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Abstract

We describe simple one-dimensional models of passive (no energy
input, no control), generally dissipative, vertical hopping and one-
ball juggling. The central observationisthat internal passive system
motions can conspire to eliminate collisions in these systems. For
hopping, two point masses are connected by a spring and the lower
mass has inelastic collisions with the ground. For juggling, a lower
point-mass hand is connected by a spring to the ground and an up-
per point-mass ball is caught with an inelastic collision and then
re-thrown into gravitational freeflight. The two systems have identi-
cal dynamics. Despiteinelastic collisions between non-zero masses,
these systems have special symmetric energy-conserving periodic
motions where the collisionis at zero relative vel ocity. Additionally,
these special periodic motions have a non-zero sized, one-sided re-
gion of attraction on the higher-energy side. For either very large or
very small mass ratios, the one-sided region of attraction is large.
These results persist for mildly non-linear springs and non-constant
gravity. Although non-collisional damping destroysthe periodic mo-
tions, small energy injection makesthe periodic motions stable, with
atwo-sided region of attraction. The existence of such special energy
conserving solutionsfor hopping and juggling pointsto possibly use-
ful strategies for both animals and robots. The lossless motions are
demonstrated with a table-top experiment.
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Persistent Passive
Hopping and
Juggling is Possible
Even With Plastic
Collisions

1. Introduction

Two goals for both animals and machines are smooth mo-
tion and energy efficiency. Collisions compromise both goals.
Thus, collision avoidance is a natural part of much machine
design and may be a basic principle in animal locomotion.

For locomotion of animals and machines on level ground,
the positive mechanical work needed is equal to the energy
losses. With a given actuator efficiency, the energetic effi-
ciency of locomotion can be increased only by reducing en-
ergy loss. For terrestrial locomotion, there are losses due to
internal viscous-like dissipation, work absorbed by actuators,
inelastic ground deformation, and viscous losses in the sur-
rounding fluids. For running and hopping, much of the energy
loss is due to motion stoppages and reversals that can be mod
eled at some level as collisional. Similarly, in the handling
of objects that are not lifted a net distance on average, as is
stereotyped by juggling, the energy cost comes from the en-
ergy losses, some of which are collisional, as when a falling
ball is caught with a massive hand.

The second major energy sink is the negative work of ac-
tuators. Most actuators used by animals and robots are non-
regenerative and work done on the actuator is not recoverable.
Additionally, there is usually an energetic cost (electrical, hy-
draulic, or chemical) associated with absorbing work. Thus, a
simple design rule for energetically efficient locomotion and
manipulation is that both collisional losses and negative ac-
tuator work should be avoided.

One way to reduce collisional loss is to have elastic energy-
conserving collisions, and one means to elastic collisions is
to eliminate the mass of the contacting points; that is, to have
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contact mediated with material that is as close in behavior ta220.1. Hopping Research
massless spring as possible. This use of springs to conserve en-

ergy in collisional interactions, such as ina“Pogo stick,” is thehe idea that the vertical motion in running might be some-
first of Alexander’s (Alexander 1990) “three uses for springging like a mass bouncing on a spring is intuitive enough.
in legged locomotion”. This is one of the two commonly pro-The coupling of this vertical motion to horizontal motion
posed explanations for why the feet of many animals are rg slightly more subtle (see, for example, Alexander (1977))
atively light (the other is the relative ease of moving a lighteput this was the basic scheme behind the successful powered
end point from place to place). robots of Raibert (see, for example, Raibert (1986)) studied
However, no foot or juggling hand is actually masslessynalytically in, for example, Koditschek and Buehler (1991).
so some collisional dissipation might seem inevitable. For @ this class of model, the robot is a point mass or rigid body
given foot mass, the collisional loss can be reduced by restgbnnected tothe ground by a |eg, Containing amassless Spring
ing the impact velocity. Butif this velocity reduction is accom-and actuator. The leg may or may not have rotary inertia, but
plished by controlled actuation, then the net energy savinggs is irrelevant when only considering vertical hopping. The
could be small or none, because, unless carefully arrangediifity passive implementation of a related design was investi-
the context of an overall coordination strategy, this actuatiggated in some detail by McGeer (1990). Ahmadi and Buehler
will involve negative work, or will cause positive changes in1997) have based a control scheme on stabilizing passive mo-
kinetic energy that will be lost later in the motion (Blajer andions of this general type in order to save energy. But negative
Schiehlen 1992). actuator work, rather than normal collisional energy loss, was
Alexander’s (Alexander 1990) second use of springs is e main issue because all of these models have no mass at the
speed leg swinging for faster locomotion. Closely related tgollision points (zero foot mass) and thus avoid the issue of
this function is that springs can aid leg swinging not just teollisional losses, at least for vertical hopping. Similarly, the
speed up locomotion, but to allow smaller steps at a givagbntrol analysis of Francois and Samson (1994), as well as of
speed so as to reduce large collisional losses associated Wifithalska, Ahmadi and Buehler (1996), is based on energy
large stance leg angles (see Kuo (2002)). (Alexander’s thiednserving motions where the foot has zero mass. The dead-
use of springs—to increase the duration of, and thus redugeat controller in Canudas, Roussel, and Goswami (1997)
the forces in, collisional interactions—is not relevant hel’e).neither uses fu||y passive motions as a base nor addresses en-
Because collisional interactions or their avoidance seegtgy efficiency issues. The possibility of wild dynamics of
to be so important in the energetics of legged locomotioguch controlled vertical hopping has also been studied (see,
Chatterjee and Garcia (2000) sought to understand the ggr example, M'Closkey, Vakakis, and Burdick (1990) and
timal energetic efficiency of certain simple passive-dynamigakakis and Burdick (1990)).
walking machines built with rigid bodies linked by hinges. The issue of foot mass is considered explicitly in the ele-
They found that zero dissipation per unit distance could Onyant bow-|eg design of Brown and Zeg“n (Zeg“n and Brown
be achieved for these machines in the limit of zero velocityg9g; Brown and Zeglin 1998) which goes to pains to mini-
motion. In |Ight of that result, we wondered if finite-speed»nize the colliding mass, thus keeping energy loss from colli-
locomotion could be perfectly efficient if the use of springsions as small as possible. They also surrender tight control of
were allowed. In this paper, we pursue this idea with a simplgight and let the robot bounce passively for several bounces,
model of passive vertical hopping. In particular, we pursue thentil the peak height reaches a lower threshold, then injecting
use of springs to reduce collisional losses in locomotion n@bme energy at the next bounce. This approach seems to be
by mediating collisional interactions, but by avoiding themsimple, practical, and stable.
A simple model of “juggling” turns out to have identical gov-  The hopping analysis of Berkemeier and Desai (2002) also
erning equations and phenomenology. ignores foot mass, but does address the trade-offs between
simplicity of control design, stability, and actuator effort (al-
though not energetic efficiency per se). They found, as did
2. Related Hopping and Juggling Resear ch Schaal and Atkeson (1993) and Schaal, Sternad, and Atkeson
(1996), that with an open-loop strategy where forcing is pe-
The basic phenomenon discussed here—that springs can hédglic with no feedback, stable hopping is possible. In these
conserve energy by passively retracting otherwise abowtpen-loop models, there are special conditions for periodic
to-collide objects—was first noted by Schiehlen and Gamotions to be stable but the most efficient motions are on the
(Schiehlen 1987; Schiehlen and Gao 1989). Their onéeundary of this stability region. Thus, the open-loop motions
dimensional (1D) model is essentially identical to the modedre, if they are to be stable, inherently less than optimal in use
we discuss here in more detail. Besides this one pair of paf actuator effort.
pers, the literature on hopping and juggling does not seem to The reality that the foot mass (sometimes called toe mass)
address the energy costs of finite-mass collisions or how i® not zero is included explicitly in the hopping models of
reduce their losses efficiently except by having light feet. Rad, Gregorio, and Buehler (1993), Lapshin (1992) and Wei
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et al. (2000), although none of the controllers discussed that dissipation is a necessary aspect of stability in open-loop
these papers attempted to minimize the energy dissipateddystems.
collision (or, almost equivalently, from energy lost in active Schaal and Atkeson (1993) have briefly discussed the little

