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Abstract— Before designing a controller in detail, we ask this
question: for a given robot state, and every possible control action,
what is the minimum number of steps needed to get to a given
target state (if it is possible to do so)? Our biped model is a 2D
inverted pendulum with massless legs. We have two controls:
(i) the magnitude of an impulsive push-off just before heel-
strike and (ii) the step length (location of the next heel-strike).
The maximum impulse and minimum step time are bounded
to reflect limited motor strength. We compute the set of initial
mid-stance velocities from which the biped can reach a given
target mid-stance velocity in n or fewer steps. The result: for
most target speeds and initial velocities, and with realistically
strong actuators, it is possible to reach the target in two steps,
if it is possible to reach it at all. This ‘two steps is enough’
result expands on Koolen et al.’s [1] results for capturability
of the linear inverted pendulum and is consistent with some
human balance and visual guidance experiments.

I. INTRODUCTION

With faster and faster available computation, a sensible
way to control locomotion is with Model-Predictive Control,
MPC [2]. MPC uses on-the-fly model-based trajectory opti-
mizations to determine the best controls to reach a desired
target from the present given state. The controls based on this
model-based prediction are updated as rapidly as possible.

One MPC design freedom is the ‘horizon’; how far ahead
in time the optimizer plans. Koolen et al. [1] hypothesize that
at any instant during locomotion, humans are able to come
to a stop, if they choose, within three steps. Koolen et al.
also argue that present 3D bipedal robots can usually, with
appropriate controls, stop within two steps. Using stopping
as a proxy for general targets, Koolen et al. are thus arguing
that 2 or 3 steps look-ahead is sufficient for motion planning.

This two-or-three-step claim is consistent with some ex-
periments on human walking balance [3], [4] and visual
guidance [5], [6]. Also similar observations have been made
for control of hopping robots [7], [8] (see section V for
further discussion). Here, we use the inherently more-energy-
efficient inverted pendulum model instead of the linear-
inverted pendulum used by Pratt’s group, because it more
closely matches the robots in our lab. We also generalize
the standing-still target to the target of walking at a desired,
possibly non-zero, speed. The paper supports, by means of
these examples, the following claim:

Two-step controllability: For a given model of a biped
and an arbitrary target, if it is possible for the biped to reach
the target at all, in most cases it can be done in two steps
or fewer.
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Why does it matter? The ‘two-step controllability’ claim, if
valid for complex real robots, suggests that MPC controllers
can generally set their planning horizon at two steps. This is a
huge computational advantage for high-dimensional systems
in which optimization calculations are limited by processor
speed, processor size and processor energy use. We plan to
use some version of model based control on our coming
robots, using simplifications suggested by this paper.

II. BACKGROUND CONCEPTS AND DEFINITIONS

A walking robot has a state which evolves according to the
laws of mechanics as influenced by the controlled actuations.
A given system state is controllable1 to a specified target if
there is some set of controls that lead the system to the target
in finite time without intermediate failure. Two example
targets are: 1) standing still (as for Pratt’s capturability [11]),
and 2) moving at a specific forward speed. More general
targets in location or state (e.g. overall robot configuration
or following a path) are possible but are not considered here.
Example failures include falling, exceeding motor limits, or
exceeding joint-angle bounds.

For a given model, target and failure rules, a given robot
state is either controllable or not. The controllable region, a
subset of the state space, is the set of all controllable states.

We monitor the system’s state only at a Poincaré section
(e.g. mid-stance), considering a step as a map from one
crossing through the Poincaré section to the next. We call
a given state and set of control actions viable or non-failed,
if none of the model’s constraints is violated during the step.
Let C0 be the set of all states on the Poincaré section that
fit a goal description; the goal set C0 is the target region2

(our generalization of Koolen et al’s standing still on one
foot). We define the n-step controllable region Cn for n≥ 1
as the set of all states on the Poincaré section from which the
biped can, with some feasible controls, reach one of the target
states in C0 in n or fewer viable steps. Equivalently, Cn is
the set of all states on the Poincaré section from which the
robot can get to Cn−1 within one viable step. The definition
of Cn implies that the sequence {Cn} is nested, Cn−1⊂Cn

for any n≥ 1, and we call its limit the ∞-step controllable
region C∞. The region C∞ is the set of all states on the

1Our ‘controllability’ is called capturability in [9] and applies to an
arbitrary target. However, Pratt’s group uses ‘capturability’ [1] only for the
particular target of coming to a complete stop standing on one foot. Our
‘controllability’ is close to that used in classical Control theory [10].

