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Figure 6.10
The three positive regions have no common intersection, nor do the three negative regions. Hence the labeled
regions are null, the possible resultants are all of wrench space, and the triangle is in force closure.

deformable bodies. For the problem as stated, we have force closure, we may have static
equilibrium, but we surely would not classify it as stable.

EXAMPLE 3: A TRIANGLE IN FORCE CLOSURE

Consider a three-finger grasp of a triangle in the plane (figure 6.10). Kihematic analysis, or
force analysis using frictionless contact, suggest that the triangle is not securely grasped,
that is, that there are some loads that cannot be balanced by the contact forces. However,
with sufficient frictional forces, the possible resultants exhaust all of wrench space, and
the triangle is in force closure. The figure shows the moment labeling of the problem. The
reader may easily verify that both the positive-labeled and the negative-labeled regions are
empty. Thus there are no constraints on the possible wrenches: force closure.

6.6 Planar sliding

Some manipulation tasks involve an object sliding on a planar support surface. The me-
chanics of planar sliding apply to problems as diverse as moving furniture (section 7.2)
and fixturing objects for machining operations. This section develops expressions for the
frictional force and moment of planar sliding, and introduces an elegant graphical repre-
sentation known as the Limit Surface.

The motion of a pushed object is often indeterminate. If a rigid object is supported by
more than three contact points, the distribution of support forces is underdetermined. If the
frictional forces are assumed proporticnal to the normal forces, as Coulomb suggests, then
the frictional forces are also underdetermined. The problem is illustrated by the defective
dinner plate of figure 6.11. The plate was designed with a circular ridge on the bottom, so
that the support forces would be concentrated at the edge of the plate. Unfortunately, the
bottom of the plate sagged during the firing process, so that the center is also in contact
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Figure 6.11
It is impossible to predict the motion of this plate, without knowing the distribution of support forces between
the plate and the table.

with the planar support. There is no way to predict whether the support forces will be
concentrated at the center, giving it an irritating tendency to rotate, or at the edge, resisting
rotation. In practice, the plate’s behavior will depend on details that may be very difficult to
model. It may behave well with a tablecloth, and poorly without a tablecloth. Its behavior
might depend on the phase of the moon. (Tidal forces induce microscopic changes in the
shapes of the plate and table.)

The defective dinner plate is a particularly egregious example of the indeterminacy of
planar sliding. In the worst case the problem can be very awkward, but in most practical
situations there are many ways of addressing the problem. One inescapable conclusion is
that a useful theory of planar sliding should capture this indeterminacy, which is a primary
goal for the approach described below.

The first step is to develop expressions for the force and moment of planar sliding
under the assumption that the support forces are known and described by a finite pressure
distribution p(r). Under those assumptions indeterminacy is not an issue—there is a one-
to-one mapping between the direction of slider motion and the resulting wrench, except
when the slider is motionless.

Given the force and moment for a known finite pressure distribution, the next step is
to generalize to cases where there may be finite force concentrated at an isolated point of
support, corresponding to infinite pressure. In those cases the mapping between direction
of slider motion and the resulting wrench may be many-to-one or one-to-many.

Finally, we also have to consider the indeterminacy arising from an unknown or
partiaily known pressure distribution, such as the dinner plate example above, which is
addressed in chapter 7.

Force and moment of planar sliding

Let some object be in planar motion, supported by a fixed planar surface. Choose a
coordinate frame with the x-y plane coincident with the support, and z pointing outward.
Let the object’s contact with the surface be confined to some region R. Let r be the position
vector of some point in the object, and let v(r) be the velocity of that point. If p(r) is the
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Figure 6,12
Notation for planar sliding.

/

pressure at r, and dA a differential element of area at r, then the magnitude of the normal
force at r is given by

p(rydA 6.11)
and Coulomb’s law gives us the tangential force at r:
v(r)
IV(T)l p(r)dA (6.12)

for Iv(r)| # 0, where u is the coefficient of friction, assumed uniform over the contact
region R.

Integrating over R, we obtain expressions for the total force and moment due to
friction:

3 v(r)

fr = A )EP( ) dA (6.13)
_ v(r)

ny= M/Rrx Iv(r)lp(r)dA (6.14)

Note that the frictional force ff lies in the x-y plane, and the total frictional moment n f
acts along the z-axis. Without knowledge of the pressure distribution p(r), these integrals

cannot be evaluated, leading to indeterminacy in the frictional forces. There is an exception,
though: pure translation.
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CASE 1: PURE TRANSLATION

If the object is in pure translation, all points are moving in the same direction, and we can
factor the integrals of equations 6.13 and 6.14.

v() f
fr= 6.15
Sy p(r)dA (6.15)
- v(r)
ny=-— erp(r)dA X -y 6.16)

Let fo be the total normal force, and let rg be the centroid of the pressure distribution.
Then

fo= fR p(r)dA 6.17)
ro = if rp(rydA (6.18)
foJr

Substituting into equations 6.15 and 6.16,

_ v(r)
fy =~ oo (6.19)

ny =rp X fy (6.20)

Hence the frictional forces distributed over the support region have a resultant, with
magnitude 7o, in a direction opposing the motion, through the centroid ry. In other words,
the force is equivalent to that obtained by applying Coulomb’s law to the sliding of a single
point located at ro.