leg retraction). studied catch-and-release “Shannon” juggler (little studied,
perhaps, because it works so well). The Shannon juggler uses
2.1. One-dimensional Juggling Research e = 0,i.e., the ball is caught and does not bounce. Because the

hand motionis prescribed, this is a deadbeat stabilizer; the ball

Closely related to hopping models are highly-simplified 105 exactly returned to a fixed place in phase space after every
juggling models where one object is repeatedly sent flying bystch. An interesting caveat, which we will discuss further, is
a moving support. The first order of business is not keepingat if the hand has a downward acceleration greatergren
several balls aloft, as the word juggling might seem to implyne instant of contact, there is a bounce instead of a catch even
but keeping one ball in repeated stable vertical motion. thoughe = 0. A Shannon juggler with such= 0 bouncing

In extreme contrast to hopping models, which when simyges not have deadbeat stability and stability is instead ruled
plified use zero foot mass, 1D juggling models are most ofteyy, the analysis given in, for example, Schaal et al. (1996).
simplified by assuming infinite hand mass. That is, a hand iS 7gyalo-Rio and Brogliato (1999) have considered the con-
prescribed to move in a controlled manner thatis unaffected k)| of vertical juggling and, unlike in the other juggling papers
collisions with the juggled ball. Although the interaction Oftheabove, have taken into account the hand mass and dynam-
ballwith the hand is only intermittent and instantaneous in cojpg They have found, according to the (untested by physical
lisional juggling, Buehler, Koditschek, and Kindimann (1994)mplementation) theory, robust stable controls more general

its motions, mirroring the ball's motion (times a factor) andsfficiency issues.

then to correct based on a mismatch of actual and desired balll
energy. Stable height control was found but actuator-effogt
issues were not addressed. Buehler and Koditschek (19
have shown that, as for hopping models, with mistuning ddesides the work of Schiehlen et al., all of the modeling re-
the controller chaotic dynamics are possible. search on hopping and juggling has at least one of the follow-

Schaal and co-workers (Schaal and Atkeson 1993; Schaag three features: (1) massless collisions; (2) control; and (3)
et al. 1996; Sternad et al. 2000) have looked at an open-loepergy input. These three features are certainly reasonable in
control of 1D impact juggling and have made several intethis era where just making a robot work well, however inef-
esting observations. If a limit cycle is found for an oscillatindicient, is still an issue. There is no point in worrying about
hand (with perfect position control) then itis stable if the hanthe fine points of efficiency and minimizing control effort for
has a downwards acceleration at impact but not too stronglyrobot that cannot do its job at all.

. Relevance of Existing Juggling and Hopping Literature

downwards, i.e., less in magnitude than Looking ahead to an era where reducing actuator effort
) ) will be of more central concern, the work that follows has
28(1+e)/A+e), (1) (1) massive collisions, and for most considerations, (2) no

wheree is the coefficient of restitution. As noted by Berke-Control and (3) no energy input. Instead, it is an investigation
meier and Desai (2002), this finding seems to be related ¢f simple passive means for avoiding collisional losses.

their similar result for stability of an open-loop hopping robot.

Sternad et al. (2000) noted that people who are given a racl&tA M odel for Passive Hopping

and light ball seem to use this passive strategy. That is, to

minimize effort people would presumably bounce a ball @ur simple model is just two point masses connected by a lin-
the time of maximum vertical velocity of their vertically os-ear massless spring (Figure 1). The subsériptr the masses
cillating hand. Instead, they found that people prefer to hit th#enotes hopping (as opposed;tdor juggling). These rep-
bouncing ball slightlyafter the peak velocity, during down- resent, roughly, a body connected elastically to non-massless
ward acceleration. Thus, it seems that people are willing feet. There is no control and no energy input. The only dissi-
use some extra effort to improve the open-loop stability of thgation occurs when the lower mass strikes the ground. Except
task. Not emphasized in the paper is that the cost in effortwghere explicitly stated in the discussion, we assume plastic
often quite small; the phase shift from peak velocity to thempact with a coefficient of restitution= 0, i.e., the velocity
impact people use leads to only a small reduction in impaof m,, becomes zero on impact. The relaxed spring ledigth
velocity. That s, although the research does seem to show tigtarge enough to keep the masses separated at all times.
people have a bias towards using open-loop (sensor-free) staThe motion has two continuous phases: (1) flight when
bility mechanisms in the juggling task, people use this meclpoth masses are in the air; and (2) contact, whgnis in
anism with only a small cost in efficiency. A claim has beesteady contact with the ground. There are two transitions: (3)
made, about which we have more to say in the discussiampact (collision, landing), when the velocity of,, jumps
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Fig. 1. The hopping “h” model: two point masses connected by a massless spring. The “foot” m,, has plastic collisions with
the ground. x; are zero when m., is on the ground and the spring has no tension. The free body diagrams (FBDs) for the pairs
of masses are shown for all three cases where momentum balance is used: flight, collision, and contact. The dimensionless

