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Abstract
No legged walking robot yet approaches the high reliability and the low power usage of a

walking person, even on flat ground. Here we describe a simple robot which makes a small

progress towards that goal. Ranger is a knee-less 4-legged ‘bipedal’ robot which is energeti-

cally and computationally autonomous, except for radio controlled steering. Ranger walked

65.2 km in 186,076 steps in about 31 hours without being touched by a human with a total

cost of transport [TCOT ≡ P/mgv] of 0.28, similar to human’s TCOT of ≈ 0.3. The high

reliability and low energy use were achieved by: 1) development of an accurate bench-test-

based simulation; 2) development of an intuitively tuned nominal trajectory based on simple

locomotion models; and 3) offline design of a simple reflex-based (that is, event-driven dis-

crete feed-forward) stabilizing controller. Further, once we replaced the intuitively tuned

nominal trajectory with a trajectory found from a numerical optimization, but still using

event-based control, we could further reduce the TCOT to 0.19. At TCOT = 0.19, the

robot’s total power of 11.5 W is used by sensors, processors and communications (45%),

motor dissipation (≈34%) and positive mechanical work (≈21%). Ranger’s reliability and

low energy use suggests that simplified implementation of offline trajectory optimization,

stabilized by a low-bandwidth reflex-based controller, might lead to energy-effective reliable

walking of more complex robots.

Funding from NSF grant #52836 to AR.
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1 Introduction

Some walking robots can, in a given setting, walk reliably, without falling e.g., [13, 44]. Some

robots have been relatively energy stingy, e.g., [9]. But none has had both the high reliability

and the low power usage (scaled for weight and speed) of a person walking on level ground.

Here we describe a simple robot, Ranger, that attempts reliable walking on level ground

with little energy use [43]. Ranger is essentially planar (rather than 3D); it has only 3 visible

kinematic degrees of freedom (rather than the 10–30 DOFs of a more realistic humanoid),

and all it can do is walk steadily and basically straight on level ground (as opposed to having

a variety of gaits on rough terrain). But, before Ranger, no robot has been both efficient and

reliable, even in this limited setting. Although admittedly limited in function, Ranger has

walked farther, while using less energy per unit distance and weight, than any other legged

robot. Here we explain Ranger’s design and control with the hope that some of the ideas

can be used in more versatile machines. We first briefly discuss some previous legged robots,

their energy use, and some possible approaches to control.

1.1 Measuring energy effectiveness.

Energy effectiveness is measured by how little power is used. To compare different robots

we use a classical measure that takes simple account of weight and speed.

Cost of Transport (COT) =
power consumption

weight× speed
=

P

wv
.

COT (if based on weight w = mg and not mass m) is dimensionless (W/(N m/s) = 1 ). The

smaller the COT the more energy-effective. There are different COTs depending on what

powers are included in P (e.g., ‘total’, ‘locomotion’, or ’mechanical’ costs).

COT for humans. For a human walking, the total cost of transport, accounting for the

full food energy used by a person as they walk, is about TCOT≈0.3, e.g., [1, 4, 15]. An often-

reported locomotion cost of transport for people of 0.2 is based on subtracting the energy a

person uses to stand still. For humans an estimated mechanical cost of transport (MCOT),

based on the total positive work done by the muscles or actuators (and not subtracting out

the negative work) is about MCOT ≈ 0.05 = 0.2 × 25% because muscles are about 25%

efficient (while doing positive work ≈ 75% of the chemical energy used by muscles goes to

heat[30]).
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1.2 Passive dynamics: energy use and control

One approach to energy-effective control is based on passive dynamics, e.g., [31, 11, 24, 34].

A strictly passive-dynamic robot is a linkage with no sensors and no motors that can walk

stably down a slight slope. When such a ‘ramp walker’ goes down a slope γ, gravitational

potential energy is used up by friction and collisions. The first serious passive-dynamic robot

was McGeer’s “4-legged biped” with 4 side-by-side legs, each with a knee, and no upper body.

It is modeled as a two-legged machine living in 2 spatial dimensions [31]. Despite the non-

anthropomorphic 4-legged layout, the gait of McGeer’s ‘biped’ is inspirationally evocative of

human walking. The simplicity, the human-like motion, and the low energy use of this and

other passive-dynamic walkers, e.g., [11], have led to attempts at realizing near-to-passive

dynamics on level ground by replacing gravity power with motor power.

Passive-dynamic energetics. For a passive-dynamic robot the TCOT = sin γ ≈ γ, e.g.,

[18]; a machine that walks down a slope of γ = 0.05 (≈ 3◦) has a TCOT = sin γ ≈ 0.05. For

these robots the mechanical cost of transport (MCOT), the ‘actuator’ work per unit weight

and distance, is the same as the TCOT because all of the gravitational energy is supplied

as mechanical work. Typical passive-dynamic ramp walkers happen to use about the same

amount of gravitational work as is performed by the muscles of a human walking on level

ground (MCOT ≈ 0.05).

Powered passive-based robots. The Cornell “Collins” powered biped [9, 10], with a

passive hip, energetically passive knees (but for a controlled catch), and powered only at

the ankles had a TCOT of 0.2, apparently lower than that of any motor-driven legged robot

before or since, with the exception of Ranger described here. It is, however, a misconception

to think that passive-based means maximally energy effective. In principle, a robot propelled

using pre-emptive push off might use as little as 1/4 the power (75% less power) as one

powered by gravity [27, 42, 49]. Even though passive-based robots are still far from the

theoretic limits of energy stinginess, thus far passive-based robots have been less power

consumptive than other powered walking robots.

Stability of passive-dynamic robots. Despite the lack of control, passive walkers have

some mechanisms that can contribute to stability: 1) dissipation (e.g. the rimless wheel

[6] dissipates more energy when it goes faster); 2) the non-holonomic natured intermittent

foot contact allows self-regulation by the natural dynamics of foot placement [41]; and 3)

the static stability of the splayed standing configuration that is intermittently visited in the

walking cycle (as discussed in [8], that is, walking may have some aspect of the dynamics of

the Shannon ‘catch-and-throw’ juggler [46]). That passive-dynamic robots can be stable has

allowed the making of inspiring physical demonstrations.

3



One objective (independent of coordinate system) measure of stability is the magnitude

of the biggest eigenvalue of the Jacobian of the step-to-step map (McGeer’s stride function,

a Poincare map) at a periodic walking cycle [31, 50]. If the biggest (possibly complex) eigen-

value has magnitude less than one, then, after a small disturbance, in subsequent steps the

motion decays exponentially back to the periodic motion. By this measure, if all eigenvalues

are much less than one in magnitude (and thus close to the origin on the complex plane),

then the decay is rapid and the robot is very stable.

Typical passive-dynamic walkers are only mildly stable at best by this measure, with their

biggest eigenvalues rarely less than about 0.6 in magnitude. And passive-dynamic robots

are definitely not intrinsically stable; unstable passive-dynamic designs are easy to generate,

having, for example, the largest simulated eigenvalue much bigger than one, depending on

the particulars of the mechanical design and the slope it walks on[7, 19]. In the lab, the

behavior of even the best passive-dynamic robots has been fussy. And, in our experience,

a powered walker whose stability is based on passive dynamics inherits the fussiness of its

passive parent.

The problems with pursuing passive-dynamics as a basis for stability There is no

qualitative analytic theory of passive-dynamic stability; the eigenvalues of the characteristic

equations are dependent on the physical parameters in too-complex a manner. And we know

of no analytic recipes, or even promising numerical optimization approaches, for appreciably

enhancing passive stability while preserving the visual appearance of gait. There is little

evidence that passive strategies can have anywhere near the reliability needed for practical

robotics or for explaining the balance stability of humans or other upright animals. That

passive-dynamic robots can be self-stable at all has perhaps mis-inspired some of us into

pursuing passive strategies for stabilizing motorized robots.

