
Off-line controller design for reliable walking of Ranger

Matthew Kelly1, Matthew Sheen2, and Andy Ruina3

Abstract— We present a method for designing a walking
controller for the walking robot Cornell Ranger. Our goal is a
controller that can be designed using model-based optimization,
and then transferred directly to the robot without the need for
after-the-fact hand-tuning. The structure of the controller is
hierarchical, with a high-level balance controller that plans
step-to-step motions, and a lower-level joint controller that
coordinates the individual joint motors to achieve the desired
limb motions. The balance controller is designed through
optimization, with the explicit goals of a) achieving a desired
walking speed while b) minimizing energy use and c) avoiding
falls due to disturbances. We demonstrate this walking con-
troller on the Cornell Ranger, and find that the resulting gait
is comparable to that of a previous (hand-tuned) controller, with
regard to energy use, speed regulation, and fall prevention.

I. INTRODUCTION
Here we present a new control architecture for the Cornell

Ranger, a bipedal walking robot shown in Figure 1. While
previous controllers for this robot required extensive hand
tuning, the controller presented here is designed using off-
line optimization and is meant to transfer directly to the robot
without modification.

To advance the science of robot control, we desire al-
gorithms that do not have hand-tuning on the robot as a
key final step. Queries of robot builders reveal that such
hand tuning of hardware is all too common. To avoid
controller tuning on mechanical hardware, we turn to off-line
model-based optimization for controller design. This process
requires an accurate simulation for the robot, as well as a
mechanism for making the controller robust to simulation
and modeling errors.

Walking is complicated, so the controllers for most walk-
ing robots rely on hierarchical control architectures [1]–[10].
These simplify the design process in part by reducing the
number of free parameters that describe the controller. The
control architecture here incorporates some ideas from the
previous controller for the Cornell Ranger [8], SimBiCon [1],
and hybrid zero dynamics [6]. The high-level gait control
is based on a finite state machine which regulates speed
and maintains balance, while the lower-level joint control is
simply a proportional-derivative tracking controller on each
joint.

It is impractical to automatically design every feature for
a walking controller — the state and control space is simply

*This work is supported by the National Robotics Initiative (grant number
1317981)

1Matthew Kelly, PhD candidate, Mechanical Engineering, Cornell Uni-
versity, Ithaca NY 14850, USA mpk72@cornell.edu

2Matthew Sheen, PhD candidate, Mechanical Engineering, Cornell Uni-
versity, Ithaca NY 14850, USA mws262@cornell.edu

3Andy Ruina, Professor, Mechanical Engineering, Cornell University,
Ithaca NY 14850, USA ruina@cornell.edu

Swing
Foot

Stance
Foot

Hip

Stance
Leg

Swing
Leg

Fig. 1. Cornell Ranger walking robot: A photo and a diagram of Cornell
Ranger, our experimental test platform for the controller.

too large for modern techniques to compute a true optimal
policy with useful resolution. Instead, we break down the
problem. The control architecture is manually designed based
on our own experience and discussions with experts, as well
as the literature. The gains in the low-level joint controllers
are experimentally determined, using standard methods [11].
That leaves the parameters of the balance controller, 15
numbers in our implementation, to be automatically selected
using optimization.

II. CORNELL RANGER

Our test robot is the Cornell Ranger, which is described in
detail in [8], [12]. Here we will present only a short overview.

Ranger, shown in Figure 1, is at the bottom of the
bipedal robot food chain. It was designed only for low-energy
walking over flat terrain. It has four legs that are arranged
into an inner and outer pair. This arrangement means that
the walking control only needs to stabilize front-to-back
motions: lateral motions are passively stabilized. The robot is
under-actuated by one degree of freedom: there is no motor
that can directly control the angle of the stance leg.

A. Hardware

Although simulation is useful for controller design and
basic testing, the only way to know if a controller really
works is to test it on a real robot. For this purpose we use
the Cornell Ranger [8], [12].

Ranger lacks of knees, which forces all changes in ef-
fective leg length to come from rotations of the feet. The
feet on Ranger are curved with small radius, which means
that Ranger cannot statically balance with its feet together.
Additionally, the circular curve of ranger’s feet is truncated
close to the heel. This truncated shape allows for the feet to
rapidly clear the ground at the start of swing, but also further
limits the effective control authority of the ankle motors.

