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Abstract
Representing advances in dynamic understanding and mechanical recreation of the 

human body, the Marathon Walking Robot successfully demonstrates a stable walking 
cycle using the same control components as machines created in high school 
competitions and code simple enough to be understood by participating students.  
Encouragingly, further steps to be taken towards more robust and efficient locomotion 
involve little more than planned mechanical improvements, more sophisticated but 
readily available feedback, and more intelligent control afforded by existing algorithms.  
In addition to and perhaps even more significant than contributions to machine walking, 
further efforts will pioneer new techniques for uniting simulation with the physical world 
to aid in the design of future machines.

Introduction
From prehistory to present, humans have always been fascinated by themselves.  

Motivations range from vanity to applied science to the purest curiosity, but the interest 
remains and humans are a prime subject of research.  One area of investigation that is 
beginning to make significant progress is that of human locomotion – how people move, 
and specifically how the body moves itself from place to place.  Books and movies reveal 
that popular culture would consider it desirable to use the human body as a model for 
machines, the dream being that the machine would be as versatile a living person.  One of 
the most notable attempts toward this end is Honda’s Asimo humanoid robot, a machine 
that can walk, manipulate objects, recognize people, and perform other basic human-like 
functions.  However, a machine based on the technology of Asimo is unlikely to fulfill 
this vision because Asimo merely mimics human motions with precise angular control of 
every joint.  As a result, Asimo is versatile and robust but expensive and tremendously 
inefficient; such a machine can barely function for half an hour between recharges – let 
alone on three meals a day.  It is possible that scientists will discover revolutionary ways 
of producing and storing energy such that battery life is no longer a concern, but in the 
meantime it is useful to explore more efficient ways of replicating human movement, 
both as a step towards the aforementioned grand vision and for the better understanding 
of the human body itself, which evolved under tight efficiency constraints.  Other 
machines, such as the unpowered “passive dynamic” walkers pioneered by Tad McGeer, 
are so well suited to walking that the only energy they consume is provided by gravity 
and no electronics are required for control; the motions are inherent to positions of the 
joints and mass distributions of the limbs.  The limitation in this case is that the machines 
are only capable of a single particular motion, they cannot be controlled, they are not 
very robust, and they can only move downhill.  The Human Power and Robotics lab at 
Cornell University works to merge these advantages of both classes of machines to create 
a robot that is efficient, versatile, and robust.  The robotic subject of the following paper 
represents an advancement toward this end, specifically in the robustness and consistency 
of an efficient powered walker and the agreement between robotic walking simulation 
and experiment.



Methods
The mechanical structure of the two dimensional, knee-less, bipedal walker was 

originally created by Gosse [1] in 1998.  Energy was to be added to the system by 
actuation of the ankles alone.  A control system was implemented in 2000 by 
Yevmenenko [2], and again in 2003 by Yeshua [3], but the robot never achieved a 
walking cycle.  As part of the Marathon Walking Robot project in 2005, a motor was 
added for hip actuation by Seidel and Strasberg [4] and the feet were replaced by Harry 
[5].  In addition, the entire electronic control system, including all hardware and software, 
was replaced, hence the need for documentation provided in this paper.  

Hardware
Robot Controller
The Innovation FIRST Mini Robot Controller was chosen to control the robot because it 
provides a user-friendly interface between sensors and a microprocessor.  Eliminating the 
need to order and prepare dozens of discrete components, the Robot Controller combines 
a programmable chip, programming port, power terminals, and a wide variety of pins for 
signal input and output in a single, convenient package.  Prewritten functions, instructive 
documentation, and useful software facilitate generation of custom programs.

