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Foreword

This report outlines the work | have done over the Spring Semester in the Biorobotics and Locomotion
Laboratory at Cornell University while simulating the simplest walking model (Garcia, et al - 1998)
using Altair’s Hyperworks 9.0, a dynamic simulation software. The aim of my project was to test the
suitability of this software in simulating the kind of walking robots that are built in the lab.

Chapter 1 provides an introduction to Hyperworks 9.0, while also outlining the need to pursue the
project. Chapter 2 details how the Simplest Walking Model was built in the software, mentioning the
specific features used. Chapter 3 sheds light on the results of the simulations and Chapter 4 lists the
conclusions that I have drawn based on my experience with the software.

I worked about 10 hours per week on the project from February 20, 2008 to June 20, 2008. | started by
simulating the simple pendulum, then a double pendulum, and then a bouncing ball (without any
horizontal velocity) and performing various successful consistency checks (for e.g. conservation of
energy, where applicable) before setting out to build and simulate the simplest walking model. For the
simplest walking model itself, I tried two different ways of implementing the collision, using initial
conditions that are known to give ‘period-one walking’ (from I).
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1. Introduction

The Bio-robotics and locomotion lab specializes in building energy-efficient walking robots and walking
toys. Many of these (e.g. the Cornell Ranger, the kneed passive-walking bi-ped, and so on) have been
inspired by passive-dynamic walking models (e.g. the Simplest Walking Model (Garcia, et al 1998)).
One approach to realizing energy-efficient robots is by finding optimal control laws in simulation that
minimize the cost of walking and then implementing these laws on the robot. Simulation of the walking
robot is the first step in finding the optimal control laws. This report describes in detail, an attempt at
simulating the Simplest Walking Model using Hyperworks, and could serve as a guideline (and
hopefully a time-saving tool) to someone building a similar walking model in the future while learning
the software from scratch.

Typically, the following steps are involved in simulating passive-dynamic walking models: first the
governing equations of motion are derived and pieced together with the chosen collision model to form
what is called the “stride map’. Suppose that a stride is the period starting from the instant of time just
before a collision, until the instant just before the next collision. Typically, we are only interested in
finding the set of initial conditions (or states) that give the same state before the next collision, i.e. we
are only interested in “period-one cycles’. These initial conditions are found using root-finding sub-
routines. Next, we find the optimal control law by carrying out an energy-minimization optimization, i.e.
by finding which control law minimizes the cost of walking.

We were looking to find a software or package that has the capability to allow us to perform all these
steps, and Altair’s Hyperworks 9.0 seemed a good candidate. Hyperworks 9.0 is an advanced multi-body
dynamic simulation software most used in the automobile industry and reportedly has tools or features
useful for modeling, analysis, optimization, visualization, reporting and performance data management.
For our purposes, one of its most important features is that we don’t have to derive governing equations.
In a lot of cases (e.g. in kneed walkers, or walkers based on the triple pendulum) the equations are
complex and take a long time to be derived by hand or by using software such as Matlab, Mathematica
and so on.

Hyperworks takes in a CAD-type model that is built and saved by the user to a .mdl file, using features
such as “Points’, “‘Bodies’, ‘Markers’, ‘Joints’, ‘Graphics’ and optional features such as ‘Templates’,
‘Contacts’ and ‘Sensors’. The user then sets simulation parameters, such as end time of simulation,
integration tolerances, step sizes along with choosing the integrator that will be used, and saves all these
along with the model to a .xml file (preferably the same name as the .mdl file), which serves as the
solver input file. Running the simulation then creates output files (in .h3d, .plt, .abf and .mrf formats, all
with the same first name) that allow you to animate and plot results while a log file (.log) is also created
that shows up any errors in the model.



2. Simulating the Simplest Walker

In Hyperworks, we use ‘MotionView’, an environment to build multi-body dynamic models.
‘MotionSolve’ is a multi-body solver that is based on the principles of mechanics, and is tightly
integrated with MotionView. It takes its input from the .mdl file and .xml files to automatically
formulate and solve the equations of motion. The results, or solver output, are then plotted and animated
and saved to .abf, .mrf, .h3d and .plt formats. The animation of results is viewed in ‘Hyperview’ and
plots in “‘Hypergraph’.

