
Balancing Controller for a
Four-Legged, Bipedal Walking Robot

Matt Haberland

1291 Shaker Woods Rd.
Herndon, VA 20170

mdh52@cornell.edu

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering

Mechanical Engineering

Cornell University

Spring 2007

Abstract
A controller is developed to balance a two-dimensional
walking robot. The equations of motion for the robot,
modelled as a double pendulum with pivots at the hip and
contact foot, are derived, linearized, and arranged in state-
space form. A Linear Quadratic Regulator is developed
for the linearized model; its performance simulated using
both the linearized and the complete, nonlinear dynamics.
The regulator fails to stabilize a physical four-legged biped
due to measurement difficulties, and recommendations for
measurement and controller improvement are proposed in
response.

1 Introduction
Among the popular approaches toward creating a walking
machine is to model the geometry of the machine after that
of the human body and precisely control joint angles in
time to mimic human walking motions. While machines
designed according to this approach are versatile and ro-
bust, they are extremely inefficient, and as a result support
only short runtimes given current battery technology. The
‘passive dynamic’ approach, on the other hand, is to model
dynamic properties of the machine after those of the human
body but offer no control or power other than that of grav-
ity. These machines are extremely efficient, but not at all
versatile or robust, eliminating practical use. An approach
in between these extremes is to apply passive dynamic
principles for efficiency, but provide powered control as
necessary to achieve greater versatility and robustness.

The ‘Cornell Ranger’, a ‘four-legged bipedal’ walking
robot [1], was designed and fabricated according to this
hybrid approach. It has acheived a record combination
of efficiency and robustness, with the proven ability to
walk over 1km without falling. This paper discusses the
development of a controller to balance this robot upright
on its outer legs by swinging the inner legs, without taking
a step. In Section 2, the equations of motion describing
the robot’s behavior are derived, linearized, and arranged
in state-space form. Section 3 discusses the development
of a Linear Quadratic Regulator (LQR) for the state-space
model. Theoretical regulator performance is characterized
and improved using a fully nonlinear simulation in Section
4 and implemented on the robot in Section 5. Actual reg-

Parameter Value Units Parameter Value Units
ma 3.135 kg mb 2.4015 kg
Ia .2857 kgm2 Ib .2607 kgm2

a .835 m b .217 m
l 1 m g 9.81 m

s2

Table 1: Cornell Ranger parameters, as measured during
assembly

ulator performance is presented in Section 6, suggestions
for improvement are made in Section 7, and conclusions
are drawn in Section 8.

2 Modelling

The Cornell Ranger shown in Figure 1(a) can be modelled
as the double pendulum shown in Figure 1(b). The outer
pair of legs is represented by a rigid bar of massma, length
l, and moment of inertia Ia measured about the Center of
Mass (CoM), which is located a from the foot contact with
the floor, modelled as a simple pivot. The inner pair of
legs is represented by a rigid bar of mass mb, length l, and
moment of inertia Ib about the CoM, which is located b
from the hip connection with the outer legs, modelled as
a simple pivot. The numerical values of these parameters
for the Cornell Ranger are listed in Table 1. The angle θ
is measured positive counterclockwise from the vertical
(nominally normal to the floor, but defined as parallel with
the gravity vector) to the outer legs, the angle φ is measured
positive counterclockwise from the outer legs to the inner
legs, and internal torque T is positive counterclockwise.

Applying the angular momentum equation [2] to the
entire system about point O, as represented in Figure 2(a),
yields

(ama + lmb)g sin(θ)− bmbg sin(θ + φ) =

(Ia + Ib)θ̈ + Ibφ̈+

(maa
2 +mbl

2 +mbb
2)θ̈ +mbb

2φ̈−
mblb(2θ̈ + φ̈) cosφ+mblb(2θ̇φ̇+ φ̇2) sinφ. (1)

Considering the inner legs only, angular momentum

1

(a) Cornell Ranger (b) Double Pendulum

Figure 1: The Cornell Ranger, modelled as a double pendulum

(a) Entire System (b) Inner Legs Only

Figure 2: Free body diagrams of the double pendulum model

2

balance about point A, as illustrated in Figure 2(b), yields

T − bmbg sin(θ + φ) =

Ib(θ̈ + φ̈)−mblbθ̈ cosφ−
mblbθ̇

2 sinφ+mbb
2(θ̈ + φ̈). (2)

Defining

I11 = Ia + Ib +maa
2 +mb(l − b)2,

I12 = Ib +mb(b2 − lb),
I22 = Ib +mbb

2,

Mg1 = −g[ama +mb(l − b)], and
Mg2 = bmb

and linearizing about θ = 0 and φ = 0, the two scalar
Equations 1 and 2 can be represented as a single matrix
equation,[
I11 I12
I12 I22

] [
θ̈

φ̈

]
+

[
Mg1 Mg2

Mg2 Mg2

] [
θ
φ

]
=

[
0
T

]
(3)

Adding states to convert the second-order equation to
an equivalent first-order form yields

I︷ ︸︸ ︷
−1 0 0 0
0 I11 0 I12
0 0 −1 0
0 I12 0 I22

ẋ︷ ︸︸ ︷
θ̇

θ̈

φ̇

φ̈

+

−IA︷ ︸︸ ︷
0 1 0 0

Mg1 0 Mg2 0
0 0 0 1

Mg2 0 Mg2 0

x︷ ︸︸ ︷
θ

θ̇
φ

φ̇

 =

IB︷ ︸︸ ︷
0
0
0
1

u︷︸︸︷
T .

(4)

Finally, the equation can be cast in standard state-space
form by adding IAx to both sides, then premultiplying
both sides by I−1, as

ẋ = Ax+Bu. (5)

3 Control
We seek a control law that will prescribe a torque at the hip
as a function of the robot’s state, with a goal of keeping

the robot ‘balanced’. At a system level, we say that the
‘input’ is the hip torque, the ‘output’ is a measure of the
robot’s deviation from a perfectly ‘balanced’ state, and the
controller must prescribe an input that will drive to zero, or
regulate, the output based on state feedback. The choice of
the measure of ‘balance’ is not trivial, however; possible
elements of the definition include:

• The outer (stance) legs are vertical,

• The inner (swing) legs are parallel with the stance
legs,

• The legs are not moving,

• The center of mass of the robot lies directly above the
contact point,

• The ‘zero-moment point’ of the robot lies within the
contact patch of the foot [3].

Depending on the definition of balance, the system can
be seen as ‘single-input, single-output’ (SISO) as moti-
vated in Appendix A, for which controller design can be
handled by classical, single variable control theory. Al-
ternatively, there could be multiple requirements for bal-
ance, and thus the system would be seen as ‘single-input,
multiple-output’ (SIMO), and controller design calls for
multivariable control methods. For simplicity, we will
tentatively define our output as the angle of the stance leg
with respect to the vertical, or

y = Cx = θ, C = [1 0 0 0] . (6)

and choose our definition of balance to be θ = 0, thus
our output and performance variable y is a measure of
deviation from the balanced state. Since it is difficult to
generate ahead of time the definition of balance that will
yield the ‘best’ system performance, we may desire to
change this definition later, and thus it is preferable to
choose a general procedure that yields a controller for a
wide variety of balance definitions.

The Linear Quadratic Regulator algorithm (LQR), pro-
vides such a framework [4] [5]. LQR is used to find a
linear feedback control law that minimizes a quadratic cost
function of performance variables and control effort (our
system input, which is simply the motor torque). Mathe-
matically speaking, we can use LQR to determine a gain

3

matrix K such that for a system with the dynamics de-
scribed by Equation 5, input u = −Kx minimizes the
value of a cost function of the form

J =
∫ ∞

0

(xTQx+ uTRu)dt. (7)

As it is unclear, at this stage, how ‘balance’ should be
defined, so it is uncertain what cost function should be
minimized to yield the ‘best’ controller. The form of this
cost function seems reasonable for the task of balancing
the robot, as the term xTQx can provide a measure of the
deviation from the balanced state, uTRu can provide a
measure of control effort, and minimization of the time
integral of these terms guarantees, in some sense, an effi-
cient, balancing controller. We proceed by generating a
controller according to this algorithm, reserving judgement
until we can analyze the strengths and weaknesses of the
resulting controller, at which point another cycle of the
iterative design process will begin.

For the purposes of this application, Q , CTC, and
thus for our prelimary choice ofC, xTQx = θ. We choose
a scalar R to weight the importance of minimizing control
effort relative to minimizing the integral of the deviation
from the balanced state.1

The MATLAB function lqr(A,B,Q,R) yields the op-
timal gain matrix K = R−1BTP by solving the reduced-
matrix Ricatti equation,

ATP + PA− PBR−1BTP +Q = 0, (8)

for a positive-definite matrix P .
Finally, it can be verified that the controller T = f(x)

is
T = [0 0 0 1]IBKx. (9)

4 Simulation

4.1 Linearized Dynamics
Once the gain matrix K is generated, the response of
the linearized system is obtained using the familiar MAT-

1In general, the choice of R can be as debatable as that of Q. However,
for this system the input vector u is simply the scalar T . Moreover, T ∝ i,
the current into the motor,

∫
i2dt, as it appears in the cost function, is

proportional to the total energy used to regulate the system, and energy
is a particularly meaningful measure of control effort. Unless otherwise
specified, R is chosen to be .03, i.e. energy efficiency is judged to by
only 3% as important as stabilization.