Feature: Details: Use:
Speed 10MIPS Sufficiently fast processor means precise

and accurate robot control
Power Approx. 1W Low power consumption means greater

robot efficiency and longer walking time
Size 3.4” X 4.6” X ¾” Small size means low weight and more 

space for other robot parts
Language C Powerful, familiar language means

flexibility and easy use
Digital Inputs 22 Max Used to take input from limit switches 
Analog Inputs 16 max, 10-bit Used to take input from potentiometers
PWM Outputs 8 Used to control motors

Internal Processors
The robot controller actually contains two Microchip 18F8520 PICmicro 
microcontrollers – one programmable User processor that runs the code for the robot, and 
one Master processor that relays radio control signals to and monitors the operations of 
the User processor.  The Master processor and User processor only communicate once 
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every 17ms, which limits response to radio input.  However, all digital/analog in and 
PWM ports are wired directly to the User processor, providing for immediate 
communication between the computer and onboard electronics.  Other than this, the 
workings of the Master processor are irrelevant to the user of the system and thus are not 
disclosed by Innovation FIRST; in practice it is only necessary to understand the 
operations of the User processor.

Ports
Each of the 16 Digital In/Out – Analog In ports can be configured in the code as either a 
digital in, digital out, or analog in.  Each of the ports labeled “Interrupt” is permanently 
configured as a digital in, but when triggered can be used to fire interrupt conditions in 
the code.  The PWM outputs can be used to send PWM signals to motor controllers using 
prewritten functions.  The robot controller also features solenoid outputs and PWM 
inputs, but they are not used on the robot.

Digital In/Out – Analog In
The Digital In/Out – Analog In ports have three pins each – one 
“SIG” or signal pin, one “+5V” or “high” pin, and one “BLK”, 
black, or “low” pin.  A 5V potential difference is always 
maintained between the “+5V” pin and “BLK” pin; if these pins 
are shorted the mini robot controller automatically shuts down.  
Depending on the state of the digital/analog input device, however, the potential 
difference between the “SIG” pin and the “BLK” pin may vary.  The voltage between 
these pins is measured by the robot controller, converted to either a 1-bit or 10-bit value, 
and can be referenced in the code as input from the sensors.

Digital Input
When configured as a digital input, only the “SIG” and 
“BLK” pins are used.  The robot controller measures the 
voltage between the pins as either high (5V) when the circuit 
between them is open or low (0V) when the circuit is closed.  
The high measurement is converted to a logical 1 and the 

low measurement is converted to a logical 0 for use in robot code.  It has been found 
experimentally that the 
controller can only detect a 
change in the digital input 
value a few hundred times per 
second.

Digital Output
When configured as a digital output, only the “SIG” and “BLK” 
pins are used.  The robot controller outputs either a logical 
“high” (5V) voltage between the pins or a logical “low” (0V) 
voltage between the pins as specified in the code.  The robot can 
change the signal at a maximum rate of about 1 kHz.
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Analog Input
When configured as an analog input, all three pins are used.  The 
“+5V” and “BLK” pins provide a constant reference voltage for 
the sensor, while the voltage between “SIG” and “BLK” varies 
depending on the state of the sensor.  The robot controller 
measures the voltage between these pins (0V-5V) and converts 
this to a 10-bit value (an integer from 0-1023) for use in the code.

Interrupt Digital Inputs
The “interrupts” are ports that are permanently configured as digital inputs, but can be 
used to fire an “interrupt” condition in the code when they are triggered.  When the 
logical state of these ports changes, the processor immediately jumps to a specific portion 
of code, the “interrupt handler”.  Currently, the ports are being used as regular digital 
inputs; the interrupt feature is not being used.  

PWM Output
A PWM (Pulse Width Modulation) output sends signals to a 

voltage controller which in turn sends a specified voltage to a 
motor.  A PWM signal is a series of digital pulses which vary in 
length depending on the desired motor voltage.  The voltage 
controller (which can be a simple H-Bridge or hobby speed 
controller) amplifies the voltage of these signals and provides 

current to the device.  This pulsing voltage simulates a constant voltage proportional to 
the percentage of digital “high” time, the “duty cycle”.  The PWM ports have four pins –
one BLK pin, two supply voltage pins, and 
one SIG pin.  Only the SIG pin and BLK 
pin are used in this robot, in much the same 
way as a simple digital output.  The 
purpose of using a PWM port instead of a 
regular digital out is that routines are 
already programmed into the 
microprocessor for generating proper PWM 
signals corresponding to an 8-bit integer 
specified in the code.