equations used in the text correspond to my, = 1, my, = M, =

to zero; and (4) lift-off, when m, islifted from contact into
flight.
4. Equations of Motion for Hopping

Flight. The non-dimensional equations of mation for flight
are (see Figure 1):

A+ M)y
(1 + Mh)j}Z

—M,(y1—y2) —1
(1 —y2) — 1

Here y1 = xi/(mag/k), y2 X2/ (maug/k), M,
may,/my,, and () = d( )/dt, where 1, w,t With w,
k(1 + M,)/my, being the angular frequency of vibrationin
the flight phase. The dimensionless equations have only one
parameter, M,. The dimensionless equations correspond to
my, =1, my, = M,,k=1,andg = 1inFigurel.

2

Collision Transition. The collision causes ajump in veloci-
tiesbut not in displacements. Using “-/+" to denote beforeand
after impact, the collision occurs when y; = Oand y, < 0.
Theimpact transitionsare y; = y;, va =y, =0,y =y,
and y; = 0.

Contact. During aperiod of sustained contact, y, = 0, y; < 1
and (1 + M)y, = —M,y, — L.

Lift-off Transition. Lift-off from contact occurs when the
spring tension lifts the lower mass and y, = 1. The lift-off
condition can aso be met immediately at contact with no pe-
riod of sustained contact (if y; > 1). Atlift-off from sustained
contact, thereisno jumpin position or vel ocity of either mass.

Mk=1andg=1.

We define o y; at lift-off after a period of sustained
contact. « is the key variable in the following analysis. The
positions and velocities at lift-off are

3

These serveasinitial conditionsfor the flight equations. Note
that all subsequent motionsfor all time aredetermined by « at
one lift-off. Thus, the dynamics can be characterized by a 1D
map, «,1 = f(a,). One-dimensional maps have been used
to study hopping in the past (see, for example, Koditschek and
Buehler (1991)), but not for passive hoppers.

=1 V= v =0; v =0.

5. A Modd for Passive Juggling

The juggling model is shown in Figure 2. It consists of a
free point mass m,;, and a point mass m,; connected to the
ground by a masdless, linear spring of stiffness k. The model
is passive and the collisions between the masses are assumed
to be plastic. The masses are assumed to have vertical motion
only. Thisis like a single mass bouncing with no restitution
on a trampoline with mass (a second mass supported by a
spring). Alternatively, this is aso a model of juggling with
the support being a passive oscillator.

As in the hopping model, the juggling model has four
phases: two continuous phases, (1) flight phase, with m;
moving under gravity and m,; having oscillatory motion; (2)
contact phase, where m;; is in steady contact with m,;; and
two transition phases, (3) impact between the masses; and
(4) lift-off, where there is aloss of contact between the two
masses.
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Fig. 2. The juggling “j” model: two point masses representing a ball m,; and ahand m,;. m,; isfree and m,; is connected to
the ground by a massless spring. u; are zero when the spring has no tension and the masses are in contact. The masses have
plastic collisions with each other. Free body diagrams (FBDs) are shown for each of the phases where momentum balanceis
used for equations of motion: free flight, collision, and sustained contact. The dimensionless equations in the text correspond

tom;; =1, my; =M;=M,k=1andg =1

6. Equations of Motion for Juggling

Flight. The non-dimensional equations of mation for flight
are: (Figure 2)

l:l..)l = —1
'l:l.)z = —W;— 1. (4)
Here w, = uy/(myg/k), wo = uy/(myg/k), and () =
d( )/dr; where t; = w;t with w; = ,/k/m,; being the fre-
quency of vibration of m,;. The dimensionless equations cor-
respondtomy; = 1,m,; = M;,k =1,andg = linFigure2.

Collision Transition. The collision occurs when w; = w;
and w; < w,. Immediately after the collision, m,; and m;
have the same speed. Using “-/+” to denote before and after
impact, we have wi = w; = w) = w,.Also w;" = w,".
Using the balance of linear momentum, the speed of both the
masses just after the impact is given as
. . Wy + Mw,

W' =Wy = ——F——————,

14+ M,

where M; = my;/my;.

Contact. During a period of sustained contact between m;;,
and m,;, we have w; = w, < 0. There is oscillatory motion
with both masses moving as one. This oscillatory motion is
given as

Lift-off Transition. Thereisalossof contact between thetwo
masses after a period of sustained contact when the acceler-
ation of the massesis —g. Equivalently, in non-dimensional
guantitiesthis condition ismet when w; = 1, = —1 or when
w; = w,; = 0. There can be aloss of contact immediately
after impact if wi = w;) > 0.

7. Equivalence of Hopping and Juggling
Equations

The hopping model has identical dynamics to the juggling
model. Theflight and contact equati onsfor the hopping model
reduce to the flight and the contact equations for the juggling
model by this change of variables and system parameters

w, = -+ My
w, = (=D —»
M, = M, (henceforth called just M) (6)

with a scaling of the two dimensionless times ¢, =
«/m Th-

In the hopping model during the collision transition, we
have ¥, = 0 and y,~ = y,". In the juggling model, just
after the impact, the speed of both massesis w," = w," =
(W,” + Mw,")/(1+ M). Using the equivalence relations in
€g. (6), we have
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The equivalence relations in eq. (6) also show that the con-
ditions for lift-off in the hopping model after a period of
sustained contact, i.e., y; = 1 and y, = 0, correspond to
w; = w, = 0, which are the conditions for loss of contact
(aefter a period of sustained contact) in the juggling model.
Also, egs. (6) show that the conditions for immediate lift-off
after impact in the hopping model, i.e., y;7 > 1and y; = 0,
correspond to w; = w; > 0, whichisthe conditionfor aloss
of contact immediately after impact in the juggling model.

