Abstract

The goal of this project is to design a multiple microcontroller electronic control system
(MMECS) that would be used to control future robots. In specific, this project is to
recommend appropriate microcontrollers and communication protocols to fit into the
given system architecture. The motivation for designing the MMECS is to overhaul the
wiring problems that are faced in the development of the previous robots and to make
the control system modular for the ease of the users developing the robot as well as to
have a framework to allow for future upgrades to the electronic control system. The
project approaches this problem by performing a market search for suitable
microcontrollers, followed by performing an analysis of the communication protocols.
The project then uses the results from the analysis of communication protocols and
matches the analysis results with the shortlisted microcontrollers to obtain a suitable

combination is chosen to meet the requirements of the MMECS.

The following are the recommendations for the MMECS:

* Microcontrollers

o Main Microcontroller: i.MX31 from Freescale
o Communications Microcontroller: LPC2194/01 from NXP
o Low Level Microcontroller: LPC2194/01 from NXP

* Communication Protocols
o Main and Communications Microcontroller: Full Speed USB

o Communications and Low Level Microcontroller: CAN Bus

-1-

Executive Summary

Over the course of the past year, this Masters of Engineering design project has been
working on a task to design a multiple microcontroller electronic control system
(MMECS) that would be used for controlling walking robots that will be built in the

Biorobotics and Locomotion Laboratory under Professor Andy Ruina.

This project approaches MMECS with 2 key tasks. The first is to choose suitable
microcontrollers that would fit the requirements of the MMECS and the second is to
determine the most appropriate communications protocol for communication between

the multiple microcontrollers in the system.

After performing a market search for suitable protocols and the analysis of promising
communications protocols, a recommended design is obtained for the MMECS. The set-
up recommended in this project not only fulfills the technical requirements of the
project by meeting key parameters, it also takes into account the personnel and
technical skill level of the research lab as well. In addition, the design, choice of
microcontrollers and communication protocols also allows for scalability to
accommodate a larger system if necessary and upgradability to allow incremental

changes to take place over time on the electronic control system.

1. Introduction

1.1. Motivation

The motivation for designing a new electronic control system is threefold. Firstly, we
hope to be able to implement a modular system of design for the electronic
components. From our previous experiences of designing the Cornell Ranger as well as
the Marathon Walker Bot (MWB), where the electronic components were integrated in
a less modular manner, the programmers often had difficulty finding bugs in the code
when a programming error was suspected. A less modular system also leads to a small
group doing most of the code due to the laborious process of integrating various
portions of the code. With a more modular system design, however, debugging code
and testing programs can be simplified as we are able to test individual components and
more people can participate in programming due to the very fact that it is more
modular in nature. The second motivation of studying this new system is that we hope
to find a solution to the massive wiring issues that plague not only the Cornell Ranger
but also the MWB. Figure 1 and Figure 2 shows the wiring problem that has plagued the

two robots.

Figure 1 : Wiring Problems of MWB

Figure 2 : Wiring Problems of Cornell Ranger

The third motivation is to create an electronic control system that has the capacity to
handle the more demanding requirements of future walking robots. Since the process
of designing an electronic control system from the ground up is very time consuming,

the design of the electronic control system has to allow it to be upgradable.

-4

When a robot is in its design phase, it is usually the case that we do not foresee all the
components that are needed to make it walk. As such, when the printed circuit board
(PCB) is designed and manufactured, it is rarely self sufficient and additional
components almost definitely have to be added onto the existing circuitry. With the
addition of components outside of those already on the PCB, it is necessary to connect
voltage and ground lines as well as data cables from the microcontroller to the added on
component. This results in not only an unsightly nest of wires, but also the uncertainty
of having a bad connection whenever something fails to work, instead of knowing that it

is a software problem.

1.2. Multiple Microcontroller Electronic Control System

The multiple microcontroller model that is being studied for the next robot proposes
using multiple microcontrollers communicating with each other to control various parts
of the robot. The model consists of the high level portion, communications level portion
and the low level portion. The 3 main portions, as seen in Figure 3, are the High Level

portion, the Communications Level portion and the Low Level portion.

High Level

Main
Controller

Communications Level

Communications

Controller
Low Level
Low Level | | Low Level | |
Controller Controller
|| Low Level || Low Level
Controller Controller
Low Level | | Low Level | |
Controller Controller
|| Low Level
Controller || Low Level
Controller
Low Level | | Low Level | |
Controller Controller

Figure 3: Overview of the Proposed Electronic System Architecture

1.2.1. High Level Portion

The high level portion consists of the main controller that will be in charge of the
controlling the robot on the high level. The code is specific to providing instructions to
how the robot should move. Ideally, the code on the main microcontroller is similar to a
human-readable list of instructions of how to get a robot to walk. The main controller
communicates with the communications controller constantly so as to ensure that the

information it has about the robot is up to date.

1.2.2. Communications Level Portion

The main purpose of the communications level is to act as a bridge between the main
controller in the High Level and the low level microcontrollers in the Low Level. It is
responsible for the data flow between the two other levels. It acts very much like a
router, collecting, formatting and redistributing information between all the

microcontrollers in the system.

In an actual implementation, the high level portion and the communications level
portion may or may not be implemented on different microcontrollers. This would

depend on the final choice of communication protocol and microcontroller used.

1.2.3. Low Level Portion

In the low level portion, it consists of a number of low-level microcontrollers. Each of
these microcontrollers is be responsible for controlling a subset of the sensors and
motors based either on function or location. Connected via a network with the
communications controller, the multiple low level controllers send information collected
via the sensors and receive instructions of what to carry actions to execute, to and from

the communications microcontroller.

1.3. Structure of Report

This report would first seek, in the Design Problem section, to familiarize the reader
with the design goals and requirements associated with the project and how the design
problem is formulated. The following section would then analyze the structure of the
multiple microcontroller electronic control system to allow for better understanding ogf
the requirements by arriving at a set of performance indicators that the electronic

control system should be designed to meet.

The report would then proceed to shortlist suitable microcontroller from those available
on the market and compare their capabilities with a list of functionality that the MMECS
needs to have. It will also perform an in depth evaluation of 3 previously chosen
communication protocols to determine which is the most suitable. Based on the results
from the evaluation as well as the shortlisted microcontrollers, the details on the

implementation of the system would be decided upon.

This report documents the process of setting up the framework for future work to be
performed on setting up the multiple microcontroller electronic control system as well

as designing one of the components of the system.

2. Design Problem

2.1. Problem Formulation

This Masters of Engineering design project was part of the research team’s efforts to
design an electronic control system for robots built in the future based on the
motivation as described in the section above. This project serves as an initial foray into
the development of the MMECS to determine key components in the system. This
design process started off in an open-ended manner as a vague idea of the intended

system design and layout.

In order to formulate more specific design requirements and specifications for the
robot, various members of the research team were consulted to understand the
inadequacies of the electronic control system in the current robot. These findings
where then matched with the vision of the capabilities for future robots to obtain the

design requirements and specifications for this project.

2.2. Design Requirements

In designing the electronic control system for this project, concerns of the software,
hardware as well as the physical system developers have to be taken to account. The
following core design requirements are key to the usability and success of the electronic

control system

1.The electronic control system shall be modular
2.The electronic control system shall be easily upgradable
3.The electronic control system shall be easy to use

4.The electronic control system shall have a low power consumption

2.3. Design Goal

The goal of this design project can be divided up to 3 main groups of tasks

* Choosing suitable microcontrollers and components

* Evaluation and testing of various potential suitable communication protocols.
Subsequently choosing the most appropriate configuration.

* Deciding on the physical layout of the electronic control system. If time permits,

the hardware of the system would be designed, built and ready to use.

3. Analysis of the Multiple Microcontroller Electronic Control System

To design an electronic control system that would fit the design requirements, it is
necessary to analyze the attributes unique to the electronic control system before

starting on the design proper. This project performs an analysis of the Multiple

-10 -

Microcontroller Electronic Control System by studying the possible implementations of
the system on a typical walking robot. By hypothesizing possible implementations of
the system on the robot, the capacity of the protocols that is needed to support the

data flow throughout the system can be calculated.

The model that will be used to analysis the electronic control system will have the

following basic assumptions:

1.Each Microcontroller will have on average 5 sensors, corresponding to 5 data
points

2.Each data point would have to be updated once every millisecond. (1000 times a
second)

3.Each data point is a floating point value (4 bytes)

4.Each data point has a corresponding address field which would take up to 4 bytes

Using these assumptions, the number of low-level microcontrollers can be varied to
obtain the necessary bandwidth of the communications protocols to support that
particular set up. Table 1 below shows the 3 requirements and the bandwidth that is

needed.

-11 -

Units Values
Low-level Microcontroller uControllers 10 16 20
Datapoints per Microcontroller | Datapoints/uController 5
Update Frequency | times/Datapoint/sec 1000
Bits per data point bits 64
Total bits/sec bits per second 3,200,000 5,120,000 6,400,000

Table 1: Requirements and the bandwidth that is needed.

4. Short-listing Microcontrollers

There is a huge assortment of microcontrollers available in the market today with many
designed to suit different industries such as the automotive industry and the portable
electronics industry. Based on the requirements of the Multiple Microcontroller
Electronic Control System, we are able to shortlist a couple of potential microcontrollers
available on the market. This project will take the opportunity to test and use the

microcontrollers from the shortlist during the evaluation of protocols.

Due to the need to maintain low power consumption, this project would focus on using
ARM microcontrollers. The ARM processor architecture is a 32-bit Reduced Instruction
Set Computer (RISC) processor developed by ARM Limited that is used widely in a

number of embedded designs. Due to their low power consumption, this processor

-12 -

architecture is very dominant in the mobile electronics market. Currently, the ARM
family of processors accounts for approximately 75% of all embedded 32-bit CPUs,

making one of the most widely used computer architectures in the world.

The shortlisted microcontrollers are chosen based on the following few criteria.

The microcontroller would have the ARM architecture due to the need for low

power consumption as mentioned above.

* Compute and compare the estimate of power consumption per unit cycle of the
microcontroller core. For this criterion, a simple approach would be finding the
hypothetical power consumption if the microcontroller speed is 20MHz.

* Compare the maximum microcontroller speed, to estimate its computing
capability

* List support peripherals and functionality

o Vectored Floating Point (VFP) Unit:for fast floating point calculations

o SD Card interface: for information logging purposes

o Direct Memory Access: support for communication protocol

o Serial Peripheral Interface (SPI): support for communication protocol

o Universal Serial Bus (USB): support for communication protocol

o Controller Area Network (CAN): support for communication protocol

o Number of Timers

o Number of PWMs

o Number of Analog to Digital Converters (ADC)

-13 -

The shortlisted microcontrollers are shown in Appendix 1.

5. Evaluating Protocols

Choosing the right protocols for use to communicate between the various
microcontrollers is important. The suitable protocols would need to not only have the
capacity to support the amount of data flow throughout the network, but also have

reasonable software overhead so as not to overwhelm the microcontroller that it is on.

This phase of evaluating different protocols for their suitability is aimed at choosing a
communications protocol for data transfer between the main microcontroller and
communications microcontroller, as well as a communications protocol for data transfer
between the communications microcontroller and the various Ilow level
microcontrollers. The reason for dividing the protocol selection to two different parts is
to allow for flexibility. There is, however, a possibility that a single communications
protocol is suitable to handle the data flow between the main microcontroller and the

various low level microcontrollers.

It is also important to keep in mind that it is subject to the availability of the protocols
on viable microcontrollers. A particular protocol can potentially be evaluated to be

optimal, but if it were not implementable on a viable microcontroller, it would be

-14 -

unsuitable for this project.

In evaluating the protocols, microcontrollers together with the necessary components
would be used to build a test set up. The IAR Embedded Workbench KickStart Edition

from IAR systems is used to program the microcontrollers.

The evaluation process would comprise the following 3 communications protocol

1.Controller Area Network (CAN-bus)
2.Universal Serial Bus (USB)

3.Serial Peripheral Interface (SPI) with Direct Memory Access (DMA)

5.1. Controller Area Network (CAN-Bus)

5.1.1. Overview

CAN-Bus is a computer network protocol and a bus standard designed for devices to
communicate within the network without the need of a host computer. Intel
Corporation and Bosch jointly developed CAN-Bus in 1988 and it was specifically
targeted for automotive applications. Figure 4 shown below illustrates a high level view

of a typical CAN-Bus network.

-15 -

Microcontroller Microcontroller Microcontroller

with CAN Bus with CAN Bus with CAN Bus
Microcontroller
with CAN Bus
Microcontroller Microcontroller Microcontroller
with CAN Bus with CAN Bus with CAN Bus

Figure 4: High Level View of a Typical CAN-Bus network

The CAN-Bus protocol has the following characteristics

1. Bit rates up to 1 Mbit/s are possible at network lengths below 40 m.
Decreasing the bit rate allows longer network distances. (See Table 2)

2. An automatic ‘'arbitration free' transmission. A CAN message that is
transmitted with highest priority will 'win' the arbitration, and the node
transmitting the lower priority message will sense this and back off and
wait.

3. A multi-master hierarchy, which allows building intelligent and redundant
system. If one network node is defect, the network is still able to operate.

4. Broadcast communication. A sender of information transmits to all devices
on the bus. All receiving devices read the message and then decide if it is
relevant to them. This guarantees data integrity as all devices in the system
use the same information. Each node is able to send and receive messages,
but not simultaneously. A message consists primarily of an ID and up to
messages 8 bytes long.

5. Sophisticated error detecting mechanisms and re-transmission of faulty

-16 -

messages. This also guarantees data integrity.

6. Each CAN message can carry from O to 8 bytes of data

Bit Rate Bus Length

1MBit/s 30m
800 kBit/s 50 m
500 kBit/s 100 m
250 kBit/s 250 m
125 kBit/s 500 m
50 kBit/s 1000 m
20 kBit/s 2500 m
10 kBit/s 5000 m

Table 2 : CAN-Bus Maximum Bit Rate vs. Bus Length

Although the CAN bus standard specifies that the maximum bit rate is 1Mbit per second,
there are CAN bus transceivers available on the market which support up to 2Mbit per
second. To be able to use them, however, the bus length has to be significantly shorter

then 30m.

5.1.2. Potential

It is easy to see that the potential use of this communications protocol would be in
facilitating the data flow between the communications microcontroller and the low level
microcontroller. As the protocol is that of broadcast communication, every

microcontroller in the CAN-Bus network would be able to listen in on what is being

-17 -

transmitted. This can be crucial as the communications microcontroller would only
need to send information meant for multiple low level microcontrollers only once,

rather than sending the same data multiple times, wasting bandwidth.

5.1.3. Experimental Setup and Testing

For evaluating the CAN-Bus protocol, the evaluation board for MAC7111 microcontroller
was used. Figure X shows the picture of the MAC7111 evaluation board. The MAC7111
microcontroller is from Freescale and it was chosen as it is an ARM7 with relatively low

power consumption and it had 4 CAN-Bus ports.

Figure 5 : MAC7111 Low Cost Evaluation Board

To test the CAN-Bus protocol, 2 of the CAN-Bus ports were wired together and data was
sent through one port and received on the other. The received data was checked

against the data sent to check for errors. The speed of the data transmission and the

- 18 -

length of the CAN-bus were varied to obtain the throughput of the CAN-Bus under

various conditions.

