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Abstract 
This paper details the implementation of a new autonomous control system for an 

existing two dimensional, knee-less, bipedal walking robot.  After removing one of 
several unsuccessful control systems, sensors and motor controllers were installed and 
wired through custom circuits to a central robot controller, which guides the robot 
through a state machine algorithm implemented in the C programming language.  Several 
failure modes have been encountered but remedied by the adjustment of parameters in the 
code such that the robot successfully demonstrates a walking cycle.  Proposed 
mechanical, structural, and electrical improvements will eliminate these failures and yield 
an efficient and robust mechanical walker. 
 

Introduction 
There are several approaches toward creating a walking machine.  One of the most 

popular is to model the geometry of the machine after that of the human body and 
precisely control joint angles in time to mimic the human walking motions.  While these 
machines are versatile and robust, they are extremely inefficient, resulting in short 
runtimes.  The passive dynamic approach, on the other hand, models dynamic properties 
of the machine after those of the human body but offers no control or power other than 
that of gravity.  These machines are extremely efficient, but not at all versatile or robust, 
which eliminates practical use.  An approach in between these extremes seeks to apply 
passive dynamic principles for efficiency, but also provide powered control when 
necessary to enhance versatility and robustness. The robotic subject of the following 
paper achieves a walking cycle through this approach and thus has the potential to 
achieve new levels of efficiency and reliability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Methods 
The mechanical structure of the two dimensional, knee-less, bipedal walker was 

originally created by Gosse [1] in 1998.  Energy was to be added to the system by 
actuation of the ankles alone.  A control system was implemented in 2000 by 
Yevmenenko [2], and again in 2003 by Yeshua [3], but the robot never achieved a 
walking cycle.  As part of the Marathon Walking Robot project in 2005, a motor was 
added for hip actuation by Seidel and Strasberg [4] and the feet were replaced by Harry 
[5].  In addition, the entire electronic control system, including all hardware and software, 
was replaced, hence the need for documentation provided in this paper.   
 

Hardware 
Robot Controller 
The Innovation FIRST Mini Robot Controller was chosen to control the robot because it 
provides a user-friendly interface between sensors and a microprocessor.  Eliminating the 
need to order and prepare dozens of discrete components, the Robot Controller combines 
a programmable chip, programming port, power terminals, and a wide variety of pins for 
signal input and output in a single, convenient package.  Prewritten functions, instructive 
documentation, and useful software facilitate generation of custom programs. 
 
Feature:   Details:    Use: 
Speed    10MIPS    Sufficiently fast processor means precise 

and accurate robot control 
Power    Approx. 1W   Low power consumption means greater 

robot efficiency and longer walking time 
Size    3.4” X 4.6” X ¾”  Small size means low weight and more  

space for other robot parts 
Language   C      Powerful, familiar language means 

flexibility and easy use 
Digital Inputs  22 Max    Used to take input from limit switches  
Analog Inputs  16 max , 10-bit   Used to take input from potentiometers 
PWM Outputs  8      Used to control motors 
 
Internal Processors 
The robot controller actually contains two Microchip 18F8520 PICmicro 
microcontrollers – one programmable User processor that runs the code for the robot, and 
one Master processor that relays radio control signals to and monitors the operations of 
the User processor.  The Master processor and User processor only communicate once 
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every 17ms, which limits response to radio input.  However, all digital/analog in and 
PWM ports are wired directly to the User processor, providing for immediate 
communication between the computer and onboard electronics.  Other than this, the 
workings of the Master processor are irrelevant to the user of the system and thus are not 
disclosed by Innovation FIRST; in practice it is only necessary to understand the 
operations of the User processor. 
 
Ports 
Each of the 16 Digital In/Out – Analog In ports can be configured in the code as either a 
digital in, digital out, or analog in.  Each of the ports labeled “Interrupt” is permanently 
configured as a digital in, but when triggered can be used to fire interrupt conditions in 
the code.  The PWM outputs can be used to send PWM signals to motor controllers using 
prewritten functions.  The robot controller also features solenoid outputs and PWM 
inputs, but they are not used on the robot. 
 
Digital In/Out – Analog In 
The Digital In/Out – Analog In ports have three pins each – one 
“SIG” or signal pin, one “+5V” or “high” pin, and one “BLK”, 
black, or “low” pin.  A 5V potential difference is always 
maintained between the “+5V” pin and “BLK” pin; if these pins 
are shorted the mini robot controller automatically shuts down.  
Depending on the state of the digital/analog input device, however, the potential 
difference between the “SIG” pin and the “BLK” pin may vary.  The voltage between 
these pins is measured by the robot controller, converted to either a 1-bit or 10-bit value, 
and can be referenced in the code as input from the sensors. 
 

Digital Input 
When configured as a digital input, only the “SIG” and 
“BLK” pins are used.  The robot controller measures the 
voltage between the pins as either high (5V) when the circuit 
between them is open or low (0V) when the circuit is closed.  
The high measurement is converted to a logical 1 and the 

low measurement is converted to a logical 0 for use in robot code.  It has been found 
experimentally that the 
controller can only detect a 
change in the digital input 
value a few hundred times per 
second. 
 
Digital Output 
When configured as a digital output, only the “SIG” and “BLK” 
pins are used.  The robot controller outputs either a logical 
“high” (5V) voltage between the pins or a logical “low” (0V) 
voltage between the pins as specified in the code.  The robot can 
change the signal at a maximum rate of about 1 kHz. 
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Analog Input 
When configured as an analog input, all three pins are used.  The 
“+5V” and “BLK” pins provide a constant reference voltage for 
the sensor, while the voltage between “SIG” and “BLK” varies 
depending on the state of the sensor.  The robot controller 
measures the voltage between these pins (0V-5V) and converts 
this to a 10-bit value (an integer from 0-1023) for use in the code. 
 
Interrupt Digital Inputs 
The “interrupts” are ports that are permanently configured as digital inputs, but can be 
used to fire an “interrupt” condition in the code when they are triggered.  When the 
logical state of these ports changes, the processor immediately jumps to a specific portion 
of code, the “interrupt handler”.  Currently, the ports are being used as regular digital 
inputs; the interrupt feature is not being used.   
 

PWM Output 
A PWM (Pulse Width Modulation) output sends signals to a 
voltage controller which in turn sends a specified voltage to a 
motor.  A PWM signal is a series of digital pulses which vary in 
length depending on the desired motor voltage.  The voltage 
controller (which can be a simple H-Bridge or hobby speed 
controller) amplifies the voltage of these signals and provides 

current to the device.  This pulsing voltage simulates a constant voltage proportional to 
the percentage of digital “high” time, the “duty cycle”.  The PWM ports have four pins – 
one BLK pin, two supply voltage pins, and 
one SIG pin.  Only the SIG pin and BLK 
pin are used in this robot, in much the same 
way as a simple digital output.  The 
purpose of using a PWM port instead of a 
regular digital out is that routines are 
already programmed into the 
microprocessor for generating proper PWM 
signals corresponding to an 8-bit integer 
specified in the code. 
 
