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Abstract

We describe simple one-dimensional models of passive (no energy
input, no control), generally dissipative, vertical hopping and one-
ball juggling. The central observation is that internal passive system
motions can conspire to eliminate collisions in these systems. For
hopping, two point masses are connected by a spring and the lower
mass has inelastic collisions with the ground. For juggling, a lower
point-mass hand is connected by a spring to the ground and an up-
per point-mass ball is caught with an inelastic collision and then
re-thrown into gravitational free flight. The two systems have identi-
cal dynamics. Despite inelastic collisions between non-zero masses,
these systems have special symmetric energy-conserving periodic
motions where the collision is at zero relative velocity. Additionally,
these special periodic motions have a non-zero sized, one-sided re-
gion of attraction on the higher-energy side. For either very large or
very small mass ratios, the one-sided region of attraction is large.
These results persist for mildly non-linear springs and non-constant
gravity. Although non-collisional damping destroys the periodic mo-
tions, small energy injection makes the periodic motions stable, with
a two-sided region of attraction. The existence of such special energy
conserving solutions for hopping and juggling points to possibly use-
ful strategies for both animals and robots. The lossless motions are
demonstrated with a table-top experiment.
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1. Introduction

Two goals for both animals and machines are smooth mo-
tion and energy efficiency. Collisions compromise both goals.
Thus, collision avoidance is a natural part of much machine
design and may be a basic principle in animal locomotion.

For locomotion of animals and machines on level ground,
the positive mechanical work needed is equal to the energy
losses. With a given actuator efficiency, the energetic effi-
ciency of locomotion can be increased only by reducing en-
ergy loss. For terrestrial locomotion, there are losses due to
internal viscous-like dissipation, work absorbed by actuators,
inelastic ground deformation, and viscous losses in the sur-
rounding fluids. For running and hopping, much of the energy
loss is due to motion stoppages and reversals that can be mod-
eled at some level as collisional. Similarly, in the handling
of objects that are not lifted a net distance on average, as is
stereotyped by juggling, the energy cost comes from the en-
ergy losses, some of which are collisional, as when a falling
ball is caught with a massive hand.

The second major energy sink is the negative work of ac-
tuators. Most actuators used by animals and robots are non-
regenerative and work done on the actuator is not recoverable.
Additionally, there is usually an energetic cost (electrical, hy-
draulic, or chemical) associated with absorbing work. Thus, a
simple design rule for energetically efficient locomotion and
manipulation is that both collisional losses and negative ac-
tuator work should be avoided.

One way to reduce collisional loss is to have elastic energy-
conserving collisions, and one means to elastic collisions is
to eliminate the mass of the contacting points; that is, to have
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contact mediated with material that is as close in behavior to a
massless spring as possible. This use of springs to conserve en-
ergy in collisional interactions, such as in a “Pogo stick,” is the
first of Alexander’s (Alexander 1990) “three uses for springs
in legged locomotion”. This is one of the two commonly pro-
posed explanations for why the feet of many animals are rel-
atively light (the other is the relative ease of moving a lighter
end point from place to place).

However, no foot or juggling hand is actually massless,
so some collisional dissipation might seem inevitable. For a
given foot mass, the collisional loss can be reduced by reduc-
ing the impact velocity. But if this velocity reduction is accom-
plished by controlled actuation, then the net energy savings
could be small or none, because, unless carefully arranged in
the context of an overall coordination strategy, this actuation
will involve negative work, or will cause positive changes in
kinetic energy that will be lost later in the motion (Blajer and
Schiehlen 1992).

Alexander’s (Alexander 1990) second use of springs is to
speed leg swinging for faster locomotion. Closely related to
this function is that springs can aid leg swinging not just to
speed up locomotion, but to allow smaller steps at a given
speed so as to reduce large collisional losses associated with
large stance leg angles (see Kuo (2002)). (Alexander’s third
use of springs—to increase the duration of, and thus reduce
the forces in, collisional interactions—is not relevant here).

Because collisional interactions or their avoidance seem
to be so important in the energetics of legged locomotion,
Chatterjee and Garcia (2000) sought to understand the op-
timal energetic efficiency of certain simple passive-dynamic
walking machines built with rigid bodies linked by hinges.
They found that zero dissipation per unit distance could only
be achieved for these machines in the limit of zero velocity
motion. In light of that result, we wondered if finite-speed
locomotion could be perfectly efficient if the use of springs
were allowed. In this paper, we pursue this idea with a simple
model of passive vertical hopping. In particular, we pursue the
use of springs to reduce collisional losses in locomotion not
by mediating collisional interactions, but by avoiding them.
A simple model of “juggling” turns out to have identical gov-
erning equations and phenomenology.

2. Related Hopping and Juggling Research

The basic phenomenon discussed here—that springs can help
conserve energy by passively retracting otherwise about-
to-collide objects—was first noted by Schiehlen and Gao
(Schiehlen 1987; Schiehlen and Gao 1989). Their one-
dimensional (1D) model is essentially identical to the model
we discuss here in more detail. Besides this one pair of pa-
pers, the literature on hopping and juggling does not seem to
address the energy costs of finite-mass collisions or how to
reduce their losses efficiently except by having light feet.

2.0.1. Hopping Research

The idea that the vertical motion in running might be some-
thing like a mass bouncing on a spring is intuitive enough.
The coupling of this vertical motion to horizontal motion
is slightly more subtle (see, for example, Alexander (1977))
but this was the basic scheme behind the successful powered
robots of Raibert (see, for example, Raibert (1986)) studied
analytically in, for example, Koditschek and Buehler (1991).
In this class of model, the robot is a point mass or rigid body
connected to the ground by a leg, containing a massless spring
and actuator. The leg may or may not have rotary inertia, but
this is irrelevant when only considering vertical hopping. The
fully passive implementation of a related design was investi-
gated in some detail by McGeer (1990). Ahmadi and Buehler
(1997) have based a control scheme on stabilizing passive mo-
tions of this general type in order to save energy. But negative
actuator work, rather than normal collisional energy loss, was
the main issue because all of these models have no mass at the
collision points (zero foot mass) and thus avoid the issue of
collisional losses, at least for vertical hopping. Similarly, the
control analysis of Francois and Samson (1994), as well as of
Michalska, Ahmadi and Buehler (1996), is based on energy
conserving motions where the foot has zero mass. The dead-
beat controller in Canudas, Roussel, and Goswami (1997)
neither uses fully passive motions as a base nor addresses en-
ergy efficiency issues. The possibility of wild dynamics of
such controlled vertical hopping has also been studied (see,
for example, M’Closkey, Vakakis, and Burdick (1990) and
Vakakis and Burdick (1990)).

