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Slip Instability and State Variable Friction Laws
ANDY RUINA
Department of Theoretical and Applied Mechanics, Cornell U niversity

The dependence of the friction force on slip history is described by an experimentally motivated
constitutive law where the friction force is dependent on slip rate and state variables. The state variables
are defined macroscopically by evolution equations for their rates of change in terms of their present
values and slip rate. Experiments may strongly suggest that one state variable is adequate or prove that
one is inadequate. Analysis of steady slip governed by a single state variable in a spring and (massless)
slider predict oscillations at a critical spring stiffness k = ke The critical stiffness k., is given by a
simple formula and steady slip is stable for k > k_,, and unstable for k < k.., State variable friction laws
may superficially appear as a simple slip rate dependence, slip distance dependence, or time dependent
static friction, depending on experiment and testing machinery. Truly complicated motion is possible in a
spring-slider model if more than one state variable is used. Further consequences of state variable friction

laws can include creep waves and apparent rate independence for some phenomena.

INTRODUCTION

Since the proposal of Brace and Byerlee [1966] that stick-
slip instabilities in laboratory friction experiments might be
analogous to earthquake rupture, a fair amount of experi-
mental work has been done to determine the nature of these
instabilities and the conditions under which they occur.
Within this view, laboratory experiments are thought of as
models of possible fault motions in the earth. Experiments
have been performed with many rock types, with and without
various fault gouge layers, at a range of slip rates (often re-
ported as “strain rates”), confining pressures, pore pressures,
temperatures, and in machines with different geometries and
compliances.

A slightly different approach to friction experiments has
been to use them as a means to discover a constitutive de-
scription of surface slip from which earthquake or laboratory
instabilities can be predicted through modeling. Such mod-
eling of elastic systems reveals that instabilities in frictional
slip depend on a reduction of the friction force during some
part of the sliding (slip weakening). For this reason, much
discussion of friction has emphasized the characterization of
slip weakening phenomena associated with slip. For example,
Byerlee [1970] proposed that the friction coefficient varies
from point to point on slip surfaces and that instabilities are
associated with decreases in the friction force from peak values
as sliding proceeds. Alternatively, Dieterich [1972] proposed
that slip weakening occurred after a time dependent healing
during stationary contact. Also, a friction force that is a de-
creasing function of the instantaneous slip rate also leads to
slip weakening (during accelerating slip) and can lead to slip
instabilities. All of these mechanisms have been proposed pre-
viously as a basis for slip instabilities, primarily in metals [e.g.,
Jenkin and Ewing, 1877; Bowden and Leban, 1938; Rabinowicz,
1958, 1959; Kosterin and Krageliskii, 1960].

More recently, a deeper understanding of friction laws (at
least in some materials and under some conditions) has come
from work of Dieterich [1978] and Rabinowicz [1958, 1959]
further developed by Dieterich [1979a, 1980, 19817, Johnson
[1981], and Ruina [1980]. This work leads to a general class
of friction laws that may be described by using state variables.
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These friction laws have features resembling a description with
simple displacement dependence, slip rate dependence, or time
dependent static friction. It is hoped that understanding of
these laws, and the stability of slip in systems governed by
these laws, will lead to better understanding of fault dynamics.

The aim of this paper is (1) to describe these state variable
laws with examples, as motivated by general considerations
and experimental results; (2) to present some simple results
about the stability of steady sliding, neglecting inertia, with a
friction law based on one state variable; and (3) to mention
some further consequences of state variable friction laws. Geo-
physical applications will not be addressed directly in this
paper.

Before getting involved in the details of the friction laws,
some general features of certain experiments are mentioned
now. These have mostly been presented by Dieterich [1978,
1979a, 1980, 1981]. Figure 1 shows the variation in the friction
stress T in an idealized experiment in a stiff machine with no
inertia in which the slip rate V is changed suddenly from one
value to another greater value with constant normal stress o.
The basic features of the curve in Figure 1, also observed
approximately in real experiments, follow:

1. A steady state friction stress t* associated with any slip
rate V, (either 7, with ¥V, or 7,* with V, in Figure 15).

2. A positive instantaneous slip rate dependence, visible as
the positive jump in 7 when the slip rate is suddenly increased
and the negative jump in t when V is suddenly decreased.

3. A long-term decrease in friction stress 7 following the
positive jump in slip rate V. A long-term increase in T occurs
following a negative jump in V. The long-term decrease in t
following an increase in ¥ may, or may not, be larger than the
instantaneous increase in t; that is, dt%/dV may be negative or
positive.

Another feature that may have less generality but appears
to be common to the limited recent observations is that

4. The decay of stress value after the step change in slip
rate has characteristic length(s) that are independent of slip
rate.

More specific features, but also roughly approximated by
recent observations (at slip rates on the order of 1 um/s), are
that

5. The instantaneous rate dependence of the friction force
(the jump in ¢ Figure 1b} is approximately proportional to In
Va/ V).
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Fig. 1a. A unit of slip area. The friction stress t is determined by the
normal stress o, the slip rate 4 = V, and the surface state.

6. The steady state frictional stress 7 is approximately
logarithmically dependent on V (i.e., (V) = constant + C In
(V) where the constant C may be positive or negative in differ-
ent materials or environments).

We take curves like those in Figure 1b to be the basis of
discussion here. They are examples of the evolution of friction
force with a particular slip history. A set of such examples is
then used to construct a constitutive law. This contrasts slight-
ly with the work of Dieterich [1978, 19794] in which the con-
cept of static friction plays a central role in the development of
the constitutive law.

RELATION TO OBSERVATIONS

The discussion in this paper is aimed at an idealized math-
ematical characterization of the basic experimentally observed
features just mentioned, especially the first three: (1) fading
memory and steady state; (2) positive instantaneous slip rate
dependence; (3) negative dependence on recent past slip rates.

The fading memory and steady state feature is implicitly
assumed in almost all experiments or discussion of metallic
friction. Few rock friction experiments provide solid ver-
ification of this idea since they are apparently dominated by
transients associated with first sliding. However, many of the
experiments of, for example, Summers and Byerlee [1977]
show a trend toward the leveling of load © versus slip J or
repeatable stick-slip events, both of which are indicative of
fading memory. A superposition of a long-term displacement
dependence on a fading memory law (with possibly slowly
changing parameters) is a possible correction in the cases
where steady state is not observed. Thus, although oc-
casionally observed oscillations (discussed later) and slip pre-
ceding instability in the tests by Summers and Byerlee may
seem indicative of the laws we propose here, these experiments
do not offer direct support.

Experiments of Johnson [1981] in a servo-controlled triax-
ial testing machine show evidence of a steady state, both in the
leveling of 7 versus & curves and repeatability of experiments.
Additionally, his experiments substantiate the idea of a direct
velocity dependence competing with a memory to the same
extent as the earlier work of Dieterich [1979a]. Servo-
controlled experiments by Dieterich [1980] with fault gauge
also give results in support of his earlier work. Because of the
artificial stiffness that servo control provides, this later work
by Dieterich shows clearly the distinctness of the essentially
instantaneous direct velocity dependence from the memory
dependence. However, some of his results (unpublished) show
a more complex relaxation to steady state.

Experiments [Ruina, 1980] in the “sandwich” shear appa-
ratus of Dieterich using servo control on displacement u, mea-
sured close to the slip surface, show some features consistent
with Dieterich’s and Johnson’s results as well as some new
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features. The sample in these experiments was quartzite
ground with 90 grit abrasive and loaded at about 3 MPa
normal stress. The range of slip rates was 107% to 2 x 107°
my/s. Typical results are shown in Figure 2. The effective ma-
chine stiffness is high enough (dashed line) so that the curves
may be viewed as t versus 8. These experiments clearly show
the existence of a steady state, independent of recent history.
In Figure 2a, two experiments are shown for step changes in
load point velocity (like the first third of Figure 1b). In both
cases, T approaches the same level despite the difference in
previous velocities. A step change in control rate V leads to a
jump in t as described before. Often, electrical noise would
cause an unwanted servo “correction” causing a sudden tran-
sient jump in t and V. These very short disturbances (0.1
s— 0.1 um) caused little or no memory effects. The new fea-
tures are these:

1. The curve for step changes from 0.1 um/s to 1 um/s
does not retrace the curve for step change from 0.01 um/s to 1
umy/s.