2016 IEEE International Conference on Robotics and Automation (ICRA)
Stockholm, Sweden, May 16-21, 2016

978-1-4673-8026-3/16/$31.00 ©2016 IEEE 1567

Ranger was designed for energy effectiveness, which we
measure using the total cost of transport (CoT). As described
in [13] and [14], CoT is the ratio of total energy consumed to
the weight multiplied by distance traveled. The total energy
is measured at the batteries, and thus includes the power
consumption by the motors, sensors, on-board computers,
and communication. The best experimental controller on
Ranger had a CoT of 0.19, but Ranger’s (more reliable)
marathon controller [8] had a CoT of 0.28.

Ranger has a variety of sensors. Foot sensors measure the
force between the heel of the foot and the ankle joint, which
we then threshold to determine if a foot is in contact with
the ground or not. Each joint has absolute angle encoders for
both the motor and the end-effector. Finally, there is an IMU
(gyro and accelerometers) located on the outer legs that we
use for estimating the absolute orientation and angular rate
of the outer legs.

B. Model

Our model for the Cornell Ranger is largely based on
our previous work [8], [12], [15]. We assume that the robot
is a planar biped, with four rigid bodies (outer legs, inner
legs, outer feet, inner feet) which are connected by three
motors (outer ankles, hip, and inner ankles). We also use
a full bench-tested electro-mechanical model of the motors
and gear boxes.

There are two notable differences between the model used
here and our previous model of Ranger. The first is that here
we simplify by assuming that the drive cables connecting
the ankle motors to the feet are rigid, where as the previous
work [8] treated them as stiff springs. This was done in part
because the time-stepping simulation had did not perform
well using the stiff spring cable model. Second, we model
the shape of the foot as a quintic spline (periodic, with 6
segments), rather than as a complete circle, as illustrated in
Figure 2. This allows use to simulate interactions between
the heel and the ground.

C. Simulation

The previous simulator for Ranger [8] was designed to
study open-loop trajectories with a prescribed sequence of
contact configurations. For the research presented in this
paper, we need to study the close-loop behavior of the robot
for a variety of controllers, some of which will cause the
robot to stumble and fall down — a behavior that was not
able to be simulated by previous simulations,.

To capture more complex contact sequences, we devel-
oped a “time-stepping” simulator for Ranger, which runs a
contact-solver on each time-step. This simulation allows us
to model the robot walking over any ground profile, using
accurate collision shapes for the robot’s feet. The simulation
is implemented in Matlab, and then compiled to MEX for
speed.

D. Control Considerations

While walking, the motors of the robot must add energy
to the system to compensate for frictional and collisional

losses. Due to the small curved feet, Ranger cannot inject
much energy by ankle torques through the step, except by
push-off with the back foot at the end of each step. This
extension is small (a few centimeters), but enough to propel
the robot forward and to adjust walking speed. To get the
maximum effect of this push-off it must be timed carefully
to occur just before the collision on the front foot [16]–[18].

Ranger does not have knees, and thus as soon as the push-
off is complete, the foot needs to rotate up and out of the
way so that it doesn’t scuff as the swing leg moves forward.
Then the foot needs to rotate back down just before heel-
strike. Too early and the foot scuffs; too late and the foot
strikes down on the back of the heel, which causes a trip,
with the foot rotating back up. In each of these cases, the
robot falls. See Figure 2 for details regarding foot orientation
for push-off and foot-flip.

III. CONTROLLER ARCHITECTURE DETAILS
The control architecture here is divided into four levels,

arranged highest-to-lowest:
• The Balance Controller runs once per step, at mid-

stance, setting the five parameters that describe the gait
controller, to achieve balance.

• The Gait Controller is a finite-state machine, shown in
Figure 3, which sets the target angles and rates for the
joint controllers.

• The Joint Controllers are proportional-derivative con-
trollers which compute the command torque for each
joint.

• The Motor Controllers are proportional-integral con-
trollers which compute a low-level PWM commands
to achieve a commanded torque in each joint.

We assume that both the robot and controller are left-right
symmetric. We will describe the controller for the case when
the outer feet are on the ground. At the conclusion of the
step, the whole controller is mirrored, with the inner legs
becoming the new stance legs.