2.1 Building the Model

The Simplest walking model is an inverted double pendulum — two point masses at the feet joined to a
single point mass at the hip by massless sticks which in turn are attached to the hip through revolute
joints. We will make use of some simple built-in entities in Hyperworks to build a CAD-type model of
the Simples Walker.
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Fig. 2.1 — A schematic of the Simplest Walker

Below are details of my attempts at simulating one step of the walker. If one step is simulated
successfully, i.e. matches the results of I, then it shouldn’t be difficult to run the program iteratively.
There are a few things that are common to all types of entities — every instance of an entity is defined by
a Label, Variable name and ID (e.g. Fig. 2.2 for Point 0). To access the info for an instance (note the
Point Info box in Fig. 2.2), we must click on the yellow box below ‘CS’ in the toolbar. We will
extensively use the ID of an instance to recall it or to manipulate one or more of its properties.
Following are the entities used:

e 3 ‘Point’ entities — We need one point each to locate the initial positions of the two feet and the
hip (Points 0, 1 and 2 respectively). For example, Fig. 2.2, shows how Point 0 was created. By
default, a Global Origin is always created.
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Fig. 2.2- Using the ‘Point’ entity



5 ‘Body’ entities — One body (Body 2, at Point 2) at the hip joining the two legs (‘M” in Fig 2.1),
and two other bodies (Bodies 0 and 1), each made up of a point mass at the foot and a massless
rod to make up the leg. One body (Body 3) is required to make up the horizontal floor on which
the simplest walker will walk. All Hyperworks models have a default Ground Body (B_Ground).
The ‘Body’ entity requires the user to specify which co-ordinate system will be used (in this
case, | have used the ‘CM (centre of mass) co-ordinate system’ to be used for all bodies), initial
conditions for the body and its basic ‘Properties’, such as its shape, which two points it joins, etc.
Note, choose Body 1 to be the stance leg and Body 0 to be the swing leg.
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Fig. 2.3- Using the ‘Body’ entity

5 ‘“Marker’ entities — Markers are a set of co-ordinate axes (or frame) that are attached to a
particular body at a specific point. We attach markers to both Body 0 and Body 3 at Point 0, as
well as to Bodies 1 and 3 at Point 1. Among the many uses of the markers, one is that they give
us the capability of defining “floating’ joints (elaborated under “Templates’). Again, by default a
Global Frame is attached at the Global Origin to the Ground Body.
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Fig. 2.4 - Defining a ‘Marker’ entity

4 “Joint’ entities — We require 1 revolute joint between Body 0 and Body 2 (Joint 02), and one
revolute joint between Body 1 and Body 2 (Joint 12). Body 3 is fixed to the ground, so we need a

‘Fixed Joint” between Body 3 and Ground Body. We also need to start with one leg being the
stance leg and the other the swing Ieg

JJ[BH & ®@@E o/ LA,V LS WOFEMAE Z/ 1+ @D

Joint | Joink 02 J JJJ|
=453 The Modsl +| Comnecliviy  r—r—— +| Body1 [[Bode0
g o 02 Iital Condtions s 2| =
&2 Jaint 12 - | |Non-compliant j Body 2 ||B°d-'"2
A Joint 13
g .:?int G j Origir: Alignment axis:
Add | Cut | Copy | Paste | _IF‘oint Foint 2 J_lv Vector||BbalY

Fig. 2.5- Using the *Joint’ entity



e 3 ‘Graphic’ Entities — None of the entries described so far directly help in the visualization of
the model. We create 3 Graphics, each of which are associated with a Body entity — upon
creating these correctly, we will have a complete static visualization of the model before running
the simulation. Graphics 0 and 1 are cylinders, representing Bodies 0 and 1, while Graphic 3 is a
‘Box’ of the appropriate size that represents the floor (Body 3). Clicking on the ‘Connectivity’
tab allows the user to define the Graphic (i.e. one specifies the body with which it is associated,
etc.) while the ‘Properties’ and “Visualization’ tabs have entries for the details of the graphics,
such as radius of cylinder or the dimensions of the box.
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Fig. 2.6- Using the ‘Graphic’ entity

e DataSets — Another important part of model-building is specifying the solver units and
components of gravity. Fig. 2.6 shows a small X-component to gravity, along with the Z-
component. This is done so that we can have our model walk on a horizontal floor (for ease of
use and interpretation) in the X-direction, instead of down a ramp. Note that as in the paper,
gravity has modulus 1 (in Sl units). The panel ‘Solver Units’ under ‘DataSet’ allows the user to
specify the appropriate units.
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Fig. 2.7 — Specifying vertical and horizontal components of gravity