2Although controllable regions can be considered for target states that
are either failed or preventing a failure is impossible once at them, we limit
ourselves to the target states from which it is possible to continue the motion
forever without a failure. From the Viability theory’s [9] point of view, we
limit our targets to the Viability Kernel of our system.
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Fig. 1. Planar Inverted Pendulum (IP) model of walking has a point
mass m at the hip (G) and two rigid inextensible massless legs. There are
two control parameters at each step: push-off impulse p just before the foot-
ground contact, and step length xst determining the time and location of the
contact. The motion of the massless swing leg has no effect on the stance
leg dynamics.

Poincaré section from which the biped can either reach the
target C0 in a finite number of steps or at least approach it
asymptotically.

If our goal set C0 is a full stop, our Cn is Koolen et al.’s
n-step viable-capture basin.

Knowing a state is controllable does not tell you what
controls are needed to reach the target, only that they exist.
The extended controllable regions C̄n bring the controls into
play. The pair (q, u) is the extended state, where q is the
state of the robot on its Poincaré section, and u the vector of
controls for the next step. The extended n-step controllable
region C̄n is the set of all extended states (q, u) such that
starting from the state q on the Poincaré section and using
the controls u during the first step the robot can reach the
target C0 in n or fewer viable steps. Equivalently, C̄n is
all extended states, for which the (n−1)-step controllable
region Cn−1 can be reached in one viable step. That is, C̄n

is the extended 1-step controllable region corresponding to
the target Cn− 1. The sequence {C̄n} of the extended regions
is nested (C̄n−1⊂ C̄n), and we call its limit the extended∞-
step controllable region C̄∞. C̄∞ is the set of all extended
states (q, u) starting from which the target can be reached,
at least asymptotically.

We also consider partial extended controllable regions by
including only the controls of interest in the control vector
u. We indicate this with a superscript. For example, C̄p

n is
the extended n-step controllable region when only control
parameter p is included in u and other controls are free to
be determined.

III. BIPED AND WALKING MODEL

We use a standard 2D Inverted Pendulum (IP) model [12],
[13] with a point mass m at the hip and two identical
massless rigid legs of fixed length ` (Fig. 1). Only walking
on a flat ground is considered. As a standard assumption
in compass gait models [12]-[15], swing-foot scuffing at
mid-swing is ignored. At foot-ground contact (heel-strike)
an instantaneous and plastic (no bounce) collision happens,

and support is instantaneously transferred from the trailing
to the leading leg (instantaneous double stance). Just before
heel-strike, a push-off impulse p is applied along the stance
leg. Due to the push-off and heel-strike impulses, the hip
velocity is discontinuous at instantaneous support transfer.
State and control variables. We consider mid-stance (θ= 0)
as the Poincaré section (an event surface) of our biped
model, making the problem discrete and lower-dimensional.
At mid-stance the biped state is characterized by the stance-
leg angular rate θ̇; the motion of the massless swing leg
is irrelevant. The controller can move the swing leg to
any desired orientation, thus determining the step-length
xst (the distance between the two feet at heel-strike). The
controller also determines the push-off p at support transfer,
but between collisions the stance leg motion is not controlled.
Our model is thus reduced to one state variable, θ̇ at mid-
stance, and two control parameters per each step, the step
size xst and the push-off p.
Gait dynamics. We non-dimensionalize all variables using
the hip mass m, leg length `, and the gravity constant
g: time and force are non-dimensionalized by

√
`/g and

mg, respectively. Equivalently, we set m= `= g= 1 in all
equations.

The step-to-step map is calculated in two phases: 1)
continuous single stance and 2) discontinuous collisional
support transfer. In single stance we use inverted-pendulum
equations. At the support transfer (push-off + heel-strike),
angular momentum balance about the new stance foot de-
termines the (new) stance leg angular rate, i.e. θ̇+, from the
(former) stance leg angular rate just before push-off, i.e. θ̇−:

θ̇+ = θ̇− cos 2θsw − p sin 2θsw. (1)

Here, θsw< 0 is the swing leg angle at heel-strike and can
be used as a proxy for step length, given by

xst =−2 sin θsw. (2)

Walking constraints. A ‘viable’ step is a non-failed step; it
has no flight phase, makes it up to the next mid-stance, and
meets other constraints, listed below.

