational acceleration of a “step.”
Finally, we must scale this torque by the gear ratio (66). So T= Igα/G, where G is the
gear ratio. Therefore, we have our final energy formula for the first model in terms of
acceleration:

E= Σ((Igα)2R dt / (G2 K2) + Igαω dt)

 The Σ denotes that this is a summation for every “step.” One other detail should
be made. ω is the average rotational velocity for a “step.” Since acceleration is constant
for a “step,” we can take this to be the “middle” value on a “step.”

 Constants:

Ig = .1 (Kg m2)
R=1.7 (ohms)
K=.01818
t, time for total rotation=.5 (seconds)
d, total distance of rotation = (π/3 radians)
c1, velocity dependent friction = .0155
c0, constant friction = .0729
Gear ratio = 66

R, K, c1, and c0 have been found experimentally.
Ig, t, and d are arbitrary values.

Simulations:
Since we can’t assume anything about how the acceleration curve should look

(besides the symmetry in this scenario), we’re going to have to find the minimum energy
curve through simulation alone. MATLAB’s fminunc search will be most beneficial to
us, since searching through every value otherwise would take far too long using a
simulator like MATLAB (believe me, I tried). Let’s assume for now that n will equal
100 “steps.” Since we want the accelerations to add up to just enough to get the motor
the distance it needs to go (30 degrees when assuming symmetry), we will allow the first
99 “steps” to be free values, and the last acceleration curve to be calculated so that the
wheel will reach half the total distance just at the end of the first half of the symmetrical
curve. To do this, we add the distance after each step by multiplying the acceleration by
the time of the step squared. Then we take the required remaining distance, divide it by
the time of the step to find the necessary average velocity, subtract that from the current
velocity, and divide it by the time of the step again. This can be seen in the MATLAB
code in appendix 1.

The result found for the first scenario, a non-generator, symmetrical acceleration
curve with no friction, is shown below. As can be seen, for such a scenario, the most
efficient method is to start with a high acceleration and linearly decrease it, and then
mirror this with negative accelerations. Through extrapolation, there should be a slight
vertical drop between the two halves, resulting in a non-smooth curve.

Acceleration vs. n

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Acceleration curve/step # (n)

Simulation 1 – Assuming symmetry, no friction, and negligible generator

properties

Energy for half = .6290
Total energy = 1.2581

For the second scenario, we remove the assumption of asymmetry. However, this

requires a new method of calculating the ending velocity and acceleration. Instead of
having n-1 fixed acceleration “steps,” now there are n-2 fixed “steps.” The code for
calculating this is included in Appendix 2. This simulation yields similar results to the
first, in that the acceleration curve is that of a constant linear deceleration, but since we
are not assuming symmetry the linear deceleration continues throughout the entire 60
degrees of rotation, without a break.

Ac
ce

le
ra

tio
n

(r
ad

ia
ns

/s
ec

on
d^

2)

1 2 3 4 5 6 7 8 9 10
-25

-20

-15

-10

-5

0

5

10

15

20

25

acceleration curve #

Acceleration, Velocity, and Distance vs. n

distance

velocity

acceleration

 Simulation 2 – Assuming asymmetry, no friction, and generator properties

Energy=1.2556

For the third scenario, friction is being factored in, and any “negative” energy is

then “added” to the total energy consumed, resulting in a lower energy than if we were
assuming the motor not to be a generator. The truth is that the motor being used probably
is a negligible generator, but neither the MATLAB function fminunc nor our current
homebrewed gradient descent program is able to calculate an optimal path if we use an if
statement to assign negative energies of “steps” to zero. Data and results are shown on
the next page, code is in Appendix 3. The equation for torque with the inclusion of motor
friction is:

T=Iα + c1 ω + c0

Where c1 is a velocity related friction and c0 is a constant friction. This should
be divided by the gear ratio and then substituted back into the energy equation for torque.

D
is

ta
nc

e
in

 ra
di

an
s,

 V
el

oc
ity

 in

ra
di

an
s/

se
co

nd
, a

cc
el

er
at

io
n

in

ra
di

an
s/

se
co

nd
^2

0 10 20 30 40 50 60 70 80 90 100
-25

-20

-15

-10

-5

0

5

10

15

20

25

acceleration curve #

Acceleration, Velocity, and Distance vs. n

distance

velocity

acceleration

Simulation 3 – Assuming friction, asymmetry, and generator properties

Energy=1.3670

As expected, this costs more energy than the second simulation because of

friction.

Discussion of results:

As expected, the total energy is greater with friction than without, and the

minimum energy is less when we don’t force a non-optimal symmetry. There are two
differences in the energy calculation between models 1 and 2. First, for model 1, when
you extrapolate the second half of the first graph (remember that this is only the first half
of the symmetrical curve) there is a vertical drop between the first and second halves
rather than a smooth line. Also, model 1 assumes that the motor is a negligible generator,
whereas model 2 (and 3) assumes that it is a generator. One of the notable things about
this final data is just how linearly consistent it actually is. In all scenarios, the difference
in the rate of change does not fluctuate by more than .0002. The slope of the acceleration
curve is approximately -.5028 over 100 “steps,” denoting a total change of 50.28. Any
irregularities such as a miniscule bump would probably smooth out if the number of

D
is

ta
nc

e
in

 ra
di

an
s,

 V
el

oc
ity

 in

ra
di

an
s/

se
co

nd
, a

cc
el

er
at

io
n

in

ra
di

an
s/

se
co

nd
^2

“steps” was to approach infinity and the length of each “step” was to approach zero.
Additionally, there is a slight asymmetry to the results; the magnitude for the last
acceleration curve is approximately 1 radian per second2. There is a possibility that this
asymmetry would disappear as the number of steps were to increase to a very high
number, or perhaps this actually is more optimal than a balanced line.