Radio PWM Input
Radio control is not critical for this robot; the only control an operator has is turning.  The 
current radio control system completely bypasses the IFI controller, so the radio PWM 
inputs are not being used.  However, the IFI Radio PWM inputs can receive signals from 
a hobby radio receiver through standard PWM cables.  When the radio receiver is 
plugged into this port and a signal is received from the radio transmitter, the Master 
processor converts the signal into an 8-bit value which is relayed to the User processor 
every 17ms for use in the code.
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Sensors
Limit Switches
There are two limit switches, one at the heel of each 
foot.  Each limit switch is simply a contact switch 
that is pressed when its respective heel is supported 
by the ground.  There are two wires leading into the 
limit switch – one “signal” wire, and one “black” 
wire.  The signal wire plugs into the “SIG” pin of a 
digital in on the robot controller, the black wire plugs into the “BLK” pin of the digital 
input.  When the limit switch is not pressed (“open”), the voltage between the two pins is 
5V and the robot controller reads this as a single bit – “high” or “1”.  When the limit 
switch is pressed (“closed”), an electrical connection is made between the two wires 
inside the switch, creating a short circuit.  This forces the voltage between the two pins to 
jump to zero, and the robot controller reads this as “low” or “0”.  So when the heel of the 
robot is in the air, the limit switch is not pressed and there is a 5V potential difference 
between its lead wires, and thus the robot controller reads a “1” for that digital input.  
When the heel of the robot is in contact with the ground, the limit switch is pressed, 
shorting the lead wires, so there is 0V between them and thus the robot controller reads a 
“0”.  In this way the limit switches tell the robot how it is supported by the ground.

Potentiometers
There are three potentiometers, one at 
each ankle and one at the hip.  
Potentiometers are variable resistors 
with three pins.  The right 
“reference” pin is connected to the 
“5V” pin of the robot controller, the 
left “black” pin is connected to the 
“BLK” pin, and the center “signal” pin is connected to the “SIG” pin.   There is always a 
fixed 20 kΩ between the “reference” pin and the “black” pin, but turning the knob of the 
potentiometer changes the voltage between the “signal” pin and the “black” pin.  When 
connected properly, the robot controller measures the voltage between the “signal” pin 
and the “black” pin and converts the measurement to a 10-bit value (an integer between 0 
and 1023).  For example, when the foot is in the air and is rotated to a fully retracted 
position, the voltage between the signal and black pin is .5V, corresponding to a value of 
100.  In this way the potentiometer tells the robot the position of the ankle.

Encoder
Encoders are mounted on each of the motors for measuring angular changes, but none of 
them are in use.  An encoder uses a beam of light and a slotted wheel coupled to the 
motor shaft to detect changes in angular displacement.  When the beam of light passes 
through a slot in the wheel, the encoder sends a pulse to the robot controller indicating a 
change in motor shaft angle.  In practice the pulses came too rapidly to be processed by 
the robot controller.
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Voltage Controller
The PWM output was originally connected to an H-Bridge Voltage Controller created by 
former lab consultant Mike Sherback.  A PWM output sends square pulses with variable 
lengths corresponding to an 8-bit value (an integer between 0 and 255) at a fixed 
frequency.  The H-Bridge boosts the voltage of the signal and backs it up with sufficient 
current to power the motor.  By switching the power on an off in pulses, the H-Bridge 
simulates a controlled, constant voltage due to the inductive properties of the motor.  The 
simulated voltage is proportional to the length of a pulse over the period of the signal –
the “duty cycle” percentage.  A separate two-bit signal (generated using digital outputs) 
controlled the function of the motor – forward, reverse, coast, or brake.  However, the 
microprocessor routine that controls the PWM output only provides for signals between 2 
and 40 kHz.  Such frequencies proved too high for the inductive motor, resulting in low 
mechanical power output.  The most recent voltage controllers are Innovation First Victor 
884 Speed Controllers.  A function written by Innovation First generates a PWM signal at 
a frequency of 120 Hz with a duty cycle measured to vary between 10% and 20%.  
Unknown internal circuitry of the speed controller does not merely relay an amplified 
signal to the motors, rather it converts this signal to voltage between –12V and 12V.