The issue of foot mass is considered explicitly in the ele-
gant bow-leg design of Brown and Zeglin (Zeglin and Brown
1998; Brown and Zeglin 1998) which goes to pains to mini-
mize the colliding mass, thus keeping energy loss from colli-
sions as small as possible. They also surrender tight control of
height and let the robot bounce passively for several bounces,
until the peak height reaches a lower threshold, then injecting
some energy at the next bounce. This approach seems to be
simple, practical, and stable.

The hopping analysis of Berkemeier and Desai (2002) also
ignores foot mass, but does address the trade-offs between
simplicity of control design, stability, and actuator effort (al-
though not energetic efficiency per se). They found, as did
Schaal and Atkeson (1993) and Schaal, Sternad, and Atkeson
(1996), that with an open-loop strategy where forcing is pe-
riodic with no feedback, stable hopping is possible. In these
open-loop models, there are special conditions for periodic
motions to be stable but the most efficient motions are on the
boundary of this stability region. Thus, the open-loop motions
are, if they are to be stable, inherently less than optimal in use
of actuator effort.

The reality that the foot mass (sometimes called toe mass)
is not zero is included explicitly in the hopping models of
Rad, Gregorio, and Buehler (1993), Lapshin (1992) and Wei
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et al. (2000), although none of the controllers discussed in
these papers attempted to minimize the energy dissipated by
collision (or, almost equivalently, from energy lost in active
leg retraction).

2.1. One-dimensional Juggling Research

Closely related to hopping models are highly-simplified 1D
juggling models where one object is repeatedly sent flying by
a moving support. The first order of business is not keeping
several balls aloft, as the word juggling might seem to imply,
but keeping one ball in repeated stable vertical motion.

In extreme contrast to hopping models, which when sim-
plified use zero foot mass, 1D juggling models are most often
simplified by assuming infinite hand mass. That is, a hand is
prescribed to move in a controlled manner that is unaffected by
collisions with the juggled ball. Although the interaction of the
ball with the hand is only intermittent and instantaneous in col-
lisional juggling, Buehler, Koditschek, and Kindlmann (1994)
found it fruitful to use active feedback of the hand throughout
its motions, mirroring the ball’s motion (times a factor) and
then to correct based on a mismatch of actual and desired ball
energy. Stable height control was found but actuator-effort
issues were not addressed. Buehler and Koditschek (1990)
have shown that, as for hopping models, with mistuning of
the controller chaotic dynamics are possible.

Schaal and co-workers (Schaal and Atkeson 1993; Schaal
et al. 1996; Sternad et al. 2000) have looked at an open-loop
control of 1D impact juggling and have made several inter-
esting observations. If a limit cycle is found for an oscillating
hand (with perfect position control) then it is stable if the hand
has a downwards acceleration at impact but not too strongly
downwards, i.e., less in magnitude than

2g (1 + e2)/(1 + e)2, (1)

wheree is the coefficient of restitution. As noted by Berke-
meier and Desai (2002), this finding seems to be related to
their similar result for stability of an open-loop hopping robot.
Sternad et al. (2000) noted that people who are given a racket
and light ball seem to use this passive strategy. That is, to
minimize effort people would presumably bounce a ball at
the time of maximum vertical velocity of their vertically os-
cillating hand. Instead, they found that people prefer to hit the
bouncing ball slightlyafter the peak velocity, during down-
ward acceleration. Thus, it seems that people are willing to
use some extra effort to improve the open-loop stability of the
task. Not emphasized in the paper is that the cost in effort is
often quite small; the phase shift from peak velocity to the
impact people use leads to only a small reduction in impact
velocity. That is, although the research does seem to show that
people have a bias towards using open-loop (sensor-free) sta-
bility mechanisms in the juggling task, people use this mech-
anism with only a small cost in efficiency. A claim has been
made, about which we have more to say in the discussion,

that dissipation is a necessary aspect of stability in open-loop
systems.

Schaal and Atkeson (1993) have briefly discussed the little
studied catch-and-release “Shannon” juggler (little studied,
perhaps, because it works so well). The Shannon juggler uses
e = 0, i.e., the ball is caught and does not bounce. Because the
hand motion is prescribed, this is a deadbeat stabilizer; the ball
is exactly returned to a fixed place in phase space after every
catch. An interesting caveat, which we will discuss further, is
that if the hand has a downward acceleration greater thang at
the instant of contact, there is a bounce instead of a catch even
thoughe = 0. A Shannon juggler with suche = 0 bouncing
does not have deadbeat stability and stability is instead ruled
by the analysis given in, for example, Schaal et al. (1996).

Zavalo-Rio and Brogliato (1999) have considered the con-
trol of vertical juggling and, unlike in the other juggling papers
above, have taken into account the hand mass and dynam-
ics. They have found, according to the (untested by physical
implementation) theory, robust stable controls more general
than the “mirror” laws. They were not interested in energy
efficiency issues.

2.2. Relevance of Existing Juggling and Hopping Literature

Besides the work of Schiehlen et al., all of the modeling re-
search on hopping and juggling has at least one of the follow-
ing three features: (1) massless collisions; (2) control; and (3)
energy input. These three features are certainly reasonable in
this era where just making a robot work well, however inef-
ficient, is still an issue. There is no point in worrying about
the fine points of efficiency and minimizing control effort for
a robot that cannot do its job at all.

Looking ahead to an era where reducing actuator effort
will be of more central concern, the work that follows has
(1) massive collisions, and for most considerations, (2) no
control and (3) no energy input. Instead, it is an investigation
of simple passive means for avoiding collisional losses.