Because of the equivalence of the two systems, we can use
either one for discussion.

Natureof Solutionsin General. Herewedescribemotionsin
the hopping model, not yet looking for impact-free solutions.
A solution results from pasting together the flight, contact
and collisional phases. In flight, the center of mass moves as
aparticle thrown vertically in agravitation field. The masses
oscillate sinusoidally around this mean parabolic motion. At
collision, m, stopsdead and the upper massisunperturbed. If
sustained contact follows, m , isstationary and m 4, hassimple
harmonic motion until the next lift-off when the spring tension
matches m, g.

In the juggling model the flight phase consists of the up-
per mass in a parabolic (height versus time) free fall while
the lower mass oscillates sinusoidally on its support spring.
On impact, the two velocities instantaneously become equal,
while aso conserving momentum. If sustained contact fol-
lows, the two masses oscillate together as supported by the
spring until lift-off when the downwards acceleration of the
pair reaches —g.

8. Lossless Collisions

Losslessmotionsfor the hopper can occur only if m,, impacts
the ground with zero speed (see Figure 3). Refer to Figure 4 to
see how lossless motion is special. In Figure 4(a) the impact
has non-zero speed and would be dissipative. Thus, for no
dissipation, y, = 0 a y, = 0. In Figure 4(b) the impact
occurs at zero speed. But because j, > 0, contact would be
immediately lost and there would be a subsequent collision
with non-zero speed, so we need y, < 0. Figure 4(c) shows
an impact at zero speed, but with prior ground penetration
because j, < 0, sowe need ¥, > 0. Thus, for losslessimpact
a y, = 0, not only y, = 0, but also #, = 0. Because ¥, = 0,
the ground clearance condition is determined by dy,/dz3.
Figure4(d) showsaconceivablecollisionwithy, = 0, y, = 0,
¥, = 0 but with d®y,/dz® > 0. Thisis disallowed because
this grazing would be followed by a dissipative impact.
Thus we must simultaneously meet al of these conditions
at the end of flight
$,=0 and dy,/d® <0

y2=0, y2=0,

asshownin Figure4(e). Somewhat remarkably perhaps, al of
these conditions can be simultaneously met in this model, no

matter what thevaluesof themodel parameters, by adjustment
of the single dynamic variable « (the lift-off speed of my,).
To find these lossless solutions, we first solve the initial
value problem for the flight phase (egs. (2) and (3)). By ele-
mentary methods, the solution is
2
(1+M)y2=1+ozt—%—asinr—cosr, (7)

2

1+ M)y, = 1+ at — %+M(ozsint+005r). 6)

Let thetimeof flight be 7. Imposing dissipation-free contact,
we have

Vo(rp) =0 (9)

and theinequality condition d®y,(z,)/dtr® < 0. Equations (9)
arethree equationsin two variables, 7, and o (M isfixed). At
first sight, the system appears over-determined. Nonetheless,
solutions do exist. From egs. (7) and (9) we obtain

y2(ty) = 0; )‘72(77_/”) =0

2

T
14 at, — Ef —asint; —cost, =0 (10
o —T;—aC0ST, +8Sint, =0 (10b)
—1+4asnt, +cost, =0. (10c)

Substituting eq. (10c) into eq. (108) we obtainat, — £ = 0,
which implies

T, =20 (11)
(since 7, # 0). Substituting eg. (11) into (10c), we obtain
a =tano. (12)

Satisfaction of egs. (11) and (12) forces satisfaction of
eg. (10b) in addition to egs. (10a) and (10c), as well as the
inequality condition d®y,(z,)/dr® < 0. Equation (12) has
infinitely many solutions for « (and hence for 7). These so-
lutionsfor o which give incessant hopping are denoted by a*
and equal 4.493409, 7.725251, 10.90412, ... . Higher va-
ues of o* correspond to more oscillations between collisions.
For the first root, o* = 4.4934; the solution is shown in Fig-
ure 3 (using M=1). We have a so independently verified the
observed persistent motion using acommercia dynamic sim-
ulation package (Working Model), where, to our initial sur-
prise, the motion appeared stable (more about this later).
Summarizing, for values of «* that satisfy « = tana, the
initial conditions given in eg. (3) lead to incessant hopping
solutions. In terms of dimensional quantities, for incessant

hopping,
v M(my, + my,)
t=0

dxl

o (13)
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Fig. 3. (a) A lossless periodic motion of the hopper showing foot, body, and center-of-mass tragjectories. (b) Lossless periodic
motion of the juggler showing ball and hand trajectories. The ball trajectory of the juggler matches the center-of-mass
trajectory of the hopper if the masses are appropriate, asin the figure where M = 1 in both cases.
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Fig. 4. Different conceivable motions of m.;, near impact, but
showing ground penetration (see text).

Equation 13 showsthat for any hopper of fixed total mass and
fixed k, asthe massratio M becomes smaller (i.e., asthefoot
mass becomes lighter and lighter compared to the torso), the
incessant hopping solutions (dx, /dt)|,—o, corresponding tothe
variousa* values, become closer and closer. Approaching the
singular limit, M — 0, every (dx,/dr)|,_, becomesarbitrarily
close to an incessant hopping solution «*. In this way, the
limiting behavior of the model agrees with the behavior of
the model in the limit.

Because of the equivalence of the hopper and juggler we
need not repeat the arguments above for the juggling model.
The same values of «* correspond to the vertical velocities of
the hand and ball at separation for solutions where the sub-
sequent collision is at zero relative velocity. Also, asthe sin-
gular limit M — 0 (massless hand) is approached, all (large
enough) hand vel ocities become arbitrarily close to somein-
cessant juggling solution.