1.3 Feedback control

Most often robot balance is based on feedback control, with little concern for the passive

orbital stability of the limit cycles of the uncontrolled mechanical system. Recovery from

unbalance instead comes from calculated ankle torques reacting against flat feet (applying

torques to move the robot’s center of mass over the feet), calculated foot placement (es-

sentially stepping in the direction of an undesired fall), distortions of the upper body (e.g.,

tight-rope walking), or all three. As evidenced by the difficulty humans have with balance

on a taut wire, balance by means of moving upper body parts, unless based on a reaction

wheel or a long pole, does not seem to be a needed central part of the control of robots that

have the option recovering from disturbances by means of appropriate foot placement.
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ZMP. One class of controllers focuses on the position of the Zero Moment Point (ZMP),

the point on the ground where the reaction force and couple have no horizontal moment

component. In 2D, this is the point where the net reaction is a pure force with no couple (the

so-called center of pressure, COP). In initial concept, ZMP controllers focus their attention

on choosing ankle torques to keep the ZMP inside the foot contact polygon, thus keeping

the foot flat on the ground [54, 55].

With good foot placement, the reliance on ankle torques for balance can be minimized

[51]. Robots that use ZMP control for walking, most famously Honda’s ASIMO [44] series,

tend to walk with bent knees that allow the controllers to have authority over all the upper

body degrees of freedom and usually have flat-bottomed feet. The TCOT of ASIMO in

2005 was estimated (from battery capacity, speed, weight and time) to be about 3.2 [9],

about 10 times that of a human. It is not clear whether the relatively high energy use of

ZMP-based robots thus far is from; i) the control strategy, which is not specialized just for

steady walking, or, ii) from correlative features, such as highly gear-reduced motors, or, iii)

merely from lack of attention to power minimization. There seems to be no fundamental

reason that ZMP robots cannot substantially reduce their power use.

Balance by foot placement. Some more-dynamic feedback-controlled robots have had

balance control based almost entirely on foot placement, with little or no use of reaction

torques acting on flat feet. The best known of these are from Marc Raibert’s MIT lab and

his company Boston Dynamics. The first versions of these robots were 2D single-leg hopping

robots with control based on the observation that hop height, forward speed and body

orientation could all be controlled by control of leg angle and leg length at appropriate flight

or contact times [40]. These ideas were extended to 3D and multiple legs, e.g., [39]. Recently,

balance based on foot placement has been used to make what seems to be a highly-reliable

true 3D biped walker [13, 14]. Using the estimates that PETMAN and ATLAS weigh about

1000 N, move at about 2 m/s and consume about 10,000W (about 13.5 hp) of hydraulic

pump power, they have a TCOT ≈ 5 (about 15 times that of a walking person). We know of

no fundamental reason that the energy use of such robots could not be substantially reduced.

Capture point and region. One approach to control using foot placement is to place

the foot so that the robot’s angles and rates are in, say, the ‘1-step capture region’ of

the robot’s phase space. The ‘one step capture region’ is the set of states from which

there is a known strategy by which the robot can come to a complete stop within 1 step

[25, 38]. In this approach speed can be increased, say, by stepping slightly shy of the best

point to stop the motion, thus inducing a larger next step [16]. The capture region can

be enlarged by using ankle torques. Capture region techniques are model based, and to

date have been based on point-mass models (e.g., the linear inverted pendulum) so as to

reduce computational complexity. The capture region method is reported to be used on
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Boston-Dynamics controllers of PETMAN and ATLAS.

Continuous stabilization of trajectories. A simulation-based approach is to first find a

desirable trajectory, such as a limit cycle with low energy use, and then to create a controller

that stabilizes that cycle. First one might imagine a locally linear controller. But a locally

linear model does not provide a means to measure or expand the basins of attraction (the

controllable regions). A recent approach is to find secure basins of attraction for each of a

number of paths back to a desired trajectory. If these regions overlap, one can be assured

that a reasonable region in the phase space is controllable. This is being pursued with LQR

(Linear Quadratic Regulator) trees [52]. Another approach is to use on-the-fly trajectory

optimization and, between optimization cycles, to use a linear controller with known non-

linear properties. This has shown promise on a 2D robot [29]. The control we describe below

also uses stabilization of trajectories on a pre-calculated limit cycle, but not continuous

stabilization.

HZD. In Hybrid Zero Dynamics (HZD) [22] one angle, say the shank fore-aft angle, is

regarded as effectively uncontrolled (there is no reaction torque at the ground). The first

idea in HZD is to parameterize control using that angle, assumed monotonic in time, rather

than time. The original HZD idea was to effectively eliminate internal degrees of freedom

by tightly controlling them; they were all slaved to the motion of, say, the uncontrolled

shank angle, according to functions (the slave joints’ angles are functions of the free shank

angle) whose specification is the control. These functions could be chosen to minimize this

or that cost function (say, energy use, [5, 56]). In this HZD approach, the trajectory of

the robot’s internal configuration space is fixed, and the uncontrolled degrees of freedom

evolve according the the laws of mechanics. This strict dimension-reduction version of HZD

has some issues: 1) it seems to depend on high bandwidth control of the slaved degrees

of freedom. In our experience, such high-bandwidth, high-gain control tend to be energy

consumptive, even when the pre-calculated mechanical work of the trajectory is small; 2)

The strict internal degrees of freedom trajectory tracking HZD depends on having a machine

that is, after the HZD joint-position control is implemented, not compliant and thus perhaps

not appropriately yielding to physical disturbances; and 3) Such a stiff HZD machine is

not, perhaps, satisfyingly biomimetic in that it imposes tight control of possibly unimpor-

tant degrees of freedom, thus violating biologically-relevant ideas associated with, say, the

uncontrolled manifold or with optimal control [28, 53].

However, the tight-trajectory tracking idea has been relaxed in the recent HZD imple-

mentations, and some internal degrees of freedom have been passive [47]. And in 3D there

can be three or more external uncontrolled degrees of freedom, not just the single shank an-

gle. Further relaxing the initial concept, the slaved trajectories need not be controlled with

tight feedback, but can be pre-computed and generated with feed-forward torque profiles
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Figure 1: (a) Ranger. (b) 2D Schematic. The fore-aft ‘eye’ cylinders and the foam ‘ears’ are for
cushioning in falls. The hat is decorative (hollow). There are two closed and rigid aluminum lace
boxes connected by a hinge, conceptually shown as point H. The outer box, shaped like an upside-
down U, is rigidly connected to the outer legs. The inner box, filling the space in the U, holds the
inner legs (each of which can twist for steering). The boxes house all of the motors and gearing,
pulleys for the ankle cable drives, and most of the electronics (on drawing (b) the hip and ankle
motor locations are only schematic). The hip spring, which aids leg swing, is shown schematically
as symmetric between the two legs (in the photograph the hip spring shows as a diagonal cable and
spring from the outer boxes to the inner legs). The feet are shaped for toe-off propulsion, so that
no torques are needed during single stance, and for ground clearance during swing (by rotating the
toe up to the shank).

that are stabilized with low gain proportional control [35]. Finally, additional event-based

feedback can be used to control the un-actuated degrees of freedom over the time scale of a

whole step.

As modified to allow for compliance, more uncontrolled external degrees of freedom, feed-

forward torques, and stabilizing feedback of the joint trajectories, and with the addition of

intermittent event-based feedback, the HZD approach seems totally viable, as demonstrated

by the fast and robust walking of the planar biped MABEL. And there seems to be no

reason HZD control need be energy demanding. As thus evolved, there seems to be little

difference between an implementation of an HZD approach and a reflex-based controller as,

for example, described below.
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2 Ranger hardware

The Cornell Ranger is a four-legged knee-less biped (figure 1). It is about 1 m tall and

has a total mass, including batteries, of 9.9 kg. It is autonomous in that all sensing and

computation is on board, batteries are on board, and it has no booms, tethers or cable

connections. It is not autonomous in that, at least as of this writing, it needs to be started

manually, and the steering is done with a hobby-type radio control.

Hardware. The outer pair of legs move together, acting as one leg, as do the inner pair.

Each leg has an ankle joint and a foot but no knee joint. The inner feet are connected to

move together by means of a horizontal shaft; the outer feet move together because of long

cables through the ‘U’ hip box. The robot has 3 main internal degrees of freedom (1 hip +

2 ankle-pairs). These are all powered by brushed DC motors (46 W nominal). In parallel

with the hip motor is a hip spring that tends to align the legs. The two ankle motors are

near the hip axis and actuate the ankles via one-way (toe-off) cable drives. Foot lifting, for

ground clearance, is powered by a return spring on each ankle. A small fourth motor (1 W

nominal) twists the inner legs about a vertical axis in order to steer the robot.