The compression in the stance leg is always non-negative:

leg compression = Fst = −θ̇2 + cos θ ≥ 0. (3)

Because Fst increases as the robot moves from heel-strike to
mid-stance and decreases again until push-off, we need only
check (3) just before push-off and just after heel-strike:

cos θsw − (θ̇−)2 ≥ 0, cos θsw − (θ̇+)2 ≥ 0. (4a)

Similarly, the heel-strike impulse must be non-negative, so
the hip velocity just before heel-strike (just after push-off)
must have a downward component along the leading leg. This
along with a non-negative push-off constraint is expressed as

p cos 2θ− − θ̇− sin 2θ− ≤ 0, and p ≥ 0. (4b)

Step map. For the controllability analysis, we would like to
map the initial mid-stance state θ̇0 and two controls, step size
xst and push-off p, to the state θ̇1 at the next mid-stance. For
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this purpose, we use conservation of energy to find θ̇− from
θ̇0 and θ̇+ from θ̇1. This, with velocity map at the collision,
equation (1), gives our step (or Poincaré) map:√

2− 2 cos θsw + θ̇21 = − p sin 2θsw (5)

+ cos 2θsw

√
2− 2 cos θsw + θ̇20.

Similarly, the step map constraints, given by equation set (4),
can be expressed in terms of θ̇0, θ̇1, p, and θsw:

max
(
θ̇20, θ̇

2
1

)
≤ 3 cos θsw − 2, (6a)

p cos 2θsw + sin 2θsw

√
2− 2 cos θsw + θ̇20 ≤ 0, (6b)

p ≥ 0. (6c)

The map (5), the step size equation (2), and the three
constraints (6) determine all combinations of the initial and
final hip velocities, θ̇0 and θ̇1, and the controls, p and xst, that
correspond to a viable step. In other words, these equations
define the 1-step controllable region C1 corresponding to a
given target velocity θ̇1 (see similar derivation in [17]).

IV. CONTROLLABLE REGIONS

Now, we compute the controllable regions Cn, and the
extended-controllable regions C̄n. For our model the C̄n

regions are 3D (one state and two control variables). To
simplify the visualization, we extend the state space by only
one control variable at a time, considering C̄xst

n extended
by the step size xst, and C̄p

n extended by the push-off p.
Although these are the partial extended controllable regions,
for simplicity we drop the term ‘partial’ when referring to
them.
1-Step controllability. Our target state is a desired velocity
θ̇t of the hip at mid-stance. The region C̄xst

1 is all combina-
tions (θ̇0, xst) for which there is some feasible push-off p,
such that the robot reaches the target velocity θ̇t at the next
mid-stance with no failure. More formally, (θ̇0, xst) is a point
in C̄xst

1 if θ̇0 and θsw =−sin−1(xst/2) satisfy the Poincaré
map equation (5) and the three walking constraints (6) for
some value of p and the fixed final velocity θ̇1 = θ̇t. With
algebraic manipulation of (5) and (6), we found analytical
expressions for the boundaries of C̄xst

1 ; on each boundary
one of the inequalities (6) becomes an equality (for details,
see [18]).

Fig. 2b illustrates C̄xst
1 for the example θ̇t = 0.3 (i.e. mid-

stance speed ≈ 0.94 m/s for a robot with 1m legs). For any
given initial velocity θ̇0, a vertical line segment in the dark
region C̄xst

1 is the range of step sizes available to the step-
size controller such that the robot can, with an appropriate
push-off p, reach the target velocity θ̇t within one step.

All initial velocities, for which there is at least one step
size in C̄xst

1 (i.e. the projection of C̄xst
1 onto the θ̇0-axis),

constitute the 1-step controllable region C1, shown in Fig. 2a.
If the robot’s velocity at mid-stance is outside of C1, there is
no way for the robot to reach the target velocity in one step
(e.g. for the target θ̇t = 0.3, the largest 1-step controllable
velocity is θ̇0≈ 0.82).

The set of push-offs p for which it is possible for the robot
to reach the target within one step is shown in the extended
1-step controllable region C̄p

1 illustrated in Fig. 2c . This is
all combinations of (θ̇0, p) for which there is some feasible
step size xst such that the robot reaches the target θ̇t at the
next mid-stance. Again, the projection of C̄p

1 onto the θ̇0-axis
is the 1-step controllable region C1 shown in Fig. 2a.

n-Step and ∞-step controllability. The n-step controllable
region Cn is all initial velocities θ̇0, such that the robot can,
with appropriate controls, reach the target in n or fewer steps.
The corresponding appropriate controls are given by n-step
extended controllable regions C̄xst

n (and, respectively, C̄p
n),

which are all combinations of velocities θ̇0 and step sizes
xst (push-offs p) for the next step, with which the robot can
reach the target within n steps.