9. Analysis Through 1D Maps
Weinvestigatethedynamicsof themodel for general solutions

using anumerically constructed map, o1 = f(«,). Themap
counter n isonly incremented after sustained contacts (if the

map counter were incremented after non-sustained contacts
we could not reduce the system to a 1D map). We find f by
inserting o, as a parameter in eq. (10a8) and solving for z,. If
y1 > 1 at impact there is immediate lift-off. If so, we solve
the flight equations forward until the next contact. If y, < 1,
there is sustained contact and «,,; is found from the post-
impact state using energy balance. The 1D mapfor M = 1is
shown in Figures 5(a) and (b). The graph remains below the
linew, , = «, asnon-negative energy dissipation demands.

Just to the right of the a* points, there are no bounces be-
tween sustai ned contacts. Just to theleft of «* thereisonenon-
sustained-contact bounce between sustained contacts, hence
the discontinuity in the slope of the map.

The Case of M — 0. As expected, the numerics show that,
for M — 0, the y, values corresponding to «* bunch up, and
values of the 1D map approach the identity line between o*
valuesaswell (see Figure 5(c)), as one would expect from the
spring-mass hopping model with negligible unsprung mass or
from ajuggling model with anearly massless hand.

TheCase of M — oo. Somewhat similarly, as M — oo the
map approaches the identity line except for in some narrow
but non-vanishing regions (Figure 5(d) shows one of these
regions). We describe this situation using the juggling model
(for the hopping model with M — oo, y; — oo a the a*
solutionswhich impedes simple discussion). If the hand mass
is much larger than the ball mass, one expects that one col-
lision would little affect the next throw; thus, two successive
throws should be close and the map should be close to the
identity line as is observed for most of the map. However, in
the narrow region where the map deviates significantly from
theidentity line, there are many bouncing (non-sustained con-
tact) impacts between map evaluations and their cumulative
effectissignificant. AsM — oo, thenumber of theseimpacts
apparently also goes to oo, as suggested by numerics and as
can aso be informally reasoned as follows.
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Fig. 5. The 1D map for the hopping model with M = 1. An enlarged portion of (a) isshown in (b) (enlarged about 300 times).
The fixed point o* has one-way stability. (c) shows that the map is close to the identity line for alow value of M. (d) shows
that for alarge value of M the map is close to the identity line but for a small neighborhood bounded below by = and above

by about 3.59.

Inthelimit M = oo, the juggling hand has unperturbable
sinusoidal oscillations. The bouncing analysis of Schaal et al.
(1996) appliesfor e = 0if thereisno sustained contact (only
bouncing). Applying the condition that there be periodic mo-
tions (w; = 7w a impact), that there be no sustained contact
(W, < —1), andthat the periodic motionsbestable (i, > —2,
fromeq. (1) withe = 0), for the sinusoidal motion of the hand
we find a range of amplitudes for which there can be stable
bouncing in the model of Schaal et a. (1996).

For oscillations of the lower mass at any amplitude within
this range of stable bouncing, there is also a time when the
condition for a throw after a sustained contact is met (i.e.,
where the downwards accel eration of the lower massis —1).
In evaluating our map numerically, we assume that the upper
massisthrown at that same point; the speed w, withwhichthe
upper mass is thrown depends on the amplitude of the lower
mass oscillation. The throwing speeds, when the motion is
such that stable bouncing is possible, arein the range:

T <w <~/72+3 orapproximately 3.14 < w; < 3.59.

Subsequent motion after athrow at aspeed inthisrange, since
the period-one bouncing—juggling solution is asymptotically
stable, should converge to that period-one bouncing solution.
Thus, after athrow (and map evaluation) motion converging
to stable bouncing continues indefinitely, there is no more

sustained contact, and the map cannot be evaluated again. At
least, for M = oco.

If M isvery large but finite, we expect the time history of
the motion to look approximately like the infinite M solution
above, except that the amplitude of oscillation of the lower
hand mass now slowly decreases as the upper mass continues
bouncing on it and slowing it, again and again. This process
continues until the amplitude of the hand motion is not large
enough to support stable bouncing w, < 7. The bouncing
solutions then give way to a solution including a sustained
contact, and the map is finally evaluated.

At the high amplitude end of the stable bouncing region
things are dlightly less clear. Where the analysis of Schaal
et al. (1996) predicts a loss of linearized stability, a small
window of stable period-two bouncing solutions seems (in
our numerics) to be stable. So the right boundary of the trian-
gular region of the map protruding from theidentity line goes
dightly past the upper limit of stable period-one bouncing
solutions at /72 + 3 because throws in this range also lead
to stable period-two bounces that continue until the period-
one bounces take over and the energy of the massive hand is
attenuated.

So, for any large but finite M we expect a map similar to
Figure 5(d) wherein the funny level (triangular jog) region a
single map eval uation (from one throw after sustained contact
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to the next) is evaluated with a series of bouncing contacts
between.

One-sided Stability. Thefixed points of the map are the non-
dissipative solutions discussed previously. As for any map
with a hump tangent to the identity line (see, for example,
Figure 2 in Goldhirsch, Noskowicz, and Schuss (1993) and
referencestherein), aso-called “tangent bifurcation” that typ-
ically occurs at special parameter values for many systems,
the fixed points have one-sided stability. Figure 5(b) shows
that the map, in the neighborhood of each fixed point, locally
has two distinct behaviors: to the left of the fixed point, the
map hasaslopegreater than one, whiletotherightitistangent
to the identity line at or*.

Any trgjectory starting from aninitial condition just to the
right of o* will eventually go to the fixed point. However,
an initial condition just to the left will diverge and could be
attracted to a solution at a smaller «*. As a consequence, the
basin of attraction for any fixed point o* can be quite complex,
as discussed in some detail by Reddy and Pratap (2002).

By most definitions of stability, the persistent solutionsare
unstable; thereareinfinitesimal perturbations(totheleft of the
tangent point) which grow asthemapisiterated. However, the
one-sided stability isperhapslessunstablethanthetechnically
applicable description “unstable” would imply, in that there
is aset of initial conditions with finite (non-zero) measure
that become attracted to the periodic motions. In other words,
one does not need infinite precision to locate a point on the
attracting set.