A possible generalization we can make is that as long as that troublesome if
statement of energy being less than zero does not exist, the optimal acceleration path for
motor efficiency is a negative linear relationship. With the if statement, it is unknown if
this generalization holds true.

Possible improvements:

The final simulation is probably the most important, but unfortunately, I’m yet to

figure out a way to compute this. In the future, it would definitely be beneficial to find
either a method of computing the optimal efficiency other than the gradient or line-search
search, one that can compute with the problematic if “Energy<0” statement still as a part
of the equation and finish the fourth simulation. Additionally, for a direct application this
model will be somewhat inaccurate. That’s because the model being used here is actually
only for a wheel as opposed to an actual robotic leg. If there’s a leg involved and not
simply a wheel, the calculations become vastly more complicated as there is more to
factor in, such as air resistance, different moments of inertia, etc. Inclusion of these
variables would increase the accuracy of this experiment.

Conclusion:

In the end we did manage to find a minimum energy and a corresponding

acceleration curve for rotating our hypothetical wheel 60 degrees in .5 seconds, one that
was different than our original guess. When factoring in asymmetry and friction, we
found that the minimum energy it would take for the rotation would be 1.3670 Joules,
and that the most efficient way to do this is to start the wheel off at a high acceleration of
about 24 radians per second^2 and then to lower it back down to approximately the same
negative acceleration. This method of finding the optimal acceleration can be applied to
any future necessary motor based projects. Additionally, perhaps the best information
that we can get out of this is that using the above specification, it seems a negative linear
path is most likely to be optimal for motor efficiency.

Acknowledgements:

Special thanks to Daniël Karssen for some of the motor formulas as well as

guiding me through the process, Pranav Bhounsule for helping with MATLAB’s methods
of computing, Carlos Arango for his motor constants, and Andy Ruina and Jason Cortell
for the opportunity to work in their lab.

Appendix 1: MATLAB code for first model:
function [Energy, a_last]=minEnergyFunction(n, a)
I=.1;
R=1.7;
K=.01818;
T=0.5;
dt=T/2/n;
d=pi/3;
gear=66;

vel_avg = 0;
vel_end = 0;
pos_end = 0;
Energy=0;

for k=1:n
 if k<n
 vel_avg = vel_end + a(k)/2*dt;
 vel_end = vel_end + a(k)*dt;
 pos_end = pos_end + vel_avg*dt;
 else
 vel_avg = (d/2 - pos_end)/dt;
 a_last = (vel_avg - vel_end)/dt*2;
 a(k) = a_last;
 pos_end = pos_end + vel_avg*dt;
 end
 Energy = Energy + (a(k)^2*I^2/K^2/gear^2*R*dt) +
(I*a(k)*vel_avg*dt/gear);
end

Appendix 2: MATLAB code for second model:

function [Energy, data]=minEnergyFunction2(n, a)
I=.1;
R=1.7;
K=.01818;
T=0.5;
dt=T/n;
d=pi/3;
gear=66;

vel_avg = zeros(n,1);
vel_end = zeros(n,1);
pos_end = zeros(n,1);
Energy=0;

for k=1:n
 if k==(n-1)
 a_nexttolast=-vel_end(k-1)*3/2/dt+(d-pos_end(k-1))/(dt^2);
 a(k)=a_nexttolast;
 elseif k==n
 a_last=-vel_end(k-1)/dt;
 a(k)=a_last;
 end
 if k>1
 vel_avg(k) = vel_end(k-1) + a(k)/2*dt;
 vel_end(k) = vel_end(k-1) + a(k)*dt;
 pos_end(k) = pos_end(k-1) + vel_avg(k)*dt;
 else
 vel_avg(k) = a(k)/2*dt;
 vel_end(k) = a(k)*dt;
 pos_end(k) = vel_avg(k)*dt;
 end
 Energy = Energy + a(k)^2*I^2/K^2*R/gear^2*dt +
I*a(k)*vel_avg(k)*dt/gear;
end

data = [pos_end, vel_end, a'];

Appendix 3: MATLAB code for models 3 and 4:

function [Energy, data]=minEnergyFunction3(n, a)
I=.1;
R=1.7;
K=.01818;
T=0.5;
dt=T/n;
d=pi/3;
c1=.0155;
c0=.0729;
gear=66;

vel_avg = zeros(n,1);
vel_end = zeros(n,1);
pos_end = zeros(n,1);
Energy=0;

for k=1:n
 if k==(n-1)
 a_nexttolast=-vel_end(k-1)*3/2/dt+(d-pos_end(k-1))/(dt^2);
 a(k)=a_nexttolast;
 elseif k==n
 a_last=-vel_end(k-1)/dt;
 a(k)=a_last;
 end
 if k>1
 vel_avg(k) = vel_end(k-1) + a(k)/2*dt;
 vel_end(k) = vel_end(k-1) + a(k)*dt;
 pos_end(k) = pos_end(k-1) + vel_avg(k)*dt;
 else
 vel_avg(k) = a(k)/2*dt;
 vel_end(k) = a(k)*dt;
 pos_end(k) = vel_avg(k)*dt;
 end

 T=(a(k)*I+c1*vel_avg(k)+c0)/gear;
 Add_Energy(k)=T^2/K^2*R*dt + T*vel_avg(k)*dt*gear;
% if Add_Energy(k)<0
% Add_Energy(k)=0; <- - - - - The Energy<0 problem.
% end If including these lines, the code can't be optimized

 Energy = Energy+Add_Energy(k);
end

data = [pos_end, vel_end, a'];