Numerical procedure. We compute the regions C̄xst
n and C̄p

n

iteratively: C̄xst
n (or C̄p

n) is the extended 1-step controllable
region for the step-size control xst (push-off control p)
when the target set is the (n− 1)-step controllable region
Cn−1. We discretize Cn−1 into N grid points and calculate
the extended 1-step controllable region corresponding to
each grid point. The union of these 1-step regions is the
extended n-step controllable region for the ultimate target
C0 = θ̇t. Thus, we first calculate Cxst

1 , Cp
1 , and C1 for the

ultimate target θ̇t, as explained above. Then, for each n> 1
we sequentially compute C̄xst

n , C̄p
n, and Cn based on the

knowledge of Cn−1.
Figs. 2b and 2c show, respectively, the regions C̄xst

n and
C̄p

n for θ̇t = 0.3. The projections of both C̄xst
n and C̄p

n onto
the θ̇0-axis are the n-step controllable regions Cn, shown
in Fig. 2a. The regions Cn for the 2D IP model were also
derived by Wolfslag [17]. Note the nested structure of the
presented regions: Cn⊂Cn+1 for n≥ 0, and C̄xst

n ⊂ C̄
xst
n+1,

C̄p
n⊂ C̄

p
n+1 for n≥ 1.

As n increases, the regions C̄xst
n in Fig. 2b approach

the extended ∞-step controllable region C̄xst
∞ . Similarly,

the regions C̄p
n in Fig. 2c approach the extended ∞-step

controllable region C̄p
∞. As for the n-step regions, projection

of both C̄xst
∞ and C̄p

∞ onto the velocity axis is the ∞-step
controllable region C∞, shown in Fig. 2a. C∞ is the limit of
the regions Cn as n increases. Computations using a range
of target velocities 0≤ θ̇t≤ 1 show that the ∞-step regions
C∞, C̄xst

∞ , and C̄p
∞ are independent of the target; if you are

in a state from which you can take viable steps to reach one
target other than your current state3, you could eventually
reach any target.

Our central claim shows in Fig. 2: the two-step controllable
region C2 is most (∼ 95%) of the ∞-step controllable
region C∞. Similarly, the extended regions C̄xst

2 and C̄p
2

are close to C̄xst
∞ and C̄p

∞, respectively. This is the ‘Two-
step controllability’ claim: if it is possible to reach a given
target at all, in most cases it is possible to reach it within
two steps. We generalize the result for cases with actuation
limits below.

3Our model has no ankle torque, so when standing still on one leg it
cannot start moving to reach any target other than its current state.
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Fig. 2. n-step controllable regions. Here θ̇t = 0.3. Note: C2 is almost all
of C∞ in all three plots. (a) The n-step controllable regions. Cn are the set
of initial velocities θ̇0, for which the robot can reach the target velocity θ̇t in
n or fewer steps. (b), (c) are partial extended regions, supplement the state
with the step-size or push off control, respectively. For each θ̇0, the extended
n-step controllable regions C̄xst

n and C̄p
n show, respectively, all step sizes

xst and push-offs p of the first step, for which it is possible to reach the
target in n or fewer steps. The regions Cn, C̄xst

n , and C̄p
n form sequences

of nested regions, which approach the∞-step regions C∞, C̄xst∞ , and C̄p
∞

(shown by their boundary) correspondingly. Each Cn of figure (a) is the
projection of both C̄xst

n and C̄p
n of figures (b) and (c) onto the θ̇0-axis.

Actuator constraints. In Fig. 2 we allowed arbitrary con-
trols. Now we add constraints, representing limits on push-off
and leg-swing motors, and see if the 2-step controllability is
maintained. First, we limit the maximum available push-off
impulse p:

0 ≤ p ≤ pmax. (7a)

Next, we assume that a specified minimum time is needed to
swing the leg by imposing a fixed lower bound on the step
time tst, the time from the mid-stance to heel-strike:

tst ≥ tst,min > 0 (7b)

In steady walking the step time tst is about half of the step
period.