2. The curves retrace almost exactly an exponential decay
after an initial transient decay that also is roughly exponential.

Not directly verifiable from Figure 2 but clearly observed
[Ruina, 1980] was the independence of the characteristic dis-
tances of the exponential decays from slip rate. Further, all the
jumps in t and ultimate relaxations were roughly proportional
to the log of the ratio of the velocity after the jump to the
velocity before. Figure 2b shows the result of simulating the
experiments with a state variable constitutive law to be intro-
duced later.

STATE VARIABLE FRICTION LAwS

Constitutive Assumptions

The description presented here is totally macroscopic in
that a surface is characterized by its mechanical behavior, the
relation between friction force and slip displacement rather
than the microscopic mechanisms. These mechanisms only
affect the stability of slip through their effect on the mechani-
cal constitutive description. Thus they may be neglected for
some purposes. Of course, extrapolation of the results, beyond
environments or materials directly tested, would be better jus-
tified by understanding the microscopic mechanism of the
constitutive laws. The mechanism(s) are not discussed much in
this paper due to lack of directly relevant results at this point.

The friction law is described at a “point” on the surface.
Such a point is defined as a unit of area of surface on the
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Fig. 1b. Idealized evolution of friction stress 7, at constant normal
stress o, when the slip rate 8 = V is changed. At location 1 the slip
rate is suddenly increased from V, to V,, t jumps up from 7,* and
subsequently decays to t,*. At location 2, a sudden drop in slip rate
back to V, causes a sudden drop in 7 followed by a slow recovery to
7,%. At location 3 the picture at location 1 is repeated.
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Fig. 2. Friction force variation due to step change in slip rate: (a)

Quartzite polished with #90 grit abrasive and about 30 bars normal
stress. Experimental results from two tests in which the slip rate was
changed from 0.01 um/s and 0.1 um/s to 1 um/s; (b) numerical simula-
tion of the two tests using equation (19) (figure from Ruina [1980]).

boundary of a solid and is isolated as in Figure 1a. The sur-
face is mechanically coupled to its surroundings by the posi-
tive slip displacement 6, the separation distance of the surfaces
(dilation), the shear stress 7, and the normal stress g. Dieterich
[1978] suggested that shear strain y in a deforming layer may
replace the slip 6 as the primitive deformation variable. How-
ever, theory [Ruina, 1980] and experiment [Dieterich, 1981]
indicate that homogeneous shear straining localizes to con-
centrated slip if instabilities are possible. The surface may also
be coupled to its surroundings through the conduction of
heat, chemical diffusion, or pore fluid flow. Since our ultimate
interest is the slip on the surface, primary interest is on the slip
displacement é and the driving shear stress 7. No experiments
relating the dilation and the normal stress ¢ to the effects
discussed here have been conducted. The role of ¢ and dila-
tion will thus only be discussed peripherally.

The first basic assumption is that the surface (or surface
region) has, at any instant in time, a state. Also, the friction
stress depends only on the slip rate V' the normal stress o and
the state. That is,

T = F(o, V, state) (1)

At a given point on the surface the state is assumed to vary
as a continuous function of time for finite V (continuous §).
The rate of change of state is assumed to depend only on the
instantaneous state at the point, the normal stress o, and the
slip rate V:

d(state)/dt = G(o, V, state) )

In fact, one expects that the surface state should change if
the external temperature, fluid pore pressure, or chemical envi-
ronment changes. The effects of these environmental changes
during slip are, for simplicity, excluded here. The function G in
equation (2) may be different for different fixed environments,
though, and thus the effects of temperature, pressure and
chemical environment are not excluded (only excluded are
changes during slip). The temperature distribution, pore pres-
sure, and chemical environment near the surface which di-
rectly interacts with the surface (as opposed to the external
environment) may be included in the state. (The state may
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include, for example, pore fluid suction due to dilation of
pores or the temperature field due to frictional heating. If
these quantities alter the properties of the adjoining solid,
mechanical modeling will be complicated, however). A further
exclusion implicit in (2) is that the state at one point is unaf-
fected by the state at other points on the surface (ie., no
diffusion of state along the surface is included).

The general description here, which follows Ruina [1980], is
very close to that commonly promoted as an approach to
constitutive laws for metal deformation [Onat, 1981]. The
principal difference is the inclusion of V (corresponding to
deformation rate) in equation (1). This inclusion is motivated
by the experiments which show effectively instantaneous step
change in the friction force for step changes in slip rate (see
Figure 2). This has been observed by Ruina [1980], Dieterich
[1980], Teufel [1981], and was postulated by Dieterich
[1979a] earlier. Experiments of Johnson [1981] also indicate
this property.

In this paper we define § as the inelastic deformation on the
slip surface. The vagueness of the term “inelastic” can be disre-
garded since recent experiments [Ruing, 1980] indicate no no-
ticable elastic contribution to ¢ if it is measured very close to
the slip surface. Earlier experiments of Dieterich [1978] do not
show the instantaneous rate dependence (the V in equation (1)
nor does the earlier work with metals [ Rabinowicz, 1958 ; Sam-
pson et al., 1943].

For the concept of state to be useful, it must have a definite
realization. The approach here is to assume the state can be
characterized by a collection of variables 0, or collectively 0.
In terms of these variables, equations (1) and (2) are

T=Flo, V,0,,0,, )
d6;/dt = Gfo, V,0,,0,, )

(3a)

i=1,2 - (3b)

One hopes that for practical purposes the numbers of state
variables 0; required is small. The variables 0; then represent
some kind of average of an undoubtedly complicated surface
state. Dieterich [1978, 1979a] suggested that the state be de-
scribed by a single variable representing the average time of
asparity contacts. Rabinowicz [1958] proposed average recent
slip rate as the governing state variable. Tolstoi [1958] sug-
gests the dilation (surface separation) is the governing state
variable. The temperature of the surface could be taken as a
single state variable if the heat flow is idealized as being de-
pendent on only the temperature of the surface and the tem-
perature of an external constant temperature reservoir. The
usefulness of the state variable concept does not depend on
physical interpretation of the state variables (like temperature
or entropy in thermodynamics) though discovery of such in-
terpretation would add tremendously to the credence and use-
fulness of the theory.

The friction stress t is well known to be roughly pro-
portional to the normal stress ¢. Limiting attention to con-
stant normal stress histories we assume that

7 =oF(®, V) (4a)

d6Jdt = G0, V) 0=10,0, -

where F (slightly different in meaning than in (3)) and G are
approximately independent of ¢. Since nothing is known
about the effects of changes of normal stress we will use equa-
tion (4) assuming ¢ = constant.

(4b)
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Fading Memory

The state variables 0; represent the surface memory of pre-
vious sliding. Experiments of Dieterich and Ruina indicate
that after sufficient sliding on virgin samples the memory ap-
pears to be only short term. More specifically, if a slip history
d(¢) is imposed on a surface and the response 7,(¢) is observed
and then if, subsequent to arbitrary intervening sliding, the
slip history d(¢) is repeated (time origin offset) then the re-
sponse 7,(t) will approach t,(t) once sufficient time or dis-
placement has elapsed. In other words, reproducible results
may be obtained with a single surface merely by repeating
displacement history. This is illustrated, for example, by the
similarity of the first and third step changes in Figure 15. A
fading memory implies the existence of a steady state corre-
sponding to constant velocity sliding, since in steady sliding
the same slip history is being reapplied continuously and con-
tinuously repeatable results must be obtained. In terms of the
friction law (3) or (4) the existence of a steady state is interpre-
ted to mean that for any value of V there are corresponding
values of state and shear stress denoted 6,%(V) and (V) to
which 6; and t must approach closely after sufficient time or
displacement at a constant slip rate; 6,* solve G0, 0,%,
L V)y=0fori=1,2,---.