Radio PWM Input 
Radio control is not critical for this robot; the only control an operator has is turning.  The 
current radio control system completely bypasses the IFI controller, so the radio PWM 
inputs are not being used.  However, the IFI Radio PWM inputs can receive signals from 
a hobby radio receiver through standard PWM cables.  When the radio receiver is 
plugged into this port and a signal is received from the radio transmitter, the Master 
processor converts the signal into an 8-bit value which is relayed to the User processor 
every 17ms for use in the code. 
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Sensors 
Limit Switches 
There are two limit switches, one at the heel of each 
foot.  Each limit switch is simply a contact switch 
that is pressed when its respective heel is supported 
by the ground.  There are two wires leading into the 
limit switch – one “signal” wire, and one “black” 
wire.  The signal wire plugs into the “SIG” pin of a 
digital in on the robot controller, the black wire plugs into the “BLK” pin of the digital 
input.  When the limit switch is not pressed (“open”), the voltage between the two pins is 
5V and the robot controller reads this as a single bit – “high” or “1”.  When the limit 
switch is pressed (“closed”), an electrical connection is made between the two wires 
inside the switch, creating a short circuit.  This forces the voltage between the two pins to 
jump to zero, and the robot controller reads this as “low” or “0”.  So when the heel of the 
robot is in the air, the limit switch is not pressed and there is a 5V potential difference 
between its lead wires, and thus the robot controller reads a “1” for that digital input.  
When the heel of the robot is in contact with the ground, the limit switch is pressed, 
shorting the lead wires, so there is 0V between them and thus the robot controller reads a 
“0”.  In this way the limit switches tell the robot how it is supported by the ground. 
 
Potentiometers 
There are three potentiometers, one at 
each ankle and one at the hip.  
Potentiometers are variable resistors 
with three pins.  The right 
“reference” pin is connected to the 
“5V” pin of the robot controller, the 
left “black” pin is connected to the 
“BLK” pin, and the center “signal” pin is connected to the “SIG” pin.   There is always a 
fixed 20 kΩ between the “reference” pin and the “black” pin, but turning the knob of the 
potentiometer changes the voltage between the “signal” pin and the “black” pin.  When 
connected properly, the robot controller measures the voltage between the “signal” pin 
and the “black” pin and converts the measurement to a 10-bit value (an integer between 0 
and 1023).  For example, when the foot is in the air and is rotated to a fully retracted 
position, the voltage between the signal and black pin is .5V, corresponding to a value of 
100.  In this way the potentiometer tells the robot the position of the ankle. 
 
Encoder 
Encoders are mounted on each of the motors for measuring angular changes, but none of 
them are in use.  An encoder uses a beam of light and a slotted wheel coupled to the 
motor shaft to detect changes in angular displacement.  When the beam of light passes 
through a slot in the wheel, the encoder sends a pulse to the robot controller indicating a 
change in motor shaft angle.  In practice the pulses come too rapidly to be processed by 
the robot controller.  Possible solutions will be addressed later in the paper. 
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Voltage Controller 
The PWM output was originally connected to an H-Bridge Voltage Controller created by 
former lab consultant Mike Sherback.  A PWM output sent square pulses with variable 
lengths corresponding to an 8-bit value (an integer between 0 and 255) at a fixed 
frequency of 2kHz.  The H-Bridge boosted the voltage of the signal to 12V and provided 
sufficient current to power the motor.  By switching the power on an off in pulses, the H-
Bridge simulated a continuously variable, constant voltage between 0V and 12V due to 
the inductive properties of the motor.  The simulated voltage was proportional to the 
length of a pulse over the period of the signal – the “duty cycle” percentage.  A separate 
two-bit signal (generated using digital outputs) controlled the function of the motor – 
forward, reverse, coast, or brake.  The H-bridge was replaced, however, because of its 
inability to switch rapidly between forward and reverse.  The most recent voltage 
controllers are Innovation First Victor 884 Speed Controllers.  A function written by 
Innovation First generates a PWM signal at a frequency of 120 Hz with a duty cycle 
measured to vary between 10% and 20%.  The speed controller then converts this signal 
to a simulated voltage between –12V and 12V. 
 
Interface Board 
The interface board carries all signals to and from the robot controller via a 40-pin IDE 
cable and routes them to the proper sensors via smaller ribbon cables.  Also included is 
an IC DC/DC converter that regulates voltage supplied from the battery down to 6V for 
the robot controller and radio receiver.  Although the function of the interface board is 
simple, the detailed design is rather complicated and its fabrication using a breadboard, 
wire, headers, and solder was very time-consuming, so complete technical drawings are 
included as an appendix. 



Software 
Algorithm 
The most difficult part of programming the software was finding a simple but flexible 
and efficient algorithm.   The robot is modeled as a state machine – at any given point in 
time the robot is in a particular state in which it only performs a certain subset of its 
possible actions based on the relevant feedbacks, and only switches to the next state when 
given the cue from one of its senses. 
 

 
Feedbacks: 
Feedback α:  Ankle Angle 
A potentiometer senses the angle of 
the foot relative to the leg. 
 
Feedback β:  Hip Angle 
A potentiometer senses the angle 
between the legs.   

 
Senses: 
Sense A – Heel Strike  
The robot senses front heel strike with a 
contact limit switch on the heel.  When the 
robot’s front heel strikes the ground at the end 
of a step, the limit switch is pressed and the 
robot registers heel strike. 
 
Sense B – Toe Lift  
The robot senses rear toe lift with a potentiometer on the robot’s ankle.  When the ankle 
angle (Feedback α) reaches an experimentally optimized value, the robot registers toe lift. 
 
Sense C – Hip Switch  
The robot senses hip switch with a potentiometer at the hips.  When the hip angle 
(Feedback β) reaches a value corresponding with the inner and outer legs being in line, 
the robot registers hip switch.  
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Actions: 
Action 1: Ankle Preparation 
The robot performs front ankle preparation, rotating foot to the proper position for heel 
strike (Sense A).  Position is controlled with a “P-loop” using information about current 
ankle angle (Feedback α). 
 
Action 2:  Ankle Push 
Robot performs rear ankle push.  The 
voltage applied to the ankle motor is 
constant, as specified in the code. 
 
Action 3:  Ankle Retraction 
Robot performs rear ankle retraction, 
rotating foot to prescribed position to 
provide clearance with the ground at hip 
switch (Sense C).  Position is controlled 
with a “P-loop” using information about 
current ankle angle (Feedback α). 
 
Action 4:  Ankle Lock 
Robot performs ankle lock, holding the foot 
at a prescribed position.  Position is 
controlled with a “P-loop” using information 
about current ankle angle (Feedback α). 
 
Action 5:  Hip Swing 
Robot performs hip swing.  The voltage applied to the hip motor is a function of hip 
angle (Feedback β). 

