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Abstract 
 In order that the Cornell Ranger remains autonomous during long distance record attempts and 

avoids damage to the system it is desirable to add a method to the programming of the robot which 

protects it from falling backwards. It was required that the method always catch the robot given indoor 

track conditions and desired that with future versions the method would also reattempt push off. The 

fallback catch method works by monitoring the angular rate of the stance leg which should always be 

positive for regular walking mode. When this value goes negative the swing leg moves to a given angle 

behind the stance leg and uses the resistive torque of the swing leg foot motor to dampen the fall impact 

of the robot.  

 

 

Control of Failure Modes 
For the Cornell Ranger, a failure of the system is defined as a failure to walk and occurs 

when the robot falls over or if the robot stands still. The three legged biped design of the robot 

eliminates the possibility of falling to the left or right by providing side stability. Therefore, the 

main modes of failure are in the robot falling either forwards or backwards. Because the purpose 

of the Cornell Ranger is to set long distance records, or to be highly reliable, it is important that 

programming methods be created to limit these falling failure modes. Falling forward is actually 

a desired action because walking is essentially the act of falling forward and catching yourself 

repeatedly. However, this falling must be controlled and the robot must be able to catch itself by 

taking an appropriately sized step and planting its foot to prevent a complete fall. Falling 

backwards is always an undesired action and until now there was no measure to prevent a fall 

backwards other than pulling up on the safety cable and thus breaking the autonomy of the robot. 

 

 
Figure 1: Standard Walking Mode and Definitions 



Falling Forward: Causes and Preventative Measures 
The initial control system for the Cornell Ranger had a static step size that was adequate 

for level, undisturbed walking. However, inconsistencies and even slight declining slopes in the 

walking surface would cause the robot to fall forward. The center of gravity in the hip of the 

robot would move forward faster than the feet were able to travel for a static step size. Without 

the ability to adjust the step size the robot would quickly become critically unbalanced and fall 

forward. In order to prevent the forward falling behavior a gyro system was added to the robot to 

recognize when the robot center of gravity speed was exceeding what could be supported by the 

current step size. When the robot receives input that the hip speed is outside a given range it 

adjusts the step size accordingly. If the speed is too high the target step size is increased so that 

the swing foot always contacts the ground forward of the robot center of gravity. If the 

downward slope of the walking surface is too great or the robot is impacted by a large force, 

either a pushing force from behind or a pulling force from the front, then the robot my not be 

able to catch itself due to mechanical or imposed limitations of the system. One mechanical 

limitation is the speed at which the motors can swing the foot and leg forward in order to 

produce a larger step size. This speed is limited by the motor design and the power available to 

the motor from the robot batteries. A secondary mechanical limitation is the wire which connects 

the inner and outer set of legs and prevents the angle between the two from being too great. The 

programming of the robot also limits the step size to what the robot is able to push off from in 

order to accomplish the following step. If the legs are split too far apart the back set of legs will 

not be able to put enough energy into the system, through the push off, in order to move the 

center of gravity forward of the stance legs. Because the robot would still try and swing the leg 

forward after push off, this would cause the robot to fall backwards. However, this is only one 

example of a situation that could lead to the falling backwards failure mode.  

 

Falling Backward: Causes and Goals for Prevention 
Now I will discuss the most likely causes of failure by falling backwards. As explained 

above, the robot could fall backward after taking such a large step that the energy added in push 

off is insufficient to propel the center of gravity forward of the stance leg contact point. Falling 

backwards could also occur even for normal step size if the push off force is set to a very low 

value. This is typically not a danger during normal walking, but this failure method was induced 



by purposely setting the push off torque to a low value in order to test the effectiveness of the 

falling backward catch mechanism. The most probable cause of falling backward would be if the 

upward slope of the walking surface is too great or if the robot is impacted by a large force, 

either a pushing force from the front or a pulling force from behind. Figure 2 illustrates how a 

regular walking mode can become a backwards falling mode after a disruptive force is applied to 

the robot. The yellow arrows show the directions of angular momentum for the two legs and 

their rough magnitudes at different points in the walking cycle. Because of the gyro system the 

robot will respond to these disturbances by decreasing the step size, however there is also a 

minimum step size limitation that is given in the programming of the robot. If a decrease in step 

size is not enough to correct for the disturbance then the center of gravity will move behind the 

stance point of the legs that are farthest back. If this happens and the robot center of gravity does 

not have sufficient momentum to swing forward of the stance point then the robot will fall 

backwards. Unlike falling forward, where step size can be adjusted in order to compensate for a 

disturbance which causes the robot to fall forward, falling backward was previously an 

uncorrectable failure mode once it had started to occur.  