Electronics. The main control loop runs, with no supervisory operating system, on an

ARM9 microcontroller. There are 4 ARM7 processors on custom boards, one each to monitor

and control the inner ankles, the outer ankles, the hip and the steering. Two more ARM7

processors supervise the CAN communications (Controller Area Network), the Bluetooth

data reporting, and the onboard data display and lights. The Inertial Measurement Unit

(IMU) uses a proprietary microprocessor. The bus-based architecture with 8 processors was

chosen to facilitate design evolution, to simplify overall wiring (e.g., so we could add a sensor

without adding wires to the main processor) and to compartmentalize the control software

(high-level on ARM9, low level on ARM7s). Sensors for each motor include an optical

encoder, a voltage sensor, and a current sensor. In addition, each joint has an angle sensor

using absolute encoders. Each foot has an optical strain gauge for measuring foot distortion

(and hence foot contact). From the 3D IMU, Ranger’s control only uses the sagittal plane

angular rate sensor. The top-level control loop runs at 500 Hz on the ARM9 processor; data

is sent to and from the satellite ARM7 processors once per loop execution; the motor current

controllers, and their associated sensors operate at 2 kHz. The motors and electronics are

powered by seven 25.9 V lithium-ion batteries with a total capacity of about 493 watt-hours

(=1.77×106J).

Software. Most of the≈ 10,000 lines of C and C++ code is for low-level measurement, low-

level control and communications protocols. Control and estimation tasks are coordinated

by a simple cooperative-multitasking scheduler, while low-level input-output, such as from

motor encoders, uses processor interrupts. The main control logic and feedback, the primary
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topic here, is described further (below); it is a small part of the total software. For debugging

and development, data is viewed and logged using a wireless Bluetooth system. During

attempts at walking distance records autonomy is maintained by sending to the robot only

steering commands and requests for data (e.g., cumulative number of steps, battery voltage)

but no walking control parameters.

More design details. As with any complex machine, success rests on a pyramid of details:

the design of the foot shape to allow push-off, stance with low torque, and swing clearance;

the design of the foot as a load cell (foot deformation is measured); a low-mass leg and

foot; design of the single-cable drive (which is also a series-elastic element which needs

to have twice the stiffness for the inner leg-pair as for each of the outer legs); design of the

body box for stiffness; selection of motors and gearing for torque and efficiency; design of the

motor controllers for low dissipation; selection of energy-efficient sensors and microprocessors;

determining overall state from sensor data, especially prediction of the ground collision time;

design of a low-power leg-twist steering mechanism; hip-spring design and placement; and

dozens of other issues like the selection of glues, the protocol for washing off flux to prevent

corrosion, methods for joint alignment and needed drive-train compliance, cable tensioners,

shock absorbers for fall protection, etc. Some of these are described in the online Appendix

A, extension 1.

3 Model for simulation and control design

Our reflex-based control design was developed using a fast and accurate offline simulation of

the 2D robot dynamics. Here we describe the model used.

Each ‘leg’ (one inner and one outer) is characterized by a mass, a center of mass (COM)

location, and polar inertia about the COM. The rubber-bottomed feet are assumed to be rigid

and massless with bottoms that make point contact with a rigid, flat and level ground (unless

otherwise noted). The hip motor connects to the legs with gears so that transmission is

modeled as not compliant (the hip angle does not have a degree of freedom independent from

the hip motor). The hip spring, effectively in parallel with the hip motor, adds a centering

torque, proportional to leg splay, to the hip motor torque. The hip motor (‘reflected’) inertia

is neglected because, even after multiplying by the gear reduction squared (662 = 4356), the

inertia of the hip motor is about 50 times less than that of the legs. In contrast, the ankle

motors are in series with the elastic cable drive. So the ankle motors, with an associated

non-negligible rotary inertia, each have a degree of freedom independent from the ankles.

The ankle drive cables are modeled as linear springs, as are the return springs.

Phases of motion. The motion has two smooth phases: 1) single-stance, when one foot is

on the ground, and 2) double-stance when both feet are on the ground. The two phases are
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separated by two instantaneous transitions: a) the heel-strike collision at the transition from

single-stance to double-stance, and b) the (non-collisional) toe-off transition from double-

stance to single-stance. A single walking step consists of:

. . . outer-legs toe-off︸ ︷︷ ︸
previous step

→

smooth phase︷ ︸︸ ︷
inner-legs single-stance→

collisional transition︷ ︸︸ ︷
outer-legs heel-strike→

smooth phase︷ ︸︸ ︷
double-stance→

smooth phase︷ ︸︸ ︷
inner-legs toe-off︸ ︷︷ ︸

a single step = one cycle

→

outer-legs single-stance→ . . .︸ ︷︷ ︸
next step

(1)

Ground contact and collisions. When in contact with the ground the feet are assumed

to roll without slip. The ground collisions are modeled as instantaneous with no bounce and

no slip. The heel-strike collision is assumed to have no impulsive torques at the joints. The

robot is taken as symmetric with respect to inner and outer legs, so only one step is needed

to characterize a periodic gait. The two ankle motors do not participate in the heel-strike

collision because the ankle motors are isolated by the ankle springs (Achilles tendons), so

the ankle motor velocities are continuous in time. In contrast the hip motor has a collisional

velocity discontinuity but, because its inertia is neglected, no collisional torque. Although

we model the ground contact as a point contact between rigid feet and rigid ground, we

add a small contact-damping couple between foot and ground, effectively a viscous rolling

resistance, to damp out oscillatory rocking motions of the feet (such oscillations are observed

in simulations if this damping is zero).

Degrees of freedom. Neglecting steering, the robot has five modeled internal degrees of

freedom (one hip joint including the motor, two ankle joints, and two ankle motors). During

single stance, there is one additional pose (overall orientation) degree of freedom (rotation of

the stance foot) making a total of six. During double stance there are only the five degrees

of freedom. The accessible configuration space is 7 dimensional (position of contact foot,

stance-foot angle, hip joint angle, two ankle joint angles, and two ankle motor angles). The

robot is thus under actuated (3 < 7), even if neglecting distance travelled (3 < 6), and even

in double stance (3 < 5).

At any instant in time the robot is a 5 or 6 degree of freedom holonomic system. Due

to intermittent contact the robot may be viewed as non-holonomic [41], but because we are

not concerned with reaching absolute foot-strike targets, this non-holonomic aspect does not

affect our control architecture.
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Controllability. A linear model of the robot is locally controllable in a control-theory

sense; given adequate motor torques any configuration could be achieved in finite time.

But we have not investigated such controllability in detail because bounds on motor torque

and joint angles make the robot, practically speaking, not controllable. For example, even

with infinite motor torque, the robot could not balance vertically on two feet if disturbed

more than about 3◦; more than this would require legs to swing beyond joint limits. Thus,

no attempt is made to continuously control all of the 5 or 6 degrees of freedom of the

instantaneously holonomic system.

However, viewed as a discrete map, with consideration for only essential degrees of free-

dom, the system is controllable. That is, the robot actuation is sufficient to independently

modify, from one mid-stance to the next, the stance leg angular rate, the swing-leg angle

and the swing leg angular rate. The essential control design problem is thus to make use of

this discrete controllability, given the limited actuator torques, the limited sensing and the

limited processing ability, and while minimizing energy use and complexity.