 
 
States 
Initial State 
State I 
The robot has been set up manually by the user 
with its rear foot on the ground and front heel in 
the air.  The robot prepares front foot for heel 
strike (Action 1).  When the operator releases 
the robot, the robot passively falls as a double 
pendulum with a rolling contact pivot.  When 
heel strike (Sense A) occurs, the robot enters 
State II. 
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Walking Cycle 
State II  
The robot performs rear ankle push 
(Action 2) and front ankle lock (Action 
4).  When rear toe lift (Sense B) occurs, 
the robot enters State III. 
 
 

 
State III  
The robot performs rear ankle retraction (Action 
3), front ankle lock (Action 4), and hip swing 
(Action 5).  When hip switch (Sense C) occurs, 
robot enters State IV. 
 
 

 
State IV  
The robot performs front ankle 
preparation (Action 1), rear ankle lock 
(Action 4), and hip swing (Action 5).  
When front heel strike (Sense A) 
occurs, robot returns to State II. 
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Code 
The software is written in C with MPLAB IDE, compiled into a single .hex file by the 
MPLAB C18 Compiler, and downloaded to the mini robot controller via serial cable 
using IFI Loader.  Three files of the default code included with the robot controller were 
heavily modified to achieve desired performance. 
 
user_routines_fast.c 
The algorithm detailed above is implemented using a single variable to keep track of the 
robot state, one function for each sense to return the logical state of the sense, one 
function for each robot action to cause the hardware to perform the action, a single 
function to return continuous feedback from a specified potentiometer, and various 
processor functions to assist the rest of the functions with their tasks.  The 
Process_Data_from_Local_IO() function contains the state machine itself.  A “switch-
case” statement tests the “State” variable - for each state, certain action function are 
called and a conditional statement calls a sense function.  If the sense function in the 
conditional statement returns true, the state variable changes to its next value.  When the 
code reaches the end of the switch statement, the loop repeats.  All the functions are 
documented by comments in the code itself, but one requiring brief explanation here is 
the “Position2PWM” function.  This function implements the P-Loop that controls the 
position of a specified motor by applying a voltage proportional to the difference between 
its current position and the desired position plus a specified offset voltage. 
 
user_routines.c 
The User_Initialization() routine is used to set up ports on the robot controller for use in 
the code. 
 
user_routines.h 
This is the header file where custom functions are prototyped and user-defined macros 
are declared.   Once the robot began executing the four states successfully, this file 
became the most important in debugging because it is where the values of all 
experimentally determined program constants could be changed.  For example, this file 
contains the gain and offset constants used in calls to the “Position2PWM” function 
mentioned above, which had to be tuned experimentally as described in the following 
section. 
 

Adjustments 
After all hardware was wired and code was loaded on the robot, a tremendous amount of 
both mechanical and electrical “tweaking” was necessary before a stable walking cycle 
was achieved.  In general, the scientific method was followed – the robot would be set in 
its initial state and allowed to follow its instructions.  When the robot failed, the cause of 
the problem would be determined and a single parameter would be adjusted based on 
experience with passive walkers, insight from simulations, and physical intuition in an 
attempt to remedy the problem.  This basic cycle of testing and tweaking was executed 



until a walking cycle was realized.  Listed below are failure modes and solutions 
categorized by the state in which the failure occurred.  Problems that were particularly 
difficult to resolve are marked with an asterisk(*). 
 
State I:   
Few failures occurred in the initial state as the robot is supported by the operator.  
However, sometimes the robot failed to continue into State II upon heel strike, which was 
often due to incorrect code upload or a malfunctioning heel limit switch. 
 
State II: 
Toe lift does not occur:  One of the first problems encountered was an inability to 
advance to State III because toe lift was defined to occur when a limit switch mounted on 
the front of the foot was closed.  This was often impossible because the motors did not 
have enough torque to push the ankle into that position.  The solution was to remove the 
limit switches and re-define toe lift to occur when the ankle had rotated to a specified 
position a few degrees from the “prepared” angle. 
 
State III: 
Foot Scuff:  The rear legs would hit the ground instead of swinging through.  This failure 
had one of three causes: 
1. Failure of the rear feet to fully retract:  This could be fixed by adjusting the “retracted” 
position parameter in the user_routines.h file of the code. 
2. Failure of the stance feet to maintain position:  The front ankles would yield under the 
weight of robot, causing the rear feet to hit the ground.  This was fixed by increasing both 
the gain and the offset in the P-loop controlling the angle of the rear feet.   
3. Robot tipped too far forward*:  This meant that more energy was added to the system 
than necessary to maintain the robot walking speed.  This problem was solved either by 
reducing the angle over which ankle push occurred (reducing energy input), or by 
increasing the speed of hip swing (increasing walking speed). 
Fall Backward:  The robot would fall backward upon toe lift due to insufficient ankle 
push.  This happened whenever the sprocket turning the potentiometer skipped a link in 
the chain.  This could be fixed either by re-calibrating the potentiometer position in the 
code or by slipping the chain back into its proper position.  Sometimes it was also 
necessary to increase the “toe lift” parameter so that the robot would push off further 
before retracting the feet.  If neither of these strategies solved the problem, hip swing 
gain was lowered to prevent the robot from “kicking” itself over backwards. 
 
State IV: 
State Skip:  Sometimes the robot skipped from State IV back to State II before heel 
strike occurred.  This was usually due to a stuck heel limit switch. 
 
Foot Scuff*:  The feet would scuff because they were instructed to prepare for heel strike 
as soon as State IV began.  This was fixed by delaying ankle preparation until the hip had 
rotated enough for the feet to clear the ground. 



 
Front Legs Fall*:  In an ideal walking cycle, heel strike would occur almost 
immediately after the front legs reach the desired stride angle, about 30 degrees, just as 
the feet begin retrograde motion.  In reality, however, the legs occasionally reach the 
desired angle and then fall back excessively before heel strike, resulting in a high velocity 
impact and an unstably short step.  This causes the robot to scuff its rear foot and fall on 
the following step.  To reduce the severity of the problem, a rubber mechanical stop was 
installed at the hip to create a plastic collision at the prescribed angle.  In addition, the hip 
swing was set to a higher gain and offset voltage to lock the hip motor when it reached 
the desired position.  Locking the legs in this manner wasted a tremendous amount of 
energy, so over time the gain on the hip motor has been relaxed to make the robot more 
efficient.  The current setting is much more efficient than it has been, and it permits the 
robot to execute many successive steps.  Inevitably, however, slight environmental 
perturbations cause heel strike to be delayed until long after hip swing is complete and 
this failure ensues.  This is the current mode of failure; it has not been resolved but 
possible solutions will be discussed. 
 
Code Asymmetry: 
It became evident that some failures were almost always associated with a certain pair of 
legs but not with the other.  This was due to asymmetry in the mass distributions of the 
two pairs of legs, which was partially corrected by the relocation of the control system 
from the top of the robot to the inner legs.  However, problems persisted so the code was 
changed such that separate constants could be specified for the inner and outer pairs of 
legs.  For example, it was noted that the inner feet rarely scuffed the ground, but the outer 
legs persistently had this problem.  The cause was excessive ankle push at the outer feet 
during State II, so the outer leg toe lift constant was lowered while that of the inner legs 
was preserved. 
 