It is important to note that similar to the evaluation of the USB protocol, since the test is
performed on a single microcontroller, the rate at which the data is transferred is not
merely the total data transferred over the total time taken. This is the result of the
microcontroller having to constantly send data to one CAN port and receive data from
the other CAN port. To get a better approximation of the data rate, timers and
interrupts were used to measure the time used to receive the data on the host side.

Using this approach, a close approximation to the actual data rate can be obtained.

In addition, the experiment also attempted to over clock the CAN-bus to see if it could
handle data transmission speeds of up to 2Mbits/sec without any significant drop in

throughput due to errors in transmission.

For the perimeters of the experiment, two CAN ports would communicate with each
other - one sending data and the other receiving data. The CAN Bus would be set at
500kbps, 750kbps, 1000kbps, 1500kbps and 2000kbps, with the data rate calculated as
total bits received over the time taken to receive the data on one CAN port. The CAN

Bus would have it length varied from 100cm to 300cm.

Appendix 2 contains the full listing of the code.

-19 -

5.1.4. Results

Running the above-mentioned experiment for different bus lengths at different speed
for 30 times each, the averages of the data rates (in kilobits per second) are obtained.
Table 3 below shows the summary of the results obtained. Appendix 3 contains the full

results of the experiment.

CAN Bus Speed Length of Bus
(kbps) 100cm | 150cm | 300cm
500 361.29 | 362.19 | 361.37
750 535.34 | 535.76 | 535.37
1000 696.90 | 697.33 | 697.53
1500 1021.59 | 1009.09 | 997.30
2000 1297.51 | 1281.98 | 1265.30

Table 3: Results of CAN Bus Experiment (data rates in kbps)

5.2. Universal Serial Bus (USB)

5.2.1. Overview

The Universal Serial Bus (USB) is a widely used protocol, not only in personal computers,
but also in various different electronic gadgets. USB was designed to allow many
peripherals to be connected using a single standardized interface socket and to improve
the plug-and-play capabilities by allowing devices to be connected and disconnected.

The USB protocol has the following key features:

-20 -

1.USB is a protocol that operates with a single host with multiple peripherals.

2.Up to 127 devices can connect to the host, either directly or by way of USB hubs.

3.Individual USB cables can run as long as 5 meters and with hubs, devices can be up
to 30 meters away from the host.

4.A USB cable has two wires for power and a twisted pair of wires to carry the data.

5.USB devices are hot-swappable.

6.The USB protocol is a widely supported with drivers available for most operating

systems.

In the analysis of the USB protocol, this part of the project will look at the

implementation of a full speed USB protocol.

The USB protocol is based on a system of endpoints that are established between the
host and the device during enumeration, with a maximum of 16 endpoints between the
host and each device. These endpoints can be viewed as “pipes” of data flow between

the host and the device. Figure 6 below illustrates the concept of endpoints in USB.

-21 -

Host

>

[Addi[Endpoint][Direction] |

Addr=2

My Function

lUsB Device
|
|
- Addr=3

|
|
My Function !
|
|
|

Figure 6: Concept of Endpoints in USB

The USB full-speed protocol supports 3 different schemes for data transfers— Interrupt
transfers, Bulk transfers and Isochronous transfers. For interrupt transfers, the
maximum data rate is low as only 1 packet of information can be transferred at a time.
As the name suggests, interrupt transfers only occur when the data is received on the
USB buffer and an interrupt is asserted. As each USB frame is 1 millisecond in duration,
the interrupt that gets asserted is only be serviced once every millisecond. Since the
maximum size of a USB packet is 64 bytes, this implies that the maximum data rate of
the USB interrupt driven transfer is 512kbps. For Bulk transfers, the data rate is the
highest among the three schemes as it allows for multiple packets to be sent at a single
time. The USB protocol is capable of supporting up to 19 packets of 64 bytes for a bulk
transfer, allowing it to reach up to speeds close to the maximum of 12Mbps. For
Isochronus transfers, the data rate is unreliable as this scheme is meant for data

streaming. It utilizes the remaining unused bandwidth to transfer data between the

-22 -

host and the device. Given the above 3 schemes and time considerations, the analysis

would only be performed using the bulk transfers where the data rate is high.

5.2.2. Potential

There are 2 features of the USB protocol that makes it attractive as a protocol that this
project would use. Firstly, the data rate of the full speed USB is 12Mbps and it is
definitely high enough for the purposes of this project. Comparing with the analysis of
the MMECS model as discussed in the earlier section, the data rate more than satisfies
the needs of the model and it even provides capacity for further expansion. The second
feature is that the USB protocol is a widely supported protocol with drivers easily
available for most operating systems. This means that having a USB connection would
allow us to easily connect the robot up to a PC where testing and the development of

the robot itself would be greatly facilitated.

5.2.3. Experimental Setup and Testing

After some initial product and protocol research, the USB protocol is found to be rather
challenging to implement. Having to implement the whole USB state machine, together
with the error checking and timing issues would potentially occupy a significant amount

of time and set this project back for a considerable amount of time. In addition, a

-23 -

significant number of the short listed microcontrollers as listed earlier in the report lack

USB functionality.

Given this situation, it was decided to perform the evaluation of the USB protocol using
an external USB controller that communicates with the microcontroller via the Serial
Peripheral Interface (SPI). This would be beneficial to the project as it would act as a
stepping stone to having a better understanding of USB as the USB controller takes care
of some of the lower level functions. Additionally, the interface between the

microcontroller and the USB controller is one that is rather easy to use.

The SPI-USB Controller that will be used for the evaluation of the USB protocol is the
MAX3421E from Maxim. The MAX3421E is a SPI-USB controller capable of Full Speed
USB transmissions. For testing purposes, the development board for the MAX3421E as
well as the MCB2130 development board from Keil was used. The MCB2130
development board contains the LPC2138 microcontroller from NXP, while the
development board for the MAX3421E comes with both the MAX3421E and MAX3420E

(MAX3420E is the peripheral device version of the MAX3421E).

The approach to testing the USB protocol using the above-mentioned components is to
send data out through the peripheral side of the USB connection and receive data from

the host side of the connection.

It is important to note that since the test is performed on a single microcontroller, the

rate at which the data is transferred is not merely the total data transferred over the

-4 -

total time taken. This is the result of the microcontroller having to constantly send data
to the USB device (MAX3420E) and receive data from the USB host (MAX3421E). To get
a better approximation of the data rate, timers and interrupts were used to measure
the time used to receive the data on the host side. Using this approach, the data rate

on the full speed USB connection can be measured.

Maxim provided an example base code to demonstrate the use of the development
board that they manufactured. The example code provided was originally for Keil
MicroVision software. The example code simulated the USB device as a Human
Interface Device (HID). The example code provide by Maxim can be found at Maxim’s

website

The code was ported over for use on IAR Embedded Workbench and modified for use to
evaluate the USB protocol. All changes to the example code, for ease of documentation
purposes, were kept to the main code file — Ipc2138.c, which can be found in Appendix

4.

5.2.4. Results

The data rate was measured for the bulk transfers over full speed USB. Table 4 contains
the parameters used to determine the data rate that can be achieved using the

MAX3241E.

-25 -

Packet Length 64 bytes

of Packets per Bulk Transfer 16 packets
of Bulk Transfer per Run 250 bulk transfers
Total bytes transferred per Run 256000 bytes

Table 4: Parameters used in experiment

A total of 50 runs were carried out to determine the data rate. The table of the results
can be found in Appendix 5. Figure 7 below shows a screenshot of one of the runs

where the result was parsed via UART to hyperterminal.

& abc - HyperTerminal @@@

File Edit View Call Transfer Help

D = 3 0B

Maxim USB Laboratory

Waiting for device connect

Start
Run Time: 3583 ms
Send Time: 435 ms
Total Bits: 2048000 bits
| |Correct: 2048000 bits
Correct %: 100.00 %
| |Data Rate: 4708000 bits/sec
uController %: 12.14 %
Done

Waiting for device disconnect

Connected 1:31:27 Auto detect 38400 8-N-1

Figure 7: Screen Capture of a USB data typical rate test

Table 5 contains the summary of the results of the data rate for bulk transfers using full

speed USB.

-26 -

Data Rate (bps)

% Correct

uController Load

Average

4723920

100.00

12.54

Std Dev

147139

0.00

0.07

Table 5: Summary of Results for full speed USB bulk transfers

5.3 Serial Peripheral Interface (SP1) with Direct Memory Access (DMA)

5.3.1a. Overview - SPI

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard
that operates in full duplex mode. This communications protocol consists of 4 wires —
Clock, Master In Slave Out (MISO) and Master Out Slave In (MOSI). Devices
communicate in a master/slave mode, allowing for multiple slaves with individual “Slave
Select” lines. Figure 8 below shows an example of a SPI bus with a single Master and a

single Slave.

SCLK » SCLK
SPI MOSI » MOSI SPI
Master MISO |&¢ MISO Slave
SS » S5

Figure 8: SPI bus with a single Master and a single Slave

-27 -

The SPI protocol is a very common protocol and it can be considered as a standard
feature in a wide range of microcontrollers. The maximum speeds of the SPI bus usually
very between microcontrollers. The maximum speed is usually a factor of the CPU
speed of the SPI master microcontroller. For example, if a microcontroller has a CPU
speed of 60Mhz, the possible SPI would be 60Mhz divided by a range of user definable
values. Hence, it is possible to have a fast SPI speed if a microcontroller with a fast CPU

speed is used.

5.3.1b. Overview - DMA

Direct memory access (DMA) is a feature that allows certain hardware subsystems
within the computer to access system memory for reading and writing independently of
the main core of the processor. DMA channels have the ability to transfer data to and

from devices with much less overhead than microcontrollers without a DMA channel.

Without DMA, the main core of the processor typically has to be occupied for the entire
time it's performing a transfer, while with DMA, the main core initiates the transfer, do
other operations while the transfer is in progress, and receive an interrupt from the

DMA controller once the operation has been done.

Figure 9 below shows the differences between data transfers that use DMA and those
that do not, for data that resides in Memory to the Serial Peripheral Interface (SPI). For

the purposes of this project, the data transfer between the main controller and the

-28 -

communications controller will be using the Serial Peripheral Interface (SPI) protocol

and it will utilize DMA and implemented on the two respective controllers.

Data Flow without DMA

Main Core of the
Microcontroller

Memory

Direct Memory
Access (DMA)
Controller

Serial Peripheral
Interface (SPI)

Figure 9: Differences in Data Transfers for SPI using DMA and not using DMA

5.3.2. Potential

The SPI with DMA implementation is especially useful for our purposes as it reduces the
load on the core of the main controller and free up more resources for the needs of the
robot. On the high level programming level, it would be straightforward as the process
to manage the dataflow would be setting the appropriate bits in the microcontroller to
get the Direct Memory Access re-started once every update interval. This also has an

additional benefit as it would reduce the processing load on the main microcontroller,

-29 .-

freeing up precious computing power.

5.3.3. Experimental Setup and Testing

The testing of SPI with DMA is carried out between the LPC3180 and the LPC2368, both
from NXP. The LPC3180 is an ARM9 microcontroller while the LPC2368 is an ARM7
microcontroller, both of which have Serial Peripheral Interface and are capable of

performing Direct Memory Access.

The reasons for using these 2 microcontrollers are two fold. Firstly, these two
microcontrollers as mentioned in the previous section, the ARM9 microcontrollers are a
class of more powerful microcontrollers as compared to ARM7 microcontrollers, using
the LPC3180 would allow us to gain experience in programming and working with ARM9
microcontrollers. Secondly, using an ARM9 microcontroller as the SPI master and the
ARM7 microcontroller as the SPI slave closely parallels the potential use of this
communications protocol in the Multiple Microcontroller Electronic Control System. By
using a similar set up, possible problems or flaws that is currently unforeseen with the

set up can be uncovered.

The LPC3180 operates at a maximum of 208MHz and has a SPI capable of up to 52MHz,
while the LPC2368 operates at a maximum of ??MHz and has a SPI capable of up to
??MHz. To allow for a SPI speed that is implementable on both the microcontrollers,

the SPI for this analysis would be initially set at 8MHz.

-30 -

The code for setting up the analysis on the LPC3180 and LPC2368 is found on Appendix

6 and 7 respectively.

5.3.4. Results

The code written for both the microcontrollers did not seem to be able to transfer data
consistently and reliably over the SPI using DMA using the parameters as described
above. Though data was transferred, only the first few bytes that are received are

consistent with the data sent.

In an attempt to understand the problem, the code was run to transfer 10 bytes of data
over the SPI using DMA with LPC3180 being the SPI master. For the ease of illustration
and explanation of the problem, ASCIl characters were sent. Table 6 shows the
outcome of the failed data transfer attempt from LPC2368 to LPC3180 and Table 7

shows the outcome in the reverse direction.

-31 -

Byte Byte
Sent Received
Byte
1 A A
2 B B
3 C C
4 D D
5 E 0
6 F 0
7 G 0
8 H 0
9 I 0
10 J 0

Table 6: Outcome of failed data transfer from LPC2368 to LPC3180

Byte Byte
Sent Received
Byte
1 A A
2 B B
3 C C
4 D D
5 E 0
6 F 0
7 G 0
8 H 0
9 I 0
10 J 0

Table 7: Outcome of failed data transfer from LPC3180 to LPC2368

Looking at the result of the failed data transfer, it can be suspected that the SPI on one
of the microcontrollers is unable to keep up with the data transfer. As a result, either

the SPI buffers overflows or underflows, resulting in only the first 4 bytes being

-32 -

successfully transmitted.

This issue was further investigated and it was found that the SPI and the DMA on the
LPC2368 was unable to keep up with the SPI speed of 8MHz. The same run was carried

out with the SPI at 2MHz and the data was successfully transferred.

Help was sought from the technical support from NXP to confirm the observations and it
was confirmed that the Direct Memory Access (DMA) controller was unable to keep up
the data transfers between the SPI buffers and the memory locations. The technical

support cited 2 explanations for the observations:

1. The LPC3180 is designed to run at a significantly higher CPU speed as compared to
the LPC2368. Hence, the DMA controller in the LPC3180 is able to keep up with
the data transfers, but not the LPC2368.

2. The SPI buffer in the LPC2368 is of length 2, while the SPI buffer in the LPC3180 is
of length 56. Hence, the SPI buffer in the LPC3180 is able to store more data
before the SPI overflows. This is especially so since the SPI is operating at a high

speed.

Since most of the other ARM7 microcontrollers are similar in terms of computing power
as compared to the LPC2368, it is unlikely that the problem would be nonexistent if we
replace the LPC2368 with another ARM7 microcontroller. As a result, using SPI with

DMA is only possible within the constraints of this project to have a transfer speed

-33 -

within the ballpark of about 2MHz.

6. Choosing Microcontrollers and Protocols

After short-listing the microcontrollers and evaluating the communications protocols, an
informed decision can be made with regards to choosing the appropriate

microcontroller and communication protocol.

For the communication protocols, the analysis revealed that using SPI with DMA does
not seem to be a viable option due to the inability of the DMA controller to keep up

with the speed of the data transmission.