As mentioned above, such one-sided stability is a com-
monly observed feature of systems undergoing “tangent” bi-
furcations. Note, however, that (unless imbedded in a more
complex model) our system is not at a bifurcation point;
the tangency persists for all values of free system param-
eters in this otherwise-conservative system with dissipative
collisions.

Symmetry of Special Solutions. Figure 6(a) shows atypical
non-incessant trajectory of my,, implicitly including impact
impulse P. Played backwards, thismotionwoul d beasolution
only if, at lift-off, animpulse P acted from the ground. Since
the model does not allow alift-off impulse, atypical motion
isnot time reversible.

Now we consider an incessant hopping solution (Fig-
ure 6(b)). Having no landing impulse, it may be reversible
in time for a full motion cycle (flight, contact, lift-off and
landing). Using egs. (10c) and (12) in (8), we see y;(t;) =
1 = y,(0). Similarly from egs. (8) and (10b), y;(t,) = —a*.

A time-reversed incessant trgjectory, being a valid solu-
tion, satisfies the lift-off condition y, = 1. By energy conser-
vation, the system energy (KE+PE) at lift-off and landing are
the same. Thus, the incessant hopping solution has landing
with y; = 1 and |y;] = «. Now y; = 4« at landing isim-
possible because lift-off occurred at y; = «, and (because of
gravity) the momentum of the system isnot conserved during

flight (y» = +a would incorrectly conserve momentum). So
y1 = —a. Thus, for theincessant motions, atime-reversed so-
lutionisnot only asolution (asfor all classical non-dissipative
mechanical systems) but also the same solution (the movie
played backwards is the same movie).

Persistent Hopping DoesNot Depend on Spring Linearity.
The above symmetry discussion used thetime-reversal invari-
ance of the equations but neither spring linearity nor gravity
constancy. So even for hoppers with non-linear springsin a
non-uniform gravitational field, if thereare any incessant hop-
ping solutions, they must have time-reversal symmetry.

Hereisaqualitative consistency argument for the existence
of incessant hopping with a non-linear spring and varying-
with-height gravity. Consider motions that at some reference
time in the flight have center-of-mass height /2, compression
a of the spring and y; = y, = 0. These conditions gener-
ate atime-symmetric trgjectory with the reference time being
mid-flight. Now look at a family of such motions where A
is fixed and a is varied (Figure 7). For small enough «, the
trajectory of my, has no extrema after mid-flight. For large
enough a, the trajectory of m,, has one or more pairs of ex-
trema. For an intermediate value of a, two extremamerge and
two of the dissipation-free impact conditionsare met (y, = 0
and y, = 0). Now adjust % to achieve the condition y, = 0
(while continuously adjusting a, if necessary, to maintain the
inflection condition).

The solution thus obtained isapersistent hopping solution.
That is, persistent hopping solutions are expected even for
the energy-conserving model perturbations of a non-uniform
gravitational field and/or non-linear springs (assuming the
non-linearities do not disrupt center-of-mass flight time in-
creasing monotonically with 4 and the oscillatory nature of
the motions relative to the center of massin flight).

Viscous Damping Destroys | ncessant Hopping. Under dis-
sipative perturbations (damping), the map shifts generally
downwards, loses contact with the identity line, and inces-
sant hopping is lost as shown schematically in curve (a) of
Figure 8.

Small Energy Injection Stabilizes Persistent Hopping.
With small energy input, such as by incrementing « by a
small amount ¢ at every step, the map will move generally
up, as in curve (c) of Figure 8, drawn for the case M = 1.
The map will then cut the identity line at two fixed points:
one stable and the other unstable. Thus, we can obtain inces-
sant motion with bidirectional stability by injecting a small
amount of energy at each hop. To correspond with exactly dis-
placing the curve upwards, one would add a fixed increment
in launch velocity, but the qualitative result does not depend
on any precise form of energy injection. Presumably, small
numerical errors equivalent to energy inputs caused the ap-
parent stability of motions in the Working Model numerical
simulation mentioned in Section 8.
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Fig. 6. A typical trgjectory of the lower mass of the hopper with (a) an impulse at landing and (b) no impulse at landing.
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Fig. 7. Effect of the compression a of the spring at the instant
of maximum height on the trgjectory of the lower mass.

For valuesof M not far from 1, theglobal basin of attraction
of astablefixed point isactually quite complex, dueto humps
inthe map from greater values of «*. However, for simplicity,
we briefly examinethe local basin of attraction, meaning that
part of the basin which is an open interval containing the a*
of interest. The size of this basin is one measure of stability.

Without energy injection, the size of thelocal basiniszero
(the finite-sized one side gets no credit because the motion is
unstable). For infinitesimal energy injection, there is a small
basinwhosesizegrowswiththeamount of energy injected. As
the amount of energy injected increases further, the hitherto
stable fixed point eventually loses stability when the map has
a dope of —1 at the upper fixed point, possibly through a
period doubling bifurcation (asin M’ Closkey et al. (1990) and
Vakakis and Burdick (1990)). At this point, for the M = 1
case shown, thelocal basin will have maximal size (as shown
inFigure8 by ahorizontal dashedline). Whenthemapislifted
above this point, as in curve (e) of Figure 8, the period-one
motion loses stability.

4.6

4.55

n+l

4.5

4.45

Fig. 8. The map near the first nominal fixed point when
energy is added or subtracted for M = 1. Curve (b) is the
basic system of study with the semi-stable fixed point marked
with a dot. If energy is removed at every hop, more exactly
if the launch velocity is diminished by a fixed constant, the
curve is displaced down asin (8). Thereis no fixed point. If
the curve is moved up by the injection of energy asin curve
(c) the upper intersection of the map with the identity line,
marked with a dot, becomes stable. Curve (d) is the map
with the greatest injection of energy for which the upper
fixed point is stable. This curve also maximizes the basin
of attraction shown by the horizontal dotted line. As the
map is lifted through this configuration there might be a
period doubling bifurcation (not investigated). If the map is
displaced above (d) thereis no stable fixed point, asin curve
(e) although some non-periodic orbit could still be attractive.
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10. Physical Demonstrations

Asaphysical test of themodel and to set theideas out clearly,
we set up a table-top demonstration experiment. This does
nothing, of course, to show the utility of the present concepts
inapractical robot. We set up thejuggling version of themodel
using a standard freshman-physics demonstration air track
with two available masses and tension springs. Thetrack was
tipped with ablock to simulate reduced gravity (see Figure9).