3. A Model for Passive Hopping

Our simple model is just two point masses connected by a lin-
ear massless spring (Figure 1). The subscripth for the masses
denotes hopping (as opposed toj for juggling). These rep-
resent, roughly, a body connected elastically to non-massless
feet. There is no control and no energy input. The only dissi-
pation occurs when the lower mass strikes the ground. Except
where explicitly stated in the discussion, we assume plastic
impact with a coefficient of restitutione = 0, i.e., the velocity
ofm2h becomes zero on impact. The relaxed spring lengthLo
is large enough to keep the masses separated at all times.

The motion has two continuous phases: (1) flight when
both masses are in the air; and (2) contact, whenm2h is in
steady contact with the ground. There are two transitions: (3)
impact (collision, landing), when the velocity ofm2h jumps
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Fig. 1. The hopping “h” model: two point masses connected by a massless spring. The “ foot” m2h has plastic collisions with
the ground. xi are zero when m2h is on the ground and the spring has no tension. The free body diagrams (FBDs) for the pairs
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equations used in the text correspond to m1h = 1, m2h = Mh ≡ M , k = 1, and g = 1.

to zero; and (4) lift-off, when m2h is lifted from contact into
flight.

4. Equations of Motion for Hopping

Flight. The non-dimensional equations of motion for flight
are (see Figure 1):

(1 +Mh)ÿ1 = −Mh(y1 − y2)− 1

(1 +Mh)ÿ2 = (y1 − y2)− 1. (2)

Here y1 = x1/(m2hg/k), y2 = x2/(m2hg/k), Mh =
m2h/m1h, and ˙( ) ≡ d( )/dτh where τh = ωht with ωh =√
k(1 +Mh)/m2h being the angular frequency of vibration in

the flight phase. The dimensionless equations have only one
parameter, Mh. The dimensionless equations correspond to
m1h = 1, m2h = Mh, k = 1, and g = 1 in Figure 1.

Collision Transition. The collision causes a jump in veloci-
ties but not in displacements. Using “ -/+” to denote before and
after impact, the collision occurs when y−

2 = 0 and ẏ−
2 ≤ 0.

The impact transitions are y+
1 = y−

1 , y+
2 = y−

2 = 0, ẏ+
1 = ẏ−

1 ,
and ẏ+

2 = 0.

Contact. During a period of sustained contact, y2 ≡ 0, y1 < 1
and (1 +Mh)ÿ1 = −Mhy1 − 1.

Lift-off Transition. Lift-off from contact occurs when the
spring tension lifts the lower mass and y1 = 1. The lift-off
condition can also be met immediately at contact with no pe-
riod of sustained contact (if y−

1 > 1). At lift-off from sustained
contact, there is no jump in position or velocity of either mass.

We define α ≡ ẏ1 at lift-off after a period of sustained
contact. α is the key variable in the following analysis. The
positions and velocities at lift-off are

y1 = 1; ẏ1 = α; y2 = 0; ẏ2 = 0. (3)

These serve as initial conditions for the flight equations. Note
that all subsequent motions for all time are determined by α at
one lift-off. Thus, the dynamics can be characterized by a 1D
map, αn+1 = f (αn). One-dimensional maps have been used
to study hopping in the past (see, for example, Koditschek and
Buehler (1991)), but not for passive hoppers.

5. A Model for Passive Juggling

The juggling model is shown in Figure 2. It consists of a
free point mass m1j , and a point mass m2j connected to the
ground by a massless, linear spring of stiffness k. The model
is passive and the collisions between the masses are assumed
to be plastic. The masses are assumed to have vertical motion
only. This is like a single mass bouncing with no restitution
on a trampoline with mass (a second mass supported by a
spring). Alternatively, this is also a model of juggling with
the support being a passive oscillator.

As in the hopping model, the juggling model has four
phases: two continuous phases, (1) flight phase, with m1j

moving under gravity and m2j having oscillatory motion; (2)
contact phase, where m1j is in steady contact with m2j ; and
two transition phases, (3) impact between the masses; and
(4) lift-off, where there is a loss of contact between the two
masses.
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6. Equations of Motion for Juggling

Flight. The non-dimensional equations of motion for flight
are: (Figure 2)

ẅ1 = −1

ẅ2 = −w2 − 1. (4)

Here w1 = u1/(m2jg/k), w2 = u2/(m2jg/k), and ˙( ) ≡
d( )/dτj where τj = ωj t with ωj = √

k/m2j being the fre-
quency of vibration ofm2j . The dimensionless equations cor-
respond tom1j = 1,m2j = Mj , k = 1, and g = 1 in Figure 2.

Collision Transition. The collision occurs when w1 = w2

and ẇ1 < ẇ2. Immediately after the collision, m1j and m2j

have the same speed. Using “ -/+” to denote before and after
impact, we have w+

1 = w−
1 = w+

2 = w−
2 . Also ẇ1

+ = ẇ2
+.

Using the balance of linear momentum, the speed of both the
masses just after the impact is given as

ẇ1
+ = ẇ2

+ = ẇ1
− +Mjẇ2

−

1 +Mj

,

where Mj = m2j /m1j .

Contact. During a period of sustained contact between m1j

and m2j , we have w1 = w2 < 0. There is oscillatory motion
with both masses moving as one. This oscillatory motion is
given as

(1 +Mj)ẅ2 = −Mjw2 − (1 +Mj). (5)

Lift-off Transition. There is a loss of contact between the two
masses after a period of sustained contact when the acceler-
ation of the masses is −g. Equivalently, in non-dimensional
quantities this condition is met when ẅ1 = ẅ2 = −1 or when
w1 = w2 = 0. There can be a loss of contact immediately
after impact if w+

1 = w+
2 > 0.

7. Equivalence of Hopping and Juggling
Equations

The hopping model has identical dynamics to the juggling
model. The flight and contact equations for the hopping model
reduce to the flight and the contact equations for the juggling
model by this change of variables and system parameters

w1 = (y1 − 1)+Mhy2

w2 = (y1 − 1)− y2

Mj = Mh (henceforth called just M) (6)

with a scaling of the two dimensionless times τj =√
M/(1 +M) τh.
In the hopping model during the collision transition, we

have ẏ2
+ = 0 and ẏ1

− = ẏ1
+. In the juggling model, just

after the impact, the speed of both masses is ẇ1
+ = ẇ2

+ =
(ẇ1

− +Mẇ2
−)/(1 +M). Using the equivalence relations in

eq. (6), we have

ẇ1
+ = ẇ2

+ = ẏ+
1 .