If, as is apparently consistent with the experiments of Ruina
[1980], the variables 6, can be chosen such that the evolution
of any one does not depend on the other, we have that 0, =G,
(0;, V). Assuming the inequality

oo > G0, V)/[65(V)—6,]>0 for all 0; (5)

ensures that 0, approach unique steady state values 0;5(V) if
slip proceeds at constant V after an arbitrary slip history.
Inequality (5) applied for 6; near 8,*(V) tmplies that the final
approach to steady state is exponential.

Characteristic Distances

As noted, equations (4a) and (4b) have, as one solution, the
steady state solution, when 6 = V = constant:

= aFO5(V), V) = t%(V)
0, = G(0=(V), V) =0

(6a)
(6b)

Linearizing equations (4a) and (4b) with respect to 0, near this
steady state we obtain

1= 1%V) + 0ZF,0* (Ta)
0.‘* = (aGi/aOi)Oi* (7b)

where 0* = 0, — 0;(V) and F, = 0F/#0,. Equations (7a) and
(7b) describe the friction force near the steady state for an
unvarying V and have the full solution

1=%V) + 3 ¢ exp ((8G;/36)5/V) 8)

where t has been replaced by §/V and ¢; are arbitrary con-
stants. Since 0G,/00; is negative (by inequalities (5)), the final
approach to steady state is thus a sum of exponentials with
characteristic distances equal to d, = —V/(@G,;/06,). Experi-
ments indicate that these distances are constants independent
of V' [Dieterich, 1978, 1979a, 1980; Ruina, 1980]. For sudden
small changes in slip rate the number of exponentials needed
to approximate well the approach to steady state is not great-
er than the number of internal variables needed to describe
the friction law and is equal if

AF/06; # 0 for all 0, (9a)
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and

0G; /00, # 0G;/00,; i #j (9h)
If, in a given slip history, the slip rate V only changes slightly
over the characteristic distance d, = — VARG, /00,) associated
with a given variable 0;, then that variable may be considered
as always having its steady state value 0,*(V). For slip histor-
ies with characteristic wavelengths much shorter than the
characteristic distance associated with a given 0,, that variable
may be regarded as constant in some circumstances (e.g., if the
velocity fluctuations are not so large that 0, changes even with
slip displacements much less than d,). Thus, even though a full
description of the friction may require several internal vari-
ables, only those with characteristic distances on the same
scale as the slip histories of interest may need to be treated
carefully.

In the following section we give some cxamples of state
variables.

Examples of State Variables

Here we consider some examples of state variables. The
state variables are assumed to evolve independently so that
each one satisfies an evolution law of the form

0 = G, V) (10)

Rabinowicz [1958] proposed that the average of the slip
speed over a characteristic distance d. (an asperity size) should
be the governing variable, i.c.,

a
0=(1/d,) f V(&) do’ (1
6 ~d,

Unfortunately, 0 as described in (11) cannot be described
exactly by a single differential equation of the form of equa-
tion (10). More generally, one may think that 0 should be the
weighted average of some function f of the recent slip speed.

Thus,
3
0— f

where V, is a constant introduced for dimensional consistancy
and w is a weight function in the average.

If the weight function w is a decaying exponential, (i.e.,
w(x) = e~ *"*) equation (12) can be written in the form of (10).
(Or, if the weight function can be written as a sum of n ex-
ponentials, then the variable ¢ in equation (12) is the sum of
several 0; each of which obeys an equation of the type (10).) In
particular, differentiation of the integral in cquation (12) using
a decaying exponential weight, shows that

w(d — &) [V(8YV.] do' (12)

0 =(1/d,) r e CTIVELTVSY Y] do (134q)
= e P hdgs)
+ (1/d,) j ae' GOMNLTY () V] d (13h)
S0
is equivalent to
do/dt = G0, V) = V[ f(V/V,) ~ 01/d. (13¢)

where f(V/V,) is the function of slip rate that is averaged by
equation (13a). Here, f(V/V.) is also the steady state value of 0
for slip at constant V (ie., 03(V) = f(V/V.)). One might for
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convenience also use ¢(0), a function of 0, as the state variable
and alter G(0, V) accordingly.

Some examples of # which all happen to fit the description
in equation (13) will be discussed briefly. Dieterich [1979a] has
suggested that friction is primarily a function of a variable he
called “the average time of asperity contact.” His rationale,
similar to Rabinowicz [1958], was the “static” friction in his
experiments increased as a function of time in about the same
way friction decreases as a function of steady sliding speed.
These two facts are regarded as different aspects of the same
phenomena. That is, slip at speed V over an asperity of dimen-
sion d, involves contact for a time d_/V and thus leads to a
friction force corresponding to a stationary time of contact
¢ =d./V. This reasoning does not, however, admit explicit
rate dependence (observed in experiments as the jumps in Fig-
ures 1b and 2 with jumps in slip rate). Dieterich defined the
“average time of contact” ¢ by describing how it changes from
¢ =4d./V, to ¢, =d, /V, when the slip rate changes suddenly
from V; to V,. Dieterich’s definition of “time of contact” ¢ is
equivalent to any of the four descriptions below [Ruina, 1980]
as can be verified by differentiation and use of the chain rule
(equation (14c) was published in Kosloff and Liu [19807].)

0=e¢ ¥ é<y)/dc0((50)

8
—(1/d,) f e TN In [V(o')/V.] &
L

0

(14a)

¢ =d.e’v,
A/dt = V[ —In (V/V,) — 0)/d, ¢ =d.e®/V, (14b)
dojds = [~In (V/V) — 01/d, ¢ =de’V,  (14c)
dp/dt = —(pV/d,) In (pV/d,) (144)

From equation (14a) one can say 0 is the weighted average
of —In (V/V,) over the distance d,. From equation (14b) one
can say 0 chases its steady state value —In (V/V.). That 0
approaches ¢ with characteristic distance d, is apparent in
(14c). At constant V the approach is exponential, even for
large changes in slip rate. A flaw in Dieterich’s reasoning is
apparent from (14d). If the slip V jumps to zero, the expression
in (14d) yields d/dr = dbjdt =0 (ie., x In x— 0 as x— 0).
Thus, ¢, as defined by Dieterich [19794], does not change
during stationary contact and cannot be interpreted as
“average contact time.” The form (14) seems to be quite useful,
however, despite this complication in interpretation [Ruina,
1980; Rice and Ruina, 1982; Gu et al., 1983; Mavko, 1980].

As another example consider ( as an average of a power of
V.f(VIV) = (V/V.), so

0 = O(dg)e ™ P24 4 (1/dc)

' f e CTORLYEYV.] A8 (15a)
30
or, equivalently,
df/dt = VIV/V.)" — 6]/d, (15b)
or
dgjdt = —=[(V¢y' '/V." = V@l/nd,  0=¢ " (15¢)

The value n = —1 is the only way equation (15) leads to a
finite, nonzero rate of change of state for zero slip rate (0 >
0> 0 for V- 0). So, a state variable that has a simple inter-
pretation as time dependent is one that averages the slowness
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1/V (n= —1). In this case, equation (15) can be written as
(with (15¢) changed by a constant),
(]
0=(1/d,) f e OTINLY V(8] ds (16a)
or
t
0=(V./d) J e O ¥ENd gy (16h)
do/dt = (V. — 0V)/d, (16¢)
de/dt =1—¢V/d, ¢ =d.0/v, (16d)

where equation (16d) shows that d¢/dt = | when V = 0. At
steady state, ¢ has the value d./V consistent with Dieterich’s
[1978, 19794] original reasoning.