The CAN Bus protocol seemed rather promising as the experiments showed that speeds
of up to 2000kbps were possible. Though the actual rate is slower due to the protocol
overhead, the extra bandwidth obtained by “overclocking” the CAN Bus would definitely
go a long way. Although the CAN Bus is comparatively slower in speeds as compared to
the other protocols analyzed, it is possible for the system to have multiple CAN Buses in
parallel to effectively have a higher data rate. This is possible as many microcontrollers,
as seen from the shortlist, have multiple CAN ports. It is important, however, to note
that the more powerful microcontrollers tend not to have CAN ports on them. As we
can see from the shortlist, the LPC3180 and i.MX31 microcontrollers do not have CAN

ports, but they are seemingly very attractive main microcontrollers for the project.

-34 -

The full speed USB protocol that was analyzed is also very promising. From the results,
the analysis showed that it had sufficient bandwidth and it is possible for it to be
implemented using external controllers that interface with a host microcontroller via
SPI. Compared to the CAN bus, it would be almost equivalent in terms of data rate if 4
CAN Buses were used in parallel. One downside to the USB protocol is the
implementation of the USB stack as well as its state machine. Just looking at the code
used to setup the data transfers between the host and device, it is clear that the
computational power needed to run the USB protocol is sizable. In addition, due to the
complex nature of the USB protocol, it might not be suitable to proceed with
implementing a full scale USB protocol along with the device drivers given the
manpower and capability of the research lab at the current point of time. Hence, USB
might only suitable for implementation on a smaller scale where it is possible to

temporarily ignore some of the USB specifications.

Given the above analysis and results, the best implementation of the multiple
microcontroller electrical control system would be for the USB protocol to be used
between the main microcontroller and the communications controller and the CAN Bus
protocol over 4 separate but parallel networks would be used for communication
between the communications controller and the multiple low level controllers. The
communications controller would effectively act as a router to transmit data not only
between the low level microcontrollers and the main controller, but also between the

low level microcontrollers if the communicating low level microcontrollers are on

-35-

separate CAN Bus networks. As for the microcontrollers themselves, the following

would be the microcontrollers for the electronic control system.

* Main Microcontroller: i.MX31 from Freescale
e Communications Microcontroller: LPC2194/01 from NXP

* Low level Microcontroller: LPC2194/01 from NXP

In my opinion, this would be the most suitable implementation as it combines the
strengths of both the CAN Bus and USB protocols. Furthermore, the task of
implementing of the actual system would not be too overwhelming for the future

student researchers to continue work on.

One key reason for deciding on this implementation for the electronic control system is
also scalable. If there would be a future need to increase the capacity of the data
transmission between the microcontrollers, this implementation would easily allow for
an upgrade. Firstly, the i.MX31 supports both full speed USB as well as hi speed USB, if
the capacity for the full speed USB eventually becomes insufficient, a switch can be
made to the hi speed USB. By adding a hi-speed USB hub, the communications
microcontroller can be replicated to obtain multiple CAN Bus networks to support the
bandwidth as well. Although, the implementation of the USB protocol to communicate
from a singe host to multiple devices is not simple or trivial, there would be more time

between currently and the future for the USB protocol to be fully implemented.

-36 -

7. Initial progress on building the MMECS

7.1. Setting Up Initial Base Code

As the microcontroller and the communication protocols have been chosen for the
whole system, the actual building of the system and programming of the
microcontrollers to support the communications protocols and their respective tasks
would natural follow in the design process. However, as mentioned in the introduction
that the scope of this project does not encompass the entirety of the process till the
network-based electronic communication system as ready as a “product” for use in the
development of a robot, other students researchers would have to continue on where

this project left off.

In programming a microcontroller, especially if it is an unfamiliar microcontroller or a
new programming environment, there is always the initial set up of the project files,
linker files as well as other settings. This can possibly be a steep learning curve. Hence,
if students were provided with a sample project with straightforward no-frills code, they
would not have to worry about getting the settings correct and understanding the
sample code. The students would be able to begin the programming task almost

immediately, saving effort and time.

The initial base code written consists of very basic elements to get a typical student

programmer started as soon as possible. The code accomplishes the following:

* |nitialize the Phase Lock Loop in the microcontroller so the user can easily change

-37 -

the CPU speeds by changing variables

* |nitialize the Vectored Interrupt Controller in the code to handle interrupts

* |nitialize a timer and its interrupt. This acts more as an example to initialize
interrupts on the microcontroller.

* Toggle an output. This acts more as a visual cue to the user so that they would

know that the microcontroller is running the code.

Instructions on how to change key settings in the project files are also included as

comments in the code. The full listing of the example code can be found in Appendix 8.

7.1. Designing the Communications microcontroller

Based on the recommendations mentioned in the previous section, the communications
controller would essentially be a LPC2194/01 microcontroller that receives and
transmits data over USB and CAN Bus protocols. A printed circuit board (PCB) would be
designed to house the necessary components and circuits to function as a bridge

between the main microcontroller and the low level microcontrollers.

The following are the rough list key of parts needed for the design on the

communications circuit board:

e LPC2194/01 -microcontroller
* MAX3421E -SPI to USB controller
* CAN transceivers -to use the CAN bus protocol

-38 -

* JTAG connection -for programming

* LEDS -as visual indicators

* Switching Power Regulators -to step down the power for use on the board
The schematic for the design of the communications circuit board is attached as
Appendix 9. However, as some of the actual components are currently still being tested
by other members of the trace layout of the communications board is placed on hold

until all testing of components are complete.

-390 .

7. Conclusion

After performing the analysis of the MMECS, shortlisting microcontrollers, as well as the
evaluation of the various communications protocols, this project arrived at a

recommendation for the MMECS. The recommendation is a follows

* Microcontrollers

o Main Microcontroller: i.MX31 from Freescale
o Communications Microcontroller: LPC2194/01 from NXP
o Low Level Microcontroller: LPC2194/01 from NXP

* Communication Protocols
o Main and Communications Microcontroller: Full Speed USB

o Communications and Low Level Microcontroller: CAN Bus

The recommendation takes into account not only the technical requirements of the
project, but it also considers the number of personnel and expertise so that the multiple
microcontroller electronic control system can be reasonably completed in time for use
in the next walking robot built. In addition, the nature of the design also allows for
upgradability for incremental changes to be made to the electronic control system over

time.

Some initial work has also been done in building the MMECS. The initial base code was
written to allow for more individuals to participate in building of the MMECS and the

schematic of the communications microcontroller is also done.

- 40 -

References

Original CAN Specification

CAN Official Website

USB Official Website

Freescale Company Website

NXP Company Website

Keil Company Website

IAR Systems Company Website

IAR Emdedded Kickstart User Guide

LPC2000 Discussion Forum

http://ww.can.bosch.com/docu/can2spec.pdf

http://www.canbus.us/

http://www.usb.org

http://www.freescale.com

http://www.nxp.com

http://www.keil.com

http://www.iar.com

ftp://ftp.iar.se/WWWfiles/arm/Guides/ouarm 13.pdf

http://www.embeddedrelated.com/groups/lpc2000/1.php

-4] -

Appendix

Appendix 1

Max
SPI
Chip Chip CPU Pwr Est. SD . USB | USB
uController Maker Type Package speed (20MHz) VFP Card DMA | Timer Host | OTG CAN Sc;) PWM ADC Other
(MH2)
. 2xFS
i.MX31 Freescale | ARM11 | BGA 457 532 10mA Yes Yes Yes 3 1xHS 1 - 3 1 -
LPC3180 NXP ARM9 BGA 320 | 208 20mA Yes | Yes Yes 2 1xFS 1 - 2 2 -
AT91SAM7A3 | Atmel ARM7 Iiggp 70 50mw No No Yes 2 - - 2 4 9 16(10bit)
LQFP .
LPC2368 NXP ARM7 100 72 115mW No Yes Yes 6 IxFS | - 2 3 6 6 (10 bit)
LQFP . SPI/SSP
LPC2129 NXP ARM7 64 60 35mwW No No No 2 - - 2 2 6 4 (10 bit) 7.5Mbit/s
LQFP . SPI/SSP
LPC2129/01 NXP ARM7 64 60 35mwW No No No 2 - - 2 2 6 4 (10 bit) 30Mbit/s
LQFP . SPI/SSP
LPC2194 NXP ARM7 64 60 35mwW No No No 2 - - 4 2 6 4 (10 bit) 7.5Mbit/s
LQFP . SPI/SSP
LPC2194/01 NXP ARM7 64 60 35mwW No No No 2 - - 4 2 6 4 (10 bit) 30Mbit/s
LQFP-
MAC7141 Freescale | ARM7 100 80 250mwW No No Yes 10 - - 2 2 16 -
. BGA .
STR75xF STMicro ARM7 64 60 100mwW No No Yes 3 1xFS | - 1 2 3 16(10bit)
. BGA .
STR73xF STMicro ARM7 64 60 430mwW No No Yes 6 - - 3 2 6 16(10bit)
. BGA .
STR71xF STMicro ARM7 64 32 160mW No No No 4 IxFS | - 1 2 6 8 (12 bit)
STR91xF STMicro ARM9 BGA-65 96 130mW No No Yes 10 IxFS | - 1 2 6 8 (10 bit)

Al-1-

Appendix 2

#include "MAC7100InterruptHandler.h"
#include <iomac7100.h>
#include <intrinsics.h>

/*
** usefull for bitmask operations
*/

#define BITO (0x00000001)
#define BIT1 (0x00000002)
#define BIT2 (0x00000004)
#define BIT3 (0x00000008)
#define BIT4 (0x00000010)
#define BIT5 (0x00000020)
#define BIT6 (0x00000040)
#define BIT7 (0x00000080)
#define BIT8 (0x00000100)
#define BITO (0x00000200)
#define BIT10 (0x00000400)
#define BIT11 (0x00000800)
#define BIT12 (0x00001000)
#define BITI13 (0x00002000)
#define BIT14 (0x00004000)
#define BIT15 (0x00008000)
#define BIT16 (0x00010000)
#define BIT17 (0x00020000)
#define BIT18 (0x00040000)
#define BIT19 (0x00080000)
#define BIT20 (0x00100000)
#define BIT21 (0x00200000)
#define BIT22 (0x00400000)
#define BIT23 (0x00800000)
#define BIT24 (0x01000000)
#define BIT25 (0x02000000)
#define BIT26 (0x04000000)
#define BIT27 (0x08000000)
#define BIT28 (0x10000000)
#define BIT29 (0x20000000)
#define BIT30 (0x40000000)
#define BIT31 (0x80000000)

#define LED MASK (OxFFUL<<8)

void init clock(void);

void INTC CANA Handler (void);
void INTC CANB Handler (void);
void INTC PIT1 Handler(void) ;
void init flexcanA(void);

void init flexcanB(void);

unsigned char ledstat=l,a,b,c,d=0,al,a2,a3,a4,a5,a6,a7,a8;
unsigned long e=0,f=0,t=0;

unsigned char rx[1000];

unsigned char* ptr;

A2-1-

Appendix 2

int main(void)

{
init clock();
init flexcanA();
init flexcanB()

’

/* start/prepare timer */

PITCTRL &= ~(BIT24) ; /* enable pit */
PITINTSEL |= (BIT1) ; /* timers generate interrupts */
PITINTEN |= (BIT1) ; /* enable timer interrupts */

MAC7100InstallIRQ(INTC PIT1, O, INTC PIT1 Handler)

/* set PF.8-15 as output */
CONFIG8 F = CONFIGY9 F = CONFIG10 F = CONFIGll F =
CONFIG12 F = CONFIG13 F CONFIG14 F = CONFIGL5 F =

/* enable global interrupts */
ICONFIG |= (BIT4) ; /* no fig */
__enable interrupt() ;

/* set the timeout compare interrupt in ms */
TLVAL1 = 2000000 ; /* set timeout */

PITFLG |= (BIT1) ; /* clear flag */

PITEN |= (BIT1) ; /* enable pitl */

PINDATAl2 F=PINDATAl3 F=PINDATAl4 F=PINDATAl5 F=1;

MBOB WO bit.CODE = 0;
MBOB W1 bit.ID =
MBOB WO _bit.CODE =

S O
~e e

MBOA W1 bit.ID =
MBOA W2 _bit.DATAQ =
MBOA W2 _bit.DATAl =
MBOA W2 _bit.DATA2 =
MBOA W2 _bit.DATA3 =
MBOA W3 bit.DATA4 =
MBOA W3 bit.DATAS =
MBOA W3 bit.DATA6 =
MBOA W3 bit.DATA7 =

~e Ne N

. o~

N~ Ne N

OO0 OO0 OO0 o Qo

~.

MBOA WO bit.LENGTH= 8;
MBOA WO bit.CODE = 0xC;

while(1) //while loop to blink led
{
int 1=0;
for (1=0;1<100000;i++) ;
PINDATAlZ_F_bit.DATA = ~PINDATA12_F_bit.DATA;
}

A2-2 -

(
(

)
)

’

’

Appendix 2

void init clock(void) {

/* Set PLL multiplication factor */
SYNR = 4; //40Mhz
REFDV = 1;

/* Configure PLL */
PLLCTL_bit.CME =
PLLCTL_bit.PLLON =
PLLCTL_bit.AUTO =
PLLCTL_bit.ACQ =
PLLCTL_bit.SCME =

~e

~e e N

e
~

~e

/* Wait for PLL to achieve lock */
while ((CRGFLG & 0x08) == 0);

/* Switch system clocks over to PLL */
CLKSEL_bit.PLLSEL =1;

/* Configure interrupts */
CRGINT = 0;

/* Configure BDM control register */
BDMCTL = 0;

void init flexcanA (void) {
//Set Pins G4 and G5 as Peripheral Pins
CONFIG4 G bit.MODE = 1;
CONFIG5 G bit.MODE = 1;

//Set Control Register

CTRLA = 0;
CTRLA bit.RJW = 3;
CTRLA bit.PSEGl = 2;//

CTRLA bit.PSEG2 2;//
CTRLA bit.PROPSEG = 2;//
CTRLA bit.TSYN =
CTRLA bit.PRESDIV
CTRLA bit.LBUF

CTRLA bit.CLK SRC =
//CIRLA bit.LPB

Il
I — oo
<

1; //Enable Loop back Mod
//Initialize All Message Buffers - in Use

MBOA WO _bit.CODE =8;

MBOA WO bit.IDE =0;

//Initialize All Message Buffers - 1-31 Not in Use

MB1A WO =0; MB2A WO =0; MB3A WO =0;
MB4A WO =0; MB5A WO =0; MB6A WO =0;
MB7A WO =0; MB8A WO =0; MBOA WO =0;
MB1OA WO =0; MB11A WO =0; MB12A WO =0;
MB13A WO =0; MBL14A WO =0; MB15A WO =0;
MB16A WO =0; MB17A WO =0; MB18A WO =0;
MB19A WO =0; MB20A WO =0; MB21A WO =0;
MB22A WO =0; MB23A WO =0; MB24A WO =0;
MB25A WO =0; MB26A WO =0; MB27A WO =0;
MB28A WO =0; MB29A WO =0; MB30A WO =0;
MB31A WO =0;

A2-3 -

Appendix 2

//Acceptance Mask Bit
RXGMASKA bit.MI = 0;//all 0 in the mask (dont care)

//Interupt Set up
IMASKA = 0x00000000; //Interupt Mask for MBO
IFLAGA = Oxffffffff; //clear interupt

//Installing Interupts
MAC7100TnstallTRQ(INTC CAN A MB, 0, INTC CANA Handler) ;

//Configuration Register

MCRA bit.MAXMB = 0xf;
MCRA bit.SUPV =1;
MCRA bit.MDIS = 0;
MCRA bit.HALT = 0;