626 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2002

The equivalence relations in eq. (6) also show that the con-
ditions for lift-off in the hopping model after a period of
sustained contact, i.e., y1 = 1 and y2 = 0, correspond to
w1 = w2 = 0, which are the conditions for loss of contact
(after a period of sustained contact) in the juggling model.
Also, eqs. (6) show that the conditions for immediate lift-off
after impact in the hopping model, i.e., y+

1 > 1 and y+
2 = 0,

correspond tow+
1 = w+

2 > 0, which is the condition for a loss
of contact immediately after impact in the juggling model.

Because of the equivalence of the two systems, we can use
either one for discussion.

Nature of Solutions in General. Here we describe motions in
the hopping model, not yet looking for impact-free solutions.
A solution results from pasting together the flight, contact
and collisional phases. In flight, the center of mass moves as
a particle thrown vertically in a gravitation field. The masses
oscillate sinusoidally around this mean parabolic motion. At
collision,m2h stops dead and the upper mass is unperturbed. If
sustained contact follows,m2h is stationary andm1h has simple
harmonic motion until the next lift-off when the spring tension
matches m2hg.

In the juggling model the flight phase consists of the up-
per mass in a parabolic (height versus time) free fall while
the lower mass oscillates sinusoidally on its support spring.
On impact, the two velocities instantaneously become equal,
while also conserving momentum. If sustained contact fol-
lows, the two masses oscillate together as supported by the
spring until lift-off when the downwards acceleration of the
pair reaches −g.

8. Lossless Collisions

Lossless motions for the hopper can occur only ifm2h impacts
the ground with zero speed (see Figure 3). Refer to Figure 4 to
see how lossless motion is special. In Figure 4(a) the impact
has non-zero speed and would be dissipative. Thus, for no
dissipation, ẏ2 = 0 at y2 = 0. In Figure 4(b) the impact
occurs at zero speed. But because ÿ2 > 0, contact would be
immediately lost and there would be a subsequent collision
with non-zero speed, so we need ÿ2 ≤ 0. Figure 4(c) shows
an impact at zero speed, but with prior ground penetration
because ÿ2 < 0, so we need ÿ2 ≥ 0. Thus, for lossless impact
at y2 = 0, not only ẏ2 = 0, but also ÿ2 = 0. Because ÿ2 = 0,
the ground clearance condition is determined by d3y2/dτ 3.
Figure 4(d) shows a conceivable collision withy2 = 0, ẏ2 = 0,
ÿ2 = 0 but with d3y2/dτ 3 > 0. This is disallowed because
this grazing would be followed by a dissipative impact.

Thus we must simultaneously meet all of these conditions
at the end of flight

y2 = 0, ẏ2 = 0, ÿ2 = 0 and d3y2/dτ
3 < 0

as shown in Figure 4(e). Somewhat remarkably perhaps, all of
these conditions can be simultaneously met in this model, no

matter what the values of the model parameters, by adjustment
of the single dynamic variable α (the lift-off speed of m1h).

To find these lossless solutions, we first solve the initial
value problem for the flight phase (eqs. (2) and (3)). By ele-
mentary methods, the solution is

(1 +M)y2 = 1 + ατ − τ 2

2
− α sin τ − cos τ, (7)

(1 +M)y1 = 1 + ατ − τ 2

2
+M(α sin τ + cos τ). (8)

Let the time of flight be τf . Imposing dissipation-free contact,
we have

y2(τf ) = 0; ẏ2(τf ) = 0; ÿ2(τf ) = 0 (9)

and the inequality condition d3y2(τf )/dτ 3 < 0. Equations (9)
are three equations in two variables, τf and α (M is fixed). At
first sight, the system appears over-determined. Nonetheless,
solutions do exist. From eqs. (7) and (9) we obtain

1 + ατf − τ 2
f

2
− α sin τf − cos τf = 0 (10a)

α − τf − α cos τf + sin τf = 0 (10b)

−1 + α sin τf + cos τf = 0. (10c)

Substituting eq. (10c) into eq. (10a) we obtain ατf − τ2
f

2
= 0,

which implies

τf = 2α (11)

(since τf �= 0). Substituting eq. (11) into (10c), we obtain

α = tan α. (12)

Satisfaction of eqs. (11) and (12) forces satisfaction of
eq. (10b) in addition to eqs. (10a) and (10c), as well as the
inequality condition d3y2(τf )/dτ 3 < 0. Equation (12) has
infinitely many solutions for α (and hence for τf ). These so-
lutions for α which give incessant hopping are denoted by α∗

and equal 4.493409, 7.725251, 10.90412, . . . . Higher val-
ues of α∗ correspond to more oscillations between collisions.
For the first root, α∗ = 4.4934; the solution is shown in Fig-
ure 3 (using M=1). We have also independently verified the
observed persistent motion using a commercial dynamic sim-
ulation package (Working Model), where, to our initial sur-
prise, the motion appeared stable (more about this later).

Summarizing, for values of α∗ that satisfy α = tan α, the
initial conditions given in eq. (3) lead to incessant hopping
solutions. In terms of dimensional quantities, for incessant
hopping,

dx1

dt

∣∣∣∣
t=0

= α∗g

√
M(m1h +m2h)

k
. (13)
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Equation 13 shows that for any hopper of fixed total mass and
fixed k, as the mass ratioM becomes smaller (i.e., as the foot
mass becomes lighter and lighter compared to the torso), the
incessant hopping solutions (dx1/dt)|t=0, corresponding to the
various α∗ values, become closer and closer. Approaching the
singular limit,M → 0, every (dx1/dt)|t=0 becomes arbitrarily
close to an incessant hopping solution α∗. In this way, the
limiting behavior of the model agrees with the behavior of
the model in the limit.

Because of the equivalence of the hopper and juggler we
need not repeat the arguments above for the juggling model.
The same values of α∗ correspond to the vertical velocities of
the hand and ball at separation for solutions where the sub-
sequent collision is at zero relative velocity. Also, as the sin-
gular limit M → 0 (massless hand) is approached, all (large
enough) hand velocities become arbitrarily close to some in-
cessant juggling solution.