A. Motor Control

The motor controllers are at the bottom level of the
controller. They run a simple proportional-integral control
loop at 2 kHz on each of the three joint motors (outer ankle,

Flip-Up Flip-Down / Stance Push-Off

Virtual
Center

Fig. 2. Ranger Foot Diagram: Ranger’s feet are small, and their soles
are sections of circular arcs. Here we show the three target configurations
used by the controller. Flip-up is used for the swing foot, allowing the foot
to clear the ground, since the robot has no knees. The flip-down/stance
configuration is used by the stance foot for most of the step, providing a
steady base for the robot. The final configuration, push-off is used to rapidly
extend the foot, propelling the robot forward for the next step.

1568

inner ankle, and hip), tracking a desired joint torque. These
motor controllers are coded at a low-level in the robot, and
we did not change these.

B. Joint Control

While the robot is walking, the joint controllers (outer
ankle, inner ankle, and hip) are continuously running simple
proportional-derivative controllers at 500 Hz. Each controller
computes a command torque u, which is sent to correspond-
ing motor controller. The reference angle q∗, rate q̇∗, and
torque u∗ are all sent from the gait controller. The measured
joint angle and rate are given by q and q̇.

u = u∗ +KP

(
q∗ − q

)
+KD

(
q̇∗ − q̇

)
(1)

C. Gait Control

The gait controller coordinates the motion of the three
joints on the robot, sending reference commands to the
joint controllers at 500 Hz. There are two parts to the gait
controller. The first is a finite-state-machine (FSM), which is
shown in Figure 3. During a single walking step, this FSM
can be in either the glide mode, or the push mode. In glide
mode, the robot is smoothly moving forward, with the gait
controller pulling the swing leg through the step. In push
mode, the robot extends the rear foot, propelling the robot
forward, while simultaneously rotating the swing foot down
in preparation for heel-strike.

Glide Mode: The reference commands sent to the swing
foot joint controller are simple: the angle is constant, selected
such that the foot will not scuff the ground, and the rate and
torque references are zero.The reference angle and rate for
the stance foot are selected to keep the absolute orientation
of the foot constant, while the robot rotates over it. The hip
joint in glide is more complicated: the joint angle and rate

Critical stance
leg angle

Glide

swing foot
heel-strike

Hip:
 • swing leg tracks linear
 function of stance leg angle

Stance Foot:
 • hold absolute orientation

Swing Foot:
 • flip-up for ground clearance

Push
Hip:
 • hold relative angle

Stance Foot:
 • extend for push-off

Swing Foot:
 • flip-down for heel-strike

{2}

{1}

{1}

{1}

{ } = number of free
parameters, set by
balance controller

Fig. 3. Gait Controller: A finite-state-machine that sets the targets for the
joint controllers. It has two states: Glide (or swing) and Push (or step-to-
step transition). There are a total of {5} parameters, which are set once per
step by the balance controller. At each heel-strike transition, the old swing
leg becomes new stance leg, and vice versa.

are set based on a linear function of the stance leg angle,
and the reference torque is computed to compensate for the
torques on the joint due to gravity and the hip spring (which
connects the two legs). This phase-based tracking is inspired
by [6].

Push Mode: Both ankle joints are set to maintain a
constant absolute orientation of the foot, with the stance foot
pushing-off the ground and the swing foot flipping-down for
heel-strike, as shown in Figure 2. During push, the hip joint
holds a constant angle, with the help of feed-forward torque
compensation.

Transitions: There are two state transitions in the finite-
state-machine. The transition into glide mode is triggered
when the contact sensors on the swing foot detect heel-strike.
The transition into push mode is triggered as the stance leg
passes a critical absolute angle.

Parameters: The gait controller has five free parameters
that are set by the balance controller. These parameters are
illustrated in Figure 3 and are: 1,2) constant and linear
coefficient for the hip joint reference trajectory in glide
mode; 3) constant hip angle reference during push mode;
4) critical angle of the stance leg for transition from glide
mode to push mode; and 5) absolute angle reference for the
stance foot during push mode.