LAB command [y x] = lsim(A-B*K,B,C,D, u,
t, x0), where x, A, B, and K are as previously defined,
y, C, and D are not used, t is a vector of time values, u is
zero (as the control input is contained in the term -B*K),
and x0 is the initial state vector. A plot of the stance leg
angle θ = x(:,1), swing leg angle φ = x(:,3), and con-
trol torque T = -I*B*K*x’ as functions of time vector
t is generated using the plot() function.

4.2 Complete, Nonlinear Dynamics
Nonlinear simulation is performed using Professor Andy
Ruina’s ‘Double Pendulum Simulation’ m-code, which,
given parameters and initial conditions, derives and inte-
grates the equations of motion for a double pendulum and
animates the results. The code has been modified to derive
the Linear Quadratic Regulator for the given parameters
and implement the resulting control law for torque at the
hip. For consistency with the Cornell Ranger, a torque
saturation limit of approximately 5 Nm is enforced in the
dynamics.

4.3 Initial Simulation Results
For R = .03 and with very small, single state initial con-
dition θ(t = 0) = .02, the controller effectively stabilizes
the double pendulum as reflected by both linear and non-
linear simulation results in Figure B-1. For slightly larger
initial condition θ(t = 0) = .03 rad, both the linear and
nonlinear model predict stable behavior in Figure B-2, but
the nonlinear simulation shows that the hip motor begins
to saturate. For even larger (but still very small) initial
condition θ(t = 0) = .04 rad, the linear model predicts
similar, stable response to the initial conditions, as in Fig-
ure 3(a). The nonlinear model, however, reveals that the
controlled double pendulum is unstable, as in Figure 3(b).

The simulation results show that this particular con-
troller fails to regulate the simulated system even for small
initial values of θ, all other initial state variables being
zero. It is clear that the controller needs to be tuned before
it will be ready for use on the Cornell Ranger.

4.4 Controller Tuning
Even though the controller is ‘optimal’ in the sense that
it minimizes the value of a particular cost function, mini-

4

(a) Linear Simulation (b) Nonlinear Simulation

Figure 3: Simulated response of the controlled double pendulum to initial condition θ(t = 0) = .04

mization of this particular cost function does not necessar-
ily yield the ‘best’ performance. Thus, we vary R, with-
out changing the definition of our performance variable
through Q, to change the cost function and tune the system
for better performance. Classical measures of performance
include response time and relative stability, but since the
reference input is constant and the system is nonminimum
phase, we are more interested in the system’s damping.
The system is actually nonlinear, so the size of the basin
of attraction is of great importance, and since the system
is physical and measurements are imperfect, robustness is
also critical to the controller’s success.

4.4.1 Damping

The term ‘damping’, for a linear system, is related to real
parts of the system’s eigenvalues. The unregulated sys-
tem has four eigenvalues: one negative real eigenvalue,
one positive (unstable) real eigenvalue, and two complex
conjugate eigenvalues with real part zero. The controlled,
linearized system also has four eigenvalues: two complex
conjugate pairs, both with negative real parts. Plots of
the real part of each of these conjugate pairs are shown in
Figure B-4. Most notably, the magnitude of the (negative)
real parts of both of these eigenvalues increase asymptoti-
cally with decreasing R. This is consistent with intuition,
because decreased R means greater relative cost of the

error integral in the cost function, and minimizing this
‘balancing error’ requires greater damping.

4.4.2 Basin of Attraction

The term ‘basin of attraction’ refers to the set of initial
states for which the controller can successfully stabilize
the system. For this system, the basin of attraction is a four-
dimensional volume and is a function of the n× 4 matrix
Q and scalar R. The challenge of finding the controller
that will absolutely maximize the volume of this basin
of attraction, even restricting the controller to a Linear
Quadratic Regulator, is an intractable problem because
of the number of degrees of freedom provided by Q and
R and the high dimension of the basin of attraction. To
simplify the problem, we will consider each dimension
separately. For example, will measure, for a controller
generated using a particular value of R, the maximum
value of θ∗ for which the initial state

x(t = 0) =
∣∣[θ θ̇ φ φ̇]T

∣∣
t=0

= [θ∗ 0 0 0]T

lies in the basin of attraction. Generated by an iterative
script, a plot of θ∗(R) is shown in Figure 4; plots of sim-
ilarly defined φ∗(R), θ̇∗(R), and φ̇∗(R) are available in
Figure B-5. Most notably, all of these simplified measures
of basin of attraction increase asymptotically with increas-
ing R. Also, relative to the expected magnitudes of initial

5

Figure 4: The effect of control cost weight R on maximum
initial stance angle θ∗ lying in the basin of attraction of the
controlled double pendulum system

states conditions, the system is most sensitive to initial
displacements of the θ state.

4.4.3 Robustness

The term ‘robustness’ refers to the ability of the controller
to perform in the presence of uncertainty. For the Cornell
Ranger, the greatest single type of uncertainty is an offset
from the true value. For φ, this is caused by gearbox
backlash between the angle measuring encoder and the leg
itself; for φ̇ and θ̇, offset is inherent in the gyro signals and
can change after being removed during calibration. Offset
error in θ, known as drift, is the result of integrating gyro
offset. Again, it is an intractable problem to determine
the effect of all errors in all measurements simultaneously.
To further simplify the problem, we seek, for a controller
generated using a particular value of R, the maximum
value of δθ∗ for which the initial state x(0) = [0] lies in
the basin of attraction given input

T = [0 0 0 1]IBK(R)[θ + δθ∗ 0 0 0]T .

Generated by an iterative script, a plot of δθ∗(R) is
shown in Figure 5; plots of similarly defined δφ∗(R),
δθ̇∗(R), and δφ̇∗(R) are available in Figure B-6. Most
notably, all of these simplified measures of robustness in-
crease asymptotically with increasing R. Also, relative
to expected errors in measurement, the system is most
sensitive to uncertainties in θ.

Figure 5: The effect of control cost weight R on maximum
constant stance angle measurement error δθ∗ for which the
controlled double pendulum system is stable

4.5 Performance Trends
Several trends are clear from the results:

• All simplified measures of robustness and basin of
attraction increase asymptotically with increasing R,

• Both measures of damping decrease asymptotically
with increasing R.

Thus, there is a conflict among these characterizations of
performance; increased robustness and basin of attraction
apparently come at the cost of damping. However, the
primary goal is to design a controller that works, and to
work the system needs to be robust and have a sufficiently
large basin of attraction; high damping is a secondary goal.
Therefore, higher values of R are preferable.

Another trend is that the system is, in some sense, most
sensitive to initial displacements and measurement offset
of the θ state. The fact that the system is sensitive to dis-
placements θ seems to confirm the choice of performance
variable and output y = θ as the variable to regulate for a
greater basin of attraction. The fact that the system is also
most sensitive to measurement offset in θ, however, sug-
gests that choice of a different performance variable would
be beneficial for increased robustness. Investigation of the
use of alternative performance variables by changing Q
reveals only marginally better performance. For example,
regulating the horizontal location of the center of mass
yields less than 1% increase in each of the four measures
of robustness discussed in 4.4.3. Thus, while changing the

6

performance variable yields some improvement and the
final controller will be designed to regulate the position of
the center of mass, we do not perform an exaustive search
for the best Q.

Finally, even with high R, the system is not very robust
relative to expected error in measurement, and the basin of
attraction is not very large compared to possible initial con-
ditions. While initial conditions can be controlled to some
extent, measurement error remains a concern. We have
exausted variation of the cost function with respect to R
and shown that changing performance variables through Q
does not have a significant effect. The controller has been
tuned, and still the system performance is unacceptable.
As a last resort, we tune the system itself:

Addition of mass δm2 at the bottom of the swing leg
increases θ∗, as shown in Figure 7(c), and, up to a point, all
four measures of robustness, as in Figure B-8. While the
values of φ∗, δφ∗, and δφ̇∗ all peak and begin to fall within
the domain of additional masses simulated, the increases in
θ∗ and δθ∗ outweigh the disadvantages of using the highest
reasonable value of δm2. Therefore, δm2 = .2kg will be
added to the bottom of the swing leg, and the controller
will regulate the horizontal position of the center of mass
with a control effort weight R = .3.

5 Implementation

The control law is implemented on top of existing robot
code by replacing the walk controller with a balancing con-
troller. Sources of state feedback are summarized in Table
2. After calibration, pressing the ‘Walk’ button brings the
robot into a ‘balance standby’; the inner feet retract and
the outer feet are held in an orientation that permits only
the point of the heel to contact the ground. The operator
attempts to balance the passive robot manually and then
presses the ‘CalEncoders’ button to enter ‘balance mode’.
The reference values for the relative, integrated angles
used to track θ and φ are set, and the torque control law is
enabled. After the test, the operator may return to ‘balance
standby’ by pressing the ‘CalGyros’ button to prepare for
another test.

State Variable Name Measurement
θ AngleGyroOuter Integral of AngleRateGyroOuter
θ̇ AngleRateGyroOuter Output of Outer Gyro
φ AngleGyroHip Difference of AngleGyroOuter

and AngleGyroInner
φ̇ AngleRateGyroOuter Difference of AngleRateGyroOuter

and AngleRateGyroInner

Table 2: State variables, their corresponding global vari-
able names in the Cornell Ranger code, and their method
of measurement

6 Results
In ‘balance standby’, the robot responds as shown in Figure
B-9. When released but retained firmly by its leash, the
stance angle falls slowly, with the swing angle close behind,
and the angular rates dip and return to near zero, all within
a few seconds. When fully released, the stance angle falls
rapidly and the swing angle falls even faster until the robot
is saved from crashing to the ground.