e 6 ‘Sensor’ Entities — The sensor entity tracks a particular function (for e.g. the z co-ordinate of
Body 0, as in sensor 1), compares it to a particular value (Fig. 2.8 (b)) and once the function is
within some error of the value, in response the sensor can be programmed to execute any of a
number of commands (Fig. 2.8 (c)) The function of individual sensors is explained below, while
elaborating on the ‘commandset’ template.
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Fig 2.8 (a) — Specifying the *Signal’ in a sensor
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Figs. 2.8 (b) and (c) -The ‘Compare To’ and ‘Response’ Entries in a Sensor

e ‘Templates’ — Templates are user-defined blocks of code, written in Templex — a general
purpose text and numeric processor, that comes with Hyperworks. I used them mostly for
mathematical programming and declaring variables. Now that we have all the entities we need to
build the model, using the set of initial conditions from I (that is known to give period-one
walking), we should be able to run a simulation of the simplest walking model. However we still
need some high-level control of the simulation. For example, the simplest walker scuffs for a
finite amount of time around the instant when the stance leg is vertical, with the chosen initial
conditions. Our simulations must ignore this scuffing. The ‘commandset’ template is the tool we
will use for this high-level control, and its text is written to the solver command file.

Sections 1 and 2 of the ‘commandset’ template (in Appendix 1) are roughly the same in both
methods of implementing the collision. To start with, section 1 deactivates all sensors, joints and
contacts except Sensor with ID 301004 (which returns to the solver command file once the z-
component of the hip’s velocity goes below zero) and Joint 301004 (connecting Body 1 and
Body 3). End time is set to 15 seconds, which is much longer than the walking cycle we expect
to get (about 3.8 seconds). Once Sensor 301004 returns to the solver command file, it is
deactivated in section 2. We then check that it is indeed Body1 that is the stance leg with an “if’
condition and then activate Sensor 301003 that returns to the command file once Point 0 is ahead
of Point 1 by a certain amount (0.25 mts). This ensures that scuffing is ignored and that collision
is implemented only after the swing leg is ahead of the stance leg by a good amount. The
remaining sections of the template differ depending on the way we want to implement the
collision (however Sensor 301003 must be deactivated first in both methods).

2.2 Implementing Collision

Below are outlined two different ways that | attempted to implement collision at the end of step:

1) Using Contacts — The collision of the walker with the floor can be implemented by using the
built-in *Contact’ entity (Fig. 2.9), which implements a collision through a spring-damper type
system. We will need a ‘contact’ at each foot with the floor, and Hyperworks requires it to be
defined between a pair of graphics (not bodies). The co-efficient of restitution controls the
damping and needs to be close to zero in the case of the simplest walker. The penalty is like the
spring constant — if it is too high, then the body jumps up too high after collision and if it is too
low then the body penetrates too deep through the floor. Coulomb friction can be turned off or
on, along with the related parameters — static and dynamic coefficients of friction, and the
stiction and friction transition velocities.
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Fig. 2.9 (a) — Defining ‘contact’ between Body 0 and Body 3
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Fig. 2.9 (b) — Contact Parameters

I initially tried to implement the collision by simply letting the ‘Contact’ entity take over at the
end of Section 3. Ideally, if we tune the parameters well enough we should see that the swing leg
collides with the ground and just stays put, becoming the stance leg for the next step. We could
simultaneously turn the stance leg into swing leg for next step by deactivating joint 301004,
while the initial conditions are repeated for the next step. However, no matter how well one
tuned the contact parameters, the ‘slipping’ at the end of a collision was not eliminated — i.e. the
component of the swing foot along the floor never went to zero after a collision. The spikes in
Fig. 2.10 show the sudden increase in this component of swing-foot velocity due to a collision,
with a large co-efficient of friction, and a zero co-efficient of restitution. These were the results
from implementing a Poisson-type contact. Using an Impact-type contact gives results similar to
this one.
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Fig. 2.10 — Velocity of swing foot (e = 0, mu = 100,000)
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I then tried another approach (Section 3 onwards in Appendix 1) wherein one follows a similar
approach as above, except that a joint was activated at the swing foot at the instant when it is
rebounding upwards and at the height of the floor. For this we activate Sensor 301006, which
returns to the command file once the velocity of the swing foot goes above zero. Since we turn
on this sensor only after turning off sensor 301003 (i.e. swing foot is ahead of stance foot by a
good amount), the swing foot is already on its way down. The only way it can have an upward
component of velocity is after the collision. In Section 4, once Sensor 301006 returns, we
activate a sensor (301005) that returns when the swing foot is above the floor. Next in section 5,
we simultaneously activate joint (301005) at swing foot and deactivate joint (301004) at the
stance foot while also deactivating sensor 301005. Simulation is then re-started.