D. Balance Control

The top-level of the control architecture is the balance
control, which runs once per step at mid-stance. It changes
the five parameters of the gait controller to regulate balance
and walking speed. For example, if the robot is walking too
slowly, it will increase the reference angle for the push off,
adding more energy to the system.

There is a single input the the balance controller: the
robot’s speed at mid-stance. Thus, the balance controller is
simply a function that maps the mid-stance speed of the robot
at mid-stance to the set of five parameters that are passed to
the gait controller. Here, we implement this function using
a look-up table, storing the five parameter values for zero
speed, the target speed, and the maximum expected speed.
For intermediate speeds we use linear interpolation.

The look-up table for the balance controller has a total of
15 entries (5 parameters at each of 3 speeds), which we com-
pute using off-line optimization, using methods discussed in
§IV.

IV. CONTROLLER DESIGN

We claim that the controller is designed “using optimiza-
tion”, but we also acknowledge that there are many decisions
that are made by humans as well.

We designed the architecture for the walking controller
(§III) through insight and intuition, which we acquired
through experiments, discussions at technical conferences,
and the literature [1], [6], [8].

There are several constant parameters in the controller,
which are also manually set. These include the orientation
of the stance foot during glide mode (selected such that the
ankle joint lies directly below the virtual center of the foot),

1569

and the relative angle of the ankle joint required during flip
up (selected to be close to the joint limit).

The joint controllers (§III-B) in the ankles and hip all
have proportional and derivative gains, which are selected
by simple experiments on the hardware. These experiments
are easily repeatable by any controls engineer using standard
methods [11].

The final set of parameters (§III-C, §III-D), are selected
entirely by computer optimization (§IV-A, §IV-B). These
parameters are copied directly from the output of the op-
timization to the robot. There is no final hand-tuning step.

A. Objective Function for Optimization

The balance controller (§III-D) is parameterized by 15
numbers, the 3×5 look-up table entries. These are computed
by off-line optimization. The objective function in this opti-
mization is chosen to reject disturbances, while minimizing
speed and cost of transport.

The objective function evaluates a candidate controller
by running several simulations. Each of these simulations
starts from the same launch configuration, shown in Figure
4, and then the robot walks over several different ground
profiles. The first ground profile is flat and level ground.
The remaining ground profiles serve as disturbance tests and
are either constant slopes (uphill or downhill) or rolling hills
(sine curves).

A candidate controller receives a reward for each success-
ful step that it takes, where the reward is related to both the
speed and energy used to complete the step. The reward is
maximized by a controller that walks at the desired speed
using little energy. Each trial (ground profile) has a fixed
number of steps. If the robot falls during a trial, then it
receives a reward of zero for that and all future steps in
the trial.

The optimization then finds the controller that maximizes
the sum of rewards over all trials. The structure of the ob-
jective function is such that fall avoidance is more important
than speed regulation or energy effectiveness.

B. Optimization Method

Here we used a Covariance Matrix Adaptation Evolution-
ary Strategy (CMAES) [19], [20] to optimize the balance

Launch
Configuration

Immediately
before heel-strike

Mid-stance
Configuration

Push-off

Flip-up
to avoid
scuffing

Not moving,
slight tip
forward

Stance
leg is
vertical

Fig. 4. Ranger Configurations The launch configuration (left) shows the
static configuration that we use to start Ranger walking, both in simulation
and in reality. The middle configuration shows the robot immediately before
heel-strike. The final configuration (left) is mid-stance, with the supporting
leg vertical. This is the configuration that triggers an update from the balance
controller.

controller, because it deals well with our non-smooth objec-
tive function. We initialize the algorithm by first estimating
bounds on the parameters. For example, the push-off target
angle must be within the actuator limits, and the hip trajec-
tory coefficients should be roughly consistent with bipedal
walking (the swing leg must travel from back to front, etc.).

V. RESULTS
In addition to the results in this section, we have included a

short video showing Ranger walking using the new controller
presented here.

A. Off-line Controller Design (Optimization)

We implemented the entire design process for the balance
controller in Matlab, with most of the simulation code
being compiled to MEX for faster run-time. The code takes
about 10 minutes to compute the optimal control parameters
running on a laptop (Intel Quad-Core i7 CPU Q720, 1.60
GHz), where each walking step of the robot takes about
0.034 seconds to compute, for a total of about 18,000 steps
per optimization.