PINDATAL3 F=0;
}

void init flexcanB(void){ //RX MBO

//Set Pins G6 and G7 as Peripheral Pins
CONFIG6 G bit.MODE = 1;
CONFIG7 G bit.MODE = 1;

//Set Control Register

CTRLB = 0;
CTRLB bit.RJW = 3;
CTRLB bit.PSEGl = 2;//
CTRLB bit.PSEG2 = 2;//
CTRLB bit.PROPSEG = 2;//

CTRLB _bit.TSYN 1
CTRLB_bit.PRESDIV 0
CTRLB_bit.LBUF = 0;

1

CTRLB bit.CLK SRC =
//CTRLB _bit.LPB 1; //Enable Loop back Mod
//Initialize All Message Buffers - in Use
MBOB WO _bit.CODE =0;

MBOB WO _bit.IDE =0;

//Initialize All Message Buffers - 1-31 Not in Use

MB1B WO =0; MB2B WO =0; MB3B_WO =0;
MB4B WO =0; MBSB WO =0; MB6B WO =0;
MB7B WO =0; MB8B WO =0; MB9B WO =0;
MB10B_ WO =0; MB11B WO =0; MB12B WO =0;
MB13B WO =0; MB14B WO =0; MB15B WO =0;
MB16B WO =0; MB17B WO =0; MB18B WO =0;

MB19B WO =0; MB20B WO =0; MB21B WO =0;
MB22B WO =0; MB23B WO =0; MB24B WO =0;
MB25B_ WO =0; MB26B WO =0; MB27B WO =0;
MB28B_WO =0; MB29B WO =0; MB30B WO =0;
MB31B WO =0;

//Acceptance Mask Bit
RXGMASKB bit.MI = 0;//all 0 in the mask (dont care)

//Interupt Set up

IMASKB = 0x00000001; //Interupt Mask for MBO
IFLAGB = Oxffffffff; //clear interupt

A2-4-

Appendix 2

//Installing Interupts
MAC7100TnstallTRQ(INTC CAN B MB, 1, INTC CANB Handler)

//Configuration Register

MCRB_bit.MAXMB = 0xf;
MCRB bit.SUPV =1;
MCRB bit.MDIS = 0;
MCRB bit.HALT = 0;

PINDATAl4 F=0;

void INTC CANA Han

IFLAGA = Oxfffff
= MBOA WO bit.
= MBOA W2 bit.
= MBOA WO bit.
= MBOA W2 bit.
= MBOA W2 bit.

O Q0 oo
|

void INTC CANB Han
IFLAGB = Oxffffff
a = MBOB WO bit.
b = MBOB WO bit.
al= MBOB W2 bit.
a2= MBOB W2 bit.
a3= MBOB W2 bit.
a4= MBOB W2 bit.
a5= MBOB W3 bit.
a6= MBOB W3 bit.
a7= MBOB W3 bit.
a8= MBOB W3 bit.

if (al == d && a
else{
c=1;

}

f++;
d++;

if (d>200)d=0;
MBOB WO _bit.CODE
MBOB Wl bit.ID
MBOB WO _bit.CODE

MBOA W1 bit.ID

MBOA W2 _bit.DATAQ =
MBOA W2 _bit.DATAl =
MBOA W2 _bit.DATA2 =
MBOA W2 _bit.DATA3 =
MBOA W3 bit.DATA4 =
MBOA W3 bit.DATAS =
MBOA W3 bit.DATA6 =
MBOA W3 bit.DATA7 =

dler (void) {

fff; //clear interupt
CODE;

DATAOQO;

TIME_STAMP;

DATAL;

DATAZ2;

dler (void) {
ff;; //clear interupt
CODE;

TIME STAMP;
DATAO;
DATAL;
DATA2;
DATA3;
DATA4;
DATAS5;
DATAG;
DATAT7;

3==d&& ab==d && a7==d) et+;

|
SO
~e o~

N~ Ne N

. o~

~e Ne N

O 0 OO0 O 0 O o

~.

A2-5 -

’

Appendix 2

MBOA WO bit.LENGTH= 8;
MBOA WO bit.CODE = 0xC;

void INTC PIT1 Handler(void) {
static unsigned int DispBuffer = 0;
PITFLG |= (BIT1) ; /* clear flag */

DispBuffer ++;

if (DispBuffer>=10) {
DispBuffer=0;
t++;
PINDATA15_F=~PINDATA15_F;
if (£>=100) {

’

’

H O Q. ct

0
0;
0
0

’

A2-6 -

Appendix 3

CAN Rate 500kbps 750kbps 1000kbps 1500kbps 2000kbps

Bus Length 100cm | 150cm | 300cm | 100cm | 150cm | 300cm | 100cm | 150cm | 300cm 100cm 150cm 300cm 100cm 150cm 300cm
1 358.51 | 362.15 | 363.19 | 535.81 | 535.91 | 533.86 | 698.98 | 695.18 | 697.96 | 1020.95 1008.00 997.51 1296.23 1278.44 | 1265.89
2 357.52 | 365.00 | 357.50 | 535.64 | 531.78 | 538.25 | 696.15 | 693.94 | 698.29 | 1023.51 1007.35 999.85 1299.09 | 1283.26 | 1262.23
3 363.98 | 357.42 | 363.46 | 533.06 | 532.82 | 535.51 | 695.62 | 700.13 | 696.94 | 1021.90 | 1009.85 998.16 1295.06 | 1283.04 | 1266.21
4 364.66 | 363.41 | 362.61 | 538.95 | 536.75 | 538.08 | 694.67 | 696.98 | 697.90 | 1024.14 | 1013.38 996.70 1300.20 | 1284.60 | 1266.89
5 358.66 | 362.07 | 358.57 | 532.82 | 536.66 | 535.50 [697.38 | 695.55 | 694.61 | 1018.85 1008.14 997.30 1296.66 | 1283.87 1266.10
6 361.03 | 360.89 | 362.68 | 535.12 | 537.25 | 536.06 | 698.96 | 697.99 | 700.33 | 1022.15 1006.56 996.42 1299.09 | 1279.31 1267.10
7 359.49 | 362.32 | 362.16 | 534.46 | 537.71 | 537.05 | 696.13 | 700.17 | 698.92 | 1019.53 1009.77 999.30 1297.73 1282.33 1266.79
8 362.61 | 363.68 | 361.00 | 538.32 | 533.71 | 536.94 | 697.97 | 697.41 | 695.73 | 1024.42 1007.56 | 1001.35 1299.52 | 1281.83 1267.12
9 358.96 | 361.89 | 363.58 | 536.68 | 535.15 | 534.61 | 695.23 | 697.36 | 699.03 | 1018.37 1009.19 996.74 1296.76 | 1282.08 | 1266.84
10 364.33 | 361.12 | 359.96 | 535.84 | 536.02 | 538.45 | 696.66 | 697.44 | 698.26 | 1022.24 | 1010.99 995.76 1299.94 | 1285.54 | 1263.79
11 362.17 | 364.91 | 360.16 | 537.66 | 538.24 | 536.76 | 695.89 | 696.22 | 695.27 | 1022.85 1008.49 997.21 1295.00 | 1283.63 1264.31
12 360.36 | 363.44 | 361.81 | 533.40 | 536.00 | 536.25 | 698.09 | 699.75 | 695.57 | 1020.47 1011.53 997.78 1299.68 | 1283.16 | 1264.50
13 365.23 | 364.80 | 357.91 | 533.78 | 536.64 | 531.81 | 696.48 | 697.27 | 700.59 | 1023.79 1012.68 995.59 1296.49 | 1280.39 1261.88
14 359.89 | 358.77 | 361.15 | 533.84 | 538.43 | 535.43 | 696.61 | 699.56 | 699.75 | 1019.57 1008.90 995.50 1295.61 | 1279.81 1263.47

2 15 360.45 | 360.61 | 361.39 | 535.28 | 537.49 | 534.62 | 699.12 | 697.31 | 696.28 | 1024.32 1008.85 997.61 1298.04 | 1283.61 1264.51

2 16 364.08 | 363.27 | 359.79 | 539.80 | 531.88 | 535.96 | 698.42 | 696.01 | 697.95 | 1022.19 1007.10 994.08 1296.53 1284.17 1263.32
17 362.52 | 359.85 | 364.04 | 536.06 | 536.66 | 535.97 | 699.47 | 695.40 [699.68 | 1021.55 1007.48 998.90 1298.86 | 1277.62 1265.30
18 359.98 | 361.32 | 362.74 | 534.20 | 534.66 | 533.78 | 696.96 | 697.50 [695.20 | 1021.06 | 1006.45 995.46 1297.54 | 1282.61 1265.52
19 363.30 | 363.08 | 361.95 | 534.60 | 537.76 | 534.69 | 694.14 | 698.01 | 696.34 | 1022.02 1009.24 996.46 1299.92 | 1283.06 | 1263.15
20 362.30 | 364.44 | 360.53 | 536.76 | 537.92 | 533.83 | 695.37 | 694.10 | 700.39 | 1019.75 1007.65 999.56 1297.20 | 1280.17 1262.59
21 362.90 | 365.50 | 360.25 | 537.58 | 537.50 | 534.37 | 693.32 | 696.44 | 700.35 | 1020.95 1011.96 999.18 1297.89 | 1281.72 1269.36
22 363.88 | 363.40 | 362.55 | 534.44 | 533.54 | 532.51 | 698.62 | 695.56 | 698.07 | 1019.88 | 1009.89 995.74 1297.97 | 1284.32 1262.43
23 362.40 | 362.34 | 362.66 | 535.22 | 535.45 | 535.87 | 698.68 | 695.47 | 697.85 | 1021.74 | 1008.41 997.55 1298.48 | 1283.05 1268.75
24 360.55 | 361.45 | 359.85 | 536.49 | 534.93 | 533.16 | 695.97 | 698.77 | 696.44 | 1019.85 1007.55 994.08 1295.59 | 1280.10 | 1267.81
25 360.39 | 363.32 | 359.16 | 535.27 | 533.87 | 532.55 | 696.83 | 694.96 | 700.51 | 1021.66 | 1011.39 999.58 1296.18 | 1279.45 1263.52
26 359.22 | 361.77 | 359.88 | 533.17 | 534.99 | 536.20 | 694.14 | 695.80 | 694.26 | 1021.48 | 1008.88 998.33 1296.06 | 1280.60 | 1266.24
27 358.95 [360.94 | 364.93 | 534.59 | 535.89 | 534.29 | 696.46 | 700.92 | 694.11 | 1023.33 1008.49 994.12 1297.07 | 1282.74 | 1266.47
28 360.00 | 363.47 | 362.58 | 533.38 | 532.62 | 533.62 | 696.16 | 700.46 | 695.58 | 1020.59 1010.72 994.96 1295.91 | 1280.35 1263.97
29 360.79 | 359.11 | 361.63 | 535.73 | 536.78 | 538.84 | 700.58 | 700.05 | 695.63 | 1019.57 1010.31 998.70 1295.91 | 1280.94 | 1266.35
30 359.54 | 359.91 | 361.34 | 532.13 | 537.92 | 536.33 | 697.92 | 698.18 | 698.07 | 1024.98 | 1005.79 999.39 1299.19 | 1283.47 1266.73

AVERAGE 361.29 | 362.19 | 361.37 | 535.34 | 535.76 | 535.37 | 696.90 | 697.33 | 697.53 | 1021.59 | 1009.09 997.30 1297.51 | 1281.98 | 1265.30

STD DEV 2,11 1.97 1.81 1.87 1.93 1.82 1.76 1.97 2.02 1.77 1.90 1.90 1.58 1.98 1.98

A3-1-

Appendix 4

[] KRR KK Kk K K K K KKK K Kk k k ok ok kK K kK KK K K K K K Kk ko ok ok R ok ok kK R K K K K K K ks ok ok ok ok ok ok kR R K R Kk ok ko kR ok ok ok ok ok ok

// Include Files

VAR AR EEEEE R AR EEE AR EEEE AR R AR

#include <intrinsics.h>

#include <stdio.h>

#include <iolpc2148.h>

#include "SPI_FNs.h" // Basic functions to read and write the MAX3420E and MAX3421E regs.
#include "MAX3421E.h" // MAX3421E registers and bit names

#include "Keil MCB2130.h" // I0 assignments unique to the Keil board

[] KRR KK K K K kK K KK K K K ke k ok ok K Kk kK KK K K K K K Kk ko ok ok R ok ok kKK K K K K K Kk ks ok ok K ok ok ok kR R K Kk ok ko kR ok ok ok ok ok ok

// Function Declaration
//‘k*‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k

extern void init serial (void); // Set up the serial port for connection to PC running
terminal program

// Prototypes

BYTE CTL Write ND(BYTE *pSUD); // Do a USB CONTROL-Write with no data stage

void waitframes (BYTE num) ; // Wait num frames (SOF or KA interrupts)

BYTE Send Packet (BYTE token,BYTE endpoint);

BYTE CTL_Read(BYTE *pSUD) ; // Setup-IN-Status.

BYTE IN Transfer (BYTE endpoint,WORD INbytes) ; // Called by CTL Read for the data stage
void wait for disconnect (void); // Hangs until device disconnects

BYTE print error (BYTE err); // If err=0 it simply retures

void initialize 3420 (void);

void service irgs(void); // This function is in '3420_HIDKB_INT_EVK.C' module
void boardtest (void) ; // Checks buttons and lights

void initialize ARM Interrupts(void);

void Reset Host (void); // Reset the MAX3421E.

void detect device(void); // Hangs until device detected

void enumerate device (void); // Send a bunch of CONTROL requests and reports over serial

void wait for disconnect (void);
BYTE myIN(WORD INbytes);

[] KKK K K K K K K K KKK K Kk ke k ok ok kK K kK KK K K K K K Kk ko ok ok R ok ok kR K K K K K K K ks ok ok ok ok ok ok kR R K R Kk ok ko kR ok ok ok ok ok ok

// Global Variables
//***********~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k************************~k************************
unsigned int timel;

unsigned char temp,sync=0;

unsigned long sendtime, ttime, runtime, restime, total, correct;

unsigned char pksize = 64;

unsigned char test[64];

static BYTE XfrData[600]; // Big array to handle max size descriptor data

static BYTE maxPacketSize; // discovered and filled in by Get Descriptor-device request
static WORD VID,PID,nak count,IN nak count,HS nak count;

static unsigned int last transfer size;

unsigned volatile long timeval; // incremented by timer(0 ISR

WORD inhibit send;

[] KRR KK K K K kKK KKK K Kk k k ok ok Kk K kK KKK K K K K Kk ko ok ok R ok kR R R K K K K K Kk ks ok ok K ok ok ok kR R K Kk ok ko kR ok ok ok ok ok ok

// Definitions
//‘k*‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k

#define ESC putchar (0x1B) // ESC character for sending VT100 escape codes.

// Set transfer bounds
#define NAK_LIMIT 200
#define RETRY_LIMIT 3

#define tl1 1000

[] KRR KK K K K kKK KKK K Kk k k ok ok kK ok kK KKK K K K K Kk ok ok ok kR ok kR R R K K K K K Kk k ok ok ok ok ok kR R R K R Kk ok ko kR ok ok ok ok ok ok

// IRQ Handler
//***********~k~k~k~k~k************************~k~k~k~k~k~k*********************************
// IRQ exception handler. Calls the interrupt handlers.