Governing equations. Using the assumptions described above, the governing equations

follow from momentum and angular momentum balance applied to the robot and its sub-

systems for each of the four phases described in Eqn. 1:

Single stance (continuous): Ms(q)q̈ + Cs(q, q̇)q̇ + Ks(q) = T (2)

Heel-strike (instantaneous): Angles continuous but velocities jump

Mc(q
+)q̇+ −Mc(q

−)q̇− = JT
c P? (3)

Double stance (continuous): Md(q)q̈ + Cd(q, q̇)q̇ + Kd(q) = T + JT
d P (4)

Toe-off (instantaneous): Angles and velocities continuous (5)

where each equation is a 6-component vector equation. The six elements of q are the three

robot joint angles, the two ankle motor angles and the absolute angle of one foot. The six

elements of T are the three motor torques (including the gear box friction), and three foot-

related torques: two ankle torques and one ground-contact damping term at the reference-

foot ground contact (see Appendix A, extension 1 figure 16 and 17). The foot torques are

determined by joint friction and by the ground-contact damping term. The Ms are the

mass matrices (subscripts s, d and c are for the ‘single’, ‘double’ and ‘collisional’ phases),

the Cs are the velocity squared terms (centrifugal and Coriolis) and the six components of

the Ks include the gravity and spring related terms. The 2-element P and P? are trailing

foot constraint force components during double stance and constraint impulse components

during heel-strike respectively (in some formulations P and P? are Lagrange multipliers for

constraints). Finally, the 6×2 matrices Jc and Jd are kinematically determined matrices
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that show the effect of trailing-foot constraint force components on the internal degrees

of freedom when the kinematic chain is closed (double stance). Appendix A, extension 1

discusses the equations of motion in more detail.

3.1 Motor and gearbox model.

We bench-tested the motor and gear box in positive and negative work regimes, measuring

voltage, current, angular velocity and torque. There are two parts to the resulting motor

and gearbox model: a power equation and a torque equation.

The power equation gives the power consumption (P ) as a function of the current (I)

and the speed (ω).

P = {IR + Vc sgn(I) +GKω} I (6)

where the signum function is defined as sgn(I) ≡ I/|I|. The gear ratio is G, the motor

resistance is R, motor torque constant is K and a brush-contact resistant modeled as a

contact voltage drop Vc. This power equation includes two non-standard terms: 1) we

found a non-standard contact voltage drop Vc [23], which changes signs when the current

is reversed. This term has the biggest effect when the total motor voltage is low; 2) the

winding resistance, R, was 1.3 Ω and nearly a factor of two higher than that reported in the

specification sheet.

The torque equation gives the output shaft torque (T ) as a function of the current and

shaft speed.

T = GKI −G2Jmω̇ − Tf (I, ω) (7)

where the motor inertia is Jm and Tf is the friction torque and is given next.

|Tf (I, ω)| ≤ C0 + µGK|I| if ω = 0

Tf (I, ω) = C1ω + C0 sgn(ω) + µ sgn(ω)GK|I| if ω 6= 0 (8)

The viscous friction is given by C1ω and the coulomb friction by C0 sgn(ω). A friction that

scales approximately with torque, apparently due to load-dependent friction in the gears,

is given by µ sgn(ω)GK|I| (Note that |I| correlates with the magnitude of net torque and

sgn(ω) makes this a resisting-motion term).

Our current-dependent friction term is similar in effect to the load-dependent friction

term [12]. To make the solutions unique in numerical implementation at ω = 0 and to ensure

smoothness in the solution for better convergence of numeric optimizations, we replace the
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sgn (sign) function with a hyperbolic tangent function. The values we used in simulation

were: Jm = 1.6 × 10−6 kg − m2, K = 0.018 N m/A, G = 66 (hip), G = 34 (ankle, gear

reduction is 43, taking account of pulley radii the ratio is 34), C1 = 0 N m s/rad, C0 = 0.01

N m and µ = 0.1. In this C1 = 0 approximation the torque is mis-estimated by 2% or less.

See Appendix A, extension 1 for more motor-modeling details.

Later in this paper we describe a further motor model feature (frequency dependent

inductance) that was discovered by comparing the robot simulations with robot data.

4 Overall control approach: sparse state machine

Our overall control design approach is similar to that of Miura and Shimoyama [32] who

seem to have just followed Formalsky [17] in discussing walking as a Poincaré map. Their

controller was made up of two parts: an open loop time-based trajectory planner and a

feedback controller to stabilize the nominal trajectory. Their stabilizing linear feedback

controller used the measurements at the beginning of a step to drive the robot state, at the

end of the same step, to its nominal value. That is, instead of tracking a trajectory in the

gait cycle, their controller, active throughout a step, only tried to regulate the state at the

end of the step. The gains for the linear controller are calculated by doing a step-to-step

eigenvalue calculation. Where the HZD and ZMP approaches constrain away most degrees

of freedom at all times, the Miura and Shimoyama approach only worries about them once

per step. We add two small changes to this control idea: 1) use of optimization of some

performance metric to generate the nominal trajectory; and 2) allowing control at multiple

times during a step, instead of just once per step, using different control actions and control

goals in each interval.

Our approach is also similar to that used by Pratt [36] [37]. And, as mentioned, despite

the difference in the evolution of design and controller ideas, there seems to be a convergence

between approaches used here and in recent implementations of HZD.

Goals for the control law. The architecture was chosen so as to have various general

features: 1) it should allow simple implementation of simple controllers such as the Collins

one-sensor-measurement-per-step controller [10]; 2) it should be able to implement intuitive

control constructs (e.g., of the Raibert hopper type); 3) it should gracefully handle sensor

delays; 4) it should be able to come arbitrarily close to any continuous non-linear multi-

variable feedback policy; 5) it should be of a form so that it has a relatively simple expression

for a controller that is good enough. Although energy minimization is a central concern, in

practice it is subservient to the overall control architecture (‘the control law’), so we discuss

it later.
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General description. The control law we chose to implement is reflex-based: there are

triggers (thresholds in dynamic variables or in elapsed time) and responses (motor programs).

It is intermittently feed-forward in that there is only minimal stabilizing feedback (e.g., simple

local motor-control feedback) during the motor programs that run between triggers. The

control does discrete trajectory tracking, but the discrete control is essentially discrete, that

is, it is not based on an approximation of a continuous controller. The discrete controller

is also not impulsive (and can be smooth). There is no tight control over any aspect of

the robot configuration or balance. Most of the rest of the paper describes the details of

the control law design and implementation. This necessarily includes some machine-specific

descriptions. Those features of the approach which we feel are generalizable to more complex

robots are summarized at the end.

Concurrent augmented state machines. Each joint motor is controlled by its own

concurrently running augmented finite state machine which traverses a set of logical states.

The logical state describes which (one of a few available) continuous controls is active.

This logical state is ‘augmented’ by the dynamical state which describes the measured and

estimated aspects of the robot (angles, angular rates, elapsed time since last transition,

binary variables for whether each foot is on the ground or not, etc.). Each joint’s state

machine has access to the full dynamical state and is also informed by global commands (such

as for steering, starting, shutdown). For each joint, a gait cycle (2 steps) traverses a circle

of states. The transitions are triggered by events which are thresholds in the dynamic state

or time (e.g., ‘change logical states when ankle angle has reached 0.126 rad). The individual

state machines do not communicate with each other explicitly but are synchronized through

the shared data, and shared dynamic state estimation. Within one logical state there is a

tight (2 kHz) feedback loop that controls, say, the current to the inner ankle (ia).

Although the architecture allows a given motor current to be any function f of the full

dynamical state, we only use simple functions with dependence on only some dynamical-

state variables; at any instant most joints are in a 1-degree-of-freedom impedance control

mode, as expressed by

Iia = f(full dynamical state of the robot)

= A+ C1θia + C2θ̇ia +D (9)

where the constants A,C1, C2 and D vary from one logical state to another. The redundant

constant D expresses a dependence of the within-state control on the dynamical state at the

start of the state. In most cases the within-state control is fully local, with no feedback from

other joints. However, couplings more general than equation 9 are allowed and sometimes

used. For example, during single stance the ankle joint current is based on the absolute angle

of the foot (which is a state estimation based on data from several sensors). And one of the
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dynamical states is the binary variable saying whether the robot is, overall, going too fast

or too slow (used to select which actuator should be used to make the correction, described

more below).

We call this control architecture “reflex”-based because the change of state is triggered

by an event. Because each state has its own motor program, in effect motor programs

are reflex actions triggered by events. This is similar to the philosophy of the control of

human walking used in the simulations of Geyer [20]. If the triggers are defined to occur at

many small changes in dynamical state, say the passage of 10 ms, and the changes of the

within-state parameters are small, and if complex forms of f are allowed within a state, then

the machine can be a close approximation of continuous gain scheduling. Similarly, if the

functions f within a state are allowed to be arbitrarily complicated, then the control can be

arbitrarily close to any non-linear state feedback controller. Thus this architecture can span

a range of control approaches.