Here we designed a controller to achieve a single walking
speed, although we could repeat the process to compute
walking gaits for a whole set of target speeds.

B. Walking: Simulation vs. Experiment

Our controller design process relies on accurate simulation
of the robot; in this section we compare experimental data
collected during walking to what we expected based on the
simulation.

We collected data on the robot over two trials. In each case
the robot walked about 80 meters over a stone-tiled floor. The
surface of each tile was flat, but there was a change in height
of roughly 2 millimeters between the edge of any two tiles.
Over a large scale there is no measurable slope to the floor.

The model and simulation match well on power consump-
tion: the simulation predicts 22.2 Watts, and the two trials
used 22.1 Watts and 22.9 Watts respectively. The simulation
does not do as good of a job at predicting speed, with the
simulation walking at 0.66 meters per second, and real robot
walking at about 0.58 meters per second. This difference in
speed makes the cost of transport a bit higher on the real
robot: 0.49 instead of 0.42 in simulation. These results are
summarized in Table I.

We also compared the angles of the robot’s legs and feet,
as functions of time, to those predicted by the simulation.
We selected six consecutive walking steps at random, during
steady state walking, for both the simulation and the experi-
mental data. We found that the leg angles are a close match

TABLE I
COMPARISON OF SIMULATION AND EXPERIMENTAL DATA.

Simulation Trial 1 Trial 2
Duration 119 s 162 s 159 s
Distance 79 m 91 m 91 m
Average Power 22.2 W 22.1 W 22.9 W
Total CoT 0.42 0.48 0.49
Average Speed 0.66 m/s 0.57 m/s 0.58 m/s

1570

throughout the gait. The ankle angles are close for much of
the step, but there are significant deviations during push-off,
as shown in Figure 5.

C. Robustness Experiments

We evaluated the robustness of the “new” controller by
comparing its performance to the previous “old” controller,
which was used for Ranger’s marathon walk in 2011 [8].
Each controller was first evaluated walking without distur-
bances to establish a base-line. Then we subjected the robot
to disturbances and measured each controller’s ability to
regulate walking speed and prevent falls. The disturbances
are illustrated in Figure 6, and the results are given in Figure
7.

Baseline: We established a baseline performance for each
controller by having them walk on a flat stone-tiled floor.
The only disturbances were the slight perturbations caused
by the height variations (≈ 2 mm) between stone tiles. The
old controller walked 183 meters with no sign of falling,
while the new controller walked 732 meters, falling 6 times.

Trial 3: Our first disturbance was walking on a more
challenging floor, which had sagged over the decades. The
resulting ground profile was smooth, but with slight rolling
hills: the peaks were 4 meters apart, and the peak-to-trough
height was about 2 centimeters. The old controller walked
429 meters, falling 3 times, while the new controller walked
501 meters, falling 6 times.

Trial 4a: Next, we brought the robot back to the orig-
inal stone-tiled floor and removed the “hip spring” which
connects the inner and outer legs, inducing a substantial
modeling error. Both controllers walked a distance of 183
meters. The old controller did not fall and the new controller
fell 6 times.

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

Fo
o
t

A
n
g
le

 (
ra

d
)

Le
g
 A

n
g
le

 (
ra

d
)

Time (sec)

Time (sec)

Outer Feet

Inner Feet Push-Off

Outer Legs

Inner Legs Inner Legs Inner Legs

Outer Legs Outer Legs

Fig. 5. Walking: Simulation vs. Experiment Six steps of periodic
walking. The dashed lines show the simulation and the solid lines show
experimental data. All angles are absolute, and measured from vertical. Most
angles match well, but there is a noticeable difference between simulation
and experiment during push-off.

Trial 4b: We returned the hip spring to the robot, and then
added a small mass (0.35 kg) to the outer legs. The weight
was positioned 0.12 meters in front of the hip joint, as shown
in Figure 6.The old controller was unstable: it continually
sped up until is stumbled and fell, a total of 19 times in
183 meters. The new controller walked well with the added
weight on the front. It increased it’s speed and only fell 3
times in 183 meters.