Interface Board
The interface board carries all signals to and from the robot controller via a 40-pin IDE 
cable and routes them to the proper sensors via smaller ribbon cables.  Also included is 
an IC DC/DC converter that regulates voltage supplied from the battery down to 6V for 
the robot controller and radio receiver.  Although the function of the interface board is 
simple, the detailed design is rather complicated and its fabrication using a breadboard, 
wire, headers, and solder was very time-consuming, so complete technical drawings are 
included as an appendix.



Software
Algorithm
The most difficult part of programming the software was finding a simple but flexible 
and efficient algorithm.   The robot is modeled as a state machine – at any given point in 
time the robot is in a particular state in which it only performs a certain subset of its 
possible actions based on the relevant feedbacks, and only switches to the next state when 
given the cue from one of its senses.

Feedbacks:
Feedback α:  Ankle Angle
A potentiometer senses the angle of 
the ankle.

Feedback β:  Hip Angle
A potentiometer senses the angle of 
the hip.  

Senses:
Sense A – Heel-Strike 
The robot senses front heel-strike with a 
contact limit switch on the heel.  When the 
robot’s front heel strikes the ground at the end 
of a step, the limit switch is pressed and heel 
strike has occurred.

Sense B – Toe-Lift 
The robot senses rear toe-lift with a potentiometer on the robot’s ankle.  When the ankle 
angle (Feedback α) reaches a certain value, the robot registers toe-lift.

Sense C – Hip-Switch 
The robot senses hip-switch with a potentiometer at the hips.  When the hip angle 
(Feedback β) reaches a certain value corresponding with the inner and outer legs being in 
line, hip-switch has occurred.   
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Actions:
Action 1: Ankle Preparation
The robot performs front ankle preparation, rotating foot to the proper position for heel-
strike (Sense A).  Position is controlled with a “P-loop” using information about current 
ankle angle (Feedback α).

Action 2:  Ankle Push
Robot performs rear ankle push-off.  The 
voltage applied to the ankle motor is 
constant, as specified in the code.

Action 3:  Ankle Retraction
Robot performs rear ankle retraction, 
rotating foot to prescribed position to 
provide clearance with the ground at hip 
switch (Sense C).  Position is controlled 
with a “P-loop” using information about 
current ankle angle (Feedback α).

Action 4:  Ankle Lock
Robot performs ankle lock, holding the foot 
at a prescribed position.  Position is
controlled with a “P-loop” using information 
about current ankle angle (Feedback α).

Action 5:  Hip Swing
Robot performs hip swing.  The voltage applied to the hip motor is a function of hip 
angle (Feedback β).

States
Initial State
State I
The robot has been set up manually by the user 
with its rear foot on the ground and front heel in 
the air.  The robot prepares front foot for heel 
strike (Action 1).  When the operator releases 
the robot, the robot passively falls as a double 
pendulum with a rolling contact pivot.  When 
heel-strike (Sense A) occurs, the robot enters 
State II.

Action 
Hardware

Hip Motor
Action 5

Rear Ankle Motor
Actions 2, 3, 4

Front Ankle Motor
Actions 1, 4

State I

Front Heel 
Limit Switch
Heel Strike

Sense A

Front Motor 
Ankle Prepare

Action 1



Walking Cycle
State II 
The robot performs rear ankle push 
(Action 2) and front ankle lock (Action 
4).  When rear toe lift (Sense B) occurs, 
the robot enters State III.

State III 
The robot performs rear ankle retraction (Action 
3), front ankle lock (Action 4), and hip swing 
(Action 5).  When hip switch (Sense C) occurs, 
robot enters State IV.

State IV 
The robot performs front ankle 
preparation (Action 1), rear ankle lock 
(Action 4), and hip swing (Action 5).  
When front heel-strike (Sense A) 
occurs, robot returns to State II.