Following crude estimates on the bounds of our robots,
for the example here we use the bounds pmax = 0.25 and
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Fig. 3. n-step controllability of the 2D IP model with limited actuation.
This figure is analogous to Fig. 2, but assumes limited actuation: the max-
imum allowed push-off is (p≤ pmax) and the minimum allowed step time
is (tst≥ tst,min. We use pmax = 0.25, tst,min = 0.5. For our constrained
model, C2 =C∞, C̄xst

3 = C̄xst∞ , and C̄p
3 = C̄p

∞. The controllable regions
for the unconstrained model (see Fig. 2) are shown dimly in the background.

tst,min = 0.5. For comparison, the estimated maximum push-
off for the Cornell Ranger robot [19] is ≈ 0.3 and the
estimated minimum step-time is 0.4 for Ranger and 0.26
(∼ 0.09 s) for humans [20].

We compute the extended controllable regions C̄xst
n and

C̄p
n for this constrained model using the same iterative

algorithm as for the unconstrained model (see Fig. 3).
For this example C̄xst

n = C̄xst
3 for all n≥ 3. Thus, C̄xst

3

is equal to the extended ∞-step controllable region C̄xst
∞

(similarly for C̄p
3 and C̄p

∞):

C̄xst
∞ = C̄xst

3 , C̄p
∞ = C̄p

3 . (8)

Note, in Fig. 3a the∞-step controllable region C∞ is exactly
the same as C2:

C∞ = C2. (9)

That is, if it is possible to reach the target at all, the robot
can always reach the target in two or fewer steps.

Unsurprisingly, the actuation limits (7) do reduce the size
of the extended controllable regions (the regions for the
unconstrained model are shown with light shading in Fig. 3).
That is, there is a smaller choice of control strategies that
bring the robot to the target. However, for this example, these
constraints have a smaller effect on the controllability of the
robot, i.e. on the ∞-step controllable region C∞. Only in
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extreme situations (large velocities θ̇0> 0.84) the robot is
unable to reach the target due to the insufficient actuation.

As suggested by Art Kuo (personal communication), there
are actuator limits which violate the observations above. For
example, if the robot is allowed fast steps but is highly
limited in step size, the C2 region is no longer a large fraction
of C∞ (for many initial states it takes many steps to reach
the target). And if the step time is heavily restricted, the
resulting C∞ is substantially smaller than C∞ calculated for
the unconstrained case. However, these are extreme cases,
and under normal circumstances and with practical actuation
limits two steps is all needed.

V. IF YOU CAN’T BALANCE IN TWO STEPS, YOU CAN’T
BALANCE

When a robot deviates from its preferred trajectory, due to
an external disturbance, sensor noise, avoiding an obstacle,
or because it chooses to change speed, it may take several
steps to reach it’s target speed. Or, for large disturbances, it
may fall. Our goal when designing controllers is to avoid
these falls. In picking control strategies, how far ahead
do we need to look? The ‘Two-step controllability’ claim
here suggests that in most cases one does not better avoid
disaster by looking more than 2 steps ahead. That is, two-step
controllability is almost equivalent to ∞-step controllability.
This shows in our previous plots by the various C2 regions
being a substantial fraction of the C∞ regions; for most
initial conditions, a target speed can be reached in two steps
if it can be reached at all.

In addition to our simple IP model (Fig. 1), there is other
support for the ‘Two-step controllability’ claim: 1) other
models; 2) examples of finite-horizon robot control; and 3)
some human-subject data. These are discussed below.

Other simple models. Another simple model of walking is
the Linear Inverted Pendulum, LIP [21]. The LIP model has
a point-mass at the hip and two massless telescopic legs.
The leg forces are constrained to keep the hip at a constant
height. We have investigated the LIP model in some detail
and found similar results as for the IP model here [18]. This
slightly generalizes the previous calculations of [1].

Carver et al. [7] studied two-step controllability of the
Spring-Loaded Inverted Pendulum (SLIP) model, a simple
model of hopping and running [22], [23]. The SLIP model
has a point-mass body and a massless spring (the leg)
attached to it. The controls of the model for each step are
the position of the spring-like leg at touch-down (transition
from stance to flight) and two spring coefficients (effectively
like our push-off parameter) for the stance phase (one for the
leg compression, the other for the leg decompression). For
a fixed target state (horizontal position, height, and velocity
of the point-mass at the flight apex) Carver et al. found the
set of position perturbations that can be corrected in at most
two steps. These perturbations form a large (on the scale of
the reference step-size) area surrounding the target location
and thus, presumably, most practically-relevant disturbances
can be corrected within two steps.