The parameters for this controller (thresholds, numbers of states, gains within a state)

are developed by a sequence of optimizations and human decisions: fine-grid trajectory

optimization; coarse-grid trajectory definition and optimization; and stabilizing controller

definition and optimization. These are described in the sections below for the case of steady

forwards walking. For the ultra-marathon walk, the resulting controller had the following

form.

Hip logical states. The hip has six logical states per two-step cycle, three states for each

step (also see [2]).

a) Double stance. Starts at heel-strike; ends at toe-off. Hip current = 0.

b) Pre-mid swing. Starts at toe-off; ends when the stance leg is vertical (mid-stance).

Hip current = constant+gain × hip velocity.

c) Post mid-swing. Starts at mid-stance; ends at heel-strike. Hip current = 0

(altered by the discrete controller, see equation 10 and nearby equations and text).

d,e,f) Repeat. The same 3 states are visited again but with the roles of the legs

reversed.

Inner ankle logical states. Unlike the case for the hip, all 6 logical states need description

because the foot has both stance and swing roles in a two-step gait cycle (also see [2]).

i) Inner-leg single stance. Starts at outer leg toe-off; ends when outer ankle reaches,

from above, a prescribed height above the floor. Absolute foot angle, not ankle joint

angle, is controlled (with the standard impedance controller, equation 9).

ii) Inner-leg push-off. Starts when the outer (swing) foot is a critical distance

above the ground; ends at outer-leg heel-strike. It is the same controller structure as
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inner-leg single stance (above), but with a different target absolute angle and different

compliance (and with damping of zero). This is the nominal control. It is altered by

the discrete controller (see equation 10 and nearby equations and text).

iii) Double-stance after inner-leg single stance. Starts at outer-leg heel-strike;

ends at inner-leg toe-off. Ankle current is zero (and foot tends to lift because of

tensioning spring).

iv) Inner-leg flip-up. Starts at toe-off; ends at mid-stance. A compliant controller

relaxes towards the foot being at its uppermost position (the ankle joint has a loosely

p-d controlled target angle).

v) Inner-leg flip-down. Starts when stance leg is at a critical angle; ends at inner-leg

heel-strike. Compliant controller tries to put foot at a specified absolute angle.

vi) Double stance after heel-strike. Starts at inner-leg heel-strike; ends at outer-

leg toe-off. Compliant control aims for target absolute angle.

The outer ankle has an identical (mirrored) set of states. There are 6 logical states for a

2-step cycle.

Selection of parameters to design nominal trajectory. A given candidate set of

controller parameters (gains and set points) was evaluated in simulation as follows. Using

the candidate control-parameter set, the robot is simulated in a root-finding context that

finds, if the root finding converges, periodic walking motions (the roots are of the Poincare

map minus the identity). Then the parameters are adjusted, by human intuition, to lead

to desirable walking features, such as these: the motors are far from saturation, the step

length is not too large, the final foot velocity is mostly vertically down (and not scuffing),

the motions are reasonably stable (even without the feedback layer below), etc.

5 Reflex feedback: discrete intermittent feedback con-

trol

Next, to stabilize the gait we wrap a linear feedback controller around this nominal trajectory.

If the control output is U (e.g., a set prescribed motor currents), then we decompose the

control into the sum of two parts: a trajectory generator part (described above) and a

stabilizing controller part (described here). In its simplest form the stabilizing part is D in

equation 9, with D ≈ 0 on the nominal trajectory described above.

The feedback controller tries to keep the robot near its nominal trajectory, at least loosely.

Commonly, feedback trajectory tracking uses a high bandwidth continuous control along the
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a) Trajectory without stabilization b) Stabilizing controller c) Trajectory with stabilization
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Figure 2: Reflex control: A schematic example. (a) Shows the nominal (solid red = periodic
optimal) and deviated (dashed blue = disturbed by modeling errors, sensor errors or physical
disturbances) trajectory for some dynamic variable x of interest which is measured at the start
of a continuous interval, namely at section n. This is a generalized state in that it may contain
redundant information such as average speed over the whole previous step. The trajectory shown is
what would happen without the stabilizing feedback controller. The goal of the stabilizing controller
is to reduce the output variable error at the end of the next interval. (b) In this schematic example
the feedback motor program has two control actions: a sinusoid for the first half cycle and a hat
function for the second half of the cycle. The amplitudes U1 and U2 of the two functions are chosen
at the start of the interval depending on the error (x− x̄). (c) Shows the new deviated trajectory
after switching on the feedback control. By a proper choice of the amplitudes U1 and U2, selected
at the start of the finite interval, deviations might be, for example, be fully corrected in one step
giving a ‘deadbeat’ controller, as shown here.

trajectory. Our reflex based feedback on the other hand is low bandwidth controller that

uses measurements at discrete locations in the trajectory to develop intermittent controllers

that slowly bring the robot back to the nominal trajectory.

Our reflex feedback architecture is illustrated in figure 2. In this discrete control, we try

to track some key variables (the outputs zn+1) at key points of the trajectory (the sections

n, n+1), using state estimates only at those points (the measurement xn). The time interval

between the measurements n and n + 1 is typically on the order of the characteristic time

scale of the system (say, leg swing time) and not the shortest time our computational speed

allows. We linearize the equations of motion and the output as follows

δxn+1 = Aδxn + BδUn (10)

δzn+1 = Cδxn + DδUn. (11)

Using the equations 10 and 11, we set up a discrete linear quadratic regulator (DLQR)
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that minimizes the cost Jdlqr defined as

Jdlqr =
n=∞∑
n=0

(
δzn+1

T Rzzδzn+1 + δUn
T RUUδUn

)
=

n=∞∑
n=0

(
δxn

T CTRzzCδxn + 2δxn
T DTRzzCδun + δUn

T{DTRzzD + RUU}δUn

)
(12)

where Rzz and RUU are diagonal matrices that weight the different components of δzn+1

and δUn. The weights Rzz and RUU are design parameters picked to give reasonably fast

return to nominal trajectories (more than 50% return within one step) but without unduly

high gains (which tend to lead to motor currents that are beyond safety limits).

The solution to equation 12 gives the linear controller, Un = −Kδxn. The gain K

is obtained by solving the Ricatti equation [33] which we do using the MATLAB control

system toolbox (DLQR).

The success of this feedback control method depends on suitable section n, suitable mea-

surement variables x, output variables z and actuator profiles U that have relatively inde-

pendent effects on target variables. We discuss these next. Also, see [3] for more elementary

applications of this method.

Mid-stance dynamic state evaluation. The angular speed of the stance leg at mid-

stance is key for evaluating stability: the robot has to make it to that point at a positive

(to not fall backwards), but not-too-fast (to allow time for leg swing), speed. It is also

a good time for state estimation because it is not near in time to collisional vibrations

which contaminate the dynamic-state estimation. Further, at that instant, there is still

time to make foot-placement decisions. Thus we use the ‘mid-stance’ event as a key time

for evaluating the dynamical state. This contrasts with typical numerical simulations of

passive-dynamic robots that take (Poincaré) sections just before or just after heel-strike, a

natural transition time because it coincides with a dynamical collision event. The top-dead-

center (mid-stance) position is sufficiently useful that it is worth introducing an artificial

logical-state boundary there.

How can the robot fall down? Given that we do all we can to preclude tripping with our

foot-lifting plan, the only possible falls are falling forwards and falling backwards. Because

leg-swing speed is limited, if the robot is going too fast the foot will not swing forwards

enough and the robot will fall forwards. On the other hand, if the robot is going too slowly

the stance leg will not make it over the top-dead-center position and it will fall backwards.

Thus the essential control is to get the center of mass through the top-dead-center position

at a positive speed that is not far above nominal. The controller must speed up or slow

down the walking, as needed, to keep this top-dead-center speed positive but not too large.
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Push-off and step-length regulation. There are two main ways to regulate the overall

center-of-mass speed of this robot. One is regulation of the ankle push-off: the size and

timing of the push-off affect the robot speed (bigger push-off leads to bigger speed of the

next step). The other is by changing step length (increasing step length decreases speed of

the next step). For simple walking models, it is known that the energy lost during heel-strike

collision scales with the square of step length at a given forward speed [18, 19, 26, 42, 48].