State III

Rear Motor 
Ankle Retract

Action 3

Hip Motor 
Hip Swing
Action 5

Hip 
Potentiometer

Hip Switch
Sense C

Front Motor 
Ankle Lock

Action 4

State II

Rear Ankle 
Potentiometer

Toe Lift
Sense B

Rear Motor 
Ankle Push

Action 2

Front Motor 
Ankle Lock

Action 4

State IV

Front Motor 
Ankle Prepare

Action 1

Hip Motor 
Hip Swing
Action 5

Front Heel 
Limit Switch
Heel Strike

Sense A

Rear Motor 
Ankle Lock

Action 4



Code
The software is written in C with MPLAB IDE, compiled into a single .hex file by the 
MPLAB C18 Compiler, and downloaded to the mini robot controller via serial cable 
using IFI Loader.  Three files of the default code included with the robot controller were 
heavily modified to achieve desired performance.

user_routines_fast.c
The algorithm detailed above is implemented using a single variable to keep track of the 
robot state, one function for each sense to return the logical state of the sense, one 
function for each robot action to cause the hardware to perform the action, a single 
function to return continuous feedback from a specified potentiometer, and various 
processor functions to assist the rest of the functions with their tasks.  The 
Process_Data_from_Local_IO() function contains the state machine itself.  A “switch-
case” statement tests the “State” variable - for each state, certain action function are 
called and a conditional statement calls a sense function.  If the sense function in the 
conditional statement returns true, the state variable changes to its next value.  When the 
code reaches the end of the switch statement, the loop repeats.

user_routines.c
The User_Initialization() routine is used to set up ports on the robot controller for use in 
the code.

user_routines.h
This is the header file where custom functions are prototyped and user-defined macros 
are declared.   Once the robot began executing the four states successfully, this file 
became the most important in debugging because it is where the values of all 
experimentally determined program constants could be changed.

Adjustments
After all hardware was wired and code was loaded on the robot, a tremendous amount of 
both mechanical and electrical “tweaking” was necessary before a stable walking cycle 
was achieved.

Electrical
After finalizing the code structure, the most important changes were the adjustment of 
constants that controlled the magnitude of motor actuation.  In general, the scientific 
method was followed – the robot would be set in its initial state and allowed to follow its 
instructions.  Instead of walking, the robot would crash.  The cause of the problem would 
be determined and a single constant would be adjusted based on experience with passive 
walkers, insight from simulations, and physical intuition in an attempt to remedy the 
problem.  This basic cycle of testing and tweaking was executed until a walking cycle 
was realized.  Due to machine asymmetry, separate constants were often needed for inner 



and outer legs and for front and rear positions.  When this was found to be the case, slight 
modifications to the action functions allowed for the specification of additional constants.  
Hardware changes include relocation of all control components from the top of the robot 
to the legs, and replacement of Mike Sherback’s H-bridge units with Innovation First 
Victor 884 Speed Controllers.

Mechanical
Many mechanical adjustments were made to the robot in the debugging process, but the 
volume of material that would be required to properly document each was prohibitive.  
Some examples of this work include complete replacement of the hip potentiometer 
mounting bracket and the coupling between the hip potentiometer and hip motor, 
straightening of the hip motor bracket, notching the hip motor bracket to prevent collision 
with battery terminals, replacing the mis-cut carbon fiber tube on the chain tensioner, 
drilling out unnecessarily and detrimentally tapped holes, addition of ankle drive gear set 
screw holes, and addition of a bumper to prevent overextension of the hip.

Results
Results are evident in video footage of the robot walking.  The robot successfully 

executes a walking cycle, recovers from minor conditional imperfections, fails when 
faced with significant adverse effects, and consumes energy less efficiently than the 
average car air conditioning system.

Discussions
The initial goal of this project was accomplished in full – the existing robot has been 

modified such that it is capable of executing a stable walking cycle.  The next goal of the 
project, robust walking, has been partially satisfied – the robot has shown the ability to 
recover from slight perturbations, but frequently encounters challenges posed by the 
environment and internal mechanical difficulties that it cannot overcome.  The final, long 
term goal of this project - efficient, long distance walking – is only beginning to be 
tackled.  The current walking cycle of robot wastes a tremendous amount of energy 
locking the feet in specified positions and moving the hip to an angle it should ultimately 
swing to on its own.  There is a tremendous amount of proposed modification that can be 
made to make the robot both more efficient and robust.  