DEFINITION 6.1:  The center of friction is the centroid r of the pressure distribution.

THEOREM 6.1:  For a rigid body in purely translational sliding on a planar surface, with
uniform coefficient of friction, the frictional forces reduce to a force through the center of
friction, opposing the velocity.

Proof Givenabove. m

In some cases, the center of friction is easily determined. If an object is at 1est on the
support plane, with no applied forces other than gravity and the support contact forces,
then the center of friction is directly below the center of gravity. This is the only location
that allows the contact forces to balance the gravitational force. We can generalize slightly,
allowing additional applied forces, as long as they are in the support plane. We can also
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permit accelerated motion of the body, if the center of gravity is in the support plane. But
acceleration of a body whose center of gravity is above the support plane will, in general,
cause a shift in the pressure distribution, and a corresponding shift in the center of friction.
Applied forces not lying in the support plane will generally cause a similar shift.

CASE 2: ROTATION

Now suppose that the body is rotating, with an instantaneous center ric. Then the velocity
of a point at r is given by

v(r) =@ X (r —ric) (6.21)
=0k X (r — ric) (6.22)
and the direction of motion at r is
v(r) s r —ric
—— =sgn()k x ——— 6.23
Vol 8 Ir —ricl (6.23)
7/
Substituting into equations 6.13 and 6.14 we obtain
fr = —u sgn(@) k x f T7HC ey dA (6.24)
R Ilr—ric|
- r—r[c
ng,=— sn(G)fr-— r)dA 6.25
f2 =158 - |r—r1c|P() (6.25)

Notice that these equations have a well-defined limit as the rotation center ric approaches
infinity, so they apply to pure translations as well as rotations.

The Limit Surface

The form of equations 6.24 and 6.25 suggests a functional relationship between the
slider’s rotation center and the resulting frictional force. However, if we allow non-zero
support force at a discrete point, then these equations are undefined for rotations about the
support point. For this reason the relation between slider motion and frictional force cannot
generally be described as a function. Fortunately there is an elegant description of the
motion—force mapping: the limit surface introduced by Goyal, Ruina, and Papadopoulos
(1991).

To develop the limit surface, we first consider sliding of a single particle. Let v be the
velocity of the particle, and let f be the frictional force applied by the particle to the support
surface. Note that this convention is the opposite of our usual convention, and corresponds
to a sign change on the force f. We will use the term frictional load when referring to the
frictional force applied by the slider to the support surface.
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Figure 6.13
Limit curve for a point slider. Adapted from (Goyal et al., 1991).

For our point slider, we can express Coulomb’s law as follows:

slip: f || v, and |f| = wfn, where . is the coefficient of friction, and f, is the support
force.

stick: |f] < ufn.

We can develop an equivalent graphical representation of Coulomb’s law. Consider the
set of all frictional loads that can be applied by the point slider. This set is a disc comprising
all forces acting through the point with magnitude no greater than g¢fy. This set is bounded
by a circle of radius ufy at the origin of force space, which we define to be the limit ?urve
LC (see figure 6.13). Now we can say that the frictional load f must satisfy the maximum
power inequality:

Vpee F—F)-v2>0 ‘ (6.26)

Tn other words, the motion v yields a load that is extremal in the v direction.

More significantly, we note that when slip occurs the load f.is on the limit curve, and
the motion v is normal to the limit curve at f.

Now we consider sliders with extended support. Let r vary over the support region,
and construct a limit curve LC(r) at each point r, so that at each point the maximum power
inequality holds:

VemeLcw E@) = @) -v(@) =0 6.27)
Now let p be the total frictional load wrench

fx fx(®)
p=| 5/ =21 HO (6.28)

noz r r X f(r)
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and let q be the velocity twist

q=| wvoy (6.29)

Wy

Now, for some given motion q, let f(r) be a distribution of frictional loads satisfying
Coulomb’s law, and let f*(r) be some arbitrary distribution, satisfying only the constraint
that at each r, f*(r) is in the corresponding limit curve:

v, f*(r) e LC(r) (6.30)

Let p and p* be the total frictional load wrench for f(r) and f*(r) respectively. Now, we
can describe the power dissipated by f(r) in either of two ways, yielding the equation

P-a=)_f®) v 6.31)

Similarly we can write

P*oq=) £ vr) 6.32)

Taking the difference yields
(®P—p9-q=) @@ —T) - v(r) (6.33)
r

Since the maximum power inequality must be satisfied at every point r, every term in the
sum on the right hand side is non-negative. Thus we obtain a maximum power inequality
for the total frictional load wrench:

p-pH-q=0 6.34)

To summarize, to find the true frictional load, we can start with the set of all load
distributions satisfying the constraint that at each point r the magnitude of the load must
be no greater than ., (r), and then choose a distribution that yields maximum power.