In ‘balance mode’, the robot responds as shown in Fig-
ure B-10. When the robot is released but retained firmly by
its leash, the control torque oscillates rapidly and shakes
the robot violently. When fully released, the robot shakes
and falls without hesitation.

Based on prior experience with the robot, the shaking
is recognized to be characteristic of excessive damping,
so the gain on the θ̇ term is relaxed. Now, after enter-
ing ‘balance mode’ but retained by its leash, the robot
oscillates unstably about the balanced state. After being
fully released from the balanced state, the robot again falls
immediately. These responses are shown in Figure B-11.

7 Discussion
When implemented on the actual robot, the high damping
gain on θ̇ is the source of an instability. Sensor noise is
amplified by the damping gain, exciting small, rapid oscil-
lations in the hip torque. The robot shakes in response to
the varying torque, the sensors shake with the robot, and
thus the sensor noise is apparently amplified by a combi-
nation of positive feedback, lag due to signal filtering, the
discrete-time nature of the system, and time delay caused
by backlash in the hip gearbox. Oscillations in the angular
rates overwhelm the ‘true’ feedback terms, rendering the
controller completely ineffective. When the damping gain

7

δθ δφ
Average .02 rad .035 rad
Max .075 rad .04 rad

Table 3: Approximate magnitude of angle measurement
error after 10s due to integration drift

is relaxed, however, the controller is unable to compen-
sate for the natural instability of the inverted pendulum.
The inability to provide damping suggests that no amount
of gain tuning will yield a function controller - the feed-
back is somehow of the wrong form given the unmodelled
imperfections of the system.

Sensor noise aside, the controller’s failure is still not sur-
prising considering the sensor offset errors summarized in
Table 3. The average drift of the variable θ over the course
of 10 seconds is about .02 rad, and has been observed to
be as high as .075 rad, while the maximum constant stance
angle error under which the controller could theoretically
stabilize the system is only δθ∗ ≈ .013 rad. This suggests
that even if the drift in θ measurement was the only un-
certainty and the initial state was zero, then the controlled
robot would become unstable within seconds.

In retrospect, the Linear Quadratic Regulator algorithm
was not the correct approach toward designing the con-
troller. This ‘optimal’ algorithm minimizes the integral of
error over time when the closed-loop system is stable, but
is not particularly suited to making the closed loop system
stable in the presence of uncertainties like sensor noise and
offset error. This suggests that the techniques of robust
control might be better suited for the task of designing a
controller for this robot.

The most significant improvement to be made is in the
robot state estimation. The accelerometers must be used
to provide ‘absolute’ angle reference. The gyro signals
must be filtered further, and the offsets must be removed
more effectively. Documentation of the current state esti-
mator and more detailed suggestions for improvement are
available in Appendix C.

8 Conclusion

Although the Linear Quadratic Regulator successfully sta-
bilizes a simulated double pendulum under a reasonable

δθ̇ δφ̇
60% .004 rad/s .012 rad/s
90% .007 rad/s .0175 rad/s

Table 4: Estimated magnitude bounds within which a given
percentage of angle rate gyro noise samples lie

range of initial conditions and measurement errors, it is
unable to stabilize the Cornell Ranger. Through a com-
bination of high damping gain, measurement noise, and
time delay, the controller introduces a new instability to
the system. When the damping gain is relaxed to quell
this instability, the controller is unable to compensate for
the natural instability of the inverted pendulum. State-
estimation improvement, and possibly mass re-distribution
will yield a more controllable system, and application of
robust control techniques are likely to generate a successful
controller.

References
[1] Karssen, Daniël. Design and construction of the Cornell

Ranger, a world record distance walking robot. Internship
Final Report. Jan 2007.

[2] Ruina, Andy and Pratap, Rudra. Introduction to Statics and
Dynamics. Pre-release text. Oxford University Press. 2002.

[3] Vukobratović, Miomir and Borovac, Bransilav. Zero Moment
Point - Thirty Five Years of its Life. International Journal of
Humanoid Robotics, Vol. 1, No. 1 (2004) 157-173.

[4] Sherback, Mike and Mohuiddin, Shan. Notes on the LQR
Algorithm. 2007.

[5] Ogata, Katsuhiko. Modern Control Engineering. Third Edi-
tion. Prentice Hall, 1997.

8

APPENDIX A - SISO Control of a 2 DOF System
As an illustration of the claim that a controller can be developed for the system using classical control theory, consider
the system [

M11 M12

M21 M22

] [
ẍ1

ẍ2

]
+

[
K11 K12

K21 K22

] [
x1

x2

]
=

[
0
1

]
f. (A-1)

Decomposing the single matrix equation into two scalar equations and transforming into the Laplace domain yields

(M11s
2 +K11)X1 + (M12s

2 +K12)X2 = 0, and (A-2)
(M21s

2 +K21)X1 + (M22s
2 +K22)X2 = F. (A-3)

Solving the first equation for X2 in terms of X1, substituting into the second equation, and rearranging yields

X1

F
=

M12s
2 +K12

(M12s2 +K12)(M21s2 +K21)− (M11s2 +K11)(M22s2 +K22)
= GX1 (A-4)

Likewise,
X2

F
=

M11s
2 +K11

(M11s2 +K11)(M22s2 +K22)− (M12s2 +K12)(M21s2 +K21)
= GX2 (A-5)

Using these transfer functions, we can develop a controller for either X1 or X2 if we are interested in only one. More
generally, however, we can define a new variable Y , a linear combination of X1 and X2, as Y = cX1X1 + cX2X2, and
thus

Y

F
= cX1GX1 + cX2GX2 = GY , (A-6)

for which the closed loop transfer function is

TFCL =
GY

1 + CGY
(A-7)

with controller transfer function C. Equation 3 is of the form of Equation A-1 with

X1 = θ, M11 = I11, M22 = I22, M12 = M21 = I12,

X2 = φ, K11 = Mg1, K22 = Mg2, K12 = K21 = Mg2,

and thus a controller can be designed to regulate the horizontal position of the system center of mass by defining

Y =

cX1︷ ︸︸ ︷(
−maa−mbl +mbb

ma +mb

)
θ +

cX2︷ ︸︸ ︷(
mbb

ma +mb

)
φ. (A-8)

9

APPENDIX B - Figures

(a) Linear Simulation (b) Nonlinear Simulation

Figure B-1: Simulated response of the controlled double pendulum to initial condition θ(t = 0) = .02

(a) Linear Simulation (b) Nonlinear Simulation

Figure B-2: Simulated response of the controlled double pendulum to initial condition θ(t = 0) = .03

10

(a) Linear Simulation (b) Nonlinear Simulation

Figure B-3: Simulated response of the controlled double pendulum to initial condition θ(t = 0) = .03

(a) The effect of R on the real part of first complex
conjugate pair

(b) The effect of R on the real part of second complex
conjugate pair

Figure B-4: The effect of control effort weight R on the eigenvalues of the linearized double pendulum equations of
motion

11

(a) The effect of R on θ∗ (b) The effect of R on θ̇∗

(c) The effect of R on φ∗ (d) The effect of R on φ̇∗

Figure B-5: The effect of control effort weight R on maximum initial states lying within the basin of attraction of the
controlled double pendulum system

12

(a) The effect of R on δθ∗ (b) The effect of R on δθ̇∗

(c) The effect of R on δφ∗ (d) The effect of R on δφ̇∗

Figure B-6: The effect of control effort weight R on the maximum constant measurement offset error for which the
controlled double pendulum system is stable

13

(a) The effect of δm2 on θ∗, R = .03 (b) The effect of δm2 on φ∗, R = .03

(c) The effect of δm2 and R on θ∗

Figure B-7: The effect of control effort weight R and additional mass δm2 at the bottom of the swing leg on maximum
initial states lying within the basin of attraction of the controlled double pendulum system

14

(a) The effect of δm2 on δθ∗ (b) The effect of δm2 on δθ̇∗

(c) The effect of δm2 on δφ∗ (d) The effect of δm2 on δφ̇∗

Figure B-8: The effect of additional mass δm2 at the bottom of the swing leg on the maximum constant measurement
offset error for which the controlled double pendulum system is stable

15

(a) ...while supported by leash.

(b) ...upon complete release.

Figure B-9: Response of the uncontrolled robot...

16

(a) ...while supported by leash.

(b) ...upon complete release.

Figure B-10: Response of the ‘LQR’ controlled robot...

17

(a) ...while supported by leash.

(b) ...upon complete release.

Figure B-11: Response of the controlled robot with manually lowered θ̇ damping...

18

(a) Uncontrolled System

(b) Controlled System

Figure B-12: Root locus plots of the uncontrolled and controlled system (unreferenced)

19

(a) Bode plot of the uncontrolled system (b) Nyquist plot of the uncontrolled system

(c) Bode plot of the controlled system (d) Nyquist plot of the controlled system

Figure B-13: Classical relative stability analysis of the uncontrolled and controlled system (unreferenced)

20

APPENDIX C - Measurement on the Cornell Ranger
Controllers for the Cornell Ranger require feedback from onboard sensors. Sensors, unfortunately, are not perfect:

• Sensors do not always measure the particular information that is ultimately desired

• Sensor output is not ideal, rather it is affected by noise, offset, nonlinearities, etc. . .

