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ABSTRACT

Failures of traditiomal friction laws motivate an intdhal variable
representation for a memory dependent friction law. Conditions are stated
for the validity of a description with one internal variable and found to
be approximated by, but technically in disagreement with limited accurate
experiments which require two internal variables for accurate description.
The internal variable friction laws predict the following results:
Stability of massless elastic systems in contact with a boundary governed
by a memory dependent law depends largely on v(du*(v)/dv)/de
where v is slip velocity, u*(v) 1is the steady state dependence of
the coefficient of friction w on ¥V and 4. 1is 2 characteristic
displacement of the memory. Stability also depends on the ratio of
elastic compliance Lo normal stress. At neutral stability a spring
and massless block system may oscillate steadily. A simple one
dimensional fault allows propagating creep waves. A limited class of
internal variable friction laws yield a scaling rule that predicts,
for example, that in some experiments 'time dependence' of static
friction must be scaled by previous and successive slip velocitye
An extension of a one internal variable friction law to continuous
deformation predicts localization of deformation before any elastic
unloading instabilities.
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Introduction

The motion occurring when two objects in frictional contact slide
re5ult§ from the interaction of the frictional surface with the
surrounding mechanical system (i.e., the adjoining bodies and loading
machinery). Unstable motion ('stick-slip' for example) is a property
neither of a material surface nor of the surrounding machinery, but
rather of the combined system. Systems exhibiting frictional
{instabilities include string instruments, squeaky machinery, and the
earth's crust. It is not clear, however, what the phenomena associated
with these systems have in common, either in the frictional or the
"machine"” properties. From what we know of earthquakes, for example,
they may only be related to friction, or what is commonly called
friction, by the observation that they involve concentrated shear
deformation.

Various models can and have been used to discuss the motion asso-
ciated with 'stick-slip' and related instabilities in the context of
many mechanical systems. Of particular interest in this paper are the
conditions under which instabilities can be expected, with emphasis on
friction laws rather than complex mechanical systems. In particular,
several commonly used friction laws will be briefly reviewed along with
some stability implications, mostly in the context of the spring-—block
model of Figure 1. This discussion will make it clear that for proper
modeling of instabilities the slip (or memory) and slip rate dependence
of friction must be understood. A new friction law from work of
Dieterich (1978), related to concepts-introduced earlier by
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Rabinowicz (1958) will be discussed which will be followed by a
discussion putting this law in the more general context of an

internal variable law. Recent relevant experiments will then be
briefly discussed. Various stability implications are found for this
type of law. First, stability criteria for constant force loading

and steady sliding in the spring-block model of Figure 1 are
determined. Quasi-static (i.e., intertia neglected) oscillations

will be found to be an almost necessary consequence of the Dieterich-
like friction laws. Experimental and numerical verification of these
oscillations will be mentioned. Next, a simple one-dimensional model
will be used to consider a continuum described by a Dieterich-type law
(for shear strain rather than slip) and localization is found to be
possible even while 'strengthening' and is at least initiated before
elastic unloading instabilities are possible. Lastly, some applications
of the frictional slip laws are made to fault mechanics and the
possibility of creep waves is discussed by analysis of the stability

of steady slip in an elastic slab.



Spring-Block Model

The simplest mechanical system in which to examine stability of
sliding is the spring-block of Figure l. A rigid block is held in
frictional contact with another rigid surface by a normal force N
that may, in general, depend on the sliding displacement § or the
load point displacement u . The load point is connected to the block
by a spring of stiffness Q which transmits a force F in the
direction of sliding. In this model all the inelastic shear deform=
ation at a frictional surface region is modeled by § , the slip
displacement. The load point displacement u represents the displace-
ment at the point at which the loading machine is controlled. The
displacement u , no matter what is represents (hydraulic oil pumped,
gears turned, or the shift of the base of a continental plate, for
example) is measured in such a way that u =8 for constant force
loading. All elastic compliance, e.g., elastic sample deformation,
is incorporated in the spring constant £ . The model does not
usually include inelastic deformation away from the frictional inter-—
face or non-linear elastic response, but these effects can be added.
If the frictional phenomena to be discussed scale with normal force,
as is commonly assumed, the stiffness Q and friction force F can
be normalized by the possibly varying normal force N . Then F 1is
replaced by u= F/N and ﬁ by k= =-d(F/N)/dé (fixed u ). There
is little explicit evidence that all terms in the laws to be discussed
do in fact scale well with normal force although that is perhaps the

best naive guess and is at least not inconsistent with observations.