Adjusting a parameter to alleviate one problem would often introduce another problem.  
For example, the need for the end of hip swing to coincide with heel strike in State IV 
prompted a decrease in the hip swing gain parameter.  However, this decrease caused the 
rear foot to scuff during State III.  Therefore the code was adjusted to allow hip swing 
gain to be increased in State III but decreased in State IV.  
 
Additional Mechanical Adjustments 
Many routine adjustments and error repairs were made to the robot in the debugging 
process, but the volume of material that would be required to completely document each 
repair is prohibitive.  Some examples of this work include complete replacement of the 
hip potentiometer mounting bracket, replacement of the coupling between the hip 
potentiometer and hip motor, and replacement of the mis-cut carbon fiber tube on the 
chain tensioner.  The hip motor bracket was straightened and notched to prevent collision 
with battery terminals, unnecessarily tapped frame holes were drilled out, and ankle drive 
gear set screw holes were added.   
 
 



Results 
The robot successfully executes a walking cycle, recovers from minor conditional 

imperfections, and fails when faced with significant adverse effects.  It first walked on 
June 6, 2005, when it took 10 unsupported steps before being stopped by the operator.  
On average, the robot has a step length of about .3m, a step frequency of 1.5 Hz, and thus 
walks at approximately .45m/s.  In its best performance to date, the robot walked 39 steps 
in 26.5 seconds and covered a distance of 12m. 

To start the robot, the operator must provide it with acceptable initial conditions in 
State I, usually by setting the outer legs on the floor and bringing the inner legs to the 
front rubber stop with the feet approximately .1 m above the floor.  Alternatively, the 
operator can guide the robot into a walking cycle by applying forces as necessary – which 
requires more human control but in the long run is easier to replicate and is more reliable.   

The most effective method for diagnosing failures was filming robot operation and 
watching the footage in slow motion to determine the precise reason for failure.  The best 
tool for determining solutions for errors was the application of natural physical intuition 
and insight gained by experimenting with the simulation.  Another procedure for 
identifying and fixing problems was to help the robot walk by giving corrective tugs as 
necessary.  Often experimenting with intuitive impulses in this manner led to important 
information.  For example, before the robot could walk on its own, it would walk well if 
given slight, periodic pulls backwards to prevent it from falling forwards.  From this, it 
was deduced that decreasing ankle push would have the same effect as periodic tugs, and 
making this correction resulted in free walking. 

It is clear that the robot is much less efficient than desired as the motors become hot 
and the battery is significantly drained after only minutes of use.  The robot requires a 
fully charged battery to function properly; currently it can only be tested for about five 
minutes at a time before showing symptoms of fatigue, most noticeably sluggishness in 
the hip swing. 

 

Discussion 
The initial goal of this project was accomplished in full – the existing robot has been 

modified such that it is capable of executing a walking cycle.  The next goal of the 
project, robust walking, has been partially satisfied – the robot has shown the ability to 
recover from slight perturbations, frequently for 20 steps or more.  Inevitably, however, 
the robot encounters challenges posed by the environment and internal mechanical 
difficulties that it cannot overcome.  The final, long term goal of this project - efficient, 
long distance walking – is only beginning to be tackled.  For example, the current 
walking cycle of the robot wastes a tremendous amount of energy locking the feet in 
specified positions and moving the hip to an angle it should ultimately swing to on its 
own.  However, physical improvements must be made before the control strategy can 
begin to address this issue.  The following is a list of proposed modifications that will 
make the robot more efficient and robust, organized by category in order of priority.   

 
 
 



Recommendations 
Mechanical 

First, the robot must be improved mechanically.  The feet must be aligned properly so 
that they provide symmetric support on the ground, as the robot often wobbles and turns 
sideways unexpectedly.  The leg chain tensioner slots should be lengthened to provide for 
further tensioning as the chains are rather loose and unexpectedly skip links, causing the 
potentiometer calibration problems.  There have been problems with the limit switches 
sticking, breaking, and not triggering, so new limit switches should be mounted robustly 
such that they are triggered whenever any part of the heel is in contact with the ground, 
and not triggered when the heel is off the ground.  A new hip motor chain tensioning 
system incorporating a rotating idler sprocket rather than a fixed bolt should be created, 
as the current setup introduces high levels of friction.  A motor locking mechanism 
should be devised to eliminate the inefficiencies associated with stalling the motors, and a 
clutch could be used to disengage the hip from its motor for more efficient passive 
motion.  The current feet should be replaced with versions that are slightly shorter to 
compensate for insufficiencies in motor torque mentioned previously.  The hip motor 
mounting bracket should be replaced so that it does not require a spacing shim; this will 
make future adjustments and repairs easier.  Although the new “homemade” hip 
potentiometer-motor coupling is sufficient, a standard coupling should be purchased and 
installed as a final solution to the frustrating, long-standing problem of inaccurate hip 
potentiometer readings.  These changes will not only improve the functionality of the 
robot, but will also reduce the frequency of emergency repairs, which have slowed down 
the debugging process considerably in the past.  Also, many aspects of the current code 
were written to reflect imperfections in the robot’s mechanical functionality, and relaxing 
this constraint will offer more freedom for success.  

 

Structural 
The next task would be to make the robot more symmetric by providing for easy 

repositioning of control system components to adjust weight distribution.  A battery box 
should be made and an adjustable mounting system should be devised for easy battery 
removal, installation, and repositioning.  The robot controller, interface board, and speed 
controllers should be remounted on thin aluminum plates for durability, as they will need 
to be repositioned frequently until desired symmetry is achieved.  

 

Electrical 
Hardware 

Once the robot is mechanically reliable and structurally symmetric, joint angular 
velocity data should be generated by an analog differentiator circuit and fed into an 
analog input.  This would enable an upgrade of the position control algorithm to a PD or 
PID loop, which would eliminate the “bouncing” evident in free ankle positioning and 
would more effectively lock the stance feet.  Later, a method for using the encoders 
already mounted on the motors should be devised – perhaps by using a quadrature 
counter chip or by replacing the robot controller with a faster model more suitable for 



interpreting the quadrature signal, as encoders would provide much more precise 
positioning information and angular velocity data.  The speed controllers should be 
replaced with more efficient and precisely controlled H-bridges, and a torque control 
system should be devised to allow for a more efficient control strategy.  Data from the 
accelerometer already installed on the robot should be used in the code to determine the 
overall angle of the robot with respect to the vertical.  Information from a gyro could be 
used to help distinguish between the different components of the overall acceleration 
vector.  Once more advanced control over actuators and better feedback data are 
available, the code can be changed to reflect the fact that robot performance can more 
closely match simulation, which will improve the robot’s performance considerably. 
 
Software 

The current asymmetric state machine architecture is necessary for the robot in its 
present state, but it should be replaced by a more elegant structure equivalent to that in 
simulation code.  This would allow for most of the performance optimization to occur in 
simulation rather than by physical testing and tweaking.  If developed, such an agreement 
between simulation and the actual machine would be a true milestone in robotic walking 
not only because it would become relatively easy to optimize this system for efficiency 
and long distance walking, but also because it would aid in the generation of new and 
improved physical robot designs. 