Without using the ‘Contact’ Entity — Alternately, one could also try another method wherein
we do not use contacts at all. Here we use another template called model_statement (Appendix 3)
to define entities called ‘Constraint Joints’ (Fig. 2.10). These will be used as ‘floating’ joints
(between Body 1 & Body 3, and Body 0 & Body 3) and will be alternately deactivated and
activated depending on which of Bodies 1 and 0 is stance leg and which is swing leg. This type
of floating joint is defined using the ‘Marker’ entity, something we did not use in defining
conventional joints, which can only be activated at a particular point.

Appendix 2 contains the code for this approach. We start off from the end of Section 2
(Appendix 1) and deactivate Sensor 301003, while activating Sensor 301001 — this returns to the
command file once the swing foot goes below the floor. The moment this happens, a joint at the
swing foot is activated and the joint at the stance foot is deactivated simultaneously. Again, we
hope that tuning whatever parameters we can, leads to the initial conditions getting repeated.
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Fig. 2.11 — Using a template to define a ‘Constraint Joint’
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2.3 Running the Simulation

Once model-building is complete, we save the .xml file with the same first name as the .mdl file, by
clicking on the *“Main’ tab under the ‘Run’ button in the toolbar (Fig. 2.12 (a)). Next the ‘Simulation
Parameters’ are set (Fig. 2.12 (b)) and a ‘Transient’ type simulation is chosen with the appropriate
parameters (Fig. 2.12 (c)) — minimum and maximum step-sizes, integration tolerances, etc.
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Fig. 2.12 (c) — “Transient’ type Simulation

Output File Types

Next, click on “‘Check’ (in the far right corners of Fig. 2.11) — this opens up the Message Log, which
shows up the results of checking the model. This points to any obvious modeling errors such as syntax
errors and so on. Clicking on the ‘Run’ button under the ‘Check’ button (above) actually puts
MotionSolve into action, where the equations are automatically derived from the .mdl and .xml files and
solved. A commentary on the results of the simulation(s) is displayed in a windows prompt — this is a
helpful feature in detecting the more subtle errors in modeling (which do not show up at the end of the
model ‘Check)’, or arriving at the reasons behind the inability of the solver to accurately solve the
system (Fig. 2.13 shows a section of the output). These comments are also saved in the .log file with the
same first name as the .mdl file, which is automatically created when the ‘Run’ button (above) is
clicked.
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Fig. 2.13 — Model ‘Check’
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or bhoth in Param_Transzient can help stabhilize the integration. If the simulation
contains distinctive phases. use multiple Simulate. each with its
own proper integrator parameter setting,. to selectively tighten the tolerance
during the period where instability is encountered. If the simulation was
terminated because stepsize has diminished consistently below h_min. reduce
h_min in Param_Transient to force integration to continue.
(2> Mumerical singularity in constraint Jacobhian matrix. This may indicate
la mechanism design problem such as a lock up. or a bifurcation situwation.
Try options in linsoluver (MAZE-MA4B>_. This can sometimes get around singularity.
(3> Mon—physical inertia properties. such as mass=180 Kg and Ixx=Iyy=Izz=1 HKg*mm™2.
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other forces. can cause hard convergence and integrator failure. Avoid these
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Fig. 2.14 — Solver Output (on Running the Model)
After the prompt (Fig. 2.13) is closed by pressing any key to continue, the ‘Animate’ and ‘Plot’ options

are enabled (in Fig. 2.11 (a)). A typical session with the static mode in initial state, an animation running
and a plot window opened is shown in Fig. 2.14. Both the ‘Animate’ and “Plot’ features are user-friendly
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to with lots of options to provide flexibility. Multiple animations and plots can also be opened on a
single page.
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Fig. 2.15 — A typical session in MotionView
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3. Results and Discussion

Using Contacts: Following the approach elaborated in 2.2 (code in Appendix 1), | obtained the
following results:

Inexplicably Sensor 301006 is triggered at the instant Sensor 301003 returns (Fig. 3.1), when the z-
component of velocity of the swing foot suddenly jumps up above 0, while smoothly decreasing below 0
before that (Fig. 3.2). At this moment the ‘Activate Contact’ command forces the solver to impose
contact while the swing foot is still some distance above the floor. This leads to the integrator not being
able to converge and simulation stopping at this instant (as in Fig. 2.13). There were other ways | tried
using the same approach (for instance without use of 301006, but only using 301005 and 301001). Each
of these had their own problems such as incorrect action of sensors, sensor and contact not working
together (but working well by themselves), and yet they all had the same problem of the integrator going
unstable and not converging whenever the joint at the stance leg was activated.