In this experiment, the maximum-compression release-
from-rest position was tuned, by trial and error, to find the
motion where the catching collision was as gentle as possi-
ble and with only one oscillation of the hand (Ieft, m,) mass
during flight. No theoretical calculations were made for the
predicted amplitudes before the measurements. The ampli-
tudes of motion of both m,; and m, were measured for these
motions. These amplitudes and their ratios were then com-
pared with the model-predicted values as follows.

Let Ay, = h+ hy and A, = hy + h, (see Figure 10) be
the amplitudes of motion of m, and m,, respectively. We can
determine h, h,; and h, from egs. (4) and (5). Since these
equations apply between collisions, we can use conservation
of energy to find

W
o= U
2
hy = —=1+,/1+w? (14)
1+M M
h, = —— |1+ /1 p2 |.
2 M [+ +1+Mw2}

Note that 4, is obtained from the contact equation in which
we can use either w; or w, since w; = w,. Using M = 0.909
(from m, = .2923 kg and m, = .2657 kg) and w; = w, =
af = 4.4934, we obtain 4 = 10.095, h; = 3.603, h, =
8.942, so that the model predicts dimensionless A; = 19.037
and A, = 12.545. Note that the amplitude ratio A;/A, (like
any ratio of sums or differences of any of h,, h, or h) is
independent of the dimensional scaling (and thusindependent
of g). Thuswe have

(A1/AY)pods = 1517+ 3%  and

(AI/AZ)exp = 1523 :l': 3%

The 0.4% difference between theory and experiment is far
within the estimated cumulative error bound of 6%.

To compare the experimental values of the absolute di-
mensional amplitudes with the corresponding predicted val-
ues, we need to dimensionalize the predicted A; and A,.
We find the dimensional amplitudes by multiplying with the
scaling factor my;g/k (recall that wy, = u,/(my;g/k) and
w, = uy/(my;g/k)). Thegravity constant g inthe model cor-
responds to the effective air-track gravity of g sing. The air
track wastipped up by 1.1 inch over afivefoot horizontal dis-
tance. Thus, thesloped = tan~*(1.1/60) = 1.83 x 1072, The

Fig. 9. Schematic diagram of the air-track juggling experi-
ment. A freshman-physics style air track was propped with
a book to an angle of about 1°. m; = 292.3g, m, = 265.7g.
To avoid compression in the springs, two springs were pre-
stretched end-to-end as shown, with k.« = 2k = 8.8 N m2.
The normally elastic bumpers were padded with paper to
deaden the collisions. Motion is initiated by holding m,
to the left of equilibrium, with m, resting against it, and
then releasing it. The minimum displacement that leads to a
smooth recapture is the primary experiment. Secondarily, an
attempt to sustain oscillations was made by adding a small
amount of energy during each cycle by moving the spring
end back and forth a distance D = 3mm,; to the right when
m, is at its left extreme and to the left when m, is at its right
extreme. Up to eight sequential smooth collisions could be
obtained.

Fig. 10. The amplitudes of oscillation of the two masses
in the juggling model are shown to indicate measurements
made in the juggling experiment.
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spring stiffness was measured independently by timing the
oscillations of a known hung mass. The scaling factor is thus
computed to bem,; g sinf/k = 5.431 x 10-*m. Therefore,

(Aul)mvdel = 0103m + 9% and

(Aut1)erp, = 0.099M £ 1%.

The 4% difference between theory and experiment is well
within the estimated cumulative error bound of 10%.

Up to eight smooth collisions, and then only rarely, could
be obtai ned with hand forcing. Not more, presumably because
the accuracy of the energy stimulus was not good enough
for the small domain of attraction of the periodic motions.
Note, however, that the experiment is closetothe M = 1
(equal mass) regime that has a narrow domain of attraction.
If, instead, we had used either a large or small mass ratio,
persistent motions may have been easier to achieve.

Jumping on a Bridge. As mentioned, the juggling model
is like bouncing on a trampoline where the canvas has non-
negligible mass. Thisis a situation one can perhaps imagine
better by description of areal-world (if uncommon) situation
we encountered on a wooden bridge about 3 m long. Both
the existence and special nature of the solutions in this pa-
per were demonstrated. This bridge had essentialy only one
vertical mode of oscillation that could be excited by jumping.
After one jump in the air, with the bridge oscillating under-
neath, one generally would land with abang asthe oscillating
bridge slapped up against one's descending feet. But jump-
ing to just the right height one could jump almost as if on
a massless trampoline, although one was really landing on a
massive bridge. One had to jump just right initially, and then
with concentration (but little physical effort), to repeat the
smooth collision-free motions. The bridge would do about
one and a half cycles of oscillation during the flight phase,
as per the juggling theory here, and approximately match the
downwards foot velocity at contact. If the timing got slightly
off, a jarring collision would occur and one would have to
start again.

Posting on a Horse. Also related is “posting” on a trotting
horse where the motion of the horseislikeajuggling “hand”,
andtherider’sbody islikeajuggled ball. Whileposting, arider
uses some leg support on the stirrups perhaps for control and
perhapsto reduce the effective gravity onthebody. During the
“flight” of the posting rider, the horse's back does about one
and a half oscillations and then the rider has a gentle landing
on the descending horsesback, likeajuggled ball inthetheory
here. The phasing and motions are as per the juggling model,
with the horse-back oscillations being anal ogous to amassive
juggling “hand”. Because the horse motion is forced and the
horse mass high, posting is closer to a large or infinite M.
Without any leg pressure, a person on a trotting horse has
jarring collisions at twice the rate, i.e., at the same rate as
the oscillations of the horse’s back. This non-posting riding

on atrotting horse is perhaps close to the stable (dissipative)
passive juggling in, for example, Schaal et al. (1996).

