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Purpose/Abstract: 
 
The purpose of this project is to determine what the most efficient acceleration 

path for rotating a wheel is; that is, we will see which acceleration curve uses the least 
amount of energy.  This report will present the four different methods for calculating the 
minimum energy value and its corresponding accelerations, each more accurate than the 
last as we factor in asymmetry, friction, and negligible generator effects.  For the 
purposes of this experiment, we will assume that we are rotating the motor an arbitrary 60 
degrees in an arbitrary .5 seconds.  The most important part of this experiment is to create 
a working model to find the optimal efficiency of a motor for any input values of motor 
constants, distance, or time.  In every instance we will calculate the energy using a 
summation of very small acceleration piecewise “steps.”  Calculations are done with the 
MATLAB function fminunc. 

 
 Introduction: 
 
 For walking robots that simulate humanoid gaits, oftentimes the goal is to 
preserve the incredible efficiency that humans have in the translation.  In the most recent 
lab project, the goal was to make the world’s longest walking robot.  This was a large 
part of the inspiration to find which rotational acceleration curve for the used motors 
would be most efficient.  We really were not sure what the optimal acceleration curve 
would be; all we had was the hypothesis that a constant acceleration would be optimal.  
There was no evidence for this, and so we sought to compute the actual answer (which 
would turn out to be different from our hypothesis). 

For the actual task, we decided to simulate the energy cost of spinning a 
hypothetical wheel on a motor.  We chose the specific motor related constants used in 
this experiment based on corresponding motors used in our lab for the walking robot 
project.  Other variables, such as the distance needed to rotate this wheel and the time 
allowed for the rotation were chosen arbitrarily.  We chose to measure the rotation of the 
wheel 60 degrees over the time span of half a second.  These values can easily be 
changed to fit the need of the application with no necessary change in the method.  Four 
different methods were then implemented to determine the optimal acceleration path, 
each with the intention of being more realistic and accurate than the last. 
 I will now explain the basics between the four different methods implemented in 
determining the optimal acceleration path.  The first step was to make the problem as 
simple as possible.  This meant making a number of assumptions.  Firstly, the 
acceleration curves would be symmetrical.  In other words, whatever was done in the first 
half of the rotation would be mirrored in the second half of the rotation, but negated.  
Secondly, there would be no motor friction.  Thirdly, the motor does not act as a 
generator (this is not really a simplification since it is probably true, as the specific motor 
we are using in this experiment has a negligible generator effect.  Later, however we will 
assume the motor acts like a generator for computational reasons).  This means that we 
are only considering the first half of the symmetrical curve.  After this first model, we 
will then factor in asymmetry in the second model, and assume it acts like a complete 



generator for computational purposes.  The third model will modify the second model to 
incorporate friction.  Last, we will discuss the possibility of modifying the third model as 
if the motor did not act like a generator. 
 One other key simplification is made here though.  Since the mathematics for 
solving a single equation for the optimal acceleration over time is difficult, we will 
instead model this through a large number of short constant acceleration curves.  We will 
therefore get a step-function that could be connected with a smooth line, and should 
theoretically give us the smooth curve function for which we are looking. 
 
Equations: 
 
 We will begin by formulating our energy formula.  The formula for the power 
used by a motor is: 
 

P=Ic
2R + Τω 

 
Where P is the power, Ic is the current through the motor, R is the resistance, T is the 
torque of the motor, and ω is the angular velocity.  This is neglecting friction (other than 
the Ic

2R term) or any external effects of the surroundings.  By multiplying all values by 
dt, we can obtain: 
 

E= Ic
 2R dt + Τω dt 

 
Where E is the energy, and dt is the length of one “step” of the acceleration curve.  In this 
simplification, dt is equal to the total time, one half a second, divided by 2n, where n is 
the number of “steps” in the acceleration curve.  The 2 is there since we are only dealing 
with the first half of the curve (this is because of the symmetry.  The 60 degree total 
distance will be halved to 30 degrees as well). 
 Next, we have a few motor equations. 
 

Ic=T / K 
 

Where K is a motor constant relating the input current to the output torque in Newton 
meters per amp.  Substituting this back into the energy equation: 
 

E=T /K dt / K + Τω dt 
 

Next, we know that T=Igα, where Ig is the moment of inertia (which we will assume to be 
an arbitrary value, .1, for this model), and α is the rotational acceleration of a “step.”  
Finally, we must scale this torque by the gear ratio (66). So T= Igα/G, where G is the 
gear ratio. Therefore, we have our final energy formula for the first model in terms of 
acceleration: 
 

E= Σ((Igα)2R dt / (G2 K2) + Igαω dt) 
 



 The Σ denotes that this is a summation for every “step.” One other detail should 
be made.  ω is the average rotational velocity for a “step.”  Since acceleration is constant 
for a “step,” we can take this to be the “middle” value on a “step.” 
 