9. Analysis Through 1D Maps

We investigate the dynamics of the model for general solutions
using a numerically constructed map, αn+1 = f (αn). The map
counter n is only incremented after sustained contacts (if the

map counter were incremented after non-sustained contacts
we could not reduce the system to a 1D map). We find f by
inserting αn as a parameter in eq. (10a) and solving for τf . If
y1 ≥ 1 at impact there is immediate lift-off. If so, we solve
the flight equations forward until the next contact. If y1 < 1,
there is sustained contact and αn+1 is found from the post-
impact state using energy balance. The 1D map forM = 1 is
shown in Figures 5(a) and (b). The graph remains below the
line αn+1 = αn as non-negative energy dissipation demands.

Just to the right of the α∗ points, there are no bounces be-
tween sustained contacts. Just to the left ofα∗ there is one non-
sustained-contact bounce between sustained contacts, hence
the discontinuity in the slope of the map.

The Case of M → 0. As expected, the numerics show that,
for M → 0, the ẏ1 values corresponding to α∗ bunch up, and
values of the 1D map approach the identity line between α∗

values as well (see Figure 5(c)), as one would expect from the
spring-mass hopping model with negligible unsprung mass or
from a juggling model with a nearly massless hand.

The Case of M → ∞. Somewhat similarly, as M → ∞ the
map approaches the identity line except for in some narrow
but non-vanishing regions (Figure 5(d) shows one of these
regions). We describe this situation using the juggling model
(for the hopping model with M → ∞, y1 → ∞ at the α∗

solutions which impedes simple discussion). If the hand mass
is much larger than the ball mass, one expects that one col-
lision would little affect the next throw; thus, two successive
throws should be close and the map should be close to the
identity line as is observed for most of the map. However, in
the narrow region where the map deviates significantly from
the identity line, there are many bouncing (non-sustained con-
tact) impacts between map evaluations and their cumulative
effect is significant. AsM → ∞, the number of these impacts
apparently also goes to ∞, as suggested by numerics and as
can also be informally reasoned as follows.
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Fig. 5. The 1D map for the hopping model withM = 1. An enlarged portion of (a) is shown in (b) (enlarged about 300 times).
The fixed point α∗ has one-way stability. (c) shows that the map is close to the identity line for a low value of M . (d) shows
that for a large value of M the map is close to the identity line but for a small neighborhood bounded below by π and above
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In the limit M = ∞, the juggling hand has unperturbable
sinusoidal oscillations. The bouncing analysis of Schaal et al.
(1996) applies for e = 0 if there is no sustained contact (only
bouncing). Applying the condition that there be periodic mo-
tions (ẇ1 = π at impact), that there be no sustained contact
(ẅ1 < −1), and that the periodic motions be stable (ẅ1 > −2,
from eq. (1) with e = 0), for the sinusoidal motion of the hand
we find a range of amplitudes for which there can be stable
bouncing in the model of Schaal et al. (1996).

For oscillations of the lower mass at any amplitude within
this range of stable bouncing, there is also a time when the
condition for a throw after a sustained contact is met (i.e.,
where the downwards acceleration of the lower mass is −1).
In evaluating our map numerically, we assume that the upper
mass is thrown at that same point; the speed ẇ1 with which the
upper mass is thrown depends on the amplitude of the lower
mass oscillation. The throwing speeds, when the motion is
such that stable bouncing is possible, are in the range:

π < ẇ1 <
√
π 2 + 3 or approximately 3.14 < ẇ1 < 3.59.

Subsequent motion after a throw at a speed in this range, since
the period-one bouncing–juggling solution is asymptotically
stable, should converge to that period-one bouncing solution.
Thus, after a throw (and map evaluation) motion converging
to stable bouncing continues indefinitely, there is no more

sustained contact, and the map cannot be evaluated again. At
least, for M ≡ ∞.

If M is very large but finite, we expect the time history of
the motion to look approximately like the infiniteM solution
above, except that the amplitude of oscillation of the lower
hand mass now slowly decreases as the upper mass continues
bouncing on it and slowing it, again and again. This process
continues until the amplitude of the hand motion is not large
enough to support stable bouncing ẇ1 < π . The bouncing
solutions then give way to a solution including a sustained
contact, and the map is finally evaluated.

At the high amplitude end of the stable bouncing region
things are slightly less clear. Where the analysis of Schaal
et al. (1996) predicts a loss of linearized stability, a small
window of stable period-two bouncing solutions seems (in
our numerics) to be stable. So the right boundary of the trian-
gular region of the map protruding from the identity line goes
slightly past the upper limit of stable period-one bouncing
solutions at

√
π 2 + 3 because throws in this range also lead

to stable period-two bounces that continue until the period-
one bounces take over and the energy of the massive hand is
attenuated.

So, for any large but finite M we expect a map similar to
Figure 5(d) where in the funny level (triangular jog) region a
single map evaluation (from one throw after sustained contact
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to the next) is evaluated with a series of bouncing contacts
between.

One-sided Stability. The fixed points of the map are the non-
dissipative solutions discussed previously. As for any map
with a hump tangent to the identity line (see, for example,
Figure 2 in Goldhirsch, Noskowicz, and Schuss (1993) and
references therein), a so-called “ tangent bifurcation” that typ-
ically occurs at special parameter values for many systems,
the fixed points have one-sided stability. Figure 5(b) shows
that the map, in the neighborhood of each fixed point, locally
has two distinct behaviors: to the left of the fixed point, the
map has a slope greater than one, while to the right it is tangent
to the identity line at α∗.

Any trajectory starting from an initial condition just to the
right of α∗ will eventually go to the fixed point. However,
an initial condition just to the left will diverge and could be
attracted to a solution at a smaller α∗. As a consequence, the
basin of attraction for any fixed point α∗ can be quite complex,
as discussed in some detail by Reddy and Pratap (2002).