#pragma vector=IRQV

__irg __arm void irg handler (void)

{

void (*interrupt function) ();

A4-1-

Appendix 4

unsigned int vector;

vector = VICVectAddr; // Get interrupt vector.
interrupt function = (void(*) ())vector;
if (interrupt function != NULL)
{
interrupt function(); // Call vectored interrupt function.
}
else
{
VICVectAddr = 0; // Clear interrupt in VIC.

}

[] KRR KK K K K kK K KK K K K ke k ok ok K Kk kK KK K K K K K Kk ko ok ok R ok ok kKK K K K K K Kk ks ok ok K ok ok ok kR R K Kk ok ko kR ok ok ok ok ok ok

// Interrupt Handlers
//*****~k~k*************~k~k*************~k~k**************~k***************************
//Dummy interrupt handler, called as default in irgHandler () if no other
//vectored interrupt is called.
static void DefDummyInterrupt ()
{
}
// Timer Counter 0 Interrupt executes each 20ms @ 48 MHz CPU Clock
// Increment counters timeval for general program use.
//
void tcO (void)
{
if(timel > 0) {

timel--;
}
sendtime++;
runtime++;
TOIR =1; // Clear interrupt flag
VICVectAddr = 0; // Dummy write to indicate end of interrupt service
// L6_OFF // for the scope

}

// Timer Counter 1 Interrupt executes each 50ms @ 48 MHz CPU Clock
// Checks the start/stop button, clears inhibit send if pressed.
// Also increments blinkcount and blinks the D4 led when at limit.
//

void tcl (void)

{

T1IR = 1; // Clear interrupt flag
VICVectAddr = 0; // Dummy write to indicate end of interrupt service
// L7_OFF // for the scope

}

// EINTO Interrupt handler--MAX3420E INT pin
void INT3420 (void)
{
service irgs();
EXTINT = 1; // Clear EINTO interrupt flag (b0)
VICVectAddr 0; // Dummy write to indicate end of interrupt service

}

// EINT2 Interrupt Handler--MAX3421E INT pin (not used, just an example)
void INT3421 (void)
{

EXTINT = 4; // Clear EINT2 interrupt flag (b0)

VICVectAddr 0; // Dummy write to indicate end of interrupt service

}

[] KKK KKK KK KKK KKK KKKk ok kKK KKK KKK A KKK KKk kkkkh kKA XA A& &K Kk k ok ok ok ok ok ok kA XA A A& &k ko kokokokkokokx

// Initialize Interrupts
//‘k*‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k

void initialize ARM Interrupts(void)

{
// Set up the Timer Counter 0 Interrupt
// Used to blink the activity light

A4-2-

Appendix 4

TOMRO = 48000;//960000; // Match Register 0: 20 msec (50 Hz) with 48 MHz clock
TOMCR = 3; // Match Control Reg: Interrupt (b0) and Reset (bl) on MRO
TOTCR = 1; // TimerO Enable

VICVectAddrl = (unsigned long)tc0O; // Use slot 1, second highest vectored IRQ priority.
VICVectCntll = 0x20 | 4; // 0x20 interrupt enable bit, 0x04 TIMERO channel number
VICIntEnable = 0x00000010; // Enable Timer(O Interrupt bit 4 (1 sets the bit)

// Set up the Timer Counter 1 Interrupt
// Used to check the send/stop button PB5

TIMRO = 4800000; // Match Register 0: 100 msec (10Hz) with 48 MHz clock
TIMCR = 3; // Match Control Reg: Interrupt (b0) and Reset (bl) on MRO
T1TCR = 1; // Timerl Enable

VICVectAddr3 = (unsigned long)tcl; // Use slot 3, lowest vectored IRQ priority in this app
VICVectCntl3 = 0x20 | 5; // 0x20 interrupt enable bit, 0x05 TIMER5 channel number
VICIntEnable = 0x00000020; // Enable Timerl Interrupt bit 5 (1 sets the bit)

// Set up the EINTO (P0.16) interrupt (MAX3420E Interrupt pin)

//

EXTMODE |= 0x01; // EINTO is edge-sensitive

EXTPOLAR |= 0x01; // positive edge

EXTINT = 1; // clear the IRQ which may have been set

VICVectAddrO = (unsigned long)INT3420; // Use slot 0, highest vectored IRQ priority.
VICVectCntl0 = 0x20 | 14; // 0x20 interrupt enable bit, 14 (D) is EINTO channel number
VICIntEnable = 0x00004000; // Enable EINTO interrupt bit 14 (1 sets the bit)

// Set up the EINT2 (P0.15) interrupt (MAX3421E Interrupt pin)--not used, just an example.
// Set for pos-edge

Hwreg (rPINCTL, (bmFDUPSPI |bmPOSINT)); //INTLEVEL=0, POSINT=1 for pos edge interrupt pin
EXTMODE |= 0x04; // EINT2 is edge-sensitive

EXTPOLAR |= 0x04; // positive edge

EXTINT = 4; // clear the IRQ which may have been set

VICVectAddr2 = (unsigned long)INT3421; // Use slot 2

VICVectCntl2 = 0x20 | 16; // 0x20 interrupt enable bit, 16(D) EINT2 channel number
VICIntEnable = 0x00010000; // Enable EINT2 interrupt bit 16 (1 sets the bit)

}

VAR AR EEEEE R LR EEEE AR R EEE R E R

// Task Functions
//******************~k****************************~k~k~k~k~k***************************
void taskl (void) {

timel=tl;

if (temp) {L1_ON; temp=0;}

else{Ll OFF; temp=1;}
}

[] KRR K K K K kK K K KK K K Kk ke k ok ok kK Kk kK K K K K K Kk ko ok ok Rk ok kR R K K K K Kk ks kR ok ok ok ok kR R K Kk ok ko kR ok ok ok ok ok ok

// Main Function
//*********~k************************
void main (void)
{
init PLL();
init I0();
init_serial();
initialize ARM Interrupts();
initialize 3420();
timel=tl;
__enable interrupt();

// INITIALIZE MAX3421

//

Hwreg (rPINCTL, (bmFDUPSPI |bmPOSINT)); // MAX3421E: Full duplex mode, INTLEVEL=0, POSINT=1 for pos
edge interrupt pin

Reset Host(); // Jan07_2008: Moved Reset Host after MAX3421 is put in full duplex
mode

Pwreg (rIOPINS1, 0x00) ; // all LEDS off

Hwreg (rIOPINS1, 0x00) ; // seven-segs off

Hwreg (rIOPINS2, 0x00) ; // and Vbus OFF (in case something already plugged in)

A4-3-

Appendix 4

//

// Cycle power. This section was added after observing that some USB thumb drives can get
// into a locked-up state that a USB bus reset does not clear. This behavior was observed
// by starting this program with a thumb drive already plugged in.

//

timel=t1; // timeval clicks every 20 msec
while (timel > 500) ;

VBUS_ON // Vbus back ON

//Pwreg (rEPIEN, Prreg (rEPIEN) | bmIN3BAVIE) ;

int i=0,cc=0;

int gg=0;
while (1) {
ESC; printf("[2J"); // clear the VT100 screen
ESC; printf ("[H"); // reset cursor
printf (M-—mmmm e \n") ;
printf ("Maxim USB Laboratory\n");
printf (M-—mmmm e \n") ;
detect device();
waitframes (200) ; // Some devices require this

enumerate_device();

for (i=0; i<pksize;i++) {test[i

1=1i;}
for (1=0;1<600;1i++) { XfrData[i]=

07}
printf ("Start\r\n");

ttime=0;

runtime=0;

total=0;

correct=0;

Pwritebytes (rEP2INFIFO, pksize, test);
Pwreg (rEP2INBC, pksize) ;

Pwritebytes (rEP2INFIFO, pksize, test);
Pwreg (rEP2INBC, pksize) ;

for (cc=0;cc<500;cc++) {

//sendtime=0;
qg=IN_Transfer (2,512);
//ttime=ttime+sendtime;
total+=last transfer size;

for (1=0;1<512;1i++) {
if (XfrData[i]==1%64) correct++;

}
}

restime=runtime;

printf ("Run Time:\t\t%d ms\r\n", restime) ;

printf ("Send Time:\t\t%d ms\r\n",ttime) ;

printf ("Total Bits:\t\t%d bits\r\n",total*8);

printf ("Correct:\t\t%d bits\r\n",correct*8);

printf ("Correct %$%:\t\t%3.2f %%\r\n", ((float)correct)/ ((float)total) *100);
printf ("Data Rate:\t\t%d bits/sec\r\n",total*8/ttime*1000) ;

printf ("uController %%:\t\t%3.2f %%\r\n", ((float)ttime)/ ((float)restime) *100) ;
printf ("Done\r\n") ;

wait for disconnect();

A4 -4-

Appendix 4

VAR AR EEEEE R LA AR EEE R EE R

// Reset Host

VAR AR EEEEE R AR R EEEE Rt EE AR R Rk

void Reset Host (void)

{

Hwreg (rUSBCTL, bmCHIPRES); // chip reset This stops the oscillator
Hwreg (rUSBCTL, 0x00) ; // remove the reset
while (! (Hrreg (rUSBIRQ) & bmOSCOKIRQ)) ; // hang until the PLL stabilizes

}

[] KRR K K Kk K kK K KKK K Kk ke k ok ok ok kK kK KK K K K K K Kk ko ok ok Rk ok kR K K K K K Kk ks ok ok ok ok ok ok kR R K K Kk ko kR ok ok ok ok ok ok

// Detect Device
//**‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*****
void detect device (void)

{

int busstate;

// Activate HOST mode & turn on the 15K pulldown resistors on D+ and D-

Hwreg (rMODE, (bmDPPULLDN |bmDMPULLDN | bmHOST)) ; // Note--initially set up as a FS host (LOWSPEED=0)
Hwreg (rHIRQ, bmCONDETIRQ) ; // clear the connection detect IRQ

HL2 OFF;

HL3 OFF;

printf ("Waiting for device connect\n\n");

do // See if anything is plugged in. If not, hang until something plugs in
{

Hwreg (rHCTL, bmSAMPLEBUS) ; // update the JSTATUS and KSTATUS bits
busstate = Hrreg (rHRSL) ; // read them

busstate &= (bmJSTATUS|bmKSTATUS) ; // check for either of them high

}
while (busstate==0);
if (busstate==bmJSTATUS) // since we're set to FS, J-state means D+ high
{
// make the MAX3421E a full speed host
Hwreg (rMODE, (bmDPPULLDN | bmDMPULLDN | bmHOST | bmSOFKAENAB)) ;

readout (0xf) ;
}
if (busstate==bmKSTATUS) // K-state means D- high

{
// make the MAX3421E a low speed host
Hwreg (rMODE, (bmDPPULLDN | bmDMPULLDN | bmHOST | bmLOWSPEED | bmSOFKAENAB)) ;
readout (0x5) ;

}

}

VAR AR EEEEE R AR EEEE R EEE R EE e E R

// Enum Dev
//~k~k~k~k~k~k~k****~k~k~k~k~k~k~k~k~k~k~k~k~k****~k~k~k~k~k~k~k~k~k~k~k~k~k********~k~k~k~k~k~k~k~k**********************
void enumerate device (void)

{

static BYTE HR, iCONFIG, iMFG, iPROD, iSERIAL;

static WORD Totallen,ix;

static BYTE len, type,adr,pktsize;

// SETUP bytes for the requests we'll send to the device

static BYTE Set Address_to_ 7[8] = {0x00,0x05,0x07,0x00,0x00,0x00,0x00,0x00};
static BYTE Get Descriptor Device[8] = {0x80,0x06,0x00,0x01,0x00,0x00,0x00,0x00};
static BYTE Get Descriptor Config[8] = {0x80,0x06,0x00,0x02,0x00,0x00,0x00,0x00};

// Get Descriptor-String template. Code fills in idx at str[2].
static BYTE str[8] = {0x80,0x06,0x00,0x03,0x00,0x00,0x40,0x00};

// Issue a USB bus reset

;//printf ("Issuing USB bus reset\n");

Hwreg (rHCTL, bmBUSRST) ; // initiate the 50 msec bus reset
while (Hrreg (rHCTL) & bmBUSRST); // Wait for the bus reset to complete

// Wait some frames before programming any transfers. This allows the device to recover from
// the bus reset.

waitframes (200) ;

// Get the device descriptor.

A4-5-

Appendix 4

maxPacketSize = 8; // only safe value until we find out

Hwreg (rPERADDR, 0) ; // First request goes to address 0

Get Descriptor Device[6]=8; // wLengthL

Get Descriptor Device[7]=0; // wLengthH

;//printf ("First 8 bytes of Device Descriptor ");

HR = CTL_Read(Get Descriptor Device); // Get device descriptor into XfrDatal]

if (print_error (HR)) return; // print _error() does nothing if HRSL=0, returns the 4-bit HRSL.
;//printf (" (%u/%u NAKS)\n",IN nak count,HS nak count); // Show NAK count for data

stage/status stage
maxPacketSize = XfrDatal[7];
for (ix=0; ix<last transfer size;ix++)
;//printf ("$02X ", (BYTE*)XfrDatal[ix]);
;//printf ("\n");
;//printf ("EPO maxPacketSize is %02u bytes\n",maxPacketSize);

// Issue another USB bus reset

;//printf ("Issuing USB bus reset\n");

Hwreg (rHCTL, bmBUSRST) ; // initiate the 50 msec bus reset
while (Hrreg (rHCTL) & bmBUSRST); // Wait for the bus reset to complete
waitframes (200) ;

// Set Address to 7 (Note: this request goes to address 0, already set in PERADDR register).
;//printf ("Setting address to 0x07\n");

HR = CTL Write ND(Set Address to 7); // CTL-Write, no data stage

if (print_error (HR)) return;

waitframes (30) ; // Device gets 2 msec recovery time
Hwreg (rPERADDR, 7) ; // now all transfers go to addr 7

// Get the device descriptor at the assigned address.