 
Figure 2: Angular Momentum Directions and Magnitudes in a Backwards Fall 

 

For the purposes of setting a record and to display our confidence in the robot’s 

autonomy it is desirable to not be touching, or even holding a slack wire, while walking the 

robot. In order to do this, and feel secure that the robot would not potentially be damaged, the 

robot required a method to be added to the robot programming that would provide protection 

against the robot falling backwards. The clearest way of doing this was to program the robot to 

place its swing leg back behind the stance leg if the stance leg begins to swing backwards. This 

is effectively like telling the robot to take a step backwards, which is generally what a person 



does to balance themselves when they experience a strong push backwards. The leg then catches 

the robot and prevents it from continuing to fall backwards. This fallback catch method was 

designed with the assumption of indoor track walking conditions. This insinuates very small 

slopes in the walking surface, few surface disturbances, and no large forces exerted on the robot 

body. With these assumptions, the method was created with the initial goal of catching and 

stopping the robot from falling backwards in order to protect the robot from damage. Other 

cases, such as a significant applied force from a push or pull on the robot body or attempting to 

retry push off after catching itself from a fall, are considered in the section of future work.  

 

Design of the Fallback Catch Method 
The fallback catch method needs to be activated whenever the robot begins to fall but 

must never activate unnecessarily. The data coming from the two gyros gives the angular rate of 

rotation for each leg. A positive angular rate corresponds to the top of the leg swinging forward, 

which is always the case for the stance leg during regular walking, and a negative angular rate 

corresponds to the bottom of the leg swinging forward, which is always the case for the swing 

leg during regular walking. The data called AngleRateStanceLeg always gives the angular rate 

for the leg, inner or outer, that is currently the stance leg. If the AngularRateStanceLeg goes to a 

negative value it is certain that the robot is no longer in the regular walking state and has begun 

to fall. However, as a precaution I added a timer which requires that the AngleRateStanceLeg 

read a negative value for 50 cycles in a row, or for 50 milliseconds. This protects the robot from 

going into falling mode if there are momentary spikes or errors in the data. Additionally the 

robot should not go into falling mode while it is being positioned to begin walking. For this 

reason, a second condition of the step number not being equal to one was added. This allows the 

user to rotate and move the robot as much as necessary as long as the initial swing leg has not yet 

experienced impact. The third condition is that the robot is not already in falling mode, this keeps 

the robot in falling mode even though the AngleRateStanceLeg will stop reading a negative 

value once the robot catches itself from falling. If all of these three conditions are met the hip 

state and foot state are set to falling mode. If one of these three conditions is not met the robot 

will check to see if the robot is already in falling mode. 

Once in falling mode the robot effectively enters a different state where it ignores all the 

main walk controller code and awaits the occurrence of different triggers in the falling backward 



catch method. The first action is triggered when the robot enters the falling mode. The foot 

torque for the swing leg is set to pull up the foot and hold it in the upwards position. This allows 

the foot to swing backwards without scuffing. Second, the hip torque for the swing leg is set to 

swing the leg back behind the stance leg to a target fallback angle. While the swing leg is being 

moved the program does nothing but wait for the angle between the two legs to come within a 

given angle to the target fallback angle. When this occurs the foot torque for the swing leg is set 

so that the foot swings down and holds in position at a neutral angle. The robot then lands on the 

extended foot and breaks its fall. See Figure 3 for an illustration of this fallback catch method 

and Figure 5 for a flow chart diagram of the method. Note that green arrows in the flow chart 

correspond to actions taken when the if conditions are true and red arrows to actions taken when 

the if conditions are false. Although this method was very effective in catching the robot from 

falling backwards it was noted that the robot generally lands quite hard on the swing leg and 

causes both the front and back legs to bounce off the ground several times. In order to soften the 

impact on the robot and recover from the fall more quickly, I added another section of code that 

uses the swing leg foot like a damper as the leg takes the impact of the fall. 