 

Conclusion 
The Marathon Walking Robot project is in the process of succeeding in its goals.  The 

robot has already achieved a walking cycle and has the ability to recover from mild 
disturbances.  Clearly the robot must become even more stable and much more efficient 
for it to cover distances on the order of kilometers, but efforts to the present have 
provided a firm foundation and great insight on what must be done to reach this goal.  It 
is within realistic hope that further time and effort invested in this machine will yield 
significant results.   
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Appendices 
user_routines.c 
/******************************************************************************* 
* FILE NAME: user_routines.c <EDU VERSION> 
* 
* DESCRIPTION: 
*  This file contains the default mappings of inputs   
*  (like switches, joysticks, and buttons) to outputs on the EDU RC.   
* 
* USAGE: 
*  You can either modify this file to fit your needs, or remove it from your  
*  project and replace it with a modified copy.  
* 
*******************************************************************************/ 
 
#include "ifi_aliases.h"   // Macros/Aliases used to refer to ports 
#include "ifi_default.h"   // Prototypes for default functions 
#include "ifi_utilities.h" // Prototypes for utility functions 
#include "user_routines.h" // Prototypes for user defined 
 
/*** DEFINE USER VARIABLES AND INITIALIZE THEM HERE ***/ 
// No variables needed 
 
/******************************************************************************* 
* FUNCTION NAME: Setup_Who_Controls_Pwms 
* PURPOSE:       Each parameter specifies what processor will control the pwm.   
*                  
* CALLED FROM:   User_Initialization 
*     Argument             Type    IO   Description 
*     --------             ----    --   ----------- 
*     pwmSpec1              int     I   USER/MASTER (defined in ifi_aliases.h) 
*     pwmSpec2              int     I   USER/MASTER 
*     pwmSpec3              int     I   USER/MASTER 
*     pwmSpec4              int     I   USER/MASTER 
*     pwmSpec5              int     I   USER/MASTER 
*     pwmSpec6              int     I   USER/MASTER 
*     pwmSpec7              int     I   USER/MASTER 
*     pwmSpec8              int     I   USER/MASTER 
* RETURNS:       void 
*******************************************************************************/ 
static void Setup_Who_Controls_Pwms(int pwmSpec1,int pwmSpec2,int pwmSpec3,int pwmSpec4, 
                                    int pwmSpec5,int pwmSpec6,int pwmSpec7,int pwmSpec8) 
{ 
  txdata.pwm_mask = 0xFF;         /* Default to master controlling all PWMs. */ 
  if (pwmSpec1 == USER)           /* If User controls PWM1 then clear bit0. */ 
    txdata.pwm_mask &= 0xFE;      /* same as txdata.pwm_mask = txdata.pwm_mask & 0xFE; */ 
  if (pwmSpec2 == USER)           /* If User controls PWM2 then clear bit1. */ 
    txdata.pwm_mask &= 0xFD; 
  if (pwmSpec3 == USER)           /* If User controls PWM3 then clear bit2. */ 
    txdata.pwm_mask &= 0xFB; 
  if (pwmSpec4 == USER)           /* If User controls PWM4 then clear bit3. */ 
    txdata.pwm_mask &= 0xF7; 
  if (pwmSpec5 == USER)           /* If User controls PWM5 then clear bit4. */ 
    txdata.pwm_mask &= 0xEF; 
  if (pwmSpec6 == USER)           /* If User controls PWM6 then clear bit5. */ 
    txdata.pwm_mask &= 0xDF; 
  if (pwmSpec7 == USER)           /* If User controls PWM7 then clear bit6. */ 
    txdata.pwm_mask &= 0xBF; 
  if (pwmSpec8 == USER)           /* If User controls PWM8 then clear bit7. */ 
    txdata.pwm_mask &= 0x7F; 
} 
 
 
/******************************************************************************* 
* FUNCTION NAME: User_Initialization 
* PURPOSE:       This routine is called first (and only once) in the Main function.   
*                You may modify and add to this function. 



*                The primary purpose is to set up the DIGITAL IN/OUT - ANALOG IN 
*                pins as analog inputs, digital inputs, and digital outputs. 
* CALLED FROM:   main.c 
* ARGUMENTS:     none 
* RETURNS:       void 
*******************************************************************************/ 
void User_Initialization (void) 
{ 
  rom const char *strptr = "IFI User Processor Initialized ..."; 
 
/* FIRST: Set up the pins you want to use as analog INPUTs. */ 
  IO1 = IO2 = IO3 = IO4 = IO5 = IO6 = IO7 = IO8 = INPUT; 
/* 
Port 1:  Inner Potentiometer 
Port 2:  Outer Potentiometer 
Port 3:  Hip Potentiometer 
Ports 4-8: Unused/To Be Used with Current Sensor/Accelerometer 
*/ 
 
/* SECOND: Configure the number of analog channels. */ 
  Set_Number_of_Analog_Channels(EIGHT_ANALOG);     /* See ifi_aliases.h */ 
// There are eight analog channels corresponding to ports 1-8 
 
/* THIRD: Set up any extra digital inputs. */ 
  IO9 = IO10 = INPUT; 
// Ports 9 and 10: Unused 
 
/* FOURTH: Set up the pins you want to use as digital OUTPUTs. */ 
  IO11 = IO12 = IO13 = IO14 = IO15 = IO16 = OUTPUT; 
// Ports 11-16: Unused/For Use with Mike Sherback's H-Bridge 
 
/* FIFTH: Initialize the values on the digital outputs. */ 
  rc_dig_out11 = rc_dig_out12 = rc_dig_out13 = 0; 
  rc_dig_out14 = rc_dig_out15 = rc_dig_out16 = 0; 
// Initialize Outputs to LOW - BRAKE setting on H-Bridge 
  
/* SIXTH: Set your initial PWM values. */ 
  pwm01 = pwm02 = pwm03 = pwm04 = pwm05 = pwm06 = pwm07 = pwm08 = 131; 
// Set all the PWMs to neutral 
 
/* SEVENTH: Choose which processor will control which PWM outputs. */ 
  Setup_Who_Controls_Pwms(USER, USER, USER, MASTER, MASTER, MASTER, MASTER, MASTER);  
// All relevant PWMs controlled by user so that they can be generated every program loop 
 
/* EIGHTH: Set your PWM output type.  Only applies if USER controls PWM 1, 2, 3, or 4. */ 
  Setup_PWM_Output_Type(IFI_PWM,IFI_PWM,IFI_PWM,IFI_PWM); 
// Use IFI PWM signal for Victor 884 
 
/* Add any other user initialization code here. */ 
 
  Initialize_Serial_Comms();     
 
  Putdata(&txdata);             /* DO NOT CHANGE! */ 
 
  User_Proc_Is_Ready();         /* DO NOT CHANGE! - last line of User_Initialization */ 
} 
 