Trial 4c: For our final disturbance, we moved the mass
(0.35 kg) to the back of the robot, still on the outer legs, as
shown in Figure 6. In this case the old controller performed
well, only falling once in 183 meters. The new controller did
not fare as well, falling 14 times in 183 meters.

VI. DISCUSSION

In this paper we presented a new controller for the Cornell
Ranger, a bipedal walking robot. The controller architecture
is based on variety of ideas taken from previous walking
controllers, including [1], [6], [8]. Although the low-level
joint controllers are all hand-tuned proportional-derivative

rear weights
added here

Hip

Outer Legs
Inner Legs

Hip
Spring

12 cm 12 cm

front weights
added here

Fig. 6. Disturbance Diagram In Trial 4a, we removed the hip spring (k =
7.6 Nm/rad), which coupled the angles of the inner and outer legs. In Trial
4b we added a mass of 0.35 kg in front of the outer legs, in the location
shown. In trial 4c, we added the same 0.35 kg mass behind the outer legs.

0

5

10

15

20

25
old
new

0

0.2

0.4

0.6

0.8
old
new

Baseline Trial 3 Trial 4a Trial 4b Trial 4c

Baseline Trial 3 Trial 4a Trial 4b Trial 4c

S
p
ee

d
 (

m
/s

)
Fa

lls
 p

er
 2

0
0
 m

target

Fig. 7. Robustness Test Each of the trials compares the old (2011
Marathon) controller with the new controller presented in this paper. The
baseline trial was conducted on a flat stone-tiled floor. Trial 3 was walking
on smooth ground with rolling hills: 4 meter peak to peak, 0.02 meters
peak to trough. Trials 4a-4c were all conducted on the flat stone-tiled floor
to test robustness to modeling errors: missing hip spring (4a), weights added
to front (4b), and weights added to back (4c).

1571

tracking controllers, the parameters of the high level balance
controller are designed entirely using off-line optimization.
In the results section of this paper, we seek to answer two
questions, detailed below.

1) How well does the simulation match experimental
results? We found that the simulation is a good match for
the experimental data on power use and leg angles. The ankle
angles during push-off do not match well. This discrepancy
is likely due, in part, to our assumption that the drive cables
for the ankle joint are inextensible. As a result, the effect of
push-off on the real robot is reduced, which might explain
the reduced walking speed seen in the experiments.

2) How does this new controller compare to the previous
(hand-tuned) controller? In general, the previous (hand-
tuned) controller out-performs the new controller, although
not by a huge margin. This assessment is based on the fact
that it does a better job of regulating speed in the presence
of disturbances, and has a lower fall rate in all but one trial.

Summary: We were able to design a controller using off-
line optimization, without after-the-fact hand-tuning, which
walked reasonably well under a variety of disturbances. De-
spite this, the previous hand-tuned controller out-performed
the new controller on most tests. Although the new controller
was designed in large part by computer optimization, the
architecture of both the controller and optimization were
manually selected. It is likely that these manual choices
limited the ultimate performance of the new controller.

VII. FUTURE WORK

The work presented here is preliminary: it shows that we
can set up a model-based optimization that can design a
controller in simulation that we can directly use on a real
robot. Although the initial results are passable, there is still
much left to do.

In the current implementation, the balance controller only
updates the trajectories of the robot once per step. In the
future we would like to make these updates continuous,
allowing the robot to more quickly react to external distur-
bances such as a sudden push.

An additional area for improvement is the look-up table for
the balance controller, which now uses only a single input:
the mid-stance speed of the robot. Ideally, this policy would
use at least the state of the stance and swing legs, rather than
this simple one-dimensional projection.

Our model of Ranger is reasonably accurate, but there are
still some discrepancies between model and reality, espe-
cially during push-off. In the future we plan on moving the
last few iterations of the optimization process to the robot,
using experimental data rather the simulation for automatic
fine-tuning of the controller.

Finally, we plan on designing the controller to be capable
of walking at several speeds, rather than just the one speed
that it is capable of now.

ACKNOWLEDGMENT

This research is supported by the National Robotics Ini-
tiative (grant number: 1317981).

REFERENCES

[1] K. Yin, K. Loken, and M. van de Panne, “SIMBICON : Simple Biped
Locomotion Control,” in SIGGRAPH, 2007.