The challenge of state estimation is to obtain a good approximation of desired physical information from available
sensors. This appendix documents my efforts toward state estimation of the Cornell Ranger.

Scope This document will briefly describe each of the sensors used by the robot, although it is not meant to substitute
for the wealth of information available online and in each product’s user manual. It will define each physical variable of
interest to the robot controller, describe the measurement variables associated with each of these physical variables;
it will not necessarily identify the shortcomings of each measurement variable explicity. It will explain how each
measurement variable is determined in the robot code at an intermediate level; it will not discuss how each is used,
nor will it delve into low level details such as quadrature signal processing, accelerometer filtering, or gyro avaraging.
Finally, it will document selected measurement routines from the robot code, but will not cover measurement routines
written by others.

C-1 Sensors on the Cornell Ranger

C-1.1 Sensor Types
Four types of sensors are used for state estimation on the Cornell Ranger.

C-1.1.1 Accelerometer

Each accelerometer used on the Cornell Ranger senses the deflection of a micro-scale cantilevered beam. The output is
a voltage corresponding to translational acceleration of the sensor in a particular ‘body-fixed’ direction. The output
signal is affected by noise and offset, but is assumed to be linearly proportional to the acceleration. The analog voltage
is converted to digital form by an analog to digital converter on the robot controller. The signal is digitally filtered to
reduce noise, introducing a phase lag. During a calibration routine, the average output voltage is measured for period of
time during which the accelerometer is stationary in a known orientation relative to the gravity vector. To compensate
for offset, a constant is added to the signal such that the average corresponds with the known acceleration due to gravity.
The signal is multiplied by a nominal gain to produce a floating point number representing translational acceleration in
m/s2.

C-1.1.2 Gyro

Each ‘gyro’ used on the Cornell Ranger senses deflection of a vibrating, micro-scale beam due to Coriolis forces. The
output is a voltage corresponding to angular velocity of the gyro about a particular ‘body-fixed’ axis. The output signal
is affected by noise and offset, but is assumed to be linearly proportional to the angular rate. The analog voltage is
converted to digital form by an analog to digital converter on the robot controller. The signal is digitally filtered to
reduce noise, introducing a phase lag. During a calibration routine, the average signal is measured for period of time
during which the gyro is not rotating in an inertial frame. To compensate for offset, a constant is added to the signal
such that the average corresponds with the known angular rate, zero. The signal is multiplied by a gain to produce a
floating point number representing angular velocity in rad/s.

21

C-1.1.3 Encoder

Each encoder used on on the Cornell Ranger senses passage of light beams through a slotted wheel. The output
is a quadrature signal; ‘quadrature signal processing’ will not be explained in this document. After processing, a
timer in the microcontroller counts incremental changes of motor shaft angular orientation in either a clockwise or
counter-clockwise direction. The signed, net number of ‘ticks’ is counted and multiplied by the known angle per tick to
determine a total angle relative to the reference at which the counter was initialized. Angle measurement made by the
encoder are not affected by noise, but their resolution is limited to the angular increment of each tick. Time between
ticks can be measured to determine the angular velocity, but these angular velocity measurement are affected by noise.

C-1.1.4 Contact Sensor

Each contact sensor used on the Cornell Ranger is actually a pair of infrared emitter-detectors (one emitter-detector
on each foot per pair of legs) that sense passage of light through a gap, which changes size as the bottom of the foot
deflects in response to applied pressure. The details of the signal processing will not be explained here. Each contact
sensor reliably determines whether significant pressure is applied to the foot.

C-1.2 Available Sensors
The sensors currently available on the Cornell Ranger are presented in Figure 1(a). Note that in order to reinforce the
important distinction between the quantity measured by each sensor and the physical variable the sensor is used to
estimate, the text corresponds with the approximate location of the sensor and not necessarily the relevant location of
the physical variable it is used to estimate. Also note that the approximation that the robot is two-dimensional is usually
very accurate. Unless otherwise noted, it is deemed acceptable to consider the sensor to ‘live’ in a two-dimensional
plane. In general, then, this document will refer to the robot as a two dimensional object, referring to pairs of legs as a
‘leg’, for example, unless greater detail is necessary.

1. The ‘Z-Accelerometer’ is mounted on the robot controller and measures translational acceleration of the outer legs
in a direction approximately parallel to the axis of the outer leg tubes.

2. The ‘Hip Encoder’ is mounted on the hip motor and detects incremental changes in the angle of the hip motor
output shaft about its axis.

3. The ‘Inner Encoder’ is mounted on the inner motor and detects incremental changes in the angle of the inner motor
output shaft about its axis.

4. The ‘Outer Encoder’ is mounted on the outer motor and detects incremental changes in the angle of the outer
motor output shaft about its axis.

5. The ‘Inner Gyro’ is mounted near the battery on the inner legs and outputs a voltage corresponding to the angular
velocity of the inner leg about the axis of the hip.

6. The ‘Outer Gyro’ is mounted on the robot controller and outputs a voltage corresponding to the angular velocity
of the outer leg about the axis of the hip.

7. The ‘Inner Contact’ sensor is mounted on the inner foot and detects pressure on the heel of the inner foot

8. The ‘Outer Contact’ sensor is mounted on the outer foot and detects pressure on the heel of the outer foot

22

(a) Available sensors listed in their approximate loca-
tion

(b) Desired physical variables near their relevant loca-
tion

Figure C-1: Available Sensors and Desired Variables of the Cornell Ranger

23

C-2 Desired Variables

Desired variables must be subdivided into physical variables, which are the true values sought, and measurement
variables, which are imperfect measurements of the physical variables.

C-2.1 Physical Variables

The physical variables currently desired for use by the Cornell Ranger are represented in Figure 1(b).C-1 Each angle is
represented by a greek letter: φ for the relative angle between the legs, θ for the absolute angle of a leg with respect to
vertical, and ψ for the angle between the top of the foot and the leg. Each greek letter is given a capital letter subscript
to make further distinctions:

• T , for ‘sTance’, refers to the leg corresponding with the foot that most recently experienced heelstrike. When only
one foot is in contact with the ground, the leg corresponding with this foot is the stance leg. When both feet are in
contact with the ground, the front leg is the stance leg.

• W , for ‘sWing’, refers to the leg that is not the stance leg.

• O, for ‘Outer’, refers to the outer pair of legs.

• I , for ‘Inner’, refers to the inner pair of legs.

Each physical variable is associated with one or more measurement variables in the Cornell Ranger code, listed below.
Note that front and back are relative to the robot’s usual (forward) direction of travel. The word ‘absolute’ means
‘with respect to <something> in an inertial frame’ and ‘relative’ means ‘with respect to <something> in the relevant
body-fixed frame’. Absolute angles must be initialized when the relevant robot part is in a known orientation with
respect to vertical in order to be meaningul; and relative angles must be initialized when the relevant robot parts are in a
known configuration in order to be meaningul. When the distinction between absolute and relative is not made, as for
angular velocities, it is irrelevant.

C-2.1.1 Physical Variables Associated with the Hip

φ is assocated with

• GBL Data[AngleHip], the relative angle of the hip, measured positive from back, swing leg to front, stance
leg.

• GBL Data[AngleEncoderHip], the relative angle of the hip, measured positive from back, outer leg to front,
inner leg.

• GBL Data[AngleGyroHip], the relative angle of the hip, measured positive from back, outer leg to front,
inner leg.

• GBL Data[CorrectedAngleEncoderHip], the relative angle of the hip, measured positive from back,
outer leg to front, inner leg. A correction is made for backlash in the hip motor gearbox.

C-1Note that no sign conventions are indicated for the physical variables; rather, sign conventions are defined for each measurement variable.

24

φ̇ is assocated with

• GBL Data[AngleRateHip], the angular velocity of the hip, measured positive from back, swing leg to front,
stance leg.

• GBL Data[AngleRateEncoderHip], the angular velocity of the hip, measured positive from back, outer
leg to front, inner leg.

• GBL Data[AngleRateGyroHip], the angular velocity of the hip, measured positive from back, outer leg to
front, inner leg.

C-2.1.2 Physical Variables Associated with the Legs

θT is assocated with

• GBL Data[AngleStanceLeg], the absolute angle of the stance leg, measured positive from vertical to back,
stance leg.

θ̇T is assocated with

• GBL Data[AngleRateStanceLeg], the angular rate of the stance leg, measured positive as stance leg moves
back.

• GBL Data[AngleRateStanceLegFiltered], a heavily filtered measurement of the angular rate of the
stance leg. Note that the signal exhibits less noise, but greater phase lag.

θW is assocated with

• GBL Data[AngleSwingLeg], the absolute angle of the swing leg, measured positive from vertical to back,
swing leg.

θ̇W is assocated with

• GBL Data[AngleRateSwingLeg], the angular velocity of the swing leg, measured positive as swing leg
moves back.

θI is assocated with

• GBL Data[AngleGyroInner], the absolute angle of the inner leg, measured positive from vertical to back,
inner leg.

θ̇I is assocated with

• GBL Data[AngleRateGyroInner], the angular rate of the inner leg, measured positive as inner leg moves
back.

• GBL Data[AngleRateGyroInnerFiltered], a heavily filtered measurement of the angular rate of the
inner leg. Note that the filtered signal is less noisy, but has significant phase lag, as illustrated in Figure 2(a)

25

(a) ...at very low angular rate, to emphasize the high
noise level of the regular signal

(b) ...at angular rates experienced during the walking
cycle, to emphasize the attenuation and phase lag of
the filtered signal

Figure C-2: Comparison of regular (white) and heavily filtered (green) inner gyro signals...