11. Discussion

Relation to Open-loop Juggling. The juggling model we
have discussed above is an extreme case of an open-loop
machine in that the open-loop controller has no actuation.
The model is also catch-and-release in that there is sus-
tained contact before each throw. Catch-and-release open-
loop “ Shannon” juggling is known to be strongly (deadbeat)
stable (Schaal and Atkeson (1993)). Catch-and-release hop-
ping, where the spring between the two masses is replaced
with a displacement-controlled actuator, is similarly stable.
But unlike the Shannon juggler, or a spring-less hopper, sta-
bility isanissuein our model because the hand has dynamics.
(Similarly, our hopper has internal dynamics.)

In the limit as hand mass goes to infinity (M — o) the
model presented here is equivalent to the catch-and-release
juggler with a sinusoidal hand oscillation, at least for those
cases where there is some sustained contact. For most val-
ues of launch, the return map approaches the identity line in
this limit, not the horizontal line of a deadbeat system. The
fact that in-flight perturbations of the juggled mass are to-
tally quenched when hand mass isinfinite is not revealed by
our map, which allows only simultaneous perturbations of the
hand and ball at the lift-off state.

Existence of Persistent Motions Does Not Depend on the
Value of e. Note that the incessant hopping motions satisfy
all the governing equations for any value of ¢ (even e > 1),
not just e = 0. Off the periodic motions, the map and stability
analysis do not apply for e # 0, but the catch-and-release
constant-energy motions persist (are periodic solutions) for
any value of e because the collisions are at zero relative
velocity.

Passive Stability and Dissipation. There is acommon intu-
ition that dissipation isgenerally required for passive stability
(see, for example, Schaal et al. (1996)). However this claim
needs qualification.

In systems with non-holonomic contact (see, for example,
Ruina (1998)) some care is needed in describing the role of
dissipation for stability. In particular, stability does not de-
pend on dissipation. Thus, the intuition based on experience
with the vast library of holonomic mechanical systems—that
stability dependson dampingin general—isnot correct. How-
ever, for systems whose only non-holonomicity comes from
intermittent contact there are, despite claims to the contrary,
no known systems that are entirely passive, non-dissipative
and stable. Because of the 1D nature of the motions in this
system, itsintermittent contact isnot non-holonomic (the sys-
temisessentially holonomic), theseissues of holonomicity do
not apply, and thereis necessarily aneed for dissipation to ob-
tain stability.
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But this does not mean that the desired motion is dissi-
pative. A trivial example is a damped pendulum; it has no
dissipation at its stable equilibrium. Dissipation is needed to
attract, but no dissipation is needed on the stable motion.

Such is approximately the case for the system described
in this paper (to the extent that the word “stable” is applica
ble). We have passive attraction to adynamic limit cycle even
though there is no energetic dissipation on the cycle. So the
claim that dissipation is needed for stability is not negated
here, but one should be aware that the stable motions them-
selves need not be dissipative.

Even if the hopping model were somehow expanded to
two-dimensional running, where the non-holonomic issues
arerelevant, amodel with aplastically-colliding massive foot
will always have dissipation in some of its motions.

Linear Stability isnot Well Correlated with the Size of the
Basin of Attraction. With reference to Figure 8 it is inter-
esting to note that, for this system at M = 1, with energy
injection as a free structural parameter, the local basin of at-
traction (as defined earlier) islargest just when the linearized
stability islost. That is, asimple measure of the degree of sta-
bility is difficult here. The two obvious candidates, largeness
of the local basin of attraction and smallness of the stability-
governing eigenvalue, are negatively related to each other.

Large Basin of Attraction for Extreme Values of M. Fig-
ure 5(b) showsthat for M = 1 the attracting set to the specia
solution is extremely small. Furthermore, if the system is to
be stabilized by unconditional injections of energy at each
contact, these cannot be too large (as shown in Figure 8).

However, Figures 5(c) and (d) show that for sufficiently
largeor sufficiently small M any sufficiently largeinitial con-
ditionisattracted to oneof the special motions. Thisattraction
from arbitrary, but large enough, initial launchesiseasily ver-
ified with adynamic simulator such as Working Model. That
is, systemswith M > 1 or with M « 1 find their own fixed
points by marching forward in time from alarge enough but
arbitrary initial condition.

Taking into account that there is some dissipation besides
the collision, with these extreme values of M genuine two-
sided stahility with abroad basin of attraction can be achieved
by small injections of energy.

Applicability. Here we have described how the collision loss
at the feet of a particularly simple hopping machine can be
reduced by appropriate phasing of internal motions. Themore
genera ideathat the model exemplifiesis that energetically-
passive internal motions of a robot can be phased to mini-
mize collision losses. Another example, mentioned in Kuo
(20023, 2002b) isthe use of springsto reduce the step length,
and hence the collisional loss, in walking. Finally, we do not
claim that the passive collision-avoidance mechanism dis-
cussed here is, as literally presented, a means to great effi-
ciency gains for legged locomation (or juggling machines).

The presentation only shows in detail how the general idea
works in a specific, and perhaps too-simple, implementation.

But the model does provide an example of the concept that
proper phasing of passiveinternal degreesof freedom canbea
meansto reducing impact |osses and thusimproving energetic
efficiency.

12. Conclusions

The work here extends the results of Schiehlen and Gao
(Schiehlen 1987, Schiehlen and Gao 1989) by showing an-
alytical conditions for lossless hopping, the symmetry of the
solutions, the robustness to model perturbations, the identifi-
cationwith asimple model of juggling, the one-sided stability
of the motions, the stabilization by small energy injections,
and simple experimental verifications of the results.

In particular, collisional losses associated with a hopper’s
foot impact (withany e < 1) can beeliminated (in our simple
model) by apassive retraction of thelanding foot effected by a
passive, possibly non-linear, spring. Similarly, injuggling, the
ball-hand collision dissipation can be eliminated. Associated
with this dissipation-free collision, for the case e = 0, is
a periodic finite-amplitude motion that is one-way stable in
theory, and can in practice be maintained and stabilized by
tiny energy injections.

Lossless impact motions somewhat like those described
here could be used to aid the efficiency and stability of hop-
ping or juggling mechanisms. More generaly, the example
here shows that internal energy storage in a system can,
if it has motions arranged to be appropriately synchronous
with external collisions, lead to a decrease in net collisional
dissipation.
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