Two-step controls in the robotics community. Two-step
control strategies have been used to generate walking con-
trollers [8], [24]. For example, in the animation world, Van de
Panne [8] generates the optimal (supposedly most physically
realistic) motion of a character for a sequence of desired
footstep locations provided a priori. Van de Panne finds a
two-step horizon control to be sufficient to produce a realistic
animation.

Other groups have discovered that planning two or three
steps ahead gives sufficient stability for their models [7],
[25], [26]. For example, Nishiwaki et al. [26] studied the
problem of online generation of walking trajectories (of
the robot’s links) based on a given trajectory of the center
of pressure on the ground (ZMP path). Each trajectory is
generated as a solution of a Boundary-Value Problem (BVP)
and plans two, three, or more steps ahead, trying to satisfy
several constraints (such as initial and final conditions, and
following of the given ZMP path). Nishiwaki et al. found that
planning more than three steps ahead negligibly improves the
generated trajectories (their smoothness and errors in meeting
the constraints).

Evidence from humans. Two types of studies on human
subjects provide evidence in support of the ‘Two-step con-
trollability’ claim. The first investigates recovery strategies
of humans after various disturbances during walking or
standing. The second aim to understand how humans plan
ahead during locomotion, e.g. where they look preparing for
the next step.

Hof et al. [3] study balance responses of young adults to
sideway pushes (3 to 12 kg m s−1 in magnitude) at different
phases of walking. The participants were always able to
return to their preferred gait in at most two steps after a
push. When it was possible (based on the reaction time of
the person, the instant of the push, etc.) to move the swing
leg to a desired stepping location, balance was regained after
the first step. Likewise, Tang et al. [4] report that humans can
restore balance within two steps after slipping. The slipping
was simulated in the experiment by jerking a plate under the
colliding leg at the instant of collision; the plate perturbation
was 10 cm in either forward or backward direction at the
speed 40 cm/s. Schillings et al. [27] research recovery strate-
gies of humans after stumbling over an obstacle. Healthy
subjects were walking at a comfortable speed, when a 4.5 cm
tall obstacle was released on the treadmill at different phases
of the step cycle. The authors report that the normal gait was
usually restored in two steps.

Other research that we use in support of our ‘Two-step
controllability’ claim, studies motion planning in humans.
In a series of experiments by Patla et al. [5], [28] and
Hollands et al. [29] human participants were asked to follow
a specified path on the floor, while their gaze behavior
was monitored. One of the objectives was to understand
where and when humans focus their eyes when planning the
motion ahead. They found that in some tasks (change of the
step length or width, obstacle avoidance [5], raised stepping
stones [29]) the participants were looking at the location they
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were about to step next (i.e. one step ahead) most of the time.
In other tasks (change of the walking direction [5], stepping
stones on flat ground [28]) the subjects, on average, were
looking two steps ahead, when they were focusing their eyes
on specific areas on the ground.

An interesting two-step result comes from Matthis and
Fajen [6], who study performance of humans in the obstacle
avoidance task with limited visual information. Human sub-
jects were asked to walk across a room filled with obstacles
displayed on the floor by a projector. The obstacles were
visible only within one, two, or more step-lengths around
the participant. The participants’ performance (frequency of
collisions) significantly improved when the visibility radius
was increased from one to two step lengths. On the other
hand, visibility of more than two step lengths ahead weakly
affected the performance.

VI. CONCLUSION

We used a simple bipedal model to study the controlla-
bility, the ability to reach a target speed without falling, of
bipedal walking. The model has two control parameters for
each step: the step size and the amount of push-off impulse.
We computed all possible states at mid-stance from which
the model can, with appropriate controls, reach a given target
speed within n steps. We showed that, generally, if the model
is able to reach the target at all, it can do so in two steps
or less. This result remains unchanged even if the controls
are limited within some practical bounds. We also provided
evidence from practical robot control and multiple human
walking experiments showing that this capability is also valid
for more complicated models and appears to be used by
humans.

The above considerations lead us to the following propo-
sition: two steps is almost everything. That is, anything a
model is capable of doing at all, most likely it can do it in
only two steps. Practically, this suggests that in a controller
design, there is no need to plan the motion of the robot, at
least for balance purposes, more than two steps ahead.

Because, for robots with human-like proportions, no mat-
ter the complexity of the upper-body motions, almost all
control authority is in the step position and push-off, we
believe the results extend to walking of people and of all
humanoid robots in almost all situations.
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