θO is assocated with

• GBL Data[AngleGyroOuter], the absolute angle of the outer leg, measured positive from vertical to back,
outer leg.

θ̇O is assocated with

• GBL Data[AngleRateGyroOuter], the angular rate of the outer leg, measured positive as outer leg moves
back.

• GBL Data[AngleRateGyroOuterFiltered], a heavily filtered measurement of the angular rate of the
outer leg. Note that the signal will have less noise, but greater phase lag.

C-2.1.3 Physical Variables Associated with the Ankles

ψI is assocated with

• GBL Data[AngleEncoderInner], the relative angle of the inner ankle, measured positive from the inner
leg to the top of the inner foot.

• GBL Data[AngleEncoderInnerCorrected], the relative angle of the inner ankle, corrected for stretching
of the cable connecting the actuator to the ankle pulley.

ψ̇I is assocated with

• GBL Data[AngleRateEncoderInner], the angular rate of the inner ankle, measured negative as the foot
retracts.

26

ψO is assocated with

• GBL Data[AngleEncoderOuter], the relative angle of the outer ankle, measured positive from the outer
leg to the top of the outer foot.

• GBL Data[AngleEncoderOuterCorrected], the angle of the outer ankle, corrected for stretching of the
cable connecting the actuator to the ankle.

ψ̇O is assocated with

• GBL Data[AngleRateEncoderOuter], the angular rate of the outer ankle, measured negative as the outer
foot retracts.

ψT is assocated with

• GBL Data[AngleStanceFoot], the relative angle of the stance ankle, measured positive from the stance leg
to the top of the stance foot.

ψ̇T is assocated with

• GBL Data[AngleRateStanceFoot], the angular rate of the stance ankle, measured negative as the stance
foot retracts.

ψW is assocated with

• GBL Data[AngleSwingFoot], the relative angle of the swing ankle, measured positive from the swing leg
to the top of the stance foot.

ψ̇W is assocated with

• GBL Data[AngleRateSwingFoot], the angular rate of the swing ankle, measured negative as the swing
foot retracts.

C-2.1.4 Physical Variables Associated with the Feet

h is assocated with

• GBL Data[DistanceToHeelStrike], the minimum absolute distance from the bottom of the front, swing
foot to the ground. Undefined if the swing foot is not in front.

Some measurement variables are not directly associated with any physical variables of interest, rather they are only
used in the calculation of other measurement variables.

• GBL Hip Backlash, half the backlash in the gearbox (measured in units of encoder ticks), is a measurement
variable associated with the hip.

• GBL Data[OffsetGyroInner], the offset voltage of the inner gyro, is a measurement variable associated
with the legs.

27

• GBL Data[OffsetGyroOuter], the offset voltage of the outer gyro, is a measurement variable associated
with the legs.

• GBL Data[GyroGainInner], the gain, or transuction constant, of the inner gyro, is a measurement variable
associated with the legs.

• GBL Data[GyroGainOuter], the gain, or transuction constant, of the outer gyro, is a measurement variable
associated with the legs.

• GBL Data[AccelZ], the measurement made by the Z Accelerometer, is a measurement variable associated
with the legs.

• GBL Data[AccelZAverage], a heavily filtered version of the measurement made by the Z Accelerometer, is
a measurement variable associated with the legs.

• GBL Data[AngleEncoderStiffnessInner], the stiffness of the inner leg cables, is a measurement
variable associated with the ankles.

• GBL Data[AngleEncoderStiffnessOuter], the stiffness of the outer leg cables, is a measurement
variable associated with the ankles.

• GBL Data[FootContactInner] indicates whether pressure is applied to the heel of the inner foot. It is a
measurement variable associated with the feet.

• GBL Data[FootContactOuter] indicates whether pressure is applied to the heel of the outer foot. It is a
measurement variable associated with the feet.

• GBL Data[StanceLeg] indicates whether the inner or outer leg is the stance leg. It is a measurement variable
associated with the feet.

C-2.2 Measurement Variables
Most measurement variables follow a standard naming convention. The appearance of the following terms within the
measurement variable name indicates the type or the origin of the measurement.

• Angle signifies that the measurement variable represents an angular measurement in radians

• AngleRate signifies that the measurement variable represents an angular velocity measurement in radians per
second

• Contact signifies that the measurement variable is a binary value; a value of 1 indicates contact

• Gyro signifies that the measurement variable depends primarily on gyro data

• Encoder signifies that the measurement variable depends primarily on encoder data

• Accel signifies that the measurement variable depends primarily on accelerometer date

• Corrected signifies that the measurement variable attempts to correct an inaccuracy in the way the variable
was originally measured

28

• Filtered and Average signify that the measurement variable has been digitally filtered more than usual to
reduce noise; these measurement variables will not be given particular attention below

• Stance, Swing, Inner, and Outer carry the meanings defined in C-2.1

• Hip signifies that the measurement variable contains information related to a φ physical variable associated with
the hip

• Leg, when it appears along with Angle or AngleRate signifies that the measurement variable contains
information related to a θ physical variable associated with the leg

• Foot, when it appears along with Angle, signifies that the measurement variable contains information related to
a ψ physical variable associated with the ankle. The names of these measurement variables should be renamed
with Ankle in place of Foot

• Foot, when it appears along with Contact, signifies that the measurement variable contains information related
to a physical variable associated with the feet

A few measurement variable names are exceptions to these rules, most notably StanceLeg, DistanceTo-
HeelStrike, and those names that contain OffsetGyro, GyroGain, and AngleEncoderStiffness.

C-2.2.1 Measurement Variables Associated with the Hip

GBL Data[AngleHip] is initialized in the IntRoutine TMRC0() function within the MODECALGYROS case
as FFsub(GBL Data[AngleSwingLeg], GBL Data[AngleStanceLeg]). Note that the calibration rou-
tine assumes that the inner, stance leg is in front during calibration. GBL Data[AngleHip] is recalculated in
the StateEstimator() function . According to its sign convention, if the inner leg is the stance leg, then it
is equal to GBL Data[AngleEncoderHip]; if the outer leg is the stance leg, then it is equal to the negative
of GBL Data[AngleEncoderHip]. GBL Data[AngleHip] can be set from GBL Data[AngleGyroHip]
instead of GBL Data[AngleEncoderHip] according to the same rules, if desired.

GBL Data[AngleEncoderHip] is set in the ReadAngleEncoderHip() function as FFmult(0xFFF-
440FD,S16int2FFloat(*TMRA0 CNTR)), or the product of gain 0xFFF440FD, which is the conversion from
encoder tick to rad/s in FFloat format, and *TMRA0 CNTR, which is the signed, net number of encoder ticks since
*TMRA0 CNTR was initialized. Initialization of *TMRA0 CNTR is discussed in C-3.1.

GBL Data[AngleGyroHip] is set in the StateEstimator() function as FFsub(GBL Data[Angle-
GyroOuter], GBL Data[AngleGyroInner]). It agrees closely with GBL Data[AngleEncoderHip]
when the gyro angles are properly initialized, as in Figure 4(a).

GBL Data[CorrectedAngleEncoderHip] is is set in the ReadAngleEncoderHip() function. If the
PWM value at the hip is zero, then the motor output shaft can be at either side of the gearbox backlash.
Thus it is impossible to correct for backlash, and GBL Data[CorrectedAngleEncoderHip] is equal to
GBL Data[AngleEncoderHip]. If the PWM value at the hip is nonzero, then the motor shaft is known
to be at one side of the backlash or the other, and thus GBL Hip Backlash can be added or subtracted from
*TMRA0 CNTR before converting from encoder ticks to radians. Figure C-3 illustrates the difference between
GBL Data[AngleEncoderHip] and GBL Data[CorrectedAngleEncoderHip].

29

Figure C-3: Comparison of GBL Data[AngleEncoderHip](white) and GBL Data[CorrectedAngle-
EncoderHip](green) while the controller attempts to maintain a prescribed hip angle against a disturbance. When the
disturbance causes the true hip angle to decrease at time t1, the controller recognizes that backlash has been eliminated
in a particular direction, and GBL Data[CorrectedAngleEncoderHip] responds appropriately. When the
disturbance causes the true hip angle to increase at time t2, the controller recognizes that the backlash has been
eliminated in the other direction, and GBL Data[CorrectedAngleEncoderHip] responds appropriately. The
discontinuity is essentially unavoidable, as true position of the leg is uncertain when there is backlash in either direction.
When backlash has been eliminated on one side, GBL Data[AngleEncoderHip] is always incorrect by half the
backlash angle of the gearbox.

GBL Data[AngleRateHip] is set in the StateEstimator() function as FFsub(GBL Data[Angle-
RateSwingLeg], GBL Data[AngleRateStanceLeg]).

GBL Data[AngleRateEncoderHip] is set in the ReadAngleRateEncoderHip() function. It is essen-
tially obsolete, replaced by the difference in the gyro angular velocity signals, because it was very noisy, as illustrated
in Figure 4(b).

GBL Data[AngleRateGyroHip] is set in the ReadGyroRate() function as FFsub(GBL Data[Angle-
RateGyroOuter], GBL Data[AngleRateGyroInner]). It is a cleaner, drop-in replacement of GBL Da-
ta[AngleRateEncoderHip], as illustrated in Figure 4(b).

GBL Hip Backlash is discussed in C-3.1.