 Constants: 
 
Ig = .1 (Kg m2) 
R=1.7 (ohms) 
K=.01818 
t, time for total rotation=.5 (seconds) 
d, total distance of rotation = (π/3 radians) 
c1, velocity dependent friction = .0155 
c0, constant friction = .0729 
Gear ratio = 66 
 
R, K, c1, and c0 have been found experimentally. 
Ig, t, and d are arbitrary values. 
 

Simulations: 
Since we can’t assume anything about how the acceleration curve should look 

(besides the symmetry in this scenario), we’re going to have to find the minimum energy 
curve through simulation alone.  MATLAB’s fminunc search will be most beneficial to 
us, since searching through every value otherwise would take far too long using a 
simulator like MATLAB (believe me, I tried).  Let’s assume for now that n will equal 
100 “steps.”  Since we want the accelerations to add up to just enough to get the motor 
the distance it needs to go (30 degrees when assuming symmetry), we will allow the first 
99 “steps” to be free values, and the last acceleration curve to be calculated so that the 
wheel will reach half the total distance just at the end of the first half of the symmetrical 
curve.  To do this, we add the distance after each step by multiplying the acceleration by 
the time of the step squared.  Then we take the required remaining distance, divide it by 
the time of the step to find the necessary average velocity, subtract that from the current 
velocity, and divide it by the time of the step again.  This can be seen in the MATLAB 
code in appendix 1. 

The result found for the first scenario, a non-generator, symmetrical acceleration 
curve with no friction, is shown below.  As can be seen, for such a scenario, the most 
efficient method is to start with a high acceleration and linearly decrease it, and then 
mirror this with negative accelerations.  Through extrapolation, there should be a slight 
vertical drop between the two halves, resulting in a non-smooth curve. 
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Simulation 1 – Assuming symmetry, no friction, and negligible generator 

properties 
 
 

Energy for half = .6290 
Total energy = 1.2581 

 
For the second scenario, we remove the assumption of asymmetry.  However, this 

requires a new method of calculating the ending velocity and acceleration.  Instead of 
having n-1 fixed acceleration “steps,” now there are n-2 fixed “steps.”  The code for 
calculating this is included in Appendix 2.  This simulation yields similar results to the 
first, in that the acceleration curve is that of a constant linear deceleration, but since we 
are not assuming symmetry the linear deceleration continues throughout the entire 60 
degrees of rotation, without a break. 
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 Simulation 2 – Assuming asymmetry, no friction, and generator properties 

 
Energy=1.2556 

 
For the third scenario, friction is being factored in, and any “negative” energy is 

then “added” to the total energy consumed, resulting in a lower energy than if we were 
assuming the motor not to be a generator.  The truth is that the motor being used probably 
is a negligible generator, but neither the MATLAB function fminunc nor our current 
homebrewed gradient descent program is able to calculate an optimal path if we use an if 
statement to assign negative energies of “steps” to zero.  Data and results are shown on 
the next page, code is in Appendix 3.  The equation for torque with the inclusion of motor 
friction is: 

 
 

T=Iα + c1 ω + c0 
 

Where c1 is a velocity related friction and c0 is a constant friction.  This should 
be divided by the gear ratio and then substituted back into the energy equation for torque. 
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Simulation 3 – Assuming friction, asymmetry, and generator properties 

 
Energy=1.3670 

 
As expected, this costs more energy than the second simulation because of 

friction. 
 

 
Discussion of results: 
 
As expected, the total energy is greater with friction than without, and the 

minimum energy is less when we don’t force a non-optimal symmetry.  There are two 
differences in the energy calculation between models 1 and 2.  First, for model 1, when 
you extrapolate the second half of the first graph (remember that this is only the first half 
of the symmetrical curve) there is a vertical drop between the first and second halves 
rather than a smooth line.  Also, model 1 assumes that the motor is a negligible generator, 
whereas model 2 (and 3) assumes that it is a generator.  One of the notable things about 
this final data is just how linearly consistent it actually is.  In all scenarios, the difference 
in the rate of change does not fluctuate by more than .0002.  The slope of the acceleration 
curve is approximately -.5028 over 100 “steps,” denoting a total change of 50.28.  Any 
irregularities such as a miniscule bump would probably smooth out if the number of 
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“steps” was to approach infinity and the length of each “step” was to approach zero.  
Additionally, there is a slight asymmetry to the results; the magnitude for the last 
acceleration curve is approximately 1 radian per second2.  There is a possibility that this 
asymmetry would disappear as the number of steps were to increase to a very high 
number, or perhaps this actually is more optimal than a balanced line.   

A possible generalization we can make is that as long as that troublesome if 
statement of energy being less than zero does not exist, the optimal acceleration path for 
motor efficiency is a negative linear relationship.  With the if statement, it is unknown if 
this generalization holds true. 

 
Possible improvements: 
 
The final simulation is probably the most important, but unfortunately, I’m yet to 

figure out a way to compute this.  In the future, it would definitely be beneficial to find 
either a method of computing the optimal efficiency other than the gradient or line-search 
search, one that can compute with the problematic if “Energy<0” statement still as a part 
of the equation and finish the fourth simulation.  Additionally, for a direct application this 
model will be somewhat inaccurate.  That’s because the model being used here is actually 
only for a wheel as opposed to an actual robotic leg.  If there’s a leg involved and not 
simply a wheel, the calculations become vastly more complicated as there is more to 
factor in, such as air resistance, different moments of inertia, etc.  Inclusion of these 
variables would increase the accuracy of this experiment. 
 