Increasing the step length increases the collisional loss and slows the robot. No other motor

actions (leg swinging, foot motions) have a significant effect on robot speed.

However, push-off control and step length control each have limitations. To decrease

speed, push-off can only be decreased to zero. Thus push-off regulation has limited effective-

ness for slowing the robot. On the other hand, decreasing the step length is also bounded

in effectiveness because the minimum step length is zero. And, more practically, the step

time has to be long enough for the foot to flip up and flip down, so very short steps are

not possible. To circumvent these limitations we use each mode where it is most effective.

If the robot is going too fast we use increased step length to slow the robot. If it is going

too slow we use increased push-off to increase speed. In this way, we expect our quasi-linear

controller to have a larger controllable region.

Too fast. In particular, if the robot’s mid-stance velocity is greater than the nominal,

we alter the foot placement while maintaining the nominal push-off. We try to regulate the

stance leg angular rate zlr at the next midstance as well as the downward falling rate zar of

the foot just before the next heel-strike (to prevent mis-timing the next push-off). Thus the

regulated variables are zf = [zlr zar]
′. The three state variables in δxn are the stance leg

velocity, swing leg angle and swing velocity at mid-stance. The two control variables in U f
n

are constant amplitudes of the hip motors. The first amplitude acts for 0.15 seconds starting

from mid-stance phase and the second amplitude lasts for 0.15 seconds after the first one

ends. Relative to the nominal trajectory we have

δxn+1 = Afδxn + BfδU f
n , δzf

n+1 = Cfδxn + DfδU f
n (13)

Using equations 12, 13 we set up a DLQR problem for determining the 2×3 gain matrix

K, which permits calculation of the U values from the x values. In the DLQR we use the

weights Rf
zz = diag{1/σ2

sr, 1/σ
2
lr} and Rf

UU = ρhipdiag{1, 1}, where σar = 0.2 is a user-

selected characteristic foot falling rate deviation, σlr = 0.2 is the user-selected characteristic

deviation in the leg rate (both in consistent units), and ρhip = 0.5 weights the effort by the

hip actuators.

Too slow. If the robot’s mid-stance velocity is less than the nominal then we increase

push-off while maintaining the same step length. So we try to regulate, back to nominal,

the values of three dynamic state variables: the stance leg-rate zlr at the next step, the

downward velocity zar of the ankle just before the next heel-strike, and the step length
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zsl to the upcoming heel-strike. These three quantities zs = [zlr zar zsl]
′ are affected by

three actions (δUn): two constant-in-time hip torques (same as the one used for the too fast

case above) and the reference angle of the proportional-derivate control on the foot during

push-off. The discrete linear equations have the standard form:

δxn+1 = Asδxn + BsδU s
n , δzs

n+1 = Csδxn + DsδU s
n. (14)

Again using equations 12 and 14 we set up a DLQR problem to determine a 3×3 gain

matrix K. We choose Rs
zz = diag{1/σ2

sr, 1/σ
2
ar, 1/σ

2
sl} and Rs

UU = diag{ρhip, ρhip, ρankle},
where σsr = 0.2 is the user-specified characteristic stance leg angular rate, σar = 0.2 is the

characteristic falling rate of the foot just before heel-strike, σsl = 0.2 is the characteristic step

length, and ρhip = 0.5 weights the hip actuator effort relative to the deviation of outputs

while ρankle = 2 weights the feet actuators efforts relative to the deviation of the output

variables.

In summary, the stabilizing (discrete trajectory tracking) controller has 15 gains. Six for

‘too fast’ (two actuations × three sensors) and nine for ‘too slow’ (three actuations × three

sensors).

6 Results

6.1 Simulation validation

Using an earlier (pre-DLQR) heuristic controller, which we hand-tuned on the machine, we

compared simulation with the actual robot motion. We had satisfying agreement for the

motion. But, initially, we had poor agreement with energy use.

On three different occasions this energy discrepancy revealed errors in our electronics.

First we found that our PWM (pulse width modulation) controller did not have adequately

high frequency to simulate the DC supply used in our motor bench testing. However a

discrepancy remained even with a higher frequency PWM signal (20 kHz increased to 100

kHz). We then discovered that the motor data-sheet inductance value was valid only at low

frequencies, and was too small at our higher PWM frequency. In particular at 1 kHz our

measurements agreed with the data sheet: 95 µH. But this dropped to 35 µH at 20 kHz and

20 µH at 100 kHz. To reduce these losses, a 47 µH inductor was added in series with each

motor, more than tripling the effective inductance from 20 µH to about 67 µH at 100 kHz.

Finally, we observed a power spike in the foot-flip control that was not in the simulation.

This turned out to be due to a transient in the low-level (ARM7 based) current controller

due to a poor choice of gains in that inner (2 kHz) control loop.

Although we cannot give precise attributions for the reasons for the reduction in energy
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use by a factor of 8, as the robot developed (from TCOT = 1.6 in 2006 to TCOT = 0.19 in

2011 [43]), just these simulation-discovered electronics refinements might be responsible for

up to a factor of 4.

Appendix A extension 3 is a video that shows the close agreement, at least in appearance,

of walking simulation with the physical robot walking. Figure 4 compares the predicted and

measured joint angles, motor currents and joint powers.

6.2 Long distance walking record

We set ourselves the goal of making Ranger walk at least a marathon distance of 26.2 miles

(42.2 kilometers), without falling down, without stopping, without recharging, without on-

the-fly tuning and without human touch.

On 1-2 May 2011, using a intuitively tuned nominal trajectory stabilized by reflex-based

feedback (all tuned offline as described above), Ranger walked 40.5 miles or 65 kilometers,

non-stop, and on a single battery charge (see Figure 3 and the video in Appendix A, extension

2). Ranger took 186,076 steps at a leisurely pace of 2.12 kilometers per hour (1.32 mph)

to set this distance record. The total energy consumption was 493 watt-hours (a nickel’s

worth1). For this ultra-marathon Ranger had a TCOT of 0.28.

6.3 Energy-efficiency record

After we achieved the ultra-marathon walk, we tried implementing an optimization-based

nominal trajectory. To do this, in simulation we solved an energy-optimal control problem

with TCOT as the cost metric. We did two optimization sequentially as follows. Details of

step 1 and 2 below are in [2].

1. Fine grid optimization: The goal of this optimization calculation is to figure out the

nature of the optimal solution and cost by doing a reasonable fine grid optimization.

Our grid here is time based. The control current is parameterized as a piecewise linear

function of time on in each small time interval.

2. Coarse grid optimization: The goal of this optimization is to figure out a sparse rep-

resentation of the control parameterization that captures the optimal solution. Based

on the results of the fine grid optimization above, we re-paramterized the control using

a sparse state machine (see Section 4). The parameters of the state machine (ampli-

tudes, gains, set points), were then found by re-running the energy-optimization in

terms of control parameters.

1Electricity averaged 11.2 cents per kilo-watt-hour in United States in 2011. Ranger’s 493 watt-hours of
energy use would cost 5.5 cents (0.493 kwh ×11.2 cents/kwh =5.5 cents).
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Figure 3: Ranger’s ultra-marathon walk. On 1-2 May 2011 [43], Ranger walked non-stop for
40.5 miles (65 km) on Cornell’s Barton Hall track without recharging or being touched by a human.
Some of the crew that worked on Ranger are shown walking behind Ranger during the 65 km walk.
The walk lasted for 30 hr 49 min. The robot speed was 1.32 mph or 2.12 kmph. Total energy
usage was 16 W of which 11.3 W was used by motors and the remaining 4.7 W was used by the
computers and sensors. The TCOT was 0.28. This was further reduced, only for very short walks,
to 0.19 after we did energy optimization to compute the nominal trajectory.