C-2.2.2 Measurement Variables Associated with the Legs

GBL Data[AngleStanceLeg] is initialized in the IntRoutine TMRC0() function within the MODE-
CALGYROS case as the negative of one half of GBL Data[CorrectedAngleEncoderHip]. (Assuming
that the inner, stance leg is in front during gyro calibration and the feet are fully retracted, the robot legs form
an isosceles triangle with the ground, so this is a valid approximation.) It is re-initialized upon heelstrike
in the StateEstimator() function as the difference between GBL Data[AngleSwingLeg] and the ab-
solute value of GBL Data[CorrectedAngleEncoderHip]. Once initialized, changes are integrated from
GBL Data[AngleRateStanceLeg] in the StateEstimator() function.

30

(a) Actual data from the robot showing good agreement
between GBL Data[AngleEncoderHip] (white) and
GBL Data[AngleRateGyroHip] (green). The agree-
ment between the integrated gyro measurement and the rela-
tive encoder measurement is typical, provided that the refer-
ence gyro angles are properly set at heelstrike.

(b) Actual data from the robot showing good agreement
between GBL Data[AngleRateEncoderHip] (green)
and GBL Data[AngleRateGyroHip] (white), but that
the gyro measurement does not suffer from the wild noise
problems of the encoder measurement.

Figure C-4: Graphical comparison of encoder and gyro measurements

GBL Data[AngleRateStanceLeg] is set in the StateEstimator() function as GBL Data[Angle-
RateGyroOuter] if the outer leg is the stance leg, or as GBL Data[AngleRateGyroInner] if the inner
leg is the stance leg.

GBL Data[AngleSwingLeg] is initialized in the IntRoutine TMRC0() function within the MODECAL-
GYROS case as one half of GBL Data[CorrectedAngleEncoderHip]. (Assuming that the inner, stance leg is
in front during gyro calibration and the feet are fully retracted, the robot legs form an isosceles triangle with the ground,
so this is a valid approximation.) It is re-initialized upon heelstrike in the StateEstimator() function according
to a relatively long trigonometric formula, which is explained in C-3.2. Once initialized, changes are integrated from
GBL Data[AngleRateSwingLeg] in the StateEstimator() function.

GBL Data[AngleRateSwingLeg] is set in the StateEstimator() function as GBL Data[Angle-
RateGyroOuter] if the inner leg is the stance leg, or as GBL Data[AngleRateGyroInner] if the outer
leg is the stance leg.

GBL Data[AngleGyroInner] is initialized in the IntRoutine TMRC0() function within the MODECAL-
GYROS case equal to GBL Data[AngleStanceLeg]. It is re-initialized in the StateEstimator() function
equal to GBL Data[AngleStanceLeg] when the inner foot experiences heelstrike. Otherwise, including the case
when the outer foot experiences heelstrike, changes are integrated from GBL Data[AngleRateGyroInner] in the
StateEstimator(). Therefore its value may differ from GBL Data[AngleSwingLeg] even when the inner

31

leg is the swing leg; this is illustrated in Figure C-12 and important in automatic gyro calibration described in C-3.3.
Integration drift is apparent in Figure 5(b).

GBL Data[AngleRateGyroInner] is set in the ReadGyroRate() function. It is calculated by subtracting
GBL Data[OffsetGyroInner] from the filtered signal from inner gyro, then multiplying the difference by the
inner gyro transduction constant GBL Data[GyroGainInner]. Measurement noise is visible in Figure 5(a).

GBL Data[OffsetGyroInner] and GBL Data[GyroGainInner] are documented in C-3.3.

GBL Data[AngleGyroOuter] is initialized in the IntRoutine TMRC0() function within the MODECAL-
GYROS case equal to GBL Data[AngleSwingLeg]. It is re-initialized in the StateEstimator() function
equal to GBL Data[AngleStanceLeg] when the outer foot experiences heelstrike. Otherwise, including the case
when the inner foot experiences heelstrike, changes are integrated from GBL Data[AngleRateGyroOuter] in
the StateEstimator() function. Therefore its value may differ from GBL Data[AngleSwingLeg] even when
the outer leg is the swing leg; this is illustrated in Figure C-12 and important in automatic gyro calibration described in
C-3.3. Integration drift is apparent in Figure 6(b).

GBL Data[AngleRateGyroOuter] is set in the ReadGyroRate() function. It is calculated by subtracting
GBL Data[OffsetGyroOuter] from the filtered signal from outer gyro, then multiplying the difference by the
outer gyro transduction constant GBL Data[GyroGainOuter]. Measurement noise is visible in Figure 6(a).

GBL Data[OffsetGyroOuter] and GBL Data[GyroGainOuter] are documented in C-3.3.

GBL Data[AccelZ] is calculated in the ReadAccelZ() function by multiplying the average of the gyro signal
provided by *ADCB ADRSLT7 by the transduction constant. GBL Data[AccelZAverage] is not yet defined.
Further detail is not provided in this ducument.

C-2.2.3 Measurement Variables Associated with the Ankles

GBL Data[AngleEncoderInner] is calculated in the ReadAngleEncoderInner() function as the prod-
uct of *TMRA2 CNTR + 25000 and the conversion from tick to radians in FFloat format. *TMRA2 CNTR is the
timer that counts the signed, net number of inner encoder tick since it was initialized to a value of -25000. Further
detail regarding *TMRA2 CNTR initialization is provided in C-3.1.

GBL Data[CorrectedAngleEncoderInner] is calculated in the ReadAngleEncoderInner() func-
tion by subtracting the product of GBL Data[AngleEncoderStiffnessInner] and the inner motor torque
(Nm) from GBL Data[AngleEncoderInner]. The effect of this correction is illustrated in Figure C-7.

GBL Data[AngleEncoderStiffnessInner] is documented in C-3.1.

GBL Data[AngleRateEncoderInner] is calculated in the ReadAngleRateEncoderInner() function
by dividing the number of radians per inner motor encoder tick by the average time between ticks. No further detail is
provided in this document.

32

(a) GBL Data[AngleRateGyroInner] data suf-
fers from noise and offset. Offset differs from trial to
trial.

(b) GBL Data[AngleGyroInner] data suffers
from integration drift. Note extreme drift in Trial 2
corresponds with apparent offset in angular rate data.

Figure C-5: Sample inner leg angle data from three trials to illustrate drift in absolute angle measurement and noise in
angular velocity measurement immediately after calibration.

(a) GBL Data[AngleRateGyroOuter] data suf-
fers from noise and offset. Offset differs from trial to
trial.

(b) GBL Data[AngleGyroOuter] data suffers
from integration drift. Note extreme drift in Trial 3
corresponds with apparent offset in angular rate data.

Figure C-6: Sample outer leg angle data from three trials to illustrate drift in absolute angle measurement and noise in
angular velocity measurement immediately after calibration.

33

Figure C-7: Comparison of GBL Data[AngleEncoderInner](white) and GBL Data[CorrectedAng-
leEncoderInner](green) while the controller attempts to maintain a prescribed inner ankle angle against a
disturbance. GBL Data[CorrectedAngleEncoderInner] is a closer approximation to the actual rotation of
the foot because it accounts for the fact that the cable linking the motor to the ankle joint stretches as torque is applied.
GBL Data[AngleEncoderInner] does not account for the stretching, and thus underestimates the actual rotation
of the foot.

GBL Data[AngleEncoderOuter] is calculated in the ReadAngleEncoderOuter() function as the prod-
uct of *TMRB0 CNTR + 25000 and the conversion from tick to radians in FFloat format. *TMRB0 CNTR is the
timer that counts the signed, net number of outer encoder tick since it was initialized to a value of -25000. Further
detail regarding *TMRB0 CNTR initialization is provided in C-3.1.

GBL Data[CorrectedAngleEncoderOuter] is calculated in the ReadAngleEncoderOuter() func-
tion by subtracting the product of the outer cable stiffness (rad/Nm) and the outer motor torque (Nm) from
GBL Data[AngleEncoderInner].

GBL Data[AngleEncoderStiffnessOuter] is documented in C-3.1.

GBL Data[AngleRateEncoderOuter] is calculated in the ReadAngleRateEncoderInner() function
by dividing the number of radians per outer motor encoder tick by the average time between ticks. No further detail is
provided in this document.

GBL Data[AngleStanceFoot] is set in the StateEstimator() function equal to GBL Data[Angle-
EncoderOuter] if the outer leg is the stance leg, or equal to GBL Data[AngleEncoderInner] if the inner
leg is the stance leg.

GBL Data[AngleRateStanceFoot] is set in the StateEstimator() function equal to GBL Data[An-
gleRateEncoderOuter] if the outer leg is the stance leg , or equal to GBL Data[AngleRateEnc-
oderInner] if the inner leg is the stance leg.

34

GBL Data[AngleSwingFoot] is set in the StateEstimator() function equal to GBL Data[Angle-
EncoderInner] if the outer leg is the stance leg, or equal to GBL Data[AngleEncoderOuter] if the inner
leg is the stance leg.

GBL Data[AngleRateSwingFoot] is set in the StateEstimator() function equal to GBL Data[An-
gleRateEncoderInner] if the outer leg is the stance leg, or equal to GBL Data[AngleRateEncod-
erOuter] if the inner leg is the stance leg.