Get Descriptor Device[6]=0x12; // f£ill in the real device descriptor length
;//printf ("\nDevice Descriptor ");
HR = CTL Read(Get Descriptor Device); // Get device descriptor into XfrDatal]

if (print_error (HR)) return;
;//printf (" (%u/%u NAKS)\n",IN nak count,HS nak count);

;//printf ("-----m--m—mm—-o - \n") ;
VID = XfrData[8] + 256*XfrDatal([9];
PID = XfrData[l0]+ 256*XfrData[ll];
iMFG = XfrDatal[l4];

iPROD = XfrDatal[l5];

iSERIAL = XfrData[l6];

for (ix=0; ix<last transfer size;ix++)
;//printf ("$02X ", (BYTE*)XfrDatal[ix]);
;//printf ("\n");
;//printf ("This device has %u configuration\n",XfrData[l7]);
;//printf ("Vendor ID is 0x%04X\n",VID);
;//printf ("Product ID is 0x%04X\n",PID);

//
str[2]=0; // index 0 is language ID string
str[4]1=0; // lang ID is 0
str[5]1=0;
str[6]=4; // wLengthL
str[7]1=0; // wLengthH
HR = CTL Read(str); // Get lang ID string
if (!'HR) // Check for ACK (could be a STALL if the device has no
strings)
{
;//printf ("\nLanguage ID String Descriptor is ");
for (ix=0; ix<last transfer size;ix++)
;//printf ("%02X ", (BYTE*)XfrDatal[ix]);
str[4]=XfrDatal[2]; // LangID-L
str[5]=XfrDatal[3]; // LangID-H
str[6]=255; // now request a really big string
}
if (1MFG)
{
str[2]=1iMFG; // £ill in the string index from the device descriptor

A4-6-

Appendix 4

HR = CTL Read(str); // Get Manufacturer ID string

;//printf ("\nManuf. string is \"");

for (ix=2; ix<last transfer size;ix+=2)
;//printf ("%$c", (BYTE*)XfrData[ix]);

;//printf ("\"\n");

}

else ;//printf ("There is no Manuf. string\n");

if (1PROD)
{
str[2]=1PROD;
HR = CTL_Read(str); // Get Product ID string
;//printf ("Product string is \"");
for (ix=2; ix<last transfer size;ix+=2)
;//printf ("%c", (BYTE*)XfrDatal[ix]);
;//printf ("\"\n");
}

else ;//printf ("There is no Product string\n");

if (1SERIAL)
{
str[2]=iSERIAL;
HR = CTL Read(str); // Get Serial Number ID string
;//printf ("S/N string is \"");
for (ix=2; ix<last transfer size;ix+=2)
;//printf ("%c", (BYTE*)XfrDatal[ix]);
;//printf ("\"\n") ;
}

else ;//printf ("There is no Serial Number");
// Get the 9-byte configuration descriptor

;//printf ("\n\nConfiguration Descriptor ");

Get Descriptor Config[6]=9; // £ill in the wLengthL field
Get Descriptor Config[7]=0; // f£ill in the wLengthH field
HR = CTL Read(Get Descriptor Config); // Get config descriptor into XfrDatal]

if (print_error (HR)) return;
;//printf (" (%u/%u NAKS)\n",IN nak count,HS nak count);
;//printf (M-mmmmm e \n") ;

for (ix=0; ix<last transfer size;ix++)
;//printf ("$02X ", (BYTE*)XfrDatal[ix]);

// Now that the full length of all descriptors (Config, Interface, Endpoint, maybe Class)
// is known we can fill in the correct length and ask for the full boat.

Get Descriptor Config[6]=XfrDatal[2
Get Descriptor Config[7]=XfrDatal3

]; // LengthL
]
HR = CTL_Read(Get Descriptor Config

; // LengthH
) ; // Get config descriptor into XfrDatal]

;//printf ("\nFull Configuration Data");
for (ix=0; ix<last transfer size;ix++)

{

if ((ix&0x0F)==0) printf ("\n"); // CR every 16 numbers
;//printf ("%$02X ", (BYTE*)XfrDatal[ix]);
}

iCONFIG = XfrDatal[6]; // optional configuration string

;//printf ("\nConfiguration %01X has %01X interface",XfrDatal[5],XfrDatal4]);

if (XfrData[4]>1) printf ("s");

;//printf ("\nThis device is ");

if (XfrData[7] & 0x40) ;//printf ("self-powered\n");

else ;//printf ("bus powered and uses %03u milliamps\n",XfrDatal[8]*2);
//

// Parse the config+ data for interfaces and endpoints. Skip over everything but

// interface and endpoint descriptors.

//

TotalLen=last transfer size;;//printf ("%d\r\n",TotalLen);
ix=0;

// do

A4-7-

Appendix 4

// {

// len=XfrDatal[ix]; // length of first descriptor (the CONFIG descriptor)
// type=XfrDatal[ix+1];

// adr=xXfrData[ix+2];

// pktsize=XfrData[ix+4];

//

// if (type==0x04) // Interface descriptor?

// ;//printf ("Interface %u, Alternate Setting %u
has:\n",XfrData[ix+2],XfrData[ix+3]);

// else if (type==0x05) // check for endpoint descriptor type
// {

// ;//printf ("--Endpoint %u", (adr&0xO0F)) ;

// if (XfrData[ix+2]&0x80) ;//printf("-IN ");

// else ;//printf ("-OUT ");

// ;//printf (" (%02u) is type ", (BYTE)pktsize);

//

// switch (XfrData[ix+3]&0x03)

// {

// case 0x00:

// ;//printf ("CONTROL\n"); break;

// case 0x01:

// ;//printf ("ISOCHRONOUS\n"); break;

// case 0x02:

// ;//printf ("BULK\n"); break;

// case 0x03:

// ;//printf ("INTERRUPT with a polling interval of $%u
msec.\n",XfrData[ix+6]);

// }

// }

// ix += len; // point to next descriptor
// ;//printf ("%d\r\n", ix) ;

// }

// while (ix<TotalLen);

//

if (1CONFIG)

{

str[2]=1iCONFIG;

HR = CTL Read(str); // Get Config string

;//printf ("\nConfig string is \"");

for (ix=2; ix<last transfer size;ix+=2)
;//printf ("%c", (BYTE*)XfrDatal[ix]);

;//printf ("\"\n") ;

}

else;// printf ("There is no Config string\n");

}

[] KRR KK K K K kK K KKK K Kk kk ok ok kK Kk kKK K K K K Kk ko ok ok kR ok ok kR R K K K K K Kk ks ok ok ok ok ok ok kR R K R Kk ok ko kR ok ok ok ok ok %

// Wait Frames
//‘k******************************

void waitframes (BYTE num)

{

BYTE k;

Hwreg (rHIRQ, bmFRAMEIRQ) ; // clear any pending
k=0;

while (k!=num) // do this at least once

{
while (! (Hrreg (rHIRQ) & bmFRAMEIRQ)) ;
Hwreg (rHIRQ, bmFRAMEIRQ); // clear the IRQ
k++;
}
}

[] KRR KK Kk kK K K KKK K Kk ke k ok ok kK Kk kKKK K K K K Kk ko ok ok R ok ok kR R K K K K K Kk ks kR ok ok ok kR R R K K Kk ko kR ok ok ok ok ok ok

// Device Disconnect
//***
void wait_ for disconnect (void)

{

printf ("\nWaiting for device disconnect\n");

Hwreg (rHIRQ, bmCONDETIRQ) ; // clear the disconect IRQ
while (! (Hrreg (rHIRQ) & bmCONDETIRQ)) ; // hang until this changes
Hwreg (rMODE, bmDPPULLDN | bmDMPULLDN | bmHOST) ; // turn off frame markers

A4-8-

Appendix 4

printf ("\nDevice disconnected\n\n");
HL1 OFF

HL4 OFF

readout (0x00) ;

}

[] KKK KK K K K kK K KKK K Kk k ok ok Kk K kK KKK K K K K Kk ok ok ok ok R ok kR KR K K K K K Kk k ok ok ok ok ok ok kR R K Kk ok ko kR ok ok ok ok ok ok

// Print Error
//~k***********************
BYTE print error (BYTE err)
{
if (err)

{

printf (">>>>> Error >>>>> ");

switch (err)

{

case 0x01l: printf ("MAX3421E SIE is busy "); break;

case 0x02: printf ("Bad value in HXFR register "); break;

case 0x04: printf ("Exceeded NAK limit"); break;

case 0x0C: printf ("LS Timeout "); break;

case 0xO0D: printf ("FS Timeout "); break;

case 0xOE: printf ("Device did not respond in time "); break;

case 0xOF: printf ("Device babbled (sent too long) "); break;
(

default: printf
}

"Programming error %01X,",err);

}

return (err);

}

/] T oo ——————————————
// Control-Write with no data stage. Assumes PERADDR is set and the SUDFIFO contains
// the 8 setup bytes. Returns with result code = HRSLT[3:0] (HRSL register).
// If there is an error, the 4 MSB's of the returned value indicate the stage 1 or 2.
et
BYTE CTL Write ND(BYTE *pSUD)
{
BYTE resultcode;
Hwritebytes (rSUDFIFO, 8, pSUD) ;
// 1. Send the SETUP token and 8 setup bytes. Device should immediately ACK.
resultcode=Send Packet (tokSETUP, 0) ; // SETUP packet to EPO
if (resultcode) return (resultcode); // should be 0, indicating ACK.

// 2. No data stage, so the last operation is to send an IN token to the peripheral
// as the STATUS (handshake) stage of this control transfer. We should get NAK or the
// DATAl PID. When we get the DATAl PID the 3421 automatically sends the closing ACK.

resultcode=Send Packet (tokINHS,O0); // This function takes care of NAK retries.

if (resultcode) return (resultcode); // should be 0, indicating ACK.

else return(0);

// Send a packet.

// ENTRY: PERADDR preset to the peripheral address.

// EXIT: Result code. 0 indicates success.

// 1. Launch the packet, wait for the host IRQ, reset the host IRQ.
// 2. Examine the result code.

// If NAK, re-send the packet up to NAK LIMIT times.

// If bus timeout (no response), re-send packet up to RETRY LIMIT times.

// Otherwise, return the result code: O=success, nonzero=error condition.
et

BYTE Send Packet (BYTE token,BYTE endpoint)
{
BYTE resultcode, retry count;
retry count = 0;
nak count = 0;
//
while (1) // If the response is NAK or timeout, keep sending until either NAK LIMIT
RETRY LIMIT is reached.
// Returns the HRSL code.
{

Hwreg (rHXFR, (token|endpoint)) ; // launch the transfer
while (! (Hrreg (rHIRQ) & bmHXFRDNIRQ)); // wait for the completion IRQ
Hwreg (rHIRQ, bmHXFRDNIRQ) ; // clear the IRQ

A4-9-

Appendix 4

resultcode = (Hrreg(rHRSL) & O0xOF); // get the result
if (resultcode==hrNAK)

{

nak_count++;

if (nak_count==NAK LIMIT) break;
else continue;

}

if (resultcode==hrTIMEOUT)
{
retry count++;
if (retry count==RETRY LIMIT) break; // hit the max allowed retries. Exit and return
result code
else continue;
}
else break; // all other cases, just return the success or error
code
}
return (resultcode) ;
}
/e
// CONTROL-Read Transfer. Get the length from SUD[7:6].
/) e ———————————————
BYTE CTL_Read(BYTE *pSUD)
{
BYTE resultcode;
WORD bytes to_read;
bytes to read = pSUD[6] + 256*pSUD[7];

// SETUP packet

Hwritebytes (rSUDFIFO, 8, pSUD) ; // Load the Setup data FIFO
resultcode=Send Packet (tokSETUP, 0) ; // SETUP packet to EPO
if (resultcode) return (resultcode):; // should be 0, indicating ACK. Else return

error code.
// One or more IN packets (may be a multi-packet transfer)

Hwreg (rHCTL, bmRCVTOG1) ; // FIRST Data packet in a CTL transfer uses DATAL
toggle.
// last_transfer size = IN Transfer (0,bytes to read); // In transfer to EP-0 (IN_Transfer
function handles multiple packets)

resultcode = IN Transfer (0,bytes to_ read);

if (resultcode) return (resultcode);

IN nak count=nak_ count;
// The OUT status stage
resultcode=Send_Packet (tokOUTHS,0) ;
if (resultcode) return (resultcode):; // should be 0, indicating ACK. Else return error code.
return (0) ; // success!

// IN Transfer to arbitrary endpoint. Handles multiple packets if necessary. Transfers
// "length" bytes.

// Do an IN transfer to 'endpoint'. Keep sending INS and saving concatenated packet data
// in array Xfr Data[] until 'numbytes' bytes are received. If no errors, returns total
// number of bytes read. If any errors, returns a byte with the MSB set and the 7 LSB

// indicating the error code from the "launch transfer" function.

BYTE IN Transfer (BYTE endpoint,WORD INbytes)

{

BYTE resultcode, j;

BYTE pktsize;

unsigned int xfrlen,xfrsize;

xfrsize = INbytes;
xfrlen = 0;

while(1l) // use a 'return' to exit this loop.

{

A4-10-

Appendix 4

resultcode=Send Packet (tokIN, endpoint) ; // IN packet to EP-'endpoint'. Function
takes care of NAKS.
if (resultcode) return (resultcode):; // should be 0, indicating ACK. Else return

error code.

pktsize=Hrreg (rRCVBC) ; // number of received bytes

sendtime=0; //initialize timing variable
//**~k~k~k~k~k~k**********************~k~k~k~k~k~k~k~k~k***********************************

HSSEL_LO

SSPDR = rRCVFIFO; // write the SPI command byte

while (SSPSR&SSP_BSY) ; // hang until BUSY bit goes low

temp=SSPDR;

for (3j=0; j<pktsize; j++){ // add this packet's data to XfrData array
SSPDR = 0x00; // write a dummy byte to generate the 8 read clocks
while (SSPSR&SSP_BSY) ; // hang until BUSY bit goes low
XfrData[j+xfrlen] = SSPDR;

}

HSSEL_HI

VAR EEEEEEE R R AR EEEE SRR EEE AR Rt

ttime+=sendtime; //store timing variable

Hwreg (rHIRQ, bmRCVDAVIRQ) ; // Clear the IRQ & free the buffer
xfrlen += pktsize; // add this packet's byte count to total transfer
length

Pwritebytes (rEP2INFIFO, pksize, test);
Pwreg (rEP2INBC, pksize) ;

//
// The transfer is complete under two conditions:
// 1. The device sent a short packet (L.T. maxPacketSize)
// 2. 'INbytes' have been transferred.
//
if ((pktsize < maxPacketSize) || (xfrlen >= xfrsize)) // have we transferred 'length' bytes?
{
last_transfer size = xfrlen;
return (resultcode) ;

A4-11-

Appendix 5

RUN Data Rate % Correct uController
(bps) Load
26 4843000 | 100.00 12.59
27 4980000 | 100.00 12.57
28 4537000 | 100.00 12.54
29 4766000 | 100.00 12.60
30 4561000 | 100.00 12.55
31 4997000 | 100.00 12.53
32 4867000 | 100.00 12.57
33 4807000 | 100.00 12.54
34 4864000 | 100.00 12.60
35 4962000 | 100.00 12.52
36 4987000 | 100.00 12.52
37 4612000 | 100.00 12.58
38 4880000 | 100.00 12.58
39 4825000 | 100.00 12.51
40 4602000 | 100.00 12.52
41 4515000 100.00 12.51
42 4992000 | 100.00 12.57
43 4675000 | 100.00 12.59
44 4749000 | 100.00 12.56
45 4703000 | 100.00 12.59
46 4615000 | 100.00 12.53
47 4642000 | 100.00 12.59
48 4671000 | 100.00 12.58
49 4674000 | 100.00 12.55
50 4708000 | 100.00 12.14

RUN Data Rate % Correct uController

(bps) Load

1 4570000 100.00 12.57
2 4562000 100.00 12.60
3 4711000 100.00 12.50
4 4541000 100.00 12.54
5 4887000 100.00 12.55
6 4561000 100.00 12.57
7 4517000 100.00 12.60
8 4721000 100.00 12.54
9 4868000 100.00 12.55
10 4706000 100.00 12.60
11 4649000 100.00 12.58
12 4634000 100.00 12.55
13 4897000 100.00 12.51
14 4792000 100.00 12.56
15 4679000 100.00 12.55
16 4547000 100.00 12.60
17 4587000 100.00 12.57
18 4641000 100.00 12.55
19 4834000 100.00 12.57
20 4589000 100.00 12.56
21 4793000 100.00 12.56
22 4556000 100.00 12.55
23 4534000 100.00 12.54
24 4871000 100.00 12.57
25 4915000 100.00 12.50