There seems no way of controlling exactly when we want to activate contact. Also from Fig. 3.1 it
seems clear that there is some debugging still left to be done.

Part/30102 Body 0 - VZ

023

0.2

0.1

T e
T ™

-0.054

Body

04 T T . : T T T : T
a 0.25 0.5 0.75 1 1.25 1.5 1.75 2 225 25

Time

Fig. 3.1 (a) — b_0.VZ suddenly jumps up above 0 at t = 2.378sec
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Analysis return activated by sensor. [time=2_.37BE+B8]
ICUMULATIVE COMPUTE TIME INFORMATION

Model : 3.188E-B2

: 1.268E-A1

ssing-Messaging : 3.1880E-B2

Total Elapsed Time : 1.888E-8A1

Parallel processing was disabled.

Solver input file:
[C: /Documents and Settings-Robots-Desktops/rohit_hyperworks - MotionUiewlWork simplest_walker.xml]

Results written to animationsplotting file:
[C:/Documents and Settings-Rohots-Desktops/rohit_huperworks  MotionUiewWorkssimplest_walker.mrf ]

Compute info-messages written to log file:
[C: Documents and Settings-Robots-Desktop/rohit_hyperworks MotionViewWork simplest_walker.log]

ANALYSIS COMPLETED

Deactivate SENSOR-301863
Activate SENSOR. 361886
Activate CONTACT - 3818681

iChecking out license ...
License OK.
Time spent in checking out license: B.281 sec.

< Model Summary >

Total Humber of Generalized Coordinates
Humber of Body Coordinates
Cincluding ground bhody?

Number of Control-Diff States

Humber of Kinematic Constraints
Number of Joint-Ground Constraints
Number of Motion Constraints

Het Degrees of Freedom of the Mechanism
Humber of Uelocity Initial Conditions

Initializing model ...
Analyzis model processed
Partitioning generalized coordinates ...

Total Mumber of Independent Coordinates
Starting dynamic analysis ...

DYNAMIC SIMULATION PARAMETERS

Start Time : Z2.37BE+PB
End Time = 1.580E+81
Print Interval : 1.6888E-82

Integrator : DSTIFF
Error Tolerance H
Maximum Step Size

Minimum Step Size

DAE Index

DAE Constraint Tolerance

Invoking action [RETURM] triggered by sensor [id=3818861 ...
DAE SOLUVER STATISTICS <DASPE-Index3>

Number of solution steps
Humber of residue evaluations
Humber of jacobian compu@ations i

Fig. 3.1 (b) — Sensor 301006 triggered (at t = 2.378 sec)

Without Using Contacts: Fig. 2.13 shows the error messages that showed up with this kind of approach
and Fig. 2.14 shows the output. The solver could not converge once the joint was imposed (at t = 2.863
sec, as soon as Sensor 301001 returns to the command file). The integrator stops at this point and cannot
go any further. This time though, the stance foot is at the floor level (as indicated by the return of Sensor
301001), unlike when we were imposing collision with contacts.

One reason why this is happening could be because of bugs in the program, or alternately it could be
because the joint is not appropriately defined. The joint in question, 301005, is a revolute joint between
swing leg and floor, which was defined through markers (in model_statement). These markers were
attached to both bodies at Point 0 (swing foot) in the initial state. While Point 0 on the swing foot is
moving, it is static on Body 3 (which is the floor). This could be the reason for the non-convergence of
the solver as the two markers are too far apart for the joint to impose a constraint. However, this was the
only way | could imagine it could work and I have not found a way of defining joints on-the-fly.
Another possibility would be to place joints on the floor beforehand at points where we know the swing
foot would collide and activate joints between these points and the swing foot. Ofcourse, this would be
cumbersome if one would want to test the walker for many steps.
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4. Conclusions

Overall, the software does not seem completely bug-free yet. Even if it were, it does not give the user
the capability to implement ‘joints” and ‘contacts’ at will. Syntax errors were easy enough to detect but
hard to fix. In some cases, a small error such as having an extra space in between two commas shows up
an error without explicitly saying what the error was.

On the positive side, Hyperworks is a great interface for analysis with its advanced animation and
plotting capabilities. The plotting features can be used effectively for error-diagnosis. The .log file
created also gives good feedback in terms of warnings and errors, and helps reduce the amount of time
you might spend on debugging.