C-2.2.4 Measurement Variables Associated with the Feet

GBL Data[DistanceToHeelStrike] is set in the StateEstimator() function equal to the difference
between the cosine of GBL Data[AngleStanceLeg] and the cosine of GBL Data[AngleSwingLeg]. This is
a valid approximation of the minimum distance (m) between the foot and the ground just before heelstrike because both
legs are of unit length, hence no scaling is necessary, and both feet are in approximately the same orientation, so the
ankle angles do not need to be accounted for. There is signficant offset from the true value, but the measurement is
consistent to within ∼ 5mm at heelstrike, as illustrated in C-8.

Figure C-8: Illustration of the consistency of GBL Data[DistanceToHeelStrike] measurement variable;
GBL Data[StanceLeg] is shown to indicate heelstrike. The points at which the lines intersect (red markers)
indicate the value of GBL Data[DistanceToHeelStrike] at heelstrike. Although the measurement is offset
from the true value of zero, it is consistent to within ∼ 5 5mm and thus can still be used to predict heelstrike.

GBL Data[FootContactInner] and GBL Data[FootContactOuter] are set in CheckFootStat-
us() according to time tested, reliable logic. No further detail is provided in this document.

GBL Data[StanceLeg] is set in the StateEstimator() function according to the following logic: If the
front foot is in contact with the ground and the front leg is not currently the stance leg, then the front leg is the new
stance leg.

35

C-3 Measurement Routines
The following subsections document selected measurement routines in the Cornell Ranger code.

C-3.1 Encoder Calibration
The encoders counters can only track angles relative to a reference value - they must be initialized to a value cor-
responding with a known robot configuration before they can provide meaningful data. Furthermore, each encoder
measures angular rotation of a motor output shaft. The hip motor encoder does not directly measure the hip angle
due to backlash in the hip motor gearhead, and the angle motor encoders do not directly measure measure the ankle
anges due to both backlash in the gearheads and flexibility in the cables. The Encoder Calibration routine, contained
in the IntRoutine TMRC0() function within the MODECALGYROS case, initializes reference values for encoders,
measures hip gearbox backlash, and determines cable stiffness so that the final measurement variables can meaningfully
describe the desired physical variables. While this code runs, the robot must be configured with all relative angles in
the ‘zero’ position: the inner and outer legs must be parallel and the feet must be retracted to their limits. The legs and
feet must be secured in these positions, as torques are be applied during calibration.

Here, the heavily commented code is broken into blocks; further explanation is included below each block as deemed
necessary.

case MODECALENCODERS:
{
ReadSensors();
switch(BacklashMeasured)

The variable BacklashMeasured, initialized to 0, is used to determine whether the calibration routine is just
beginning (0), or if it is in progress (1). The name BacklashMeasured is a misleading artifact, as it does not at all
indicate whether the backlash has been measured.

{
case 0: \\ the calibration routine is just beginning

{
EncoderZero(); //Initialize all encoder counters, that is:

//*TMRA0_CNTR = 0; // Hip encoder
//*TMRA2_CNTR = -25000; //Inner encoder
//*TMRB0_CNTR = -25000; //Outer encoder
//*TMRB2_CNTR = 0; //Spare encoder

The EncoderZero() routine initializes all the encoder counters to tentative values. Note that *TMRA0 CNTR is
re-initialized later in the routine.

read_encoders_time_1 = GBL_Elapsed_mS+500;
read_encoders_time_2 = read_encoders_time_1+500;
TestHipEncoderTime1 = read_encoders_time_2+500;
TestHipEncoderTime2 = TestHipEncoderTime1+500;

GBL Elapsed mS serves as the robot’s clock; it is an in integer indicating the number of milliseconds that have
elapsed since the robot was turned on. There are four phases to the calibration mode, two reading phases and two test
phases. Each phase is 500 milliseconds long. The time when each phase will end, relative to the current clock time, is
calculated in this block.

36

BacklashMeasured = 1; \\ now the routine is in progress
break;
}

case 1:
{
// reading phase 1
if (GBL_Elapsed_mS < read_encoders_time_1)
{
// send a small PWM signal to each motor
GBL_Data[PWMDesiredHip] = S16int2FFloat(75);
GBL_Data[TorqueInner] = IEEE2FFloat(.05);
GBL_Data[TorqueOuter] = IEEE2FFloat(.05);
}

During reading phase 1, a small PWM signal is sent to the hip motor to eliminate gearbox backlash in one direction.
Likewise, a small torque is applied by the inner and outer motors. By the end of the 500 millisecond phase, the motors
have stalled and all gears are meashed in one direction.

// reading phase 1 almost over
else if (GBL_Elapsed_mS == read_encoders_time_1)
{
// continue to send a small PWM signal to each motor
GBL_Data[PWMDesiredHip] = S16int2FFloat(75);
GBL_Data[TorqueInner] = IEEE2FFloat(.05);
GBL_Data[TorqueOuter] = IEEE2FFloat(.05);

“The first measurement is about to be taken, but keep applying the small torque in the same direction to keep the gears
meshed. . . ”

// measure the encoder values
GBL_Hip_Backlash = *TMRA0_CNTR;
Angle_Encoder_Inner_Low = GBL_Data[AngleEncoderInner];
Angle_Encoder_Outer_Low = GBL_Data[AngleEncoderOuter];
}

“Now that all the gears are lightly meshed in one direction, remember the encoder readings on this ‘side’ of the backlash.”

// reading phase 2
else if (GBL_Elapsed_mS < read_encoders_time_2)
{
// send a small PWM signal to the hip in the other direction
GBL_Data[PWMDesiredHip] = S16int2FFloat(-75);
// apply a considerable torque at the ankles
GBL_Data[TorqueInner] = S16int2FFloat(1);
GBL_Data[TorqueOuter] = S16int2FFloat(1);
}

“Send a small PWM signal to the hip motor to eliminate backlash in the other direction. Apply a significant torque at
the ankles to stretch the cables.”

37

// reading phase 2 almost over
else if (GBL_Elapsed_mS == read_encoders_time_2)
{
// continue to send the small PWM signal
GBL_Data[PWMDesiredHip] = S16int2FFloat(-75);
// continue to apply the considerable torque
GBL_Data[TorqueInner] = S16int2FFloat(1);
GBL_Data[TorqueOuter] = S16int2FFloat(1);

“The second measurement is about to be taken, but keep applying the torques. . . ”

// now make the second set of measurements
GBL_Hip_Backlash = GBL_Hip_Backlash - *TMRA0_CNTR; // calculate the

// hip backlash
GBL_Hip_Backlash = GBL_Hip_Backlash>>1; // divide by two

*TMRA0_CNTR = -GBL_Hip_Backlash; // re-initialize hip counter

“Calculate the backlash in the hip as the difference between GBL Hip Backlash, the counter reading on the other side
of the backlash, and *TMRA0 CNTR, the counter reading on this side of the backlash. Redefine GBL Hip Backlash
as half of its previous value. We’d like the center of the backlash to correspond with *TMRA0 CNTR equal to zero, but
the motor is at one side of the backlash now, re-initialize TMRA0 CNTR equal to the negative of half the number of
encoder counts of backlash.”

Angle_Encoder_Inner_High = GBL_Data[AngleEncoderInner];
Angle_Encoder_Outer_High = GBL_Data[AngleEncoderOuter];
GBL_Data[AngleEncoderStiffnessInner] = FFsub(Angle_Encoder
_Inner_High,Angle_Encoder_Inner_Low);
GBL_Data[AngleEncoderStiffnessOuter] = FFsub(Angle_Encoder
_Outer_High,Angle_Encoder_Outer_Low);
}

Since the difference in applied torques between the first and second reading is approximately the unit value of 1 Nm
(actually .95 Nm, but the difference is negligible), the stiffness is simply the difference between the encoder reading
taken at high applied torque and the encoder reading taken at negligible torque.

// test phase 1
else if (GBL_Elapsed_mS < TestHipEncoderTime1)

{
GBL_Data[PWMDesiredHip] = S16int2FFloat(+75);
}

// test phase 2
else if (GBL_Elapsed_mS < TestHipEncoderTime2)

{
GBL_Data[PWMDesiredHip] = S16int2FFloat(-75);
}

“Apply small torques to the hip again so that the operator can confirm that CorrectedAngleEncoderHip responds
as expected.”

38

else // almost done!
{
BacklashMeasured = 0; // Next time MODECALENCODERS runs,

// start the routine at the beginning
Calibrated = 1; // Encoders are calibrated
SpringCalibrated = 0; // Springs needed to be re-calibrated
GBL_Data[RobotMode] = MODESTANDBY; // Return to standby mode
LCDWriteWord("CalEncDn"); // Indicate this on the LCD Displace
}

// Calculate the PWM values that need to be sent to the motors to
// produce the desired torques
TorqueControllerInner();
TorqueControllerOuter();
SendPWM(); // Send those PWM signals to the motors
break;
}

}
break;

}

“Finally, reset BacklashMeasured and end the MODECALENCODERS case.”
The readings of AngleEncoderHip and CorrectedAngleEncoderHip during the calibration routine are

compared in Figure C-9. The readings of AngleEncoderInner and CorrectedAngleEncoderInner during
the calibration routine are compared in Figure C-10.