Another example to look at is that of Rabinowicz [1958].
His “state variable,” as defined in equation (11), is similar to
n =1 in equation (15). In either case one can sce that average
recent slip rate leads to no change of state at zero slip rate and
thus does not coincide with a simple concept of time-
dependent static friction. Many other state variables consis-
tent with equation (4b) or (10) may undoubtedly be used prof-
itably. Those mentioned in this section, being a subset of (13),
include all those used thus far for modeling, however.

Sufficiency of One Internal Variable

Here we focus our attention on a friction law adequately
described by only one internal variable, for example,

t=0F(, V) (17a)

0= G, V) (17b)

where equation (5) is still a restriction on (17b). This form
includes all the laws proposed by Dieterich [1979a, 1980,
19817. First it should be noted that the expression (17) is not
unique for a given material. No general aspects of the theory
would be changed if the variable 0 could be replaced by ¢(f)
where ¢ is any monotonic function. New functions F{¢, V)
and G(¢, V) can then be constructed from (17) that represent
the same friction law.

We now address two questions: (1) How, in principle, can
one deduce that a form like (17) applies to any given surface?
(2) Knowing a form (17) does apply, how can one deduce the
functions F and G? The difficulty in answering these questions
arises because 0 cannot be measured directly.

One simple way to justify the sufficiency of (17) is by
exhaustive testing of some given F(0, V) and G(0, V) with af-
firmative results. That is, if an exhaustive set of V versus time
experiments all have t versus time curves identical to that
given by integration of (17) then, within the domain of the
experiments equation (17) is correct. If the experiments differ
from the integration of equation (17), then at least one of the
functions F and G is not correct. A more general approach
can however test equation (17) without testing particular func-
tions F and G.

The following two statements are implied by (17), indepen-
dent of the functions F and G (assumed to be monotonic in
their arguments). Violation of either of them implies that no
single state variable law of the form (17) can apply.

1. For given initial conditions, (o, V), very fast changes
(corresponding to changes at a fixed state) must lead to a
unique relationship between t and V independent of the
nature of the fast change.
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Fig. 3. Simplified Dieterich Friction Law, equation (18). The

heavy solid line shows the relation between friction stress 7 slip rate V
at steady sliding, illustrated for B > A. The light solid lines are lines
of constant state. The arrows indicate the rate of change of state,
increasing below (V) and decreasing above t2%(V). The dotted line
shows the experiment of Figure 1. 7 increases along a line of constant
state from 7%(V|) when V jumps from V| to V, and then decreases
gradually to t(V,). © then decreases along a line of constant state
when V jumps back to V, and subsequently rises back to (V).

2. The value of (¢, > 0) is uniquely determined by 7(0)
and V(t), 0 <t < t,. That is, all slip velocity histories equal to
V(t) beginning at an arbitrary time = 0 (but possibly different
previously) and causing a given value of 7 at time = 0, cause
the same values of (¢) for all subsequent time. In other words,
the state 0 is uniquely determined by the instantaneous values
of tand V.

Statement (1) follows, assuming G is bounded, because 6 is
continuous in time from (17b). Thus for any sudden changes in
V, t is a function of V alone, from (17a). Statement (2) follows
from solving (17a) for 6(z, V). Thus t(0), V(0) determine the
state 0(0), and t(¢) is found from the unique integration of (17)
with given initial conditions ©(0), ¥(0) and “forcing” function
V(t).

Conditions 1 and 2 if verified by exhaustive experiments
also nearly imply that equation (17) applies. The condition 1
leads to a family of curves on the 7, V plane that, by condition
2, cannot intersect. Numbers assigned to these curves in an
arbitrary but monotonic manner can be identified as values of
0. Thus, 6 = 6(r, V), which inverted is (17a). For fast changes
in V, @ is constant; thus, 0 can only depend on V and higher
derivatives in a manner that gives no singularities in 6 for
singular V, ¥, etc. Assuming, then, that  does not depend at
all on V, ¥V etc., we have that 0 can only depend on 0 and V.
Thus, 6 = G(0, V).

Experiments tending to confirm conditions 1 and 2 above
thus tend to confirm the validity of a single state variable
description (17a) and (17b). Experiments that violate these
conditions, like experiments that violate any predictions of
(17a) and (17b), demonstrate that one internal variable is not
sufficient to describe the friction law.

If (17) is known to apply but the functions F and G are not
known they could, in principle, be found by the following
experiments. Assign to 6 the value of a parameter which is the
single parameter in a family of slip histories, each of which is
long enough to uniquely determine the state. For example, if
the single parameter family of histories is slip at constant slip
rate (for sufficient distance to clear the memory), § may be
taken as some function of the speed of slip. Equation (17) is
then deduced by imposing a range of slip histories é(t) corre-
sponding to a range of 6, each of which is followed by a range
of slip velocities V. The function ¢F(0, V) of (174a) is just the
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value of T immediately following initiation of slip speed V. The
function G(6, V) is found by solving (17a) for 6(z, V') and the
time derivative of (17a) for &0, %, V, V). So both 0 and 0 are
known in terms of (t, ¢, ¥, V) and (17b) can be determined
from measurement of (t, ¥, ¥, V) at a number of points for
various slip histories.

On the other hand, the sets (1, 1, V, V) are overdetermined if
(17b) exists, since then one could solve, say, for #(z, V, V). So, if
for given 1, V, V the variable 7 (or the evolution of 1) also
depends on previous slip history then no representation of the
form (17) exists. This last result will be used later in the analy-
sis of experiments. The discussion is simplified if one restricts
attention on the evolution of 0 to constant V in which case V'
drops out of all the equations above, and the changes of t with
slip are directly due to change of 0.

EXAMPLES OF STATE VARIABLES FRICTION LAWS

Simplified Dieterich’s Law

A law with only one internal variable that has all of the
features named in the introduction is one based on the state
variable in (14) [Ruina, 1980].

=0+ 0+ Aln(V/V)]
0 =(=V/d)O0+ Bln(V/V)]

(18a)
(18b)

This law is close to that proposed by Dieterich [19794] for a
large range of slip rates and shares the apparent defect of
no-healing (no change of 0) for zero slip rate. This law can be
illustrated graphically as in Figure 3.

Lines of constant state, 0, are light solid lines and show the
instantaneous positive dependence of t on slip rate V. The
heavy line is the steady state friction law and is a decreasing
function of slip rate in the example of Figure 3 (B > A). As
governed by (18b), 0 decreases above the steady state line,
below it # increases. Any slip corresponds to a pen motion on
a plot of Figure 3 and is the simultaneous solution of the
friction law and any constraints imposed by the loading mech-
anism. The arrows indicate the component of this motion per-
pendicular to the lines of constant (). The imposition of con-
stant slip rate, for example, constrains the motion to a vertical
line on Figure 2 and # approaches the steady state value (solid
line) for the given V, as dictated by the arrows.

The experiment in Figure 1 is shown by the dotted line in
Figure 3. At constant slip rate V;, T = *(V;). When the slip
rate jumps to V,, the friction stress jumps up along a line of
constant state and subsequently slowly decays to © = t™(V,).
The return to V; closes the loop in a similar manner.