3. Experimental verification: Next, we tried implementing the coarse-grid control

representation on the physical robot. Unsurprisingly we found that in this nearly

open-loop mode the robot could not walk reliably; it always fell within a few steps. A

look at the sensor outputs revealed that the outer legs swung slower than the inner

ones. This was confirmed by further physical measurements that showed that the

outer legs have a higher moment of inertia than the inner legs. Note that the same

commands are given to the outer and inner legs. The result was that the outer legs did

not swing fast enough to break the forward fall of the robot. Next, we switched our

discrete intermittent feedback controller on and tried walking the robot. The feedback

controller compensated for the slow speed of the outer hips and the robot was able to

walk many steps.

Figure 4 compares the joint angle, motor current and motor power predicted by the

open loop coarse grid optimization (solid blue) with those obtained on the physical robot

with feedback (red dashed). Note that that which we call ‘open loop’ does have some fast

impedance-control and current-control loops. The spikes in figure d and g are from the
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feedback controller compensating for the robot asymmetry. Of course, we could have tried

to learn this asymmetry, or precompensate for it, but we chose to let the feedback control

do what it is supposed to do, compensate for errors, including model errors.

With this control the robot’s measured total power of 11.5 W was used by sensors, pro-

cessors and communications (45%), motor dissipation (34%) and positive mechanical work

(21%). In this final implementation the TCOT was 0.19 (compared to a human’s TCOT of

about 0.3) or, subtracting the electrical overhead, the COT was about 0.11 (compared to a

COT for humans of about 0.2 when the resting metabolic costs are subtracted). mechanical

cost of transport, based on positive motor work, was MCOT = 0.04 (compared to MCOT

≈ 0.05 for the Collins robot and for humans). For comparison, recall that the TCOT of

most other legged robots is well over 1, at least 3 times more.

The energetic cost of control. In going from the fine-grid optimal trajectory control of a

simulated robot to our coarse-grid control with stabilizing control of a physical robot, we have

reduced the parameters from 126 to 30 and added gait reliability, but at the cost of increasing

the TCOT from 0.167 to 0.19, a 14% increase. That is, the incremental cost of simplifying the

trajectory description over the fine-grid calculated trajectory was about 8%, as calculated in

simulation. The cost of stabilization was about 6%, as calculated by comparing the physical

robot with the simulation. The latter is a less reliable estimate because it also includes

modeling errors. Nonetheless, for this simple walking task the energetic cost of simplifying

the controller is small. And the energetic cost of adding stability seems to be not far from

the theoretical prediction that stability (in the absence of disturbances) should have no cost.

The TCOT of the physical robot of 0.19 makes our robot probably slightly more energy-

effective than the Collins walker, which had a measured TCOT of about 0.2. This is, to the

best of our knowledge, the lowest total COT of any autonomous legged robot.

Robustness. One issue noted in testing made us change our description of the swing-foot

logical-state transition. The fine-grid optimization is always time-based. In the conversion

to the coarse-grid optimization we thus had a parameter for the time when push-off should

start. From theory we know that the timing of push-off has a huge effect; a factor of 4

difference in simple models, depending on the exact timing [27, 42]. Thus we originally

used as a trigger the time until the extrapolated time of heel-strike (based on velocity and

height of the foot). Because the optimal gait had a nearly grazing collision, on the robot this

led to a high sensitivity to sensor errors and to ground height fluctuations; a small ground-

height change would substantially change the time of push-off relative to heel-strike and thus

dramatically affect the speed of the next step. Thus to increase the robustness we changed

the push-off transition to be at a critical height of the swing foot. When this was given as a

parameter to the optimization the optimization chose a gait with swing-leg retraction prior

to heel-strike and thus a higher vertical velocity of the swing foot before heel-strike. Note
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that this robustness from leg retraction due to improved state estimation is unrelated to the

stability that leg retraction can provide in open loop control, as described elsewhere [45, 57].

The COT=0.28 controller was robust enough to work reliably on a running track where

the maximum slopes were about 1◦ and maximum step-to-step variation was a few mm,

but not much more. The COT=0.19 controller was only robust enough for a nominally flat

linoleum floor.

7 Discussion and conclusion

Our overall design and control approach can be summarized as:

• Design and build a modelable robot. This precludes flat feet, which can have indetermi-

nate collisions, and high-gain control, which can excite poorly characterized vibration

modes. Similarly, friction and play need to be minimized, as both are hard to model.

• Make and verify a high-fidelity simulation. This requires that all robot parts be well-

characterized, particularly the motors and transmissions, and checking a simulated

walking cycle with a real walking cycle.

• Make a fine-grid trajectory optimization (in our case, minimizing TCOT). This opti-

mization includes some events necessitated by discontinuities in the model description

(when contacts are made or broken).

• By eye, extract features of the fine-grid optimization to define a coarse-grid parameter-

ization of the trajectories. The discretization of the coarse-grid description defines new

events and new logical states. Then, offline, use this coarse-grid description for a new

trajectory optimization. Tune the description to minimize complexity and maximize

closeness of the objective to the fine-grid objective.

• Define a plausible reflex-based (discrete) controller with a manageably small number

of free parameters. These measure the dynamical state at logical state transitions and

use the values to adjust the parameters in the motor program in the next logical state.

Tune the free parameters of the feedback, in simulation, to maximize simplicity and

minimize gains and errors as desired, using, e.g., DLQR.

• Implement the controller on the robot, comparing simulation with experiment so as to

check for physical machine, simulation or optimization problems.

In the list above, there is no part that we claim as novel. But this is the first time they

have been combined to realize energy-effective and reliable walking on a legged robot (to

the best of our knowledge). The benefit of this approach, using discrete (reflex) control, as

summarized above is, that it allows:
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Figure 4: Comparison of the results of a forward simulation of the robot with experimental data
for the same controller. The simulation (solid blue) is periodic, the data (dashed red) is not. The
biggest discrepancies are the spikes in hip current and hip power. These are from the stabilizing
controller attempting to compensate for differences between model and machine. The horizontal
offsets visible above are because the step period of the machine does not exactly match the period
of the model. The motor powers are electrical powers. Note that this optimized gait has almost no
negative motor power either in simulation or on the robot.

• Low gains are possible because extended time is available to make corrections. High

gains would have demanded higher machine stiffness to prevent excitation of control

oscillations or higher vibration modes.

• Use of a manageably low number of parameters in the trajectory and stabilizing control,

with a small resultant energy penalty (compared to the best physically obtainable
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optimal-energy gait).

• Ability to be progressively refined, because of the small number of free control param-

eters, so as to better approximate full state feedback control.

While we made a machine that was reliable for its purpose, the biggest defect in the approach,

as implemented so far, is that it has no means of systematically maximizing the sizes of the

disturbances and modeling errors which can be tolerated. That is, so far the non-linear

system model is only used in the trajectory generation but not in the stabilization. Thus the

approach does not include a way to systematically, even if by hand, maximize the non-linear

robustness (the tolerance of disturbances and of sensor and modeling errors).

Three uses of events. Discrete events have been used for three purposes in the controller

design. First, the fine-grid optimization needs to change its form when the governing equa-

tions change form. This occurs when contacts are made or broken. Second, the coarse-grid

optimization introduces new logical state transitions (at the grid points) and new logical

states (between grid points). Finally, the discrete feedback uses event transitions (we hap-

pen to use the same events as for the coarse-grid optimization), and then uses the dynamical

state at that time to adjust the parameters used during the time span of the next logical

state.

Four kinds of feedback. We think of the primary stabilizing feedback as the adjustment

to parameters at state transitions. However, in reality there are three other forms of feedback.

First, within each logical state the motors are run by simple continuous-time (approximately,

actually a 2 kHz digital control) compliant controllers. Second and innermost, each motor

has an inner feedback loop, constantly adjusting the PWM signal to impose a specified

motor current. Finally, and independently of the explicit feedback just described, having

sensor-based state transitions of any kind is a form of feedback. Thinking from inner to outer

the feedback layers are: 1) motor current control; 2) joint compliance control; 3) changes of

parameters at state transitions (our main interest in this paper), and 4) detecting and acting

on state transitions.