Conclusion: 
 
In the end we did manage to find a minimum energy and a corresponding 

acceleration curve for rotating our hypothetical wheel 60 degrees in .5 seconds, one that 
was different than our original guess.  When factoring in asymmetry and friction, we 
found that the minimum energy it would take for the rotation would be 1.3670 Joules, 
and that the most efficient way to do this is to start the wheel off at a high acceleration of 
about 24 radians per second^2 and then to lower it back down to approximately the same 
negative acceleration.  This method of finding the optimal acceleration can be applied to 
any future necessary motor based projects.  Additionally, perhaps the best information 
that we can get out of this is that using the above specification, it seems a negative linear 
path is most likely to be optimal for motor efficiency. 
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Appendix 1: MATLAB code for first model: 
function [Energy, a_last]=minEnergyFunction(n, a) 
I=.1; 
R=1.7; 
K=.01818; 
T=0.5; 
dt=T/2/n; 
d=pi/3; 
gear=66; 
  
vel_avg = 0; 
vel_end = 0; 
pos_end = 0; 
Energy=0; 
  
for k=1:n 
    if k<n 
        vel_avg = vel_end + a(k)/2*dt; 
        vel_end = vel_end + a(k)*dt; 
        pos_end = pos_end + vel_avg*dt; 
    else 
        vel_avg = (d/2 - pos_end)/dt; 
        a_last = (vel_avg - vel_end)/dt*2; 
        a(k) = a_last; 
        pos_end = pos_end + vel_avg*dt; 
    end 
    Energy = Energy + (a(k)^2*I^2/K^2/gear^2*R*dt) + 
(I*a(k)*vel_avg*dt/gear); 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 2: MATLAB code for second model: 
 
function [Energy, data]=minEnergyFunction2(n, a) 
I=.1; 
R=1.7; 
K=.01818; 
T=0.5; 
dt=T/n; 
d=pi/3; 
gear=66; 
  
vel_avg = zeros(n,1); 
vel_end = zeros(n,1); 
pos_end = zeros(n,1); 
Energy=0; 
  
for k=1:n 
    if k==(n-1) 
        a_nexttolast=-vel_end(k-1)*3/2/dt+(d-pos_end(k-1))/(dt^2); 
        a(k)=a_nexttolast; 
    elseif k==n 
        a_last=-vel_end(k-1)/dt; 
        a(k)=a_last; 
    end 
    if k>1 
        vel_avg(k) = vel_end(k-1) + a(k)/2*dt; 
        vel_end(k) = vel_end(k-1) + a(k)*dt; 
        pos_end(k) = pos_end(k-1) + vel_avg(k)*dt; 
    else 
        vel_avg(k) = a(k)/2*dt; 
        vel_end(k) = a(k)*dt; 
        pos_end(k) = vel_avg(k)*dt; 
    end 
    Energy = Energy + a(k)^2*I^2/K^2*R/gear^2*dt + 
I*a(k)*vel_avg(k)*dt/gear; 
end 
  
data = [pos_end, vel_end, a']; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 3: MATLAB code for models 3 and 4: 
 
function [Energy, data]=minEnergyFunction3(n, a) 
I=.1; 
R=1.7; 
K=.01818; 
T=0.5; 
dt=T/n; 
d=pi/3; 
c1=.0155; 
c0=.0729; 
gear=66; 
  
vel_avg = zeros(n,1); 
vel_end = zeros(n,1); 
pos_end = zeros(n,1); 
Energy=0; 
  
for k=1:n 
    if k==(n-1) 
        a_nexttolast=-vel_end(k-1)*3/2/dt+(d-pos_end(k-1))/(dt^2); 
        a(k)=a_nexttolast; 
    elseif k==n 
        a_last=-vel_end(k-1)/dt; 
        a(k)=a_last; 
    end 
    if k>1 
        vel_avg(k) = vel_end(k-1) + a(k)/2*dt; 
        vel_end(k) = vel_end(k-1) + a(k)*dt; 
        pos_end(k) = pos_end(k-1) + vel_avg(k)*dt; 
    else 
        vel_avg(k) = a(k)/2*dt; 
        vel_end(k) = a(k)*dt; 
        pos_end(k) = vel_avg(k)*dt; 
    end 
     
     
    T=(a(k)*I+c1*vel_avg(k)+c0)/gear; 
    Add_Energy(k)=T^2/K^2*R*dt + T*vel_avg(k)*dt*gear; 
%     if Add_Energy(k)<0 
%         Add_Energy(k)=0;    <- - - - - The Energy<0 problem. 
%     end         If including these lines, the code can't be optimized 
         
    Energy = Energy+Add_Energy(k); 
end 
  
data = [pos_end, vel_end, a']; 
 
 