By most definitions of stability, the persistent solutions are
unstable; there are infinitesimal perturbations (to the left of the
tangent point) which grow as the map is iterated. However, the
one-sided stability is perhaps less unstable than the technically
applicable description “unstable” would imply, in that there
is a set of initial conditions with finite (non-zero) measure
that become attracted to the periodic motions. In other words,
one does not need infinite precision to locate a point on the
attracting set.

As mentioned above, such one-sided stability is a com-
monly observed feature of systems undergoing “ tangent” bi-
furcations. Note, however, that (unless imbedded in a more
complex model) our system is not at a bifurcation point;
the tangency persists for all values of free system param-
eters in this otherwise-conservative system with dissipative
collisions.

Symmetry of Special Solutions. Figure 6(a) shows a typical
non-incessant trajectory of m2h, implicitly including impact
impulseP . Played backwards, this motion would be a solution
only if, at lift-off, an impulse P acted from the ground. Since
the model does not allow a lift-off impulse, a typical motion
is not time reversible.

Now we consider an incessant hopping solution (Fig-
ure 6(b)). Having no landing impulse, it may be reversible
in time for a full motion cycle (flight, contact, lift-off and
landing). Using eqs. (10c) and (12) in (8), we see y1(τf ) =
1 = y1(0). Similarly from eqs. (8) and (10b), ẏ1(τf ) = −α∗.

A time-reversed incessant trajectory, being a valid solu-
tion, satisfies the lift-off condition y1 = 1. By energy conser-
vation, the system energy (KE+PE) at lift-off and landing are
the same. Thus, the incessant hopping solution has landing
with y1 = 1 and |ẏ1| = α. Now ẏ1 = +α at landing is im-
possible because lift-off occurred at ẏ1 = α, and (because of
gravity) the momentum of the system is not conserved during

flight (ẏ1 = +α would incorrectly conserve momentum). So
ẏ1 = −α. Thus, for the incessant motions, a time-reversed so-
lution is not only a solution (as for all classical non-dissipative
mechanical systems) but also the same solution (the movie
played backwards is the same movie).

Persistent Hopping Does Not Depend on Spring Linearity.
The above symmetry discussion used the time-reversal invari-
ance of the equations but neither spring linearity nor gravity
constancy. So even for hoppers with non-linear springs in a
non-uniform gravitational field, if there are any incessant hop-
ping solutions, they must have time-reversal symmetry.

Here is a qualitative consistency argument for the existence
of incessant hopping with a non-linear spring and varying-
with-height gravity. Consider motions that at some reference
time in the flight have center-of-mass height h, compression
a of the spring and ẏ1 = ẏ2 = 0. These conditions gener-
ate a time-symmetric trajectory with the reference time being
mid-flight. Now look at a family of such motions where h
is fixed and a is varied (Figure 7). For small enough a, the
trajectory of m2h has no extrema after mid-flight. For large
enough a, the trajectory of m2h has one or more pairs of ex-
trema. For an intermediate value of a, two extrema merge and
two of the dissipation-free impact conditions are met (ẏ2 = 0
and ÿ2 = 0). Now adjust h to achieve the condition y2 = 0
(while continuously adjusting a, if necessary, to maintain the
inflection condition).

The solution thus obtained is a persistent hopping solution.
That is, persistent hopping solutions are expected even for
the energy-conserving model perturbations of a non-uniform
gravitational field and/or non-linear springs (assuming the
non-linearities do not disrupt center-of-mass flight time in-
creasing monotonically with h and the oscillatory nature of
the motions relative to the center of mass in flight).

Viscous Damping Destroys Incessant Hopping. Under dis-
sipative perturbations (damping), the map shifts generally
downwards, loses contact with the identity line, and inces-
sant hopping is lost as shown schematically in curve (a) of
Figure 8.

Small Energy Injection Stabilizes Persistent Hopping.
With small energy input, such as by incrementing α by a
small amount ε at every step, the map will move generally
up, as in curve (c) of Figure 8, drawn for the case M = 1.
The map will then cut the identity line at two fixed points:
one stable and the other unstable. Thus, we can obtain inces-
sant motion with bidirectional stability by injecting a small
amount of energy at each hop. To correspond with exactly dis-
placing the curve upwards, one would add a fixed increment
in launch velocity, but the qualitative result does not depend
on any precise form of energy injection. Presumably, small
numerical errors equivalent to energy inputs caused the ap-
parent stability of motions in the Working Model numerical
simulation mentioned in Section 8.
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For values ofM not far from 1, the global basin of attraction
of a stable fixed point is actually quite complex, due to humps
in the map from greater values of α∗. However, for simplicity,
we briefly examine the local basin of attraction, meaning that
part of the basin which is an open interval containing the α∗

of interest. The size of this basin is one measure of stability.
Without energy injection, the size of the local basin is zero

(the finite-sized one side gets no credit because the motion is
unstable). For infinitesimal energy injection, there is a small
basin whose size grows with the amount of energy injected. As
the amount of energy injected increases further, the hitherto
stable fixed point eventually loses stability when the map has
a slope of −1 at the upper fixed point, possibly through a
period doubling bifurcation (as in M’Closkey et al. (1990) and
Vakakis and Burdick (1990)). At this point, for the M = 1
case shown, the local basin will have maximal size (as shown
in Figure 8 by a horizontal dashed line). When the map is lifted
above this point, as in curve (e) of Figure 8, the period-one
motion loses stability.
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Fig. 8. The map near the first nominal fixed point when
energy is added or subtracted for M = 1. Curve (b) is the
basic system of study with the semi-stable fixed point marked
with a dot. If energy is removed at every hop, more exactly
if the launch velocity is diminished by a fixed constant, the
curve is displaced down as in (a). There is no fixed point. If
the curve is moved up by the injection of energy as in curve
(c) the upper intersection of the map with the identity line,
marked with a dot, becomes stable. Curve (d) is the map
with the greatest injection of energy for which the upper
fixed point is stable. This curve also maximizes the basin
of attraction shown by the horizontal dotted line. As the
map is lifted through this configuration there might be a
period doubling bifurcation (not investigated). If the map is
displaced above (d) there is no stable fixed point, as in curve
(e) although some non-periodic orbit could still be attractive.
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10. Physical Demonstrations

As a physical test of the model and to set the ideas out clearly,
we set up a table-top demonstration experiment. This does
nothing, of course, to show the utility of the present concepts
in a practical robot. We set up the juggling version of the model
using a standard freshman-physics demonstration air track
with two available masses and tension springs. The track was
tipped with a block to simulate reduced gravity (see Figure 9).