Two State Variable Friction Law

The experiments of Ruina [1980] shown in Figure 2a
cannot be described by a single state variable law of the form
(17). This is because the two curves, both ending at V =1
um/s = 10~ °my/s do not trace each other. This violates con-
dition (2) in the discussion of the sufficiency of a single state
variable. Since the decay to steady state scems to be the sum
of two exponentials, one may postulate a two state variable
friction law. The experiments are well described by a friction
law of the form

=0y +0,+6,+ Aln(V/V)]

0= —(V/d)0, + B, In (V/V,))
0, = —(V/d, X0, + B, In (V/V,))

(194)
(19b)
(19¢)
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Fig. 4. Spring and slider model. A slider of negligible mass slides
a distance 6. A load point moves a distance u stretching the spring
with stiffness k (dimensions: (stress/distance)) and causing the driving
stress 1.

two trajectories of which are plotted in Figure 2b as computed
numerically with the spring block model of Figure 4 with a
very stiff spring. Equation (19) provides a good approximation
of the experiments in Ruina [1980] for velocity drops as well
as jumps. Since the memory terms 0, and 0, are each identical
to the memory term in the simplified Dieterich Law (equations
(14b) and (18b), they do not give “time dependence” in the
limit of zero slip velocity (e.g., 0, and 0, go to zero as V goes
to zero). The appearance of the In function in (17) obviously
limits the general validity of the form since it implies negative
til V is very large and nearly constant or if V is suddenly very
small. However, these paradoxes occur at such extremes of V
(since A4, B,, and B, are of the order of 0.01 in experiments)
that other limitations apply sooner. Experiments of Dieterich
[1979a] and Teufel [1981], for example, indicate that (V) is
not a decreasing function of V at higher V.

In the particular experiments of Figure 2 the direct rate
dependence is very nearly negated by the short-term relax-
ation of 0. In this case the two terms may be thought of as
canceling for very slow changes in slip rate and together
appear as a resistance to rate changes for slightly larger
changes in rate [ Ruina, 1980].

In numerical spring-block models the two internal variable
law (19) yields results that differ in some details from use of a
one variable law, as will be mentioned. However, for simplicity
we will discuss the stability of steady sliding governed by the
general single state variable law.

STABILITY OF STEADY FRICTIONAL SLIDING

Constant Force Loading

The constitutive laws thus far have been written for t in
terms of slip history. However, assuming the necessary invert-
ability they can be re-expressed to solve for slip from the
friction force. For example, the simplified Dieterich law equa-
tion (18) can be expressed

V=V exp [(t/o — po — 0)/A] (20a)
d0/ds = (B/A — O[O — 6%(z)/d, (20b)
0%(x) = — B(t/0 — po)/(A — B) (20¢)

For constant 7 loading this system can be solved for V in
terms of ¢ as

V= Vss(r)( VO/VSS(T))exP (B/A)~ 1)d/d, (21)

where V(1) = V.[exp (t/0 — po)/(A — B)] is the steady state
value of V that corresponds to 7, and V, is the slip velocity at
4 = 0. For B < A the solution decays to the steady state solu-
tion. For B > A, corresponding to a friction law that has t
decrease with steady state slip speed (e.g., dt™/dV < 0), steady
sliding is extremely unstable. If V, > V*(1) infinite velocities
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and displacements are reached in finite time since in (21) V(d)
is of greater order than d(ie., | dt = j(, * (1/V(6)dd = finite).
This strong instability was observed in the numerical work of
Kosloff and Liu [1980] using a slightly different friction law. If
Vy < V(1) slip continuously slows.

Constant force loading constrains the motion to horizontal
lines on Figure 3. The arrows governing () indicate the subse-
quent velocities for given initial conditions. The stability con-
ditions from the last paragraph are apparent with brief inspec-
tion.

Figures 3 can be used to show qualitative stability response
for other loading. For example, as noted in Kosloff and Liu
[1980] and Dieterich [19794], sliding occurs, with this style
law, before instabilities. In particular, unless sufficient force is
applied to bring the slip speed up to the steady state value
corresponding to that state, accelerating slip instabilities
cannot occur. If the friction force is an increasing function of
the steady state slip velocity, slip rates may grow quickly
during and subsequent to quickly growing imposed load 7, but
they remain finite and approach the steady state velocity cor-
responding to 7. Further stability analysis using the simplified
Dieterich law is carried out in Gu et al. [1983].

Not surprisingly, stability of sliding at constant t for any
law of the form (17) is critically dependent on dt**/dV, as was
the case in the last example. We examine the stability by
looking for solutions near a steady state solution at slip speed
Ve and t=t(V*), 0 = 6=(V'*), and 0 = 0. Linearizing (17)
near this solution one obtains

T=1"%4+ 1% =1% 4 gF,0* + oF V*
0* = 0 = G,0* + G, V*

(22a)
(22b)

where 0* = § — 0%, 1* = 7 — 1, V* = V — V™ and subscripts
denote partial differentiation.

For fixed t loading, t* = 0. Solving for V* in (224) and
applying this to (22b) we have

9* = (Go/FV)[FV - FeGV/Ga]o* (23)

The term in square brackets is (1/g)dt*/dV. This can be seen
by applying d6*/dV = —G, /G, (from implicit differentiation
of G(6, V) = 0) to the “total” derivative of (17a) with respect to
V at steady state. The first term in (23) may be re-expressed by
use of the association of G, with —V/d. made in the dis-
cussion following equation (9). So equations (22) and (23)
reduce to

0* = —(V/(d.oF ,)(dt=/dV)0*
V* = —(V/d.oF,)\dt>/dV)V*

(24a)
(24b)

where (24b) is found by differentiating (22a) with respect to
time.

Assuming a positive direct velocity dependence (F, > 0),
equation (24) has solutions that grow or die exponentially
depending only on whether dt**/dV is less or greater than zero.

So, for constant force loading the stability criterion with a
memory and slip rate dependent law is the same as with a
strictly slip rate dependent law [e.g., Rabinowicz, 1958]. If
force decreases with steady state velocity, steady slip is not
stable. This similarity between the stability behaviors for the
two laws break down, however, when a finite compliance is
used in the loading. In this case, friction negatively dependent
only on instantaneous rate is unstable for all stiffness, and the
state variable law is conditionally stable.
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Steady Sliding with a Spring-Block Model

A simple mechanical system in which to examine stability of
sliding is the spring-block of Figure 4. A rigid slider with unit
base area is held in frictional contact with another rigid sur-
face by a normal force o that may, in general, depend on the
sliding displacement & or the load point displacement u. The
load point is connected to the block by a spring of stiffness k
which transmits a stress 7 in the direction of sliding. In this
model all the inelastic shear deformation at a frictional surface
region is modeled by J, the slip displacement. The load point
displacement u represents the displacement at the point at
which the loading machine is controlled. The displacement u,
no matter what it represents (hydraulic oil pumped, gears
turned, or the shift of the base of a continential plate, for
example) is measured in such a way that 6 = u for constant
force loading. All elastic compliance (e.g., elastic sample defor-
mation) is incorporated in the spring constant k. In this dis-
cussion, k has dimension (stress/distance) and is defined k =
—dt/dé at fixed u. The model does not include inelastic or
nonlinear deformation away from the frictional interface, but
some such effects can be added easily. If the friction stress
depends on ¢ as in (4), even for not constant o, the results can
then be generalized if 7 is replaced by p and k by —d(t/0)/dd
(fixed u) [Ruina, 1980]. For quasistatic (inertia neglected)
analysis, the spring-block model is not much of an idealization
so long as slip in the modeled system is nearly the same at all
points on the slip surface. Most frictional instability analyses
use the dynamic (lumped mass) spring-block model in which
the block is endowed with a mass m. This is only an accurate
model if the modeled system is dominated by a single mode of
vibration. Our attention will focus on quasi-static motion and
the onset of instabilities and so the block mass will be neglect-
ed and there will be no discussion of inertia governed slip
times, stress drop overshoots, or other factors which depend
on inertia or kinetic energy. (A more general linear analysis,
including inertia, is presented in Rice and Ruina [1983].)

In the spring block model specification of the load point
motion u(t) approaches displacement control or force control
in the high and low stiffness limits. The constitutive descrip-
tion is a limiting form of the model response.