For quasi-static (inertia neglected) analysis, the spring-block model
is not much of an idealization so long as slip in the modeled system
is effectively homogeneous (not varying) on the slip surface. For
dynamic analysis the block is endowed with a mass m . This is only
an accurate model if the modeled system is dominated by a single mode
of vibration. Furthermore, care must be exercised in applying the
dynamical model if the normal force is not constant; in such circumstances
the classical stick—slip calculations do not apply. Most frictional
instability analyses use the dynamic (lumped mass) spring-block model.
Our attention will focus on quasi-static motion and the onset of
instabilities and so the block mass will most often be neglected and
there will be no discussion of inertia governed slip times, stress drop
overshoots, or other factors which depend on inertia or kinetic energy.
A further feature of the spring-block model is that specification
of the load point motion u(t) approaches displacement control or
force control in the high and low stiffness limits so that the con-

stitutive description is a limiting form of the model response.



Some Friction Laws

The friction force, for a given material, is dependent on the
history of the sliding surface. Here we take the term “"friction law"
to mean the dependence of the friction force on the sliding history.
Thus the same material may have different friction laws depending on
the surface preparation, the chemical environment, the surrounding
temperature, etc. The coefficient of friction u might also depend
on the history of the normal force N but this dependence will be
neglected. Either the normal force will be assumed to be constant or
all properties of u will be assumed to be independent of any varia-
tions in N , depending on context.

The simplest friction law is that u = F/N 1is a constant during
slip and that u  1is not exceeded if the slip rate is zero. If the
normal force N is constant, this law is stable in a quasi-static
analysis of the spring-block model. For any forward motion of the
load point wu(t) either (a) the force imposed by u via k is not
enough to cause sliding, or (b) the equilibrium solution, & = u-u/k ,
is self-correcting (any imagined deviation of § from this solution
would cause a force on the block in the opposite direction from the
deviation). If inertia is included, this model is neutrally stable,
in that for comstant u ,é can oscillate indefinitely about the
equilibrium solution § = u (the superposed dot denotes differentiation
with respect to time).

A constant U friction law does not necessarily lead to this

moderately stable behavior in all systems, however. For example, if



the normal force N 1is dependent on & » unstable motion results if
the impoed F/N increases with slip displacement & for fixed U .
This is the case for reverse slip in an elastic self-locking brake

and can be the case for forward slip in saw cut specimens in the
standard 'triaxial' machine of geomechanics (if the machine is suffi-
ciently compliant in the axial direction and if overhanging slip surfaces
are in communication with the confining fluid). In addition, a strongly
non-linear spring, exhibiting a negative incremental spring modulus, in
the spring-block model can lead to instabilities even with ¥  constant.
We shall neglect these effects for the rest of this paper and shall assume
that the spring is linear and that the normal force corrected stiffness

k = -d(F/N)/d8 (at fixed u ) is positive.

A wmore sophisticated friction law is that the friction force is
velocity dependent. That is, u o= u(é) - An analysis of this law in
the spring-block model shows that motion at a constant speed v by
the load point cannot be followed stably by the block if du/dé < O .
That is, both dynamic and static models yield solutions near the
equilibrium solution that grow in time for any Finite k . If H
increases with slip speed 8 » then sliding at constant speed is stable
for all k . Thus, if friction is a decreasing function of slip
velocity, and if a testing machine can be modeled as in Figure 1,
the friction law cannot be measured in steady sliding experiments
unless sufficient damping parallel to the spring is introduced (Vatta
1979). The apparent paradox that steady sliding is, in fact, observed
in cases where friction is a decreasing function of velocity can be
explained without external damping by use of the more complete frictional

constitutive description discussed later.



Most often frictional instabilities are discussed in terms of a
friction law that has a "static" coefficient of friction ustat that

exceeds the sliding friction W o where may or may not depend on

a"
slip velocity & . Steady following of constant speed load point by the

block is or is not possible depending on the sign of dpk/dé as just

discussed. This friction law does, however, allow episodic slip, even

if M is independent of ¢ , as described in most 'classical'

discussions of "stick-slip.” The load point first moves at a constant
velocity while the block does not slide and the force transmitted by

the spring increases. When the applied force reaches N sliding

stat ’
begins and the friction force instantaneously drops to NH, causing

an inbalance of applied forces and acceleration limited only by inertia
of the block. Sliding proceeds