How low can you go? On an absolute scale is TCOT = 0.19 low? It’s about 2/3 that of

a person (TCOT≈0.3) and a fifth or less that that of most robots (TCOT>1). But it’s more

than that of a Toyota Prius (1400 kg and 4.6 liters/100km =⇒ TCOT≈ .15) and infinitely

more than the theoretical lower limit for walking machines of zero (TCOT = 0.00) [21]. For

a machine with Ranger’s kinematics and mass distribution a reduction of a factor of at least

4 (to near the MCOT of 0.04) is possible by reducing the electronics overhead from about

5 W to near zero and improving the motor average efficiency from about 65% to near 90%.

More realistically, TCOT = 0.1 might be achieved with the same overall design and current

technology, by careful selection and design of all electrical components.
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Extensions and improvements. Ways to make the robot better include using more ef-

ficient electronics and adding knees so that energy can be saved using the natural dynamics

to provide foot clearance. Although this machine was only designed to walk well, its me-

chanics should also be capable of other simple behaviors (e.g., starting, stopping, walking

backwards, balancing on two feet) and higher (meta) states for different behaviors (to switch

between, say, walking forwards and backwards). While we had relative success with brushed

DC motors, a major modeling issue was the brush contact resistance; the issue would be

eliminated by using brushless motors. This would also improve motor efficiency.

Most importantly, the control approach also can be further developed. There are several

steps in our controller design that depended on human insight. Some of these could, perhaps,

be automated. These include the selection of the coarse-grid parameterization and the

architecture of the discrete stabilizing controller. Because the overall control architecture is

perhaps more appropriate to motor control than, say, a more general neural network, it may

thus be more manageable (i.e., require fewer free parameters for a given quality of control)

for optimization in simulation or for offline or online learning. Although the system we have

is reliable in a limited context, we have yet to determine how robust it can be made, going

beyond linear control approaches, to disturbances and terrain variation.

Conclusion. Using discrete control implemented relatively infrequently, relative to using

the most rapid possible feedback loops, potentially loses opportunities to correct quickly to

disturbances. However, our experiences show that the gains in simplicity, reduced bandwidth

and reduced computation may make the approach preferable for generating practical robot

controls.
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Appendix A: Index to Multimedia Extensions

The multimedia extensions are at http://www.ijrr.org.

Table of multimedia extensions:

Extension Type Description
1 70 pages of text and figures Details of hardware, modeling and control
2 Video Ranger’s 65 km walk
3 Video Simulation validation
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[28] M.L. Latash, J.P. Scholz, and G. Schöner. Motor control strategies revealed in the

structure of motor variability. Exercise and sport sciences reviews, 30(1):26–31, 2002.

[29] I.R. Manchester, U. Mettin, F. Iida, and R. Tedrake. Stable dynamic walking over

uneven terrain. The International Journal of Robotics Research, 30(3):265–279, 2011.

[30] R. Margaria. Positive and negative work performances and their efficiencies in hu-

man locomotion. European Journal of Applied Physiology and Occupational Physiology,

25(4):339–351, 1968.

[31] T. McGeer. Passive dynamic walking. The International Journal of Robotics Research,

9(2):62–82, 1990.

[32] H. Miura and I. Shimoyama. Dynamic walk of a biped. The International Journal of

Robotics Research, 3(2):60–74, 1984.

[33] K. Ogata. Discrete-Time Control Systems. Prentice Hall, 1995.

[34] D. Owaki, M. Koyama, S. Yamaguchi, S. Kubo, and A. Ishiguro. A two-dimensional

passive dynamic running biped with knees. In International Conference on Robotics

and Automation, Anchorage, Alaska, USA, pages 5237–5242, 2010.

[35] I. Poulakakis and JW Grizzle. Monopedal running control: Slip embedding and virtual

constraint controllers. In International Conference on Intelligent Robots and Systems,

pages 323–330. IEEE, 2007.

[36] J. Pratt and G. Pratt. Intuitive control of a planar bipedal walking robot. In Inter-

national Conference on Robotics and Automation, volume 3, pages 2014–2021. IEEE,

1998.

[37] J.E. Pratt and G.A. Pratt. Exploiting natural dynamics in the control of a planar bipedal

walking robot. In Proceedings of the 36 Annual Allerton Conference on Communication,

Control, and Computing, pages 739–748, 1998.

31



[38] Jerry Pratt, Twan Koolen, Tomas De Boer, John Rebula, Sebastien Cotton, John Carff,

Matthew Johnson, and Peter Neuhaus. Capturability-based analysis and control of

legged locomotion. part 2: Application to m2v2, a lower-body humanoid. International

Journal of Robotics Research, to appear, 2012.

[39] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, et al. Bigdog, the rough-terrain

quadruped robot. Proceedings of the 17th International Federation of Automatic Control,

2008.

[40] M.H. Raibert. Legged robots that balance. MIT press Cambridge, MA, 1986.

[41] A. Ruina. Nonholonomic stability aspects of piecewise holonomic systems. Reports on

mathematical physics, 42(1-2):91–100, 1998.

[42] A. Ruina, J.E.A. Bertram, and M. Srinivasan. A collisional model of the energetic cost

of support work qualitatively explains leg sequencing in walking and galloping, pseudo-

elastic leg behavior in running and the walk-to-run transition. Journal of theoretical

biology, 237(2):170–192, 2005.

[43] A. Ruina et al. Cornell ranger 2011, 4-legged bipedal robot. [avail-

able online]. http://ruina.tam.cornell.edu/research/topics/locomotion_and_

robotics/ranger/Ranger2011/. Or Google search for: cornell ranger, April 2012.

[44] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura. The

intelligent asimo: System overview and integration. In Proc. of International Conference

on Intelligent Robots and Systems, Lausanne, Switzerland, volume 3, pages 2478–2483,

2002.

[45] A. Seyfarth, H. Geyer, and H. Herr. Swing-leg retraction: a simple control model for

stable running. Journal of Experimental Biology, 206(15):2547–2555, 2003.

[46] C.E. Shannon. Scientific aspects of juggling, 1993.

[47] K. Sreenath, H.W. Park, I. Poulakakis, and J.W. Grizzle. A compliant hybrid zero

dynamics controller for stable, efficient and fast bipedal walking on mabel. The Inter-

national Journal of Robotics Research, 30(9):1170–1193, 2011.

[48] M. Srinivasan. Why walk and run: energetic costs and energetic optimality in simple

mechanics-based models of a bipedal animal. PhD thesis, Cornell University, 2006.

[49] M. Srinivasan and A. Ruina. Computer optimization of a minimal biped model discovers

walking and running. Nature, 439(7072):72–75, 2005.

[50] S.H. Strogatz. Nonlinear dynamics and chaos. Addison-Wesley Reading, 1994.

32

http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011/
http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011/


[51] T. Sugihara and Y. Nakamura. Whole-body cooperative balancing of humanoid robot

using cog jacobian. In International Conference on Intelligent Robots and Systems,

volume 3, pages 2575–2580. IEEE, 2002.

[52] R. Tedrake, I.R. Manchester, M. Tobenkin, and J.W. Roberts. Lqr-trees: Feedback

motion planning via sums-of-squares verification. The International Journal of Robotics

Research, 29(8):1038–1052, 2010.

[53] E. Todorov and M.I. Jordan. Optimal feedback control as a theory of motor coordina-

tion. Nature neuroscience, 5(11):1226–1235, 2002.

[54] M. Vukobratovic and B. Borovac. Zero-moment point-thirty five years of its life. Inter-

national Journal of Humanoid Robotics, 1(1):157–173, 2004.

[55] M. Vukobratovic and D. Juricic. Contribution to the synthesis of biped gait. IEEE

Transactions on Biomedical Engineering, 16(1):1–6, 1969.

[56] E.R. Westervelt. Toward a coherent framework for the control of planar biped locomotion.

PhD thesis, University of Michigan, 2003.

[57] M. Wisse, C.G. Atkeson, and D.K. Kloimwieder. Swing leg retraction helps biped

walking stability. In Proceedings of 2005 IEEEE-RAS International Conference on

Humanoid Robots, Tsukuba, Japan, 2005.

33


	Introduction
	Measuring energy effectiveness.
	Passive dynamics: energy use and control
	Feedback control

	Ranger hardware
	Model for simulation and control design
	Motor and gearbox model.

	Overall control approach: sparse state machine
	Reflex feedback: discrete intermittent feedback control
	Results
	Simulation validation
	Long distance walking record
	Energy-efficiency record

	Discussion and conclusion