In terms of its use to model walking robots, it can do a good job once collisions can be implemented
accurately. Once we know what initial conditions to start with, it can easily simulate robots with lots of
parts (such as the Cornell Ranger). I could not get to root-finding being stuck with implementation of
collision for the most part, so it would be hard to draw conclusions on its capability to do the same.
However, it does have the option of creating script files (just like .m files in Matlab), in TCL / TK. In
terms of implementing control, Hyperworks only has SISO-control capability. So, for example,
‘Jacobian-killer’ control cannot be implemented in the current version.
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Appendix 1

The full code for the ‘commandset’ template while implementing collisions using *Contacts’:

% Section 1
<H3DOutput
switch_on
increment
start_time
end_time
format_option
stress_option
strain_option

="0."

="TRUE"

nn

"9999999."
= "AUTO"

="TENSOR"

"TENSOR"

/>

<Param_Simulation
constr_tol ="1.0000E-10"
implicit_diff_tol ="1.0000E-06"

/>

<Param_Transient
integr_tol ="0.0001"
integrator_type ="DSTIFF"
h_max ="0.01"
h0_max ="0.001"

/>

<Deactivate
element_type ="SENSOR"
element _id ="301001"

/>

<Deactivate
element_type ="SENSOR"
element_id ="301002"

/>

<Deactivate
element_type ="SENSOR"
element _id ="301003"

/>

<Deactivate
element_type ="SENSOR"
element_id ="301005"

/>

<Deactivate
element_type = "CONTACT"
element_id = "301001"

/>

<Deactivate
element_type = "CONTACT"
element_id = "301002"

/>

<Deactivate
element_type = "JOINT"
element_id = "301005"

/>

<Deactivate
element_type = "JOINT"
element_id = "301006"

/>

<Simulate
analysis_type  ="Transient"
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end_time ="15."
print_interval ="0.01"

/>

% Section 2

<Deactivate
element_type ="SENSOR"
element _id ="301004"

/>
{if (the_model.b_1.vx == 0)}
<Activate

element_type ="SENSOR"
element_id ="301003"

/>

<Simulate
analysis_type = "Transient"
end_time ="15"
print_interval ="0.01"

/>

% Section 3
<Deactivate

element_type ="SENSOR"
element_id ="301003"

/>

<Activate

element_type = "SENSOR"
element_id = "301006"

/>

<Activate
element_type = "CONTACT"
element_id = "301001"

/>

<Simulate
analysis_type  ="Transient"
end_time ="15"
print_interval ="0.01"

/>

% Section 4

<Deactivate
element_type = "SENSOR"
element_id = "301006"

/>

<Deactivate
element_type = "CONTACT"
element_id = "301001"

/>

<Activate
element_type = "SENSOR"
element_id = "301005"

/>

<Simulate
analysis_type = "Transient"
end_time ="15"
print_interval ="0.01"

/>
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% Section 5
<Deactivate
element_type = "SENSOR"
element_id ="301005"
/>
<Activate
element_type = "JOINT"
element_id ="301005"
/>
<Deactivate
element_type = "JOINT"
element_id = "301003"

/>

<Simulate
analysis_type  ="Transient"
end_time ="15"
print_interval  ="0.01"

/>

{endif}

Appendix 2

The commandset template, when implementing collisions without using ‘Contacts’:

% Section 3
<Deactivate

element_type ="SENSOR"
element _id ="301003"

/>

<Activate
element_type ="SENSOR"
element _id ="301001"

/>

<Simulate
analysis_type = "Transient"
end_time ="15"
print_interval  ="0.01"

/>

% Section 4
<Deactivate

element_type ="SENSOR"
element_id ="301001"

/>

<Activate

element_type = "JOINT"
element_id ="301005"
/>
<Deactivate
element_type = "JOINT"
element_id = "301003"
/>
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<Simulate

analysis_type = "Transient"
end_time ="15"
print_interval ="0.01"

/>

{endif}

Appendix 3

The model_statement template, used to implement collisions without using contacts:

<Constraint_Joint

id ="301005"

type ="REVOLUTE"

i_marker_id ="30102021"

j_marker_id ="30105020"

align_methl ="VECTOR"

align_vecl ="V _Global_Y"
/>

<Constraint_Joint

id ="301006"

type ="REVOLUTE"

i_marker_id ="30103032"

j_marker_id ="30105031"

align_methl ="VECTOR"

align_vecl ="V _Global_Y"
/>
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