We now look at the nature of nearly steady slip if the
spring-block model (Figure 4) is used with a memory depen-
dent law (equation (17)) with the load point moving at a con-
stant speed V,. Since the friction force must equal the force
transmitted through the spring,

Tt =0F(0, V)= ku — d) (25)

where for constant rate loading u = V.

We are interested in the stability of steady state sliding
solution 8% = Vt — °(V,)/k. To examine the solutions near
the steady state solution equations (17) and (25) are linearized,
as for constant force loading (equation (22)), to give

t* = gF 0% + oF, V* = —ké* (264)
0% = Gob* + G, V* (26b)

8% = > (26¢)

where 1 =1—1%(V,), 0*=0—0%(V,), 6% =0— (Vot —

™%(Vy)/k). The coefficients of all the asterisked variables are
subsequently regarded as constants. The linear constant coef-
ficient equation (26) governs the motion of the block near
steady state sliding with constant load point velocity.

The solutions of (26) have the form
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™ = Re A,e* 0* = Re Aje" 27

where Re[ ] denotes the real part of [ ]. 4,, A, are con-
stants, and s is a constant to be determined. Application of the
solution (27) to the linearized equation (26) leads to the fol-
lowing quadratic equation and solutions for s:

s* + (Tk/aF)s + Dk*/(aF,)* = 0 (28a)
s = (k/26F,)[—T + (T* — 4D)"?] (28h)
T = V(dt/dV)/kd, + 1 (25¢)

D = oF,V/kd, (28d)

The identification of d. as —V /G, has been employed as
well as the identity dt**/dV = o[F, — G, F,/G,]. If, in either of
the solutions of (28b) s has a positive real part, then pertur-
bations near the steady state will grow exponentially by (27).
Since small perturbations can always be assumed to exist,
steady following of the load point by the block is impossible if
Re[s] > 0.

From the solution to the quadratic equation (28b) we have
instability when T < 0 or D < 0. Since the direct velocity de-
pendence F, is expected to always be positive D is always
greater than 0. So the stability criterion reduces to

k<k
k

= instability (294)

(29b)

crit
crit — V(d.[ss/d V)/dL

where k_,;, is the value of stiffness at neutral stability.

This result may be applied to any single state variable law
of the form (17). Applied to the simplified Dieterich law (18),
(29) yields the simple result

ke = o(B — A)/d. (30)

The dimensionless quantity 7 is negative when steady slid-
ing is unstable and positive for possibly stable sliding and can
serve as a measure for degree of stability. When s has an
imaginary part the approach to, or growth away from the
steady state solution will, from equations (27, and 28) be oscil-
latory. The condition for this, from (28b), is

T? = [V(dt®/dV)/kd, + 112 < 40F,V/kd, = 4D  (31)

At neutral stability, T = 0, and, from (28), s is given by

s = i(V/d)[~(d>/dV)/(aFy)]'"? (32)

and the slip displacement wavelength of the associated per-
sistant sine waves is

wavelength = 2nd,[F, /(—dt®/dV)]'/? (33)

The nature of the solutions to (22b) and (26) is described
mostly by the eigenvalues s of (27) and not the “eigenvector”
(A,, A,) which determines the relative phase and magnitude of
7 and 6 and shall not be discussed further (though it is rele-
vant in the nonlinear stability analysis of Gu et al. [1983]).

In summary, steady state sliding with the spring block ap-
paratus is unstable when dt*/dV < 0 only if k is sufficiently
small (29). This is different from a strictly slip rate dependent
law, for which steady sliding was unstable for any amount of
rate weakening (the limit of d,-— 0 in our results). Near the
condition of neutral stability oscillatory solutions are expected
that may grow or die depending on the sign of T (equations
(27)-(32). The wavelength of the oscillations is on the order of
2nd, (equation (33)).

A few complications may be added to the problem without
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Fig. 5. Friction stress  versus load point displacement u in the

spring and slider model of Figure 4. The load point speed is suddenly
increased from steady sliding at 0.7V, to V,. Subsequent motion for
various k are shown, as calculated with equation (18), the simplified
Dieterich Friction Law.

complicating the solution. If a viscous element is added, paral-
lel to the spring in Figure 4, the solution is only modified by
the addition of the dashpot constant to both F, and dt**/dV.
This further stabilizes the motion. Incidentally, one may note
that for purely viscous loading (the spring replaced by a dash-
pot) qualitative solutions can be obtained graphically from
Figure 3, since the loading could be represented as a single
constraint curve {between V and 1) on the graph.

Experiments [e.g., Johnson, 1981] show memory effects in-
dicative of the results idealized in Figure 1b but superposed on
a long-term displacement hardening. If a term f(6) is added to
the friction law (17) the linearization can be carried out as
before if the slope of f, f', is constant over a relevant slip
distance. That is, a direct displacement dependence can be
added to (17) if it can be modeled as having constant slope
J = C (ie, T = aF(0, V) + CJ). The corresponding solution is
obtained by linearization about the steady state solution
Ve = kV,/(k + C) instead of V** = V. The results are identi-
cal but with k replaced by k + C in results that depend on k.
An added positive displacement dependence is stabilizing since
it increases the effective stiffness of the spring,

I have not found a simple rationalization of the main result
of this paper, equation (29), except in the somewhat special
case where there is no explicit slip rate dependence, F, = 0.
Imagine the block sliding at the steady state solution corre-
sponding to the load point speed. If the slip rate of the block
were suddenly to change to a new, say, greater speed, the
friction law would require that the friction force must begin
changing. However, when the block speed changes, the spring
begins to relax since the load point speed is constant. Equa-
tion (29) states that the spring force drops less quickly than
the friction law force for imagined small jumps in slip rate and
that force is thus imbalanced toward the direction of motion.
A similar argument applies for imagined sudden small drops
in velocity.

A surprising feature of the stability criterion (29) is that it
does not contain explicit reference to the direct velocity de-
pendence F, neglected in the last paragraph. That is, only the
amount of the steady state rate weakening, and the character-
istic distance d,, determinine whether or not stable sliding is
possible in a given system, no matter how large the transient
velocity strengthening. However, as can be seen from (28)-
(32), the direct velocity dependence F, does determine wheth-
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er or not oscillations can occur, what their wavelength is, and,
if sliding is unstable, at what rate instabilities grow. The lack
of importance of F, to stability does not generalize to friction
dependent on more than one state variable [Rice and Ruina,
19837].

The solution of (28)-(32) for k— oo implies that for a very
stiff system, perturbations decay to steady state as in the con-
stitutive law for constant slip velocity. As the stiffness goes to
zero the constant force loading results are approached (com-
pare (29) to (24)). At intermediate stiffness the characteristic
lengths V/s in the exponential solutions are not d,. For exam-
ple, for compliances not quite large enough to cause oscil-
latory approach to steady state (equality in (31)) the character-
istic distance of the approach to steady state v/s = 2d.F,/
(—dt*/dV)'"? + d_. Thus, observed characteristic distances are
“machine” dependent.

Simultaneous solution of the spring-block constraint (25)
with the simplified Dieterich Law (not linearized) (18) has been
carried out numerically and is shown in Figure 5. The steady
state solution is perturbed by suddenly changing the load
point velocity a small amount. In a very stiff machine the
effect is small and gives the result that would be predicted by a
sudden change in the rigidly controlled slip velocity. With
more compliance decaying oscillations are observed. At neu-
tral stability, equality in (29), oscillations persist with the
wavelength of about 2nd, as predicted by (32) with B = 24 in
(18). With still a more compliant machine oscillations grow,
beyond the applicability of the previous linearizations, to a
massive instability. This is indicated by the near vertical slope
in force versus load point displacement implying rapidly in-
creasing slip velocities. This indicates the failure of the quasi-
static calculation and the onset of dynamic instability.