First, the robot must be improved mechanically.  The current feet should be replaced 
with versions that are slightly shorter to compensate for insufficient motor torque, but 
stiffer to prevent deflection, a suspected cause of failure.  The new feet must be aligned 
properly so that they provide symmetric support on the ground.  New limit switches 
should be mounted more robustly so that they are triggered whenever any part of the heel 
is in contact with the ground, and not triggered when the heel is off the ground, as there 
have been problems with the limit switches sticking, breaking, and not triggering.  The 
leg chain tensioner slots should be lengthened to provide for further tensioning as the 
chains are rather loose and unexpectedly skip links.  The motor mounting bracket should 



be replaced so that it does not require a spacing shim.  A new tensioning system that 
relies on an idler sprocket should be created, as the current setup introduces high levels of 
friction.  Although the new “homemade” potentiometer coupling is sufficient, a standard 
coupling should be purchased and installed or the potentiometer should be remounted and 
turned by its own sprocket.  While the robot works as it is and these changes are not all
necessary, it is hoped that making them would save time performing urgent maintenance, 
which has slowed down the debugging process considerably in the past.  Also, many 
aspects of the current code were written to reflect imperfections in the robot’s mechanical 
functionality, and relaxing this constraint would offer more freedom for success. 

The next task would be to make the robot more symmetric by providing for easy 
repositioning of control system components to adjust weight distribution.  A battery box 
should be made and an adjustable mounting system should be devised for easy battery 
removal, installation, and repositioning.  The robot controller, interface board, and speed 
controllers should be remounted on thin aluminum plates for durability, as they will need 
to be repositioned frequently until desired symmetry is achieved.  

Once the robot is symmetric and mechanically reliable, the speed controllers should 
be replaced with more efficient and precisely controlled H-bridges, and a torque control 
system should be devised.  A strategy designed but never implemented was to sense the 
voltage drop across a small resistor in series with the motor; from this the current could 
be inferred.   Using this information, the current through, and thus the torque produced by 
the motor could be controlled.  Another suggested strategy was to implement a current 
mirror circuit.  In either case, a function must be written to generate PWM signals for any 
arbitrary desired frequency and duty cycle in order to send signals to the motor control 
hardware.

Data from the accelerometer already installed on the robot should be used in the code 
to determine the overall angle of the robot with respect to the vertical.  Information from 
a gyro could be used to help distinguish between the different components of the overall 
acceleration vector.  A method for using the encoders already mounted on the motors 
should be devised – perhaps by using a counter chip and a latch or even by replacing the 
robot controller with a faster model more suitable for interpreting the quadrature signal.  
Encoders would provide much more precise positioning information and, more 
importantly, angular velocity data.

Once more relevant control over actuators and better feedback data are available, the 
code should be changed to reflect the fact that robot performance can more closely match 
simulation.  The current asymmetric state machine architecture is necessary for the robot 
in its present state, but it should be replaced by a more elegant structure equivalent to that 
in simulation code.  This would allow for most of the performance optimization to occur 
in simulation rather than by physical testing and tweaking.  If developed, such an 
agreement between simulation and the actual machine would be a true milestone in 
robotic walking not only because it would become relatively easy to optimize this system 
for efficiency and long distance walking, but also because it would aid in the generation 
of new and improved physical robot designs.



Conclusion
The Marathon Walking Robot project is in the process of succeeding in its goals.  The 

robot has already achieved a walking cycle and has the ability to recover from mild 
disturbances.  It is known that the robot must become even more stable and much more 
efficient for it to cover distances on the order of kilometers, but efforts to the present 
have provided a firm foundation and great insight on what must be done.  It is within 
realistic hope that further time and effort invested in this machine will yield significant 
results, not only accomplishing the goals of the specific project, but also contributing to 
the realization of the culture’s vision of humanoids.  Perhaps even more importantly than 
providing a basis for future walking locomotion, the project will yield a model for the use 
of simulation in the design and improvement of even more advanced systems.
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