When the slider is not moving, any load distribution f*(r) is possible, subject only to
the constraint that at each point the magnitude of the load must be ne greater than ), (r).
Form the set of all possible total frictional load wrenches p*, and define the limit surface
to be the surface of this set. Then we can summarize the maximum power inequality by
stating that the frictional load wrench during slip yields maximum power over all wrenches
in the limit surface. It follows that during slip the total frictional load wrench p lies on the
limit surface, and the velocity twist ¢ is normal to the limit surface at p.
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Figure 6.14
Sliding barbell. Adapted from (Goyal et al., 1991).

We state several properties of the limit surface without proof. The limit surface is
closed, convex, and encloses the origin of wrench space. It is symmetric when reflected
through the origin. Its orthogonal projection onto the fx, f, plane is a circle of radius
2 tfn.

If the pressure distribution is everywhere finite, i.e. with no discrete points of support,
then the limit surface is strictly convex, and the velocity twist to frictional load wrench
mapping is one-to-one.

The more interesting cases involve discrete support points. If there are such points,
then there are fiat facets on the limit surface. At such a facet, several different loads give
rise to the same motion—rotation about the discrete support point.

An even more interesting case arises when the support region R degenerates to a line or
a subset of a line. In this case the limit surface is no longer smooth. At a vertex of the limit
surface several different motions can produce the same frictional load. This corresponds to
those motions with rotation centers collinear with all points of support.

The limit surface has uses that go well beyond what can be described here. It applies to
some non-isotropic friction laws, such as ice skates or ratchet wheels. It yields insights into
the dynamic motion of sliders, and, as we shall see it provides insights into the mechanics
of quasistatic manipulation.

EXAMPLE

Figure 6.14 shows a planar slider with just two points of support, a barbell. We assume the
barbell’s weight is evenly divided between the two support points. Figure 6.15 shows the
corresponding limit surface. It was constructed by the following steps:
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Figure 6.15
Barbell limit surface. Adapted from (Goyal et al., 1991).

1. Construct the limit surface LS, comprising all force loads arising at support point a. If
a were at the origin this would be a disc in the ng, = 0 plane. But since a is not at the
origin, LS, is an elliptical disc in the no; — f; = 0 plane.

2. Similarly, construct the limit surface LSp. It also is an elliptical disc, this time in the
no; + fx = 0 plane.

3. The desired limit surface is the Minkowski sum of LS, and LS. In other words it is the
set {w, + wy | w, € LS,, wp € LS}

The barbell’s limit surface illustrates many of the properties of limit surfaces. There
are four flat facets, where the frictional load may vary while the normal remains stationary.

2 pawenas

Figure 6.16
Two block in comner problems for exercise 6.2.

This implies many different loads mapping to a single motion, which occurs when the
barbell rotates about one of the support points. There are four such facets, one for each of
two possible rotation directions about each of two different support points.

There are also four vertices, where the frictional load is stationary as the normal may
vary. This implies many different motions mapping to a single frictional load, which occurs
for a rotation about a point collinear with the two support points.

Elsewhere the limit surface is smooth and strictly convex, so the load-motion mapping
is one-to-one.

6.7 Bibliographic notes

Many engineering mechanics texts provide good introductions to Coulomb friction. Gill-
mor (1971) and Truesdell (1968) provide some interesting historical notes on Coulomb,
Amontons, and da Vinci. Simunovic (1975) was the first to analyze peg insertion using fric-
tion cones. Erdmann (1984) was the first to construct composite friction cones in wrench
space. Prescott {(1923) and MacMillan (1936) developed expressions for force and mo-
ment of planar sliding, and introduced the center of friction. The particular treatment of
planar sliding is taken from (Mason, 1986). The limit surface is taken from (Goyal, 1989;
Goyal, Ruina, and Papadopoulos, 1991). See (Howe and Cutkosky, 1996) for experimental
evaluation, application, and approximations related to the limit surface.

Exercises

Exercise 6.1: Analyze the pipe clamp using the moment labeling method, and the force
dual method: find the possible resultants of the contact forces, and characterize the set of
load forces that would be balanced.

Exercise 6.2: Use the moment labeling and the force dual methods to analyze each of the
problems in figure 6.16. A block is in the corner of a fixed tray, and you are to identify the