Oscillations like we discuss here were first noticed by Scholz
et al. [1972] and were seen to occur in the transition from
stable sliding to dynamic stick slip as the normal stress was
increased. Assuming g is independent of normal stress o, as
discussed, increases in normal stress are equivalent to de-
creases in stiffness k as emphasized by Dieterich [1978, 19794].
In experiments where the stiffness was electronically con-
trolled and gradually reduced [Ruina, 1980], there was a tran-
sition’ from steady state to decaying oscillations to large sus-
tained oscillations bordering on dynamic stick slip. These
large oscillations, incidentally, have an alternating amplitude
as will be mentioned again.

Oscillations of this type are seen in some of the results of
Summers and Byerlee [1976] as well as unpublished work of
Teufel. That these works do not show these small quasistatic
oscillations more frequently may be because in fault gouge
layers instabilities of the type discussed thus far are mixed
with instabilities associated with localization of deformation in
the gouge layer [Ruina, 1980].

RELATION TO TIME, RATE, AND DISPLACEMENT DEPENDENCE

Time Dependence

The term “time dependent” is frequently used to describe
any behavior that has a rate dependence and for which, conse-
quently, results depend on experiment duration and/or rate.
All the friction laws in this paper fall in this class. Dieterich
[1972, 1978, 1979a, 1980] has used the words “time depen-
dent” in a much more specific sense, however. He observed
[Dieterich, 1972], following similar experiments with metals,
that the force required to initiate slip rocks (“static friction”)
increases with the time of nominally stationary contact. He
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Fig. 6. Apparent time dependence of static friction. Equation (19) was used (with g, = 0.545, 4 = 0.011, d, = 0.25 um,
dy =52 pym, B, = 0011, B, = 00092, ¢ = 10 MPa, V. = 1 um/s.) in combination with the spring-slider model (k = 3.3
GPa/cm) to numerically simulate static friction experiments. The load point moved steadily at 1 um/s, stopped for a time,
and then moved again at 1 um/s. The peak force with resumed sliding is denoted “u.” For the circles resumed sliding was
stable, for the square resumed sliding led to infinite slip speed. The line shows Dieterich’s [1978] empirical fit to “static”

friction data.

then [Dieterich, 1978, 1979a] went on to propose that any slip
history can be characterized by the “effective time of contact.”
The variable he proposed is equivalent to ¢ defined by equa-
tion (14d). It has the flaw, as mentioned earlier, that it does
not evolve with time if the slip rate is zero and thus can in no
simple way be called “effective time of contact.” More recently,
Dieterich [1981] has been using a ¢, defined by equation (16),
that does allow an interpretation as effective time since ¢ = !
when V = 0. Experimental work with metals [e.g., Johannes et
al., 1973] has revealed that the notion of “time dependence” of
static friction was a consequence of a particular experimental
design. Instead, they proposed that static friction depends on
the rate of increase of the tangential loading at first slip.

In terms of the constitutive laws being promoted in this
paper (equations (3), (4), (17), (18), or (19), however, static fric-
tion experiments should be viewed as slip histories. Static fric-
tion is then the peak friction force in a particular “static fric-
tion” slip history. If a static friction experiment consists of a
load point, as in Figure 4, being stopped for some time and
then moved as constant rate, then the friction force can be
calculated through the interaction of the surface with the load-
ing (e.g., (25) if mass can be neglected and only one state
variable is used). The results of a numerical calculation of this
kind are shown in Figure 6. The two state variable friction
law, equation (19), was used in this numerical simulation. The
load point was moved at constant rate and then stopped for
successively longer times. Motion was then resumed at the
original load point speed of 1 um/s. The “static friction” is the
peak force in the subsequent motion.

The constants in the friction law were chosen to fit the
experiments of Ruina [1980]; the spring constant 3.3 GPa/cm
and normal stress (10 MPa) are approximately those of Die-
terich [1978]. Figure 6 clearly shows an apparent time depen-
dence of static friction. In fact, after about 1 s the “static
friction” coefficient increases by about 0.02 for each factor of
10 in nominally stationary contact time. Also plotted is the

curve u, = 0.545 + 0.02 log,q(t + 1) which is the empirical
curve reported by Dieterich [1978]. The friction law (19) gives
no change of state for ¥V = 0, however. The apparent static
friction is due entirely to small amounts of slip that take place
while the load point is still, not time of contact. For the simu-
lated experiment just described, roughly the same apparent
time dependence is obtained for a broad range of stiffness
(0.03 GPa/cm < k < 30 GPa/cm). This is consistent with Die-
terich’s observation that time dependence does not depend on
normal stress (since normal stress and stiffness are reciprocally
related in our modeling). However, both k— 0 (since the
stopped load point is not sensed by the slider) and k— o
(since in displacement control, with no slip rate, the state vari-
ables in (19) do not evolve) gives no apparent time dependence
in the above simulation.

I do not want to claim that no healing is ever possible when
there is no slip, but that static friction cannot necessarily be
characterized by a single number like “time of stationary con-
tact.”

Similarly, the negative dependence of “static™ friction on
load rate proposed in Johannes et al. {1973] may also be seen
as the manifestation of a state variable constitutive law in
particular experiments. A necessary condition for an apparent
negative dependence of “static” friction on load rate is that the
state variable(s) evolve more quickly at a slip rate slightly
below steady state than at a much slower slip rate. This is true
of the state variables in equations (18) and (19).

Rate Dependence

The constitutive laws (equations (3), (4), (17)) have two kinds
of rate dependence: (1) The instantaneous positive (viscous-
like) rate dependence in the function F and (2) the long-term
rate dependence after evolution to steady state. The short-
term rate dependence seems always to be positive and the
long-term rate dependence is often negative. For very slow
changes in slip rate the approximation that the state variables
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and thus 7 have their steady state values, t = t%, 8, = 0, is
accurate. The widespread applicability of this approximation
is likely the reason that the memory effects discussed here
were not well understood long ago.

Displacement Dependence

Though direct displacement dependence has been excluded
(since ¢ does not appear explicitly in equations (3), (4), or (10))
and since a steady state has been postulated), the friction force
does vary in a way that may appear as displacement depen-
dent (e.g., the transients in Figure 1). Dieterich [1978] has
utilized this approximation for his qualitative analysis of sta-
bility for stepwise constant rate motion in the spring block
model of Figure 4. Additionally, a particular subset of state
variable laws (including e.g., 19) satisfy a scaling rule that in
particular experiments produces apparent rate independence
[Ruina, 1980].

FURTHER IMPLICATIONS OF STATE VARIABLE FRICTION LAws

We propose that state variables are a reasonable way to
describe the constitutive laws for frictional slip. These consti-
tutive laws than can be used in mechanical models as has been
done by Dieterich [1979b, 19803, Ruina [19807, Mavko [1979],
Gu et al. [1983], Rice and Ruina [1983], and Kosloff and Liu
[1980]. Some results of such modeling besides that reported
here are briefly described below.

Oscillations

The single state variable friction law coupled with a spring
and massless slider has been shown here, in a linearized analy-
sis, to lead to oscillations at a critical stiffness k. Nonlinear
analysis of Gu et al. [1983] based on equation (18) shows that
these oscillations persist for a finite range of amplitudes. The
linear analysis has been generalized in Rice and Ruina [1983]
to include any friction law yielding a picture like Figure 15,
whether or not it has a simple state variable description and

also including inertia. The results show the generallity of the
existence of oscillations at a critical stiffness which is increased
by inertia.

Creep Waves

An analysis parallel to that with the spring block model can
be done with a deformable elastic solid [ Ruina, 1980; Rice and
Ruina, 1983]. The oscillations in the spring-block model
become propagating creep waves. Whether or not such waves
are seen or can be seen in nature is not yet known.