In this experiment, the maximum-compression release-
from-rest position was tuned, by trial and error, to find the
motion where the catching collision was as gentle as possi-
ble and with only one oscillation of the hand (left, m2) mass
during flight. No theoretical calculations were made for the
predicted amplitudes before the measurements. The ampli-
tudes of motion of both m1 and m2 were measured for these
motions. These amplitudes and their ratios were then com-
pared with the model-predicted values as follows.

Let A1 = h + h2 and A2 = h1 + h2 (see Figure 10) be
the amplitudes of motion of m1 and m2, respectively. We can
determine h, h1 and h2 from eqs. (4) and (5). Since these
equations apply between collisions, we can use conservation
of energy to find

h = ẇ2
1

2

h1 = −1 +
√

1 + ẇ2
1 (14)

h2 = 1 +M

M

[
1 +

√
1 + M

1 +M
ẇ2

2

]
.

Note that h2 is obtained from the contact equation in which
we can use either ẇ1 or ẇ2 since ẇ1 = ẇ2. UsingM = 0.909
(from m1 = .2923 kg and m2 = .2657 kg) and ẇ1 = ẇ2 =
α∗ = 4.4934, we obtain h = 10.095, h1 = 3.603, h2 =
8.942, so that the model predicts dimensionless A1 = 19.037
and A2 = 12.545. Note that the amplitude ratio A1/A2 (like
any ratio of sums or differences of any of h1, h2 or h) is
independent of the dimensional scaling (and thus independent
of g). Thus we have

(A1/A2)model = 1.517 ± 3% and

(A1/A2)exp = 1.523 ± 3%.

The 0.4% difference between theory and experiment is far
within the estimated cumulative error bound of 6%.

To compare the experimental values of the absolute di-
mensional amplitudes with the corresponding predicted val-
ues, we need to dimensionalize the predicted A1 and A2.
We find the dimensional amplitudes by multiplying with the
scaling factor m2jg/k (recall that w1 = u1/(m2jg/k) and
w2 = u2/(m2jg/k)). The gravity constant g in the model cor-
responds to the effective air-track gravity of g sin θ . The air
track was tipped up by 1.1 inch over a five foot horizontal dis-
tance. Thus, the slope θ = tan−1(1.1/60) = 1.83×10−2. The

θ
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Fig. 9. Schematic diagram of the air-track juggling experi-
ment. A freshman-physics style air track was propped with
a book to an angle of about 1◦. m1 = 292.3g, m2 = 265.7g.
To avoid compression in the springs, two springs were pre-
stretched end-to-end as shown, with knet = 2k = 8.8 N m−1.
The normally elastic bumpers were padded with paper to
deaden the collisions. Motion is initiated by holding m1

to the left of equilibrium, with m2 resting against it, and
then releasing it. The minimum displacement that leads to a
smooth recapture is the primary experiment. Secondarily, an
attempt to sustain oscillations was made by adding a small
amount of energy during each cycle by moving the spring
end back and forth a distance D = 3mm; to the right when
m2 is at its left extreme and to the left when m2 is at its right
extreme. Up to eight sequential smooth collisions could be
obtained.
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Fig. 10. The amplitudes of oscillation of the two masses
in the juggling model are shown to indicate measurements
made in the juggling experiment.
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spring stiffness was measured independently by timing the
oscillations of a known hung mass. The scaling factor is thus
computed to be m2jg sin θ/k = 5.431 × 10−3m. Therefore,

(&u1)model = 0.103m ± 9% and

(&u1)exp = 0.099m ± 1%.

The 4% difference between theory and experiment is well
within the estimated cumulative error bound of 10%.

Up to eight smooth collisions, and then only rarely, could
be obtained with hand forcing. Not more, presumably because
the accuracy of the energy stimulus was not good enough
for the small domain of attraction of the periodic motions.
Note, however, that the experiment is close to the M = 1
(equal mass) regime that has a narrow domain of attraction.
If, instead, we had used either a large or small mass ratio,
persistent motions may have been easier to achieve.

Jumping on a Bridge. As mentioned, the juggling model
is like bouncing on a trampoline where the canvas has non-
negligible mass. This is a situation one can perhaps imagine
better by description of a real-world (if uncommon) situation
we encountered on a wooden bridge about 3 m long. Both
the existence and special nature of the solutions in this pa-
per were demonstrated. This bridge had essentially only one
vertical mode of oscillation that could be excited by jumping.
After one jump in the air, with the bridge oscillating under-
neath, one generally would land with a bang as the oscillating
bridge slapped up against one’s descending feet. But jump-
ing to just the right height one could jump almost as if on
a massless trampoline, although one was really landing on a
massive bridge. One had to jump just right initially, and then
with concentration (but little physical effort), to repeat the
smooth collision-free motions. The bridge would do about
one and a half cycles of oscillation during the flight phase,
as per the juggling theory here, and approximately match the
downwards foot velocity at contact. If the timing got slightly
off, a jarring collision would occur and one would have to
start again.

Posting on a Horse. Also related is “posting” on a trotting
horse where the motion of the horse is like a juggling “hand” ,
and the rider’s body is like a juggled ball. While posting, a rider
uses some leg support on the stirrups perhaps for control and
perhaps to reduce the effective gravity on the body. During the
“fl ight” of the posting rider, the horse’s back does about one
and a half oscillations and then the rider has a gentle landing
on the descending horses back, like a juggled ball in the theory
here. The phasing and motions are as per the juggling model,
with the horse-back oscillations being analogous to a massive
juggling “hand” . Because the horse motion is forced and the
horse mass high, posting is closer to a large or infinite M .
Without any leg pressure, a person on a trotting horse has
jarring collisions at twice the rate, i.e., at the same rate as
the oscillations of the horse’s back. This non-posting riding

on a trotting horse is perhaps close to the stable (dissipative)
passive juggling in, for example, Schaal et al. (1996).