C-3.2 Absolute Angle Reset

The gyros on the Cornell Ranger sense angular rate. Relative angles can be determined by integrating the angular rate,
but absolute angle determination is possible only if a known, initial reference angle is established. This reference angle
can be determined during gyro calibration, when the robot is stationary in a known configuration. Small offsets and
random noise in the gyro output coupled with the limited precision of analog to digital converion and the discrete,
numerical integration of the signal, however, generally cause the integrated angle to become less accurate, or ‘drift’
over time. Thus it is necessary to periodically reset the reference angle to properly measure absolute angle with respect
to the inertial frame. Ideally, the accelerometer can be used to determine the orientation of the gravity vector, but
offset, noise, and accelerations other than that of gravity complicate this measurement. Due to the two dimensional
nature of this the machine, though, the absolute angle of the swing leg can be determined according to relative angle
measurements made by the encoders and the geometry of the double stance condition, when both feet are in contact
with the ground. A diagram of this condition is presented in Figure 11(a). Fixing origin O and rotating our perspective
θW yields Figure 11(b). We will refer the distance between the ankle pivot and the center of the foot profile arc as
l1 = OA = CD, the length of the leg as l2 = AB = BC, and the ratio of the two lengths as r = l2

l1
. Refering to Figure

1(b), we recognize that ∠OAB = ψA = |ψW | where |ψW | is the absolute magnitude of ψW . Also, ∠ABC = |φ|, and
∠BCD = ψC = |ψT |, all of which are measured by the encoders. Making use of rotation matrices and MATLAB
symbolic manipulation, we can determine the vector from O to D as

rO→D = [−l1 sinψA + l2 sinφ− l1 sin(φ− ψC)]̂ı + [−l1 cosψA + l2(1− cosφ) + l1 cos(φ− ψC)]̂. (C-1)

39

Figure C-9: A comparison of AngleEncoderHip(white) and CorrectedAngleEncoderHip(green) during the
calibration routine, during which the true hip angle is fixed at zero. At time t1, the backlash has not yet been measured,
so the signals are identical. During reading phase 1, a small PWM value is applied to the hip motor, causing the
backlash to be eliminated in one direction. At time t2 corresponding to the end of reading phase 1, the backlash variable
is GBL Backlash Hip is initialized (although the value is not final), causing the corrected value to jump. The motor
eliminates backlash in the other direction during reading phase 2. At time t3, the backlash has been properly measured,
and the first test phase begins. The motor applies a torque in the first direction, eliminating backlash, and while the
uncorrected signal jumps, the corrected signal immediately returns to the zero value - as the hip itself has not moved.
At time t4, the second test phase begins, and the motor eliminates backlash in the other direction. The corrected value
once again returns to zero, while the uncorrected signal would suggest that the hip has rotated. At time t5 the motor
stops applying torque, so the true position of the hip is uncertain, and thus the corrected measurement assumes the
uncorrected value.

40

Figure C-10: A comparison of AngleEncoderInner(white) and CorrectedAngleEncoderInner(green)
during the calibration routine, during which the true inner ankle angle is fixed at zero. During reading phase 1 (prior to
t1), a small torque is applied by the inner ankle motor, causing the encoder to turn and the backlash in one direction to
be eliminated. At time t1, the cable stiffness has not yet been measured, so the signals are identical. A considerable
torque is applied during reading phase 2, causing the cables to stretch and the signals to jump as the encoders turn.
At time t2, the torque turns off and the encoders return to the zero position. At time t3, the calibration routine begins
again with reading phase 1. The small applied torque causes the corrected measurement to drop slightly, but does not
cause the cable to stretch, and thus the uncorrected measurement does not change. However, at time t4 reading phase 2
begins again, and a larger torque is applied, causing the cables to stretch, and the uncorrected measurement to jump.
The corrected measurement returns to near the zero position, as it should. At time t5, the torque is turned off, and thus
the two measurements become identical.

41

(a) ...from the usual perspective (b) ...from a perspective rotated by θ1

Figure C-11: Diagrams of the double stance condition...

Then,

θW = tan−1

[
r − cosψA − r cosφ+ cos(φ− ψC)
− sinψA + r sinφ− sin(φ− ψC)

]
. (C-2)

Subsituting measurement variables for physical variables, this formula is evaluated GBL Param[ResetGy-
roDelay] milliseconds after heelstrike in the StateEstimator() function to determine GBL Data[An-
gleSwingLeg], which is a measurement of θW . All other absolute leg angles can be calculated from θW and
known relative angles. Actual results are shown in Figure C-12.

C-3.3 Automatic Gyro Calibration

Each gyro on the Cornell Ranger outputs a voltage that is approximately linearly proportional to its angular rate, but the
slope (known as gain or transduction constant) and offset can vary among particular units, and even then can change
noticeably over the course of a few steps. Differences between the actual gyro gain and offset and those assumed by the
robot controller lead to error in measurement. Fortunately, it is possible to automatically measure the gyro gain and
offset periodically to minimize these errors.

For example, the offset of the inner gyro can be measured as follows:

42

Figure C-12: Leg angle measurements GBL Data[AngleStanceLeg] (white), GBL Data[AngleSwingLeg]
(red), GBL Data[AngleGyroInner] (green), and GBL Data[AngleGyroOuter] (blue) over a complete cycle.
At time t1, the inner leg is the stance leg, the outer leg is the swing leg, and all angles are being integrated from angular
rate data. At time t2 heelstrike occurs, the outer leg becomes the stance leg, and the inner leg becomes the swing leg,
and all the angles are reset acording to kinematics. Continuity between curves at heelstrike indicates agreement between
integrated values and values calculated according to Equation C-2. Note that discontinuity of individual stance and
swing angle curves at heelstrike are expected as the stance leg becomes the swing leg and vice versa. Also note the
slight difference between GBL Data[AngleGyroInner] and GBL Data[AngleSwingLeg] when the inner
leg is the swing leg, and between GBL Data[AngleGyroOuter] and GBL Data[AngleSwingLeg] when the
outer leg is the swing leg, which is acceptable due to the way each is defined.

• Upon heelstrike of the inner foot, determine the angle of the inner leg according to the kinematic relationship
developed in Equation C-2

• Until next heelstrike of the inner foot, integrate inner gyro rate data to track the inner leg angle; do not reset this
inner leg angle at heelstrike of the outer footC-2

• Upon the next heelstrike of the inner foot, determine the new angle of the inner leg according to the kinematic
relationship developed in Equation C-2

• Calculate the difference between the new, kinematically determined angle and the value integrated from the
previous kinematically determined angle

• Theoretically these should be identical; any error must be due to error integration of angular rate

• Most of this error will be due to gyro offset, because the numerical integration error is small, and the gyro gain is
not significant because the net rotation of the leg is approximately zero

• Add a fraction of this error to GBL Data[OffsetGyroInner]

C-2This is the reason why GBL Data[AngleGyroInner] is not reset at outer leg heelstrike and GBL Data[AngleGyroOuter] is not reset
at inner leg heelstrike.

43

Consider measurement of the gain of the inner gyro:

• Upon heelstrike of the inner foot, determine the angle of the inner leg according to the kinematic relationship
developed in Equation C-2

• Until next heelstrike, integrate inner gyro rate data to track the inner leg angle

• Upon heelstrike of the outer foot, determine the angle of the inner leg according to the kinematic relationship
developed in Equation C-2

• Calculate the change in inner leg angle according to the two kinematically determined values

• Calculate the change in inner leg angle according to the integrated inner gyro rate

• Calculate the ratio between these two measurements

• Theoretically this ratio should be unity; any error must be due to error in the integration of angular rate

• Most of this error will be due to inaccuracy in the gyro gain, because the numerical integration error is small, and
the drift due to gyro offset is assumed to have little effect over half a step.

• Factor a fraction of this error into GBL Data[GyroGainInner]

These calculations are implemented in the StateEstimator function. Results of automatic gyro calibration are
shown in Figure C-13

C-4 Recommended Improvements
In order to be fully functional, several improvements must be made:

• The formula for θW developed in C-3.2 is not valid when either foot contacts the ground at the point of the heel
instead of the arc of the foot. The state estimator must be modified to detect this condition and formulae for the
alternate cases must be developed and implemented.

• Figure 5(b) shows unnaceptable drift immediately following gyro calibration. The algorithm used by the
GyroZero() function to determine the offset must be improved.

• The gyro offsets should be measured in rad/s instead of the unintuitive units currently used, and all relevant
routines must be converted for use with the new convention.

• Automatic gyro calibration is not enabled in the most recent code for the following reason: when the robot is
being tested and the operator handles the robot, it is possible for the gyros to measure rotations that are outside of
the usual plane. When the change in stance angle as measured by integration of angular rate is compared to the
change in stance angle according to geometry, very large discrepancies causing large, undesired changes in gyro
gain and offset. Provisions must be made to minimize this effect; for instance, perhaps the angular rate should
only be integrated when at least one foot is in contact with the ground.

• The Z accelerometer must be used to determine the orientation of the gravity vector. This information should
be intelligently combined with the integrated gyro rates and the kinematically determined angles to improve the
accuracy of all absolute angles.

Once these changes are implemented and verified, robot state estimation will be sufficient for use by most controllers.

44

(a) The inner/outer leg angle is reset according to the kinematic formula of C-3.2 each time the
inner/outer foot experiences heelstrike; otherwise the angle is integrated from gyro data. Initially,
there is poor agreement between the integrated angle and new kinematically determined angle at
heelstrike. After several steps, however, the gyro gains have been automatically calibrated to yield
better agreement.

(b) The gyro gains are automatically calibrated and settle upon final values.

(c) Measured gyro offsets are adjusted only slightly over time.

Figure C-13: Demonstration of automatic gyro gain calibration. Initially, the gyro gain has intentionally been set to
about half its nominal value, so the automatic gyro calibration routine corrects it.

45