 
/******************************************************************************* 
* FUNCTION NAME: Process_Data_From_Master_uP 
* PURPOSE:       Executes every 17ms when it gets new data from the master  
*                microprocessor. 
* CALLED FROM:   main.c 
* ARGUMENTS:     none 
* RETURNS:       void 
*******************************************************************************/ 
void Process_Data_From_Master_uP(void) 
{ 
  Getdata(&rxdata);   /* Get fresh data from the master microprocessor. */ 
   Putdata(&txdata);             /* DO NOT CHANGE! */ 
} 



user_routines_fast.c 
/******************************************************************************* 
* FILE NAME: user_routines_fast.c <EDU VERSION> 
* 
* DESCRIPTION: 
*  This file is where the user can add their custom code within the framework 
*  of the routines below.  
* 
* USAGE: 
*  You can either modify this file to fit your needs, or remove it from your  
*  project and replace it with a modified copy.  
* 
* OPTIONS:  Interrupts are disabled and not used by default. 
* 
*******************************************************************************/ 
 
#include "ifi_aliases.h"   // Macros/Aliases used to refer to ports 
#include "ifi_default.h"   // Prototypes for default functions 
#include "ifi_utilities.h" // Prototypes for utility functions 
#include "user_routines.h" // Prototypes for user defined 
 
/*** DEFINE USER VARIABLES AND INITIALIZE THEM HERE ***/ 
/* Variable "State" remembers state of the robot.  "State" is initialized to  
   I (corresponding with the integer 0), and cycles II-IV (corresponding with integers 
   1-3. */ 
unsigned char State = StateI; 
// Variable "infront" remembers which pair of legs is in front 
unsigned char infront = OUT; 
// Variable "infrontlast" remembers which pair of legs was last in front 
unsigned char infrontlast = OUT; 
// Variable "inback" remembers which pair of legs is in back 
unsigned char inback = IN; 
 
/******************************************************************************* 
* FUNCTION NAME: InterruptVectorLow 
* PURPOSE:       Low priority interrupt vector 
* CALLED FROM:   nowhere by default 
* ARGUMENTS:     none 
* RETURNS:       void 
* DO NOT MODIFY OR DELETE THIS FUNCTION  
*******************************************************************************/ 
#pragma code InterruptVectorLow = LOW_INT_VECTOR 
void InterruptVectorLow (void) 
{ 
  _asm 
    goto InterruptHandlerLow  /*jump to interrupt routine*/ 
  _endasm 
} 
 
/******************************************************************************* 
* FUNCTION NAME: InterruptHandlerLow 
* PURPOSE:       Low priority interrupt handler 
* If you want to use these external low priority interrupts or any of the 
* peripheral interrupts then you must enable them in your initialization 
* routine.  Innovation First, Inc. will not provide support for using these 
* interrupts, so be careful.  There is great potential for glitchy code if good 
* interrupt programming practices are not followed.  Especially read p. 28 of 
* the "MPLAB(R) C18 C Compiler User's Guide" for information on context saving. 
* CALLED FROM:   this file, InterruptVectorLow routine 
* ARGUMENTS:     none 
* RETURNS:       void 
*******************************************************************************/ 
#pragma code 
 
/* You may want to save additional symbols. */ 
#pragma interruptlow InterruptHandlerLow save=PROD  
 
void InterruptHandlerLow ()      
{                                



  unsigned char int_byte;        
  if (INTCON3bits.INT2IF)         /* The INT2 pin is RB2/INTERRUPTS 1. */ 
  {  
    INTCON3bits.INT2IF = 0; 
  } 
  else if (INTCON3bits.INT3IF)    /* The INT3 pin is RB3/INTERRUPTS 2. */ 
  { 
    INTCON3bits.INT3IF = 0; 
  } 
  else if (INTCONbits.RBIF)       /* INTERRUPTS 3-4 (RB4, RB5, RB6, or RB7) changed. */ 
  { 
    int_byte = PORTB;             /* You must read or write to PORTB   */ 
    INTCONbits.RBIF = 0;          /* and clear the interrupt flag      */ 
  }                               /* to clear the interrupt condition. */ 
} 
 
/******************************************************************************* 
* Processing Functions 
*******************************************************************************/ 
 
/******************************************************************************* 
* FUNCTION NAME: Potentiometer 
* PURPOSE:       Read specified potentiometer (Continuous Feedbacks Alpha and Beta) 
* CALLED FROM:   Sense Functions 
* ARGUMENTS:     motor (IN, OUT, or HIP) 
* RETURNS:       potentiometer (reading of specified potentiometer) 
*******************************************************************************/ 
 
int Potentiometer(char motor) 
{ 
  unsigned int potentiometer; 
  switch(motor) 
  { 
    case IN: 
    { 
      potentiometer = Get_Analog_Value(PotIn); 
      break; 
    } 
    case OUT: 
    { 
      potentiometer =  Get_Analog_Value(PotOut); 
      break; 
    } 
    case HIP: 
    {   
      potentiometer = Get_Analog_Value(PotHip); 
      break; 
    } 
  } 
  return potentiometer; 
} 
 
/******************************************************************************* 
* FUNCTION NAME: SendPWM 
* PURPOSE:       Sets pwm of specified motor to specified value 
* CALLED FROM:   Action Functions 
* ARGUMENTS:     motor (IN, OUT, or HIP); PWM (signed 8-bit) 
* RETURNS:       void 
*******************************************************************************/ 
void SendPWM(char motor, int pwm) 
{    
  pwm = 131 + pwm; // Convert signed 8-bit number to unsigned 8-bit number 
  if (pwm >255)  // If value is greater than allowed maximum 
  { 
   pwm = 255;  // Set to allowed maximum 
  } 
  else if (pwm<0) // If value is less than allowed minimum 
  { 
   pwm = 0;   // Set to allowed minimum 
  } 
  switch(motor) 



  { 
    case IN: 
    { 
      MotorInPWM = pwm; 
      break; 
    } 
    case OUT: 
    { 
      MotorOutPWM = pwm; 
      break; 
    } 
    case HIP: 
    {   
      MotorHipPWM = pwm; 
      break; 
    }   
  } 
} 
 
/******************************************************************************* 
* FUNCTION NAME: InFrontInBack 
* PURPOSE:       Determine which pair of legs is in front and which is in back 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       void 
*******************************************************************************/ 
void InFrontInBack(void) 
{ 
  if (Potentiometer(HIP) > HIPSWITCH) 
  { 
    infront = IN; 
    inback = OUT; 
  } 
  if (Potentiometer(HIP) <= HIPSWITCH) 
  { 
    infront = OUT; 
    inback = IN; 
  } 
} 
 
/******************************************************************************* 
* FUNCTION NAME: Position2PWM 
* PURPOSE:       For position control, convert current position to recommended  
*                pwm signal 
* CALLED FROM:   Sense Functions 
* ARGUMENTS:     Ptarget, motor, tolerance, scale, offset 
* RETURNS:       pwm 
*******************************************************************************/ 
int Position2PWM(int Ptarget, char motor, char tolerance, char scale, char offset) 
{ 
  int position = Potentiometer(motor); 
  int pwm; 
 
  if (position > (Ptarget - tolerance)  // if motor is within Tolerance 
    && position < (Ptarget + tolerance)) 
  {  
    pwm = NEUTRAL;        // turn motor off 
  } 
// Otherwise, Scale voltage proportional to position error, bit shift, and add offset 
  else if (Ptarget-position < 0)    
  { 
    pwm = ((int)scale*(Ptarget-position))/80 - (int)offset; 
  } 
  else 
  { 
    pwm = ((int)scale*(Ptarget-position))/80 + (int)offset; 
  } 
  return pwm; 
} 
 