Data Rate | uController

(bps) % Correct Load

Average| 4723920 | 100.00 12.55
Std Dev| 147139 0.00 0.07

A5-1-

Appendix 6

/**
* INCLUDE FILES R IR b b I b I Sb b b Sh S b I Sb b I S S b I b SR b 2R S b b Sb b S b I S 2 b b Sb b I Sh b S db I Sb 2h b 2b b S 2 3

***/

#include <inarm.h>

#include <iolpc3180.h>
#include "arm926ej cpl5 drv.h"
#include "ttbl.h"

/**
* DEFINITIONS R R I b 2 S b I 2b h I S I S b S Sb S b I Sh b S Sb b Sb b I 2h 2 S db i Sb b S b e S b b b b Sh b I 2h 2b b Sb b Sb b b 3b b S db 3

***/

#define 0SC (13000000UL) // System OSC 13MHz
#define CORE_CLK (0SC*16) // ARM CLK 208MHz
#define AHB CLK (CORE_CLK/2) // HCLK 104MHz
#define PER_CLK (CORE_CLK/16) // PER_CLK 13MHz
#define RTC CLK (32768UL) // RTC_CLK
#define LED_ D400 (1UL << 2)

#define LED_ D401 (1UL << 3)

#define LED_ D402 (1UL << 7)

#define LED D403 (1UL << 6)

#define button (1UL << 7)

#define SPI_RATE 4 //5.2Mhz

/***
* VARIABLES R I R I b S b Sh b I Sh S b I Sb R I S S b b b R S b b 2h b S Sb b S 2R b 2h S b Sb b b Sb S b Sb b I 2h I Sh b I ab b3

**/

unsigned char ledstatus=0;

unsigned int test,time,blah0,blahl;
unsigned char tx[256];

unsigned char rx[256];

unsigned char g,old,cc,qq;

unsigned char i,zz;
unsigned char temp=0,tt=0,aa=0;

/***
* MS INTERUPT HANDLER R R I b S b I 2b b b S S b b Sb S b S b b Sb R b Ih S Sb b Sb b b b e 2h db S Sb Sh b I 2 b S 4

**/

void mstimerInterupt (void) {
MSTIM INT bit.MATCHO INT=1; //Clears interupt flag

if (ledstatus==0) {
ledstatus=1;PIO OUTP SET = LED D403;
}
else{
ledstatus=0;PIO OUTP CLR = LED D403;

}

/***
* IRQ HANDLER RS S R S S R R I I I I I I I I e I I I I I I b b I I b I I b b i I b b
**/
__irg arm void irg handler (void) {

if (MIC_SR bit.MSTIMER INT) {

mstimerInterupt () ;

}

if (SIC1 SR bit.SPI2 INT) {

// SPI2 STAT bit.intclr =1; //clears interupt

// tt=2;

// cc=SPI1 DAT;

// tx[gg++]=cc;

// ~ PIO_OUTP_SET = LED D400;

A6-1-

Appendix 6

}

/***
* CLOCK INITIALIZATION LR R R I R b b S b S b I Sh 2 b b Sb b b Sh S b b b b Sb e S b b Sb b b b 2 db S Sb b Sh b S db 3

**/

void ClockInit (void)

{
// Set Clk dividers
HCLKDIV_CTRL bit.HCLK = 2-1; // 1/2 Pll_clk_out
HCLKDIV_CTRL bit.PERIPH CLK = 16-1; // 1/16 P11l clk out
// PLL Init - 0SC * 16 = 208MHz

HCLKPLL CTRL bit.BYPASS = 0; // 0SC connected to PLL input
HCLKPLL CTRL bit.DIRECT = 1; // CCO connected to PLL Clk output
HCLKPLL CTRL bit.FEEDBACK = 0; // CCO connected to N divider input
HCLKPLL CTIRL bit.N = 0; // set divide

HCLKPLL CTRL bit.M = 16-1; // set multiplier
HCLKPLL CTRL bit.POWER DOWN = 1; // Enable P11l

// Wait until PLL lock

while (!HCLKPLL, CTRL bit.PLL LOCK) ;
// Connect P11l clk out
PWR_CTRL_bit.RUN MODE = 1;

/***
* MSTIMER INITIALIZATION R R I b I b b S b b b b Sb S b I S b S b Sb b b b S 2b S b b b b S Sh b S Sb d Sh b 2b b 4

**/

void mstimerInit (void) {

MSTIM CTRI_bit.COUNT ENAB = 0; // stop counting
MSTIM CTRL bit.PAUSE EN = 0; //runs in debug mode
//MatchO

//Enable Interupt Status Generation MatchO
//Enable Reset of Timer Counter on MatchO
//Disable Stop Functionality on MatchO

MSTIM MCTRL bit.MRO_INT =
MSTIM MCTRL bit.RESET COUNTO
MSTIM MCTRL bit.STOP COUNTO =

I
o
~ o~

~.

MSTIM CTRL bit.RESET COUNT = 1; // Reset the counter

while (MSTIM COUNTER) ;

MSTIM CTRL bit.RESET COUNT = 0; // release reset of the counter
MSTIM MATCHO = 32768; //Match Value for MatchO
MIC ER bit.MSTIMER INT =1; // Enable Milisecond timer interrupts

}

/***
* SPIl INITIALIZATION R IR R I b b S b I Sb b b S S b I Sb S b S 2 S b Sb R b Sh S SE b Sb b b b e Sh db b Sb b Sh b b 2 2b S 4

**/

void SPIlInit(void){ //-—------ TX

START ER PIN bit.SPT1 DATIN = 1; //Power up Pin

//Set SPI Control Register

SPI_CTRL bit.SPI1 CLK ENA 1;

SPI_CTRL bit.SPI1 PIN SEL = 1;

SPI_CTRL bit.SPI1 CLK OUT = 1;

SPI_CTRL bit.SPI1 DATIO =1;

SPI1 GLOBAL = 0; // disable SPI1

SPI1_FRM =1; //1 Frame per transmission
//SPI Control Register

SPI1_CON = 0; // reset SPI1 CON register
SPI1 CON bit.unidir =1; // Unidirectional Pins

A6-2-

Appendix 6

SPI1 CON bit.thr = 0; // FIFO treshold disabled
SPI1 CON bit.bitnum = 7; // 8its to be tx or rx

SPI1 CON bit.rxtx =1; // tx

SPI1 CON bit.shift off = 0; // enable clock generation
SPI1 CON bit.ms =1; // SPI operating as a master
SPI1 CON bit.mode = 0;

SPI1 CON bit.rate = SPI_RATE; // SPI transfer rate

//SPI Interupt Enable Register
SPI1 GLOBAL bit.enable = 1; // Enable SPI2
while (! (SPI1 GLOBAL bit.enable));

//
}

/***

SPI1 DAT=0; //dummy read

* SPI2 INITIALIZATION R IR R I b S b I Sb b b S S b I Sb S b S S S b Sh R b Sh S Sb b Sb b b Sh e Sh b b b b Sh b b 2 b S 4

**/

void SPI2Init (void) { RX

START ER PIN bit.SPI2 DATIN = 1; //Power up Pin

//Set SPI Control Register

SPI_CTRL bit.SPI2 CLK ENA = 1;

SPI_CTRL bit.SPI2 PIN SEL = 1;

SPI_CTRL bit.SPI2 CLK OUT = 1;

SPI_CTRL bit.SPI2 DATIO 1;

SPI2 GLOBAL = 0; // disable SPI2

SPI2_ FRM =1; //1 Frame per transmission
//SPI Control Register

SPI2 CON = 0; // reset SPI1 CON register
SPI2 CON bit.unidir =1; // Unidirectional Pins

SPI2 CON bit.thr = 0; // FIFO treshold disabled
SPI2 CON bit.bitnum = 7; // 8its to be tx or rx

SPI2 CON bit.rxtx = 0; // rx

SPI2 CON bit.shift off = 0; // disable clock generation
SPI2 CON bit.ms =1; // SPI operating as a master
SPI2 CON bit.mode = 0;

SPI2 CON bit.rate = SPI_RATE; // SPI transfer rate
SPI2 GLOBAL bit.enable 1; // Enable SPI2

while (! (SPI2 GLOBAL bit.enable));

/***
* DMA INITIALIZATION R IR R S b b S b S Sb b S b b Sh S db I Sb b I b S b b b b S Sb e S 2b S Sb S Sh b Sh b S Sb Sb b I 2 b S 4

**/

void DMAInit (void) {

DMACLK_CTRL bit.DMA CLK_ENA = 1; //All Clocks to DMA enabled

A6-3 -

Appendix 6

//Clear Channel E
DMACIntErrClr bit
DMACIntErrClr bit
DMACIntTCClear bi
DMACIntTCClear bi

//Source and Dest
DMACCOSrcAddr
DMACCODestAddr
DMACClSrcAddr
DMACClDestAddr

//Disable Linked
DMACCOLLI
DMACCILLI

//DMA ChO Control

DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.
DMACCOControl bit.

//DMA Chl Control

DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.
DMACClControl bit.

//DMA Ch0 Configu
DMACCOConfig bit.
DMACCOConfig bit.
DMACCOConfig bit.
DMACCOConfig bit.
DMACCOConfig bit.
DMACCOConfig bit.
DMACCOConfig bit

//DMA Chl Configu
DMACClConfig bit.
DMACClConfig bit.
DMACClConfig bit.
DMACClConfig bit.
DMACClConfig bit.
DMACClConfig bit.

.E

rror Interrupts
.DMA CHO
.DMA CHI1
t.DMA CHO
t.DMA CHI1

. o~

~.

e
~

~.

ination Registers

List Item
0;
= 0;

Register
T =
Prot3
Prot2
Protl
DI

ST

D =
IS =
DWidth
SWidth
DBSize
SBSize
TransferSize

Ne Ne Ne N N

. o~

Ne Ne Ne N

H OOOOOoOOoORr O PP~
~

o) N

Register
T =
Prot3
Prot2
Protl
DI

ST

D

S =
DWidth
SWidth
DBSize
SBSize
TransferSize

Ne Ne Ne N N

. o~

I
NOOOODOOOHRRFRFERFEO
Nt N Ne oo Se S

’

ration Register
H

ITC

IE
FlowCntrl
DestPeripheral=
SrcPeripheral =

~.

~.

~.

~.

PR R R OOO

~.

ration Register
H

ITC

IE
FlowCntrl =
DestPeripheral=
SrcPeripheral

~e N

. o~

~.

|
w =N OO O
~

~.

=~

long) &tx[0];
(volatile) &SPI1 DAT;
= (volatile) &SPI2 DAT;
(long) &rx[0];

//Terminal Count Interupt disabled
//Access Cacheable

//Access Bufferable

//Access Privileged Mode
//Destination Address not incremented
//Source Address incremented

//AHB Master 0 for destination tfr
//AHB Master 0 for source tfr
//8bits

//8bits

//Burst Size 1

//Burst Size 1

//TransferSize

//Terminal Count Interupt disabled
//Access Cacheable

//Access Bufferable

//Access Privileged Mode
//Destination Address incremented
//Source Address not incremented
//AHB Master 0 for destination tfr
//AHB Master 0 for source tfr
//8bits

//8bits

//Burst Size 1

//Burst Size 1

//TransferSize

//Enable DMA requests
//Disable Terminal Count
//Disable Error Int.
//Memory to Peripheral
//Destination Peropheral
//Source Peripheral
//Enable ChO

Int.

//Enable DMA requests
//Disable Terminal Count
//Disable Error Int.
//Peripheral to Memory
//Destination Peropheral
//Source Peripheral

Int.

A6-4-

Appendix 6

DMACClConfig bit.E = 1; //Enable Chl

DMACConfig bit.E = 1; //DMA Controller Enable
}

/***
* INITIALIZATION ROUTINE R R I b I b b S b b b b S S b I S b S b Sb b b b S 2b b b b S Ih I Sh b S Sb d Sb b 2h db 4

**/

void initialize (void) {

unsigned char *ptrtx = &tx[0];
unsigned char *ptrrx s&rx[0];

char 1=0;

for (1=0;1<128;1++) {
*ptrtx++ = 'A'+i;
*ptrrx++ = 0;

// Disable all interrupts

MIC ER = 0;
SICL ER = 0;
SIC2_ER = 0;

PIO OUTP CLR = LED D400 | LED D401 | LED D402 | LED D403;

TIMCLK CTRL bit.WDT CLK ENA = 0; // disable watchdog
ClockInit () ;

SPI1Init () ;
SPI2Init () ;
// DMAInit ();

// PIO_OUTP_SET = LED D400 | LED D401 | LED D402 | LED D403;

/***
* MAIN LOOP R IR R I b S b Sh b I Sh S b I b R I S I Sh S b b R S b I 2h db S Sb b Sh b b 2 S b Sb b b Sh S Ib I Sb b S 2h S Sb S ab g3

**/

void main (void)

{
initialize();
__enable interrupt();

PIO OUTP SET = (1UL<<12);
a=0;
zz=0;
while (1)
{
//for (blah0=0;blah0<200;blah0++) ;
/*Code for DMA Sendll’lg on SPIl as Master********************************/
//**
PIO OUTP CLR bit.GPO 12 = 1;
while (PIO OUTP_STATE bit.GPO 12 == 1);
for (blah0=0;blah0<10;blah0++);
DMAInit () ;
for (blah0=0;blah0<50;blah0++) ;
PIO OUTP SET bit.GPO 12 = 1;

A6-5 -

Appendix 6

//

} .

while (PIO OUTP_STATE bit.GPO_12 == 0);

//***/

/*Code for DMA Receving on SPlz as Master********************************/
/***

PIO OUTP CLR bit.GPO_12 = 1;

while (PIO OUTP STATE bit.GPO 12 == 1);

DMAInit () ;
SPI2 DAT=0;

zz+=2;
for (blah0=0;blah0<10;blah0++);
PIO OUTP SET bit.GPO 12 = 1;

while (PIO OUTP STATE bit.GPO 12

= 0);

//***/

/*Code for Polling Receiving on SPI2 as Master***xkx&xkkkakkhrkkhrrksxrr/
/**

PIO OUTP _CLR bit.GPO 12 = 1;

while (PIO OUTP STATE bit.GPO 12 == 1);
for (blah0=0;blah0<5;blah0++) ;

if (SPI2_STAT bit.be == 0){ //while FIFO not empty
b=SPI2 DAT;
rx[a++]=b;

lelse{
b=SPI2 DAT;

}

for (blah0=0;blah0<10;blah0++);

PIO_OUTP_SET bit.GPO 12 = 1;

while (PIO OUTP STATE bit.GPO 12 == 0);

// for (blah0=0;blah0<5;blah0++);

//***/

’

} // main(void)

A6-6 -

Appendix 7

/**
* INCLUDE FILES R IR b b I b I Sb b b Sh S b I Sb b I S S b I b SR b 2R S b b Sb b S b I S 2 b b Sb b I Sh b S db I Sb 2h b 2b b S 2 3

***/

#include "inarm.h"
#include "iolpc2368.h"

/***
* Variables R I R I b I b Sb b S Sh S b b b b S b b Sb R S b I 2h 2b S Sb b Sh b b 2h S b Sb b b Sb S Jb I Sb b Ih 2h I Sh b S ab g3

**/

//unsigned char rx[40],tx[40];
unsigned char test,i,a,b,Dummy;