[2] X. B. NPeng, G. Berseth, and M. van de Panne, “Dynamic Terrain
Traversal Skills Using Reinforcement Learning,” in SIGGRAPH,
2015. [Online]. Available: http://www.cs.ubc.ca/ van/papers/2015-
TOG-terrainRL/index.html

[3] J. Englsberger, C. Ott, M. A. Roa, A. Albu-sch, and G. Hirzinger,
“Bipedal walking control based on Capture Point dynamics,” in Inter-
national Conference on Intelligent Robots and Systems, San Francisco,
2011, pp. 4420–4427.

[4] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture
Point: A Step toward Humanoid Push Recovery,” 2006
6th IEEE-RAS International Conference on Humanoid
Robots, pp. 200–207, dec 2006. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4115602

[5] T. Koolen, T. de Boer, J. Rebula, a. Goswami, and
J. Pratt, “Capturability-based analysis and control of legged
locomotion, Part 1: Theory and application to three simple
gait models,” The International Journal of Robotics Research,
vol. 31, no. 9, pp. 1094–1113, jul 2012. [Online]. Available:
http://ijr.sagepub.com/cgi/doi/10.1177/0278364912452673

[6] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 42–56, 2003.

[7] M. VUKOBRATOVIĆ and B. BOROVAC, “Zero-Moment Point -
Thirty five years of its life,” International Journal of Humanoid
Robotics, 2004.

[8] P. a. Bhounsule, J. Cortell, a. Grewal, B. Hendriksen, J. G. D.
Karssen, C. Paul, and a. Ruina, “Low-bandwidth reflex-based
control for lower power walking: 65 km on a single
battery charge,” The International Journal of Robotics Research,
vol. 33, no. 10, pp. 1305–1321, jun 2014. [Online]. Available:
http://ijr.sagepub.com/cgi/doi/10.1177/0278364914527485

[9] P. R. D. Honda, “Asimo Technical Report, Tech. Rep. September,
2007.

[10] S. Kuindersma, F. Permenter, and R. Tedrake, “An Efficiently Solvable
Quadratic Program for Stabilizing Dynamic Locomotion,” in Interna-
tional Conference on Robotics and Automation, 2014.

[11] K. Ogata, Modern Control Engineering, 5th ed. Prentice Hall, 2010.
[12] P. a. Bhounsule, J. Cortell, A. Grewal, B. Hendriksen, J. G. D.

Karssen, C. Paul, and A. Ruina, “MULTIMEDIA EXTENSION #
1 International Journal of Robotics Research Low-bandwidth reflex-
based control for lower power walking : 65 km on a single battery
charge,” International Journal of Robotics Research, 2014.

[13] V. a. Tucker, “Energetic cost of locomotion in animals.” Comparative
biochemistry and physiology, vol. 34, no. 4, pp. 841–846, 1970.

[14] ——, “The energetic cost of moving about.” American
scientist, vol. 63, no. 4, pp. 413–9, 1975. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/1137237

[15] P. a. Bhounsule, “A controller design framework for bipedal
robots: trajectory optimization and event-based stabilization,”
Ph.D. dissertation, Cornell Univerisy, 2012. [Online]. Available:
http://ruina.tam.cornell.edu/ pab47/Pranav Bhounsule Thesis.pdf

[16] A. D. Kuo, “Energetics of Actively Powered Locomotion Using the
Simplest Walking Model,” Journal of Biomechanical Engineering, vol.
124, no. 1, p. 113, 2002.

[17] M. Srinivasan and A. Ruina, “Computer optimization of a
minimal biped model discovers walking and running.” Nature,
vol. 439, no. 7072, pp. 72–5, jan 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16155564

[18] S. J. Hasaneini, C. J. B. Macnab, J. E. a. Bertram, and H. Leung,
“Optimal relative timing of stance push-off and swing leg
retraction,” 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 3616–3623, nov 2013. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6696872

[19] N. Hansen and a. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies.” Evolutionary computation,
vol. 9, no. 2, pp. 159–95, jan 2001. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/11382355

[20] N. Hansen, “An analysis of mutative sigma-self-adaptation on
linear fitness functions.” Evolutionary computation, vol. 14,
no. 3, pp. 255–75, jan 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16903793

1572