11. Discussion

Relation to Open-loop Juggling. The juggling model we
have discussed above is an extreme case of an open-loop
machine in that the open-loop controller has no actuation.
The model is also catch-and-release in that there is sus-
tained contact before each throw. Catch-and-release open-
loop “Shannon” juggling is known to be strongly (deadbeat)
stable (Schaal and Atkeson (1993)). Catch-and-release hop-
ping, where the spring between the two masses is replaced
with a displacement-controlled actuator, is similarly stable.
But unlike the Shannon juggler, or a spring-less hopper, sta-
bility is an issue in our model because the hand has dynamics.
(Similarly, our hopper has internal dynamics.)

In the limit as hand mass goes to infinity (M → ∞) the
model presented here is equivalent to the catch-and-release
juggler with a sinusoidal hand oscillation, at least for those
cases where there is some sustained contact. For most val-
ues of launch, the return map approaches the identity line in
this limit, not the horizontal line of a deadbeat system. The
fact that in-flight perturbations of the juggled mass are to-
tally quenched when hand mass is infinite is not revealed by
our map, which allows only simultaneous perturbations of the
hand and ball at the lift-off state.

Existence of Persistent Motions Does Not Depend on the
Value of e. Note that the incessant hopping motions satisfy
all the governing equations for any value of e (even e > 1),
not just e = 0. Off the periodic motions, the map and stability
analysis do not apply for e �= 0, but the catch-and-release
constant-energy motions persist (are periodic solutions) for
any value of e because the collisions are at zero relative
velocity.

Passive Stability and Dissipation. There is a common intu-
ition that dissipation is generally required for passive stability
(see, for example, Schaal et al. (1996)). However this claim
needs qualification.

In systems with non-holonomic contact (see, for example,
Ruina (1998)) some care is needed in describing the role of
dissipation for stability. In particular, stability does not de-
pend on dissipation. Thus, the intuition based on experience
with the vast library of holonomic mechanical systems—that
stability depends on damping in general—is not correct. How-
ever, for systems whose only non-holonomicity comes from
intermittent contact there are, despite claims to the contrary,
no known systems that are entirely passive, non-dissipative
and stable. Because of the 1D nature of the motions in this
system, its intermittent contact is not non-holonomic (the sys-
tem is essentially holonomic), these issues of holonomicity do
not apply, and there is necessarily a need for dissipation to ob-
tain stability.
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But this does not mean that the desired motion is dissi-
pative. A trivial example is a damped pendulum; it has no
dissipation at its stable equilibrium. Dissipation is needed to
attract, but no dissipation is needed on the stable motion.

Such is approximately the case for the system described
in this paper (to the extent that the word “stable” is applica-
ble). We have passive attraction to a dynamic limit cycle even
though there is no energetic dissipation on the cycle. So the
claim that dissipation is needed for stability is not negated
here, but one should be aware that the stable motions them-
selves need not be dissipative.

Even if the hopping model were somehow expanded to
two-dimensional running, where the non-holonomic issues
are relevant, a model with a plastically-colliding massive foot
will always have dissipation in some of its motions.

Linear Stability is not Well Correlated with the Size of the
Basin of Attraction. With reference to Figure 8 it is inter-
esting to note that, for this system at M = 1, with energy
injection as a free structural parameter, the local basin of at-
traction (as defined earlier) is largest just when the linearized
stability is lost. That is, a simple measure of the degree of sta-
bility is difficult here. The two obvious candidates, largeness
of the local basin of attraction and smallness of the stability-
governing eigenvalue, are negatively related to each other.

Large Basin of Attraction for Extreme Values of M . Fig-
ure 5(b) shows that forM = 1 the attracting set to the special
solution is extremely small. Furthermore, if the system is to
be stabilized by unconditional injections of energy at each
contact, these cannot be too large (as shown in Figure 8).

However, Figures 5(c) and (d) show that for sufficiently
large or sufficiently smallM any sufficiently large initial con-
dition is attracted to one of the special motions. This attraction
from arbitrary, but large enough, initial launches is easily ver-
ified with a dynamic simulator such as Working Model. That
is, systems with M � 1 or with M � 1 find their own fixed
points by marching forward in time from a large enough but
arbitrary initial condition.

Taking into account that there is some dissipation besides
the collision, with these extreme values of M genuine two-
sided stability with a broad basin of attraction can be achieved
by small injections of energy.

Applicability. Here we have described how the collision loss
at the feet of a particularly simple hopping machine can be
reduced by appropriate phasing of internal motions. The more
general idea that the model exemplifies is that energetically-
passive internal motions of a robot can be phased to mini-
mize collision losses. Another example, mentioned in Kuo
(2002a, 2002b) is the use of springs to reduce the step length,
and hence the collisional loss, in walking. Finally, we do not
claim that the passive collision-avoidance mechanism dis-
cussed here is, as literally presented, a means to great effi-
ciency gains for legged locomotion (or juggling machines).

The presentation only shows in detail how the general idea
works in a specific, and perhaps too-simple, implementation.

But the model does provide an example of the concept that
proper phasing of passive internal degrees of freedom can be a
means to reducing impact losses and thus improving energetic
efficiency.

12. Conclusions

The work here extends the results of Schiehlen and Gao
(Schiehlen 1987, Schiehlen and Gao 1989) by showing an-
alytical conditions for lossless hopping, the symmetry of the
solutions, the robustness to model perturbations, the identifi-
cation with a simple model of juggling, the one-sided stability
of the motions, the stabilization by small energy injections,
and simple experimental verifications of the results.

In particular, collisional losses associated with a hopper’s
foot impact (with any e < 1) can be eliminated (in our simple
model) by a passive retraction of the landing foot effected by a
passive, possibly non-linear, spring. Similarly, in juggling, the
ball–hand collision dissipation can be eliminated. Associated
with this dissipation-free collision, for the case e = 0, is
a periodic finite-amplitude motion that is one-way stable in
theory, and can in practice be maintained and stabilized by
tiny energy injections.

Lossless impact motions somewhat like those described
here could be used to aid the efficiency and stability of hop-
ping or juggling mechanisms. More generally, the example
here shows that internal energy storage in a system can,
if it has motions arranged to be appropriately synchronous
with external collisions, lead to a decrease in net collisional
dissipation.
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