#define DMA_ SRC 0x7FD00000
#define DMA DST 0x7FD01000
char *rx ,*tx, *dest addr, *src_ addr;

/***
* Feed Sequence***

**/

void feedseqg(void) {
PLLFEED = Oxaa;
PLLFEED = 0x55;

}

/***
* Initialize Clock**

**/

void Init clock(void) {

if (PLLSTAT bit.PLLE) { //If PLL is enabled
PLLCON bit.PLLC = 0; //Disconnect PLL
feedseqg() ;
}
PLLCON bit.PLLE = 0; // Disables PLL
feedseq();
SCS_Dbit.0OSCEN = 1; // Enable main 0OSC
while (SCS bit.OSCSTAT == 0); // Wait until main OSC is usable
CLKSRCSEL bit.CLKSRC =1; // Main Oscillator Selected
PLLCFG_bit.MSEL = 11; // Mvalue = 11 +1
PLLCFG bit.NSEL = 0; // Nvalue = 0 +1
feedseq();
PLLCON bit.PLLE = 1; // Enables PLL
feedseq();
CCLKCFG = 3; // CCLKSEL = 3 +1
while (PLLSTAT bit.PLOCK==0) ; // Wait for PLOCK to be asserted
//check to ensure M and N values are correct
while ((PLLSTAT_bit.MSEL =11) && (PLLSTAT_bit.NSEL '=0));
PLLCON bit.PLLC = 1; // Connects PLL

feedseq();

}

/***
* Initialize SSPO R R R b S b S b Sb b I Sh S IE I Sb b b b S b b b b S 2R S 2E S Sb e Sh b I S b S db I Sb b b Sb S Sb e Sb db I 2

**/

void Init SSPO(void){ //Transmit TX

AT-1-

Appendix 7

PCONP_bit.PCSSPO = 1; // Power up SSPO
PCLKSEL1 bit.PCLK_SSP0 = 1; // PCLK as 72Mhz
PINSELO bit.P15 = 2; // Serial Clock
PINSEL1l bit.P1l6 = 2; // Slave Select
PINSEL1 bit.P17 = 2; // Master In Slave Out
PINSEL1l bit.P18 = 2; // Master Out Slave In
SSPOCRO_bit.DSS = 3; // 8bit Transfer
SSPOCRO_bit.FRF = 0; // SPI Format
SSPOCRO_bit.SPO = 0; // Clock out polarity
SSPOCRO_bit.SPH = 0; // Clock out phase
SSPOCRO_bit.SCR = 0; // PCLK / (CPSDVSR { [SCR+1]).
SSPOCPSR =12;
SSPOCR1 _bit.LBM = 0; //Loop Back Mode Disabled
SSPOCR1 bit.MS = 0; //Master Mode
SSPOCR1 bit.SSE = 1; //SSPO Enabled
for (1 = 0; 1 < 10; i++)
{

Dummy = SSPODR; /* clear the RxFIFO */

}
}

/***
* Initialize SSPl R R R I b I b Sh b I Sh S IE I Sb b I b S b b b b S b e Sh b S Sb R Sh b I Sh S dh I Sb b b Sb S Sb Sb db I 2

**/

void Init SSP1(void){ //Transmit TX

PCONP_bit.PCSSP1 = 1; // Power up SSPO
PCLKSELO bit.PCLK_ SSP1 = 1; // PCLK as 72Mhz
PINSELO bit.P6 = 2; // Serial Clock
PINSELO bit.P7 = 2; // Slave Select
PINSELO bit.P8 = 2; // Master In Slave Out
PINSELO bit.P9 = 2; // Master Out Slave In

SSP1CRO_bit.DSS = 3; // 8bit Transfer
SSP1CRO_bit.FRF = 0; // SPI Format
SSP1CRO_bit.SPO = 0; // Clock out polarity
SSP1CRO_bit.SPH = 0; // Clock out phase
SSP1CRO_bit.SCR = 0; // PCLK / (CPSDVSR { [SCR+1]).
SSP1CPSR = 12;
SSP1CR1 bit.LBM = 0; //Loop Back Mode Disabled
SSPI1CR1 bit.MS = 1; //Slave Mode
SSP1CR1 bit.SSE = 1; //SSP1 Enabled
for (1 = 0; 1 < 10; i++)
{

Dummy = SSP1DR; /* clear the RxFIFO */

}

/***

AT-2-

Appendix 7

* Initialize R R B R R S I S R I I I I I e I I R I I I I I e I I b e I I I e I b I e I b b I b b
**/
void initialize (void) {

Init clock();

Init SSPO();

Init SSP1();

tx= (char *)DMA SRC;

rx= (char *)DMA DST;
src_addr = (char *)DMA SRC;
dest addr = (char *)DMA DST;
for (1 = 0; 1 < 200; 1i++)

{
*src_addr = 65+1%26;
*dest addr = 48;
src_addr++;
dest addr++;
}
src_addr = (char *)DMA SRC;
dest addr = (char *)DMA DST;

bi

/***
* MAIN LOOP R R S I I I I I I I I R I I I I b I I I I e b b I I I b b b b b i b b i 4
**/
void main (void)

{

initialize () ;

for (i=0;1<26;1i++) {

SSPODR= tx[1i];
// while (SSP1STAT bit.RNE ==1);

rx[i] = SSP1DR;
}
while (1) {
if(SSPlSTAT_bit.RNE == 1) {

*rx++ = SSP1DR;

Appendix 7

A7 -1 -

AT-3-

Appendix 8

/**

README

Base Code for most LPC2xxx ARM Microcontrollers for IAR Embedded Workbench.
Initialization sequence performs PLL setup and intializes Timer 0 and its
interrupt.

Sam Hsiang Wei LEE
Masters of Enginering 2008
Electrical and Computer Engineering

Cornell University
**/

/***

IMPORTANT NOTE:

// TO USE THIS CODE FOR A DIFFERENT MICROCONTROLLER

// (1) CHANGE THE HEADER FILE TO THE ONE FOR YOUR MICROCONTROLLER
//

// (2) GO TO PROJECT > OPTIONS > LINKER > CONFIG

// SET THE LINKER FILE (.XCL) FOR YOUR MICROCONTROLLER

**/

//***

// Include Files
//*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k‘k*‘k***
#include <inarm.h>

#include <intrinsics.h>

#include <iolpc2119.h> // THIS IS THE MICROCONTROLLER HEADER FILE !!!!

//***

//PLL USER DEFINED VALUES

//***

#define CRYSTAL 10000000 //in Hertz

#define CPUSPEED 40000000 //in Hertz

#define MSEL 3

#define PSEL 1

e 1 IIPLEASE CHECK !0l lomm e

if it is set wrongly, microcontroller WOULD NOT RUN!

a) 10000000 < CRYSTAL < 25000000
b) 10000000 < CPUSPEED < 60000000
c) CPUSPEED

= M * CRYSTAL

P * CCLK * 2 =FCCO

c) FCCO = CPUSPEED * 2 * P
156000000 < FCCO < 320000000

d) M=1, 2, ..., 32
MSEL = M - 1;

e) P 1 14 2 14 4 4 8
PSEL 00 01 10 11

A8-1-

Appendix 8

//***

// Global Variables

//***

unsigned int timel, temp=0;

//***

// Definitions
//*‘k*‘k*‘k‘k‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***************************************

#define t1 10000

//***

// Function Headers
//*‘k*‘k*‘k‘k‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***************************************

void init PLL(void);
void initialize ARM Interrupts(void);
void init var(void);

void tcO (void) ;

void taskl();

//***

// IRQ Handler
//***
// IRQ exception handler. Calls the interrupt handlers.
__irg arm void irqg handler (void)
{

void (*interrupt function) ();

unsigned int vector;

vector = VICVectAddr; // Get interrupt vector.
interrupt function = (void(*) ())vector;
if (interrupt function != (void(*) ())0)

{
interrupt function(); // Call vectored interrupt function.
}
else
{

VICVectAddr = 0 // Clear interrupt in VIC.

~.

}

//***

// Interrupt Handlers
//***
// Timer Counter 0 Interrupt executes each 20ms @ 48 MHz CPU Clock
// Increment counters timeval for general program use.
//
void tcO (void)
{
if(timel > 0) {

timel--;
}
TOIR =1; // Clear interrupt flag
VICVectAddr = 0; // Dummy write to indicate end of interrupt service

A8-2-

Appendix 8

//***

// Initialize PLL
//***
void init PLL(void)

{

// PLLCFG: 0 pp mmmmm where pp=PSEL and mmmmm=MSEL. PSEL=1, MSEL=4 from above.
//PLLCFG = 0x00000023;

PLLCFG = MSEL | (PSEL<KD5);

// PLLCON: 000000 C E C=connect, E=enable. Enable, wait for lock then C+E
PLLCON = 0x00000001;

// Give the connect sequence

PLLFEED = 0x000000AA;

PLLFEED = 0x00000055;

while (! (PLLSTAT & 0x00000400)) ; // Wait for PLL to lock (bit 10 is PLOCK)
PLLCON = 0x00000003; // Enable and Connect

PLLFEED 0x000000AA;
PLLFEED = 0x00000055;

VPBDIV = 0x00000001;
}

//***

// Initialize Interrupts
//*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***
void initialize ARM Interrupts(void)
{

// Set up the Timer Counter 0 Interrupt

// Used to blink the activity light

int timespersec = 1000;

TOMRO = CPUSPEED/timespersec; // Match Register 0: 20 msec (50 Hz) with 48
MHz clock

TOMCR = 3; // Match Control Reg: Interrupt (b0) and
Reset (bl) on MRO

TOTCR = 1; // Timer(O Enable

VICVectAddrl = (unsigned long)tcO; // Use slot 1, second highest vectored IRQ
priority.

VICVectCntll = 0x20 | 4; // 0x20 is the interrupt enable bit, 0x04 is
the TIMERO channel number

VICIntEnable = 0x00000010; // Enable Timer0 Interrupt bit 4 (1 sets the
bit)

}

//***

// Task Functions
//***
void taskl (void) {

timel=t1l;

if (temp) {temp=0;}

else{temp=1;}
}

//***

// Initialize Variables
//*‘k*‘k*‘k‘k‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***************************************

void init var (void) {
timel=t1l;
temp=0;

A8-3-

Appendix 8

//***
// Main Function
//***
void main (void)

init PLL();

initialize ARM Interrupts();

init var();

__enable interrupt();

//Infinite Loop
while (1) {
if (timel==0) taskl();

}

//***

// End of File

//***

A8-4-

El

38pF 38pF
vss i 1l__vss
cioW Sle| c11!
e oo e o7 |10 TD1
15—2221 PO.1 2= P0.25/RD1 g—BDJ
JQT P0.2 & P0.24/TD2 HZ
2821 po3 Po.2g/RD2 (-5 —HD2
237 P0.4 P0.22/TD3 1493
2621 pos P0.21/RD3 [—1—HD3
3A—31 P0.6 P0.13/TD4 3845?—4
357 P0.7 Po.12/RD4 S8 RD4
€881 pos
4321 poo
ABT Fo-10 20
4C 37 1 po.11 P1.31/~TRST ~TBST
» Pi.287Dl -E21IDI
A A1 pos P1.30TMS (2 TMS
5B 45 1 pois P1.29/TCK TCK
8C 11 poo7 P1.26/RTCK [—24BICK
13 64TDO
6A 18 1 poog P1.27/TDO
6B 14 | poog “REsetr | B7~RESET
6C 15 | pgag
pi16 |16 MAX3421E 3v3 c4
59 : 12 1 2
0 VSSA P1.17 |12 1 Gpin7 VL 1.0uF 43 C3
o 52 VSSA_PLL P1.18 % % GPING vee fg —
/S VSS_0 p119 4 21 Grins ~RES 0AuF 10K R19
18 1 vss 1 pi20 |48 30 1 GPINg : AAM
25 - i 44 29 11 VVWy
ol T el e 2] Vss2 P1.21 [~ <5 GPIN3 GPOUT? —0 10k 10k
O] 0| 6] O 21 vsss P22 |20 28] aPie apouTs |10 MM
=== VSS_4 P1.23 32 21 cPint GPOUTS |2 R20 10k
=l | & "c"-l- 3y3 o Pl24 -2 28 1 GPiNo GPOUT4 [—2— AW
2l 8| 8| 8 == vpDsva_0 P1.25 == GPOUT3 |—— R17
=~ L= 43 1 vopsvas apouT2 |8
11 vbpava 2 . » GPOUTT |-
VDDA3V3 P0.20/SSELT |25 ESS ~S88 GPOUTO |-4—
. P0.17/SCK1 2471 SCLK 12 SCLK
121 vopiveo PO.19MOSIT (2 m%?)' 121 wosi .
VDD1V8_1 P0.18/MISO1 MISO GND_O
N oo 63 1 vpDA1ve PO1G/EINTO |46 UINT 18 1 |\ GND 1 |19 {vss
LY OJ— D+ 21 R1AvAvAvlv33 D+
— — 1v8 LPC2194/01 c1 o D- MMM,&?_D_
ETETE i I7 1 gpx XX vecowmp |22 VBUS ,
o o o
g8l 8 18pF T &l
VSS 2 [oo xo |4 X0 3
VSS X1 -2 X1 ~Tw
S
CSTCE
C2|= vsSs
18pF
TITLE: routerboardvl
Document Number: REU:

Date:

4/15/2008 21:37:47 |Sheet: 1/2

5\ 100pF
D1t 11 1xp vee g h
. GND
RXD
30pF
— CANH T
g Cc20 s . co8
= 10(i£,L ~SHDN CANL |8 100pF
024| MAX3050 sy . C33
100pF
D2 11 1xp vee g h
. GND
RXD
30pF
? Cc21 s . Cc29
100pF
> 10(:HF ,L ~SHDN CANL M
cos W MAX3050 sy . C34
100pF
D3 11 1xp vee 2 h
. GND
R RXD
30pF
— o [H—p——
2 c22 o c30
100pF
> 10(:nF ,L ~SHDN CANL M
coe ! MAX3050 sy G35
100pF
D4 11 1xp vee g h
. GND
RXD
30pF
— o [
(,(f Cc23 s e Cc31
100pF
> 10(:nF ,L ~SHDN CANL M
c27 ! MAX3050
TRI-COLOR LED TRI-COLOR LED
1A BAMAR00 2 e
1B Rowwaon d £ q &
iC mopwmaoo 4 o L |ava 45, | am
TRI-COLOR LED TRI-COLOR LED
e e
E [E [
2 I RV 7 I RV

VIN T npuT
Y 3 1 output
[M2937
ava "&m 5‘3%2% vss
300
1v8 h 3v3
L13.3uH QW1 4 o o 8 QW2 L2 3.3uH
vss 1 Y VEBT 1] Vrgs vrss |10 VEB? 1 T vss
calliour c7W22pF Ccolloopr | ciolliouF
R3 118k | r—] MODE RUNT |2V R5 267k
MW » 5 GNDO RUN2 7 AW
VSS R4 50k = aNDi VN [T R6 50k
LTC3419
ce"
TRI-COLOR LED
2|
q ¢
4 1 avy
B
. CAN USB ROUTER BOARD
TRI-COLOR LED
52 TITLE: routerboardvi
2 R IV
Document Number: REUV:

Date:

4/15/2008 21:37:47

[Sheet: 2/2