 



/******************************************************************************* 
* Sense Functions 
*******************************************************************************/ 
 
/******************************************************************************* 
* FUNCTION NAME: HeelStrike 
* PURPOSE:       Determine if heel strike (Sense A) occurs 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       IN, OUT, or NONE 
*******************************************************************************/ 
char HeelStrike (void) 
{ 
  char heelstrike = NONE; 
  if (infront == IN & LimitHeelIn == CLOSED) 
  { 
    heelstrike = IN; 
  } 
  else if (infront == OUT & LimitHeelOut == CLOSED) 
  { 
    heelstrike = OUT; 
  } 
  return heelstrike; 
} 
 
/******************************************************************************* 
* FUNCTION NAME: ToeLift 
* PURPOSE:       Determine if toe lift (Sense B) occurs 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       IN, OUT, or NONE 
*******************************************************************************/ 
char ToeLift (void) 
{ 
  char toeoff = NONE; 
  int ankle; 
  ankle = Potentiometer(inback); 
  if (inback == IN & ankle >= ToeOffIn) 
  { 
    toeoff = IN; 
  } 
  else if (inback == OUT & ankle >= ToeOffOut) 
  { 
    toeoff = OUT; 
  } 
  return toeoff; 
} 
 
/******************************************************************************* 
* FUNCTION NAME: HipSwitch 
* PURPOSE:       Determine if hip switch (Sense C) occurs 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       TRUE or FALSE 
*******************************************************************************/ 
char HipSwitch (void) 
{ 
  char hipswitch = FALSE; 
  int ana = Potentiometer(HIP); 
  if (infrontlast != infront) 
  { 
    hipswitch = TRUE; 
    infrontlast = infront; 
  } 
  else 
  {  
    hipswitch = FALSE; 
    infrontlast = infront; 
  } 
  return hipswitch; 
} 



/******************************************************************************* 
* Action Functions 
*******************************************************************************/ 
 
/******************************************************************************* 
* FUNCTION NAME: AnklePrepare 
* PURPOSE:       Prepares Ankle (Action 1) 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       none 
*******************************************************************************/ 
void AnklePrepare(void) 
{ 
  if (infront == IN) 
  { 
    if (Potentiometer(HIP) > PREPAREIN) 
    { 
      SendPWM(infront, Position2PWM(PreparedIn, infront,  
              PrepareTolerance, PrepareScale, PrepareOffset)); 
    } 
    else  
    { 
      SendPWM(infront, NEUTRAL); 
    } 
  } 
  if (infront == OUT) 
  { 
    if (Potentiometer(HIP) < PREPAREOUT) 
    { 
      SendPWM(infront, Position2PWM(PreparedOut, infront,  
              PrepareTolerance, PrepareScale, PrepareOffset)); 
    } 
    else  
    { 
      SendPWM(infront, NEUTRAL); 
    } 
  } 
} 
 
/******************************************************************************* 
* FUNCTION NAME: AnklePush 
* PURPOSE:       Pushes Ankle (Action 2) 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       none 
*******************************************************************************/ 
void AnklePush (void)       
{ 
  SendPWM(inback,FULL); 
} 
 
/******************************************************************************* 
* FUNCTION NAME: AnkleRetract 
* PURPOSE:       Retracts Ankle (Action 3) 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       none 
*******************************************************************************/ 
void AnkleRetract(void) 
{   
  SendPWM(inback, Position2PWM(Retracted, inback,  
          RetractTolerance, RetractScale, RetractOffset)); 
}    
 
 
 
 
 
 
 
 



/******************************************************************************* 
* FUNCTION NAME: AnkleLock 
* PURPOSE:       Locks support ankle (Action 4) 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       none 
*******************************************************************************/ 
void AnkleLock (void) 
{ 
  if (State == StateII | State == StateIII) 
  { 
    SendPWM(infront, Position2PWM(PreparedIn, infront,  
            AnkleLockTolerance, AnkleLockScale, AnkleLockOffset)); 
  } 
  if (State == StateIV) 
  { 
    SendPWM(inback, Position2PWM(PreparedIn, inback,  
            AnkleLockTolerance, AnkleLockScale, AnkleLockOffset)); 
  } 
} 
 
/******************************************************************************* 
* FUNCTION NAME: HipSwing 
* PURPOSE:       Swings Hip (Action 5) 
* CALLED FROM:   State Machine Function 
* ARGUMENTS:     none 
* RETURNS:       none 
*******************************************************************************/ 
void HipSwing (void) 
{ 
  if (State == StateIII & Potentiometer(inback) < 300) 
  { 
    if (inback == IN) 
    { 
      SendPWM(HIP, Position2PWM(SwingIn, HIP, HipSwingTolerance,  
              HipSwingScaleInIII, HipSwingOffsetInIII)); 
    } 
    else 
    { 
      SendPWM(HIP, Position2PWM(SwingOut, HIP, HipSwingTolerance,  
              HipSwingScaleOutIII, HipSwingOffsetOutIII)); 
    } 
  } 
  if (State == StateIV) 
  { 
    if (infront == IN) 
    { 
      SendPWM(HIP, Position2PWM(SwingIn, HIP, HipSwingTolerance,  
              HipSwingScaleInIV, HipSwingOffsetInIV)); 
 
    } 
    else 
    { 
      SendPWM(HIP, Position2PWM(SwingOut, HIP, HipSwingTolerance,  
              HipSwingScaleOutIV, HipSwingOffsetOutIV)); 
    } 
  } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 



/******************************************************************************* 
* State Machine Function 
*******************************************************************************/ 
 
/******************************************************************************* 
* FUNCTION NAME: Process_Data_From_Local_IO 
* PURPOSE:       Execute user's realtime code. 
* You should modify this routine by adding code which you wish to run fast. 
* It will be executed every program loop, and not wait for fresh data  
* from the master processor. 
* CALLED FROM:   main.c 
* ARGUMENTS:     none 
* RETURNS:       void 
*******************************************************************************/ 
void Process_Data_From_Local_IO(void) 
{ 
  // Begin Initial State 
 