Rate Scaling

A particular subset of the state variable laws obey a rate
scaling rule [Ruina, 1980] that predicts (1) Johnson's [1981]
experimental observation that apparent time dependence of
static friction scales with previous slip rate; (2) Scholz et al.
[1972] experimental observation that the displacement scale
of slip preceding instabilities is independent of the applied
load rate; (3) stability criteria for steady slip should be inde-
pendent of rate (Teufel [1981] only observes this over a limi-
ted range of slip rates, however).

Complicated Motion

Some observed features do not seem to depend in a quali-
tative way on whether a figure like Figure 1b is generated by a
friction law governed by one or by more than one state vari-
able. Figure 1b could look nearly the same (with the shape of
the relaxation curve slightly changed as in Figure 2) and small
sinusoidal oscillations at a critical stiffness would also occur if
there were a number of state variables [Rice and Ruina, 1983].
However, the friction law (4), coupled with the spring and
slider, is a system of three (or more) first-order differential
equations if two (or more) state variables are used. It is known
that nonlinear systems of the order of 3 (or more) may exhibit
complicated motions.
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For example, the experiments of Ruina [1980] showed the
period of oscillations doubling when the testing machine stiff-
ness was reduced below that required for neutral stability.
Numerical modeling of the friction law (19) with a constant
speed load point also shows this period doubling as well as
other motions shown in Figure 7 as stiffness is decreased. The
nonlinear modeling with two state variables is extended in Gu
et al. [1983].

The complicated motion depicted in Figure 7 suggests that
even a simple system (slider block) with simple boundary con-
ditions (constant load point displacement rate) can lead to
very complicated motions. One might extrapolate that earth-
quakes’ motion and cycles may be essentially complicated due
at least in part to the dynamics of the process and not neces-
sarily complicated boundary conditions and/or initial con-
ditions.

Future Work

Future work of many kinds is possible. The constitutive
description is not accurately known especially at the low slip
rate limits. This is important to understand since this governs
the amount of healing between slip events. The mechanism of
the observed constitutive laws is also not understood. Nonlin-
ear stability analysis should eventually bridge the gap between
classical episodic “stick-slip” and the near steady sliding results
presented here. Whether or not a nonlinear analysis of the
creep waves can lead to a phenomenon analogous to shear
fracture is also unknown.

CONCLUSION

The state variable approach to friction laws has been intro-
duced as a generalization of the work of Dieterich [1978,
1979a, 1980, 1981b]. The primary assumed quality of the state
variables, the existence of a steady state, then leads to charac-
teristic distances and allows analysis of steady sliding. Some of
the unobvious implications of state variable descriptions are
oscillations of a massless system, creep waves, chaotic motion,
and apparent time dependence of static friction. Since many
geological systems are governed by friction that is possibly of
the type described, analyses extending those presented here
may have important applications.

Acknowledgment. 1 would like to thank Jims: Dieterich, Papado-
poulos, Rice; and Don Simons for many essential discussions; Paul
Segall for editorial comments; and the U.S. Geological Survey, De-
partment of Interior, for funding.

REFERENCES

Bowden, F. P, and L. Leben, The nature of sliding and the analysis of
friction, Proc. R. Soc. Ser. A, 1, 169, 371-391, 1938,

Brace, W. F., and J. D. Byerlee, Stick-slip as a mechanism for earth-
quakes, Science, 153, 990-992, 1966.

Byerlee, J. D., The mechanics of stick-slip, Tectonophysics, 9, 475-486,
1970.

Dieterich, J. H., Time-dependent friction in rocks, J. Geophys. Res.,
77, 3690-3697, 1972.

Dieterich, J. H., Time-dependent friction and the mechanics of stick-
slip, Pure Appl. Geophys., 116, 790-806, 1978.

RUINA: SLIP INSTABILITY AND STATE VARIABLE FRICTION LAws

Dieterich, J. H., Modeling of rock friction, 1, Experimental results and
constitutive equations, J. Geophys. Res., 84, 2169- 2175, 1979a.

Dieterich, J. H., Modeling of rock friction, 2, Simulation of presesmic
slip, J. Geophys. Res., 84, 2161-2168, 19795.

Dieterich, J. H., Experimental and model study of fault constitutive
properties, in Solid Earth Geophysics and Geotechnology, edited by
S. Nemet-Nasser, pp. 21-30, American Society of Mechanical En-
gineers, New York, 1980.

Dieterich, J. H., Constitutive properties of faults with simulated
gouge, in Mechanical Behavior of Crystal Rocks, Geophys. Monogr.
24, edited by N. L. Carter, M. Friedman, J. M. Logan, and D. W.
Stearns, pp. 103-120, AGU, Washington, D. C., 1981.

Gu, Ji-Cheng, J. R. Rice, A. Ruina, and S. T. Tse, Slip motion and
stability of a single degree of freedom elastic system with rate and
state dependent friction, J. Mech. Phys. Solids, in press 1983.

Jenkin, F., and J. A. Ewing, On friction between surfaces moving at
low speeds, Phil. Trans. R. Soc. London, 167, 508-528, 1877.

Johannes, V. I, M. A. Green, and C. A. Brockely, The role of the rate
of application of the tangential force in determining the static fric-
tion coefficient, Wear, 24, 381-385, 1973.

Johnson, T., Time dependent friction of granite: Implications for pre-
cursory slip on faults, J. Geophys. Res., 86, 6017-6028, 1981.

Kosloff, D. D., and H.-P. Liu, Reformulation and discussion of me-
chanical behavior of the velocity-dependent friction law proposed
by Dieterich, Geophys. Res. Lett., 7,913-916, 1980.

Kosterine, I, and 1. V. Kragel'skii, Relaxation oscillations in elastic
friction systems, in Friction and Wear in Machinery (Engl. transl.),
pp. 111-134, American Society of Mechanical Engineers, New
York, 1960.

Mavko, G. M., Simulation of creep events and earthquakes on a
spatially variable model (abstract), Eos Trans. AGU, 61, 1120, 1980.

Onat, E. T., Representation of inelastic behavior from Creep and Frac-
ture of Engineering Material and Structure, edited by B. Wilshire
and D. R. J. Owen, pp. 587-602, Pineridge Press, Swansea, UK.,
1981.

Rabinowicz, E., The intrinsic variables affecting the stick-slip process,
Proc. Phys. Soc. London, 71, 668—675, 1958.

Rabinowicz, E., A study of the stick-slip process, in Friction and
Wear, edited by Davies, pp. 149-164, Elsevier, New York, 1959.

Rice, J. R, and A. L. Ruina, Stability of steady frictional slipping, J.
Appl. Mech., 50, 343-349, 1983.

Ruina, A. L., Friction laws and instabilities: A quasistatic analysis of
some dry frictional behavior, Ph.D. Thesis, Brown Univ., Provi-
dence, R. 1., 1980.

Sampson, J. B, F. Morgan, P. W. Reed, and M. Muskat, Friction
behavior during the slip portion of the stick-slip process, J. Appl.
Phys., 14, 689-700, 1943.

Scholz, C. S., P. Molnar, and T. Johnson, Detailed studies of friction
sliding of granite and implications for the earthquake mechanism,
J. Geophys. Res., 77, 6592-6606, 1972.

Summers, R., and J. Byerlee, Summary of results of frictional sliding
studies at continuing pressures up to 6.98 Kb. in selected rock
materials, U.S. Geol. Surv. Open File Rep. 77-142, 129, 1977.

Teufel, L. W., Frictional instabilities in rock: Effect of stifTness,
normal stress, sliding velocity and rock type, paper presented at the
18th Annual Meeting, Soc. for Eng. Sci., Brown Univ., Providence,
R. L, 1981.

Tolstoi, D. M., Significance of the normal degree of freedom and
natural normal vibrations in contact friction, Wear, 10, 199-213,
1967.

A. Ruina, Department of Theoretical and Applied Mechanics, Col-
lege of Engineering, Cornell University, Ithaca, NY 14853.

(Received October 22, 1982;
revised May 31, 1983;
accepted July 14, 1983.)