 
Figure 3: Illustration of a Fallback Catch 

 
Addition of a Fall Impact Damper 

In this second version of the code an extra boolean variable was added called 

RearImpact. RearImpact is set to zero when the robot enters the fallback state and set to one 

when the swing leg feet register an impact. The RearImpact variable triggers a change in the foot 

torque setting from being used as a damper, to absorb the impact of the robot’s fall, to being used 



as a stiff support for the robot. This version functions in basically the same way as the previous 

version except that an extra section is added to the fallback catch method. See Figure 4 for an 

illustration of the different actions created with this method and Figure 6 for a flow chart 

diagram of this method. Note that the same arrow color convention applies. When the swing leg 

nears the target angle the foot torque is set so that the foot points sharply downwards. The spring 

and damper constants for the foot are set to special parameter values that can be changed until 

the back foot absorbs the energy smoothly and the front foot does not lift off the ground. As the 

impact of the fall pushes the foot into a neutral position the impact sensor is triggered which 

changes the RearImpact variable to one. As described previously, the torque setting for the back 

foot then holds the foot in the neutral position. In this way, the robot is stopped from falling 

backwards without any unnecessary oscillations in the system. See the Appendix for a full 

version of the fallback catch method code as it currently exists in the Ranger controller. 

 
Figure 4: Illustration of a Fallback Catch with Impact Damping 

 

Future Work 
Several additional features were tried for the fallback catch method and I feel confident 

that with another week of work could be made to work. The most desired addition to the system 

would be a method that attempts to restart the walking mode by giving a maximum power push 

off with the back feet. Attempts to do this showed that the robot does not have sufficient power 

to push off successfully from a standstill for the larger hip angles that result when the robot 

swings its leg backwards in order to catch itself. The robot pushes off and swings forward, but 



does not have enough energy to get the center of gravity forward of the stance leg contact point. 

The robot then begins to fall backwards again and reenters the fallback mode. This difficulty 

could be overcome either by increasing the power to the push off motors or by creating a method 

that would incrementally pull the legs closer while rocking the robot back and forth. The robot 

already seems to go into a rock back and forth mode when the code is set to reattempt push off. 

This action occurred because the robot was passing rapidly between push off and fallback 

modes. If this method could be made to work it would allow the robot to recover from a fall and 

continue walking without breaking the autonomy of the robot, therefore allowing it to fall, at 

least partially, even during a record attempt.  

Another feature that I considered would be for a response to a very large disturbance such 

as a hard push. This method would go in the fallback catch method after the impact of the back 

feet. It would check to see if the front leg came off the ground for more than a given number of 

cycles. With the addition of the fall impact damper, front foot liftoff should be reduced to only a 

second at most. If the front foot was out of contact with the ground for longer than this it could 

be assumed that the robot was still falling backwards. The back leg would then become the new 

stance leg and the front leg would become the new swing leg, and the process of taking a step 

backwards would repeat as necessary. The effect would be that for a large disturbance the robot 

could take several steps backwards until the front foot remained firmly planted. Additionally, if 

this system was added the fallback target angle could be reduced. The robot could take several 

smaller steps backward rather than one large step. This would probably also serve as a solution 

to the push off problem. The robot could more easily push off from standstill if the hip angle was 

relatively small.  

 

Other Work 
This report reflects work that was begun after the after the Relay for Life. At the 

beginning of the semester my time was focused on making sure each member of the team had a 

clear project to work on and assisting the other team members as they began their projects. I 

worked closely with Yingyi on the installation and integration of the potentiometer system to the 

existing steering system. I also worked on the revision when the first system failed. The rest of 

my time was spent testing the robot either in the lab or at Barton, especially during the pushes 

before the grant proposal decision. For BOOM and Relay for Life the preparation of the robot 



and posters, organization of the other team members, and attendance at the events took up a 

week each of my research time. I easily put in an average of 12 hours a week and was present 

every Wednesday afternoon as an aid to the other members of the team if needed. 

 
Figure 5: Flow Chart of Initial Fallback Catch Method Code 



 
Figure 6: Flow Chart of Second Version of Fallback Catch Method Code 