  InFrontInBack();      // Determine which pair of legs is in front 
 
  switch (State) 
  { 
    case StateI:      // If in State I 
    { 
      AnklePrepare();     // Prepare Front Ankle (Action 1) 
      SendPWM(inback, NEUTRAL);  // Send no power to rear ankle 
      SendPWM(HIP, NEUTRAL);   // Send no power to hip 
      if (HeelStrike() == infront) // If Heel Strike (Sense A) 
      {  
        State = StateII;     // Assume State II 
      } 
      break; 
    } 
    // Begin Walking Cycle 
    case StateII:      // If in State II 
    { 
      SendPWM(HIP, NEUTRAL);   // Send no power to hip 
      AnklePush();          // Push Rear Ankle (Action 2) 
      AnkleLock();      // Lock Front Ankle (Action 4) 
      if (ToeLift())     // If Toe Lift (Sense B) 
      { 
        State = StateIII;    // Assume State III 
      } 
      break; 
    } 
    case StateIII:      // If in State III 
    { 
      AnkleRetract();     // Retract Rear Ankle (Action 3) 
      AnkleLock();      // Lock Front Ankle (Action 4) 
      HipSwing();      // Swing Hip (Action 5) 
      if (HipSwitch())     // If Hip Switch (Sense C) 
      { 
        State = StateIV;    // Assume State IV 
      } 
      break; 
    } 
    case StateIV:      // If in State IV 
    { 
      AnkleLock();      // Lock Rear Ankle (Action 4) 
      HipSwing();      // Swing Hip (Action 5) 
      AnklePrepare();     // Prepare Front Ankle (Action 1) 
      if (HeelStrike())    // If Heel Strike (Sense A) 
      { 
        State = StateII;    // Assume State II 
      } 
      break; 
    } 
  } 
  // Send PWM signals set by action functions 
  Generate_Pwms(MotorInPWM, MotorOutPWM, MotorHipPWM, 131,131,131,131,131);  
} 



user_routines.h 
/******************************************************************************* 
* FILE NAME: user_routines.h 
* 
* DESCRIPTION:  
*  This is the include file which corresponds to user_routines.c and 
*  user_routines_fast.c 
*  It contains some aliases and function prototypes used in those files. 
* 
* USAGE: 
*  If you add your own routines to those files, this is a good place to add 
*  your custom macros (aliases), type definitions, and function prototypes. 
*******************************************************************************/ 
 
#ifndef __user_program_h_ 
#define __user_program_h_ 
 
/******************************************************************************* 
                            MACRO DECLARATIONS 
*******************************************************************************/ 
/* Add your macros (aliases and constants) here.                              */ 
/* Do not edit the ones in ifi_aliases.h                                      */ 
/* Macros are substituted in at compile time and make your code more readable */ 
/* as well as making it easy to change a constant value in one place, rather  */ 
/* than at every place it is used in your code.                               */ 
/* 
 EXAMPLE CONSTANT: 
#define PI_VAL          3.1415 
 
 EXAMPLE ALIAS: 
#define LIMIT_SWITCH_1  rc_dig_int1  (Points to another macro in ifi_aliases.h) 
*/ 
 
/* Used in limit switch routines in user_routines.c */ 
#define OPEN        1     /* Limit switch is open (input is floating high). */ 
#define CLOSED      0     /* Limit switch is closed (input connected to ground). */ 
 
// PWM Constants 
#define FULL     255    // Full PWM Signal 
#define NEUTRAL    0    // Neutral PWM Signal 
 
/* Motor Constants - Assign constants for referencing motors and corresponding 
   potentiometers in code */ 
#define NONE     0    // No Motor 
#define IN      1    // Inner Motor 
#define OUT      2    // Outer Motor 
#define HIP      3    // Hip motor 
 
// Logical Constants 
#define TRUE     1 
#define FALSE     0 
 
// States 
#define StateI     0    // Numeral N corresponds to int. n = |N|-1 
#define StateII    1 
#define StateIII    2 
#define StateIV    3 
 
// Positions 
#define Retracted    40    // Ankle Pot. reading, retracted position 
#define PreparedIn    370    // Inner Pot. reading, prepared position 
#define PreparedOut   340    // Outer Pot. reading, prepared position 
#define ToeOffIn    PreparedIn+70 // Inner Pot. reading, Toe Off position 
#define ToeOffOut    PreparedOut+15 // Outer Pot. reading, Prepared position 
#define HIPSWITCH     315    // Hip Pot. reading, Hip Switch 
#define SwingIn    HIPSWITCH+105 // Hip Pot. reading, inner step 
#define SwingOut    HIPSWITCH-105 // Hip Pot. reading, outer step 
#define PREPAREIN    SwingIn-30  // Hip Pot. reading, inner Ankle Prepare  
#define PREPAREOUT    SwingOut+30  // Hip Pot. reading, outer Ankle Prepare 



 
// Tolerances 
#define PrepareTolerance    3 
#define RetractTolerance     3 
#define AnkleLockTolerance   3 
#define HipSwingTolerance    5     
 
//  Scaling Factors 
#define HipSwingScaleInIII  30    // Inner leg swing, State II 
#define HipSwingScaleInIV    20    // Inner leg swing, State III 
#define HipSwingScaleOutIII 40    // Outer leg swing, State II 
#define HipSwingScaleOutIV    20    // Outer leg swing, State III 
#define AnkleLockScale   9 
#define PrepareScale     8 
#define RetractScale      8 
 
// Offsets 
#define HipSwingOffsetInIII 30    // Inner leg swing, State II 
#define HipSwingOffsetInIV  20    // Inner leg swing, State III 
#define HipSwingOffsetOutIII 40    // Outer leg swing, State II 
#define HipSwingOffsetOutIV 20    // Outer leg swing, State III 
#define AnkleLockOffset   9 
#define PrepareOffset     7 
#define RetractOffset      7 
 
// Input Referencing Macros 
#define PotIn     rc_ana_in01  // Inner Potentiometer 
#define PotOut     rc_ana_in02  // Outer Potentiometer 
#define PotHip     rc_ana_in03  // Hip Potentiometer 
 
#define LimitHeelIn    rc_dig_int1  // Inner Heel Limit Switch 
#define LimitHeelOut    rc_dig_int4  // Outer Heel Limit Switch 
 
#define MotorInPWM    pwm01   // Inner Motor 
#define MotorOutPWM   pwm02   // Outer Motor 
#define MotorHipPWM   pwm03   // Hip Motor 
 /******************************************************************************* 
                           FUNCTION PROTOTYPES 
*******************************************************************************/ 
 
/* These routines reside in user_routines.c */ 
void User_Initialization(void); 
void Process_Data_From_Master_uP(void); 
 
/* These routines reside in user_routines_fast.c */ 
void InterruptHandlerLow (void);  /* DO NOT CHANGE! */ 
 
// Processor Functions 
int Potentiometer (char motor); // Continuous Feedback Alpha and Beta 
void SendPWM(char motor, int pwm); 
void InFrontInBack(void); 
int Position2PWM(int Ptarget, char motor, char tolerance, char scale, char offset); 
 
// Sense Functions 
char HeelStrike(void);      // Sense A 
char ToeLift(void);      // Sense B 
char HipSwitch(void);      // Sense C 
 
// Action Functions 
void AnklePrepare(void);     // Action 1 
void AnklePush(void);      // Action 2 
void AnkleRetract(void);     // Action 3 
void AnkleLock (void);      // Action 4 
void HipSwing(void);      // Action 5 
 
// State Machine Function 
void Process_Data_From_Local_IO(void); // States I-IV 
 
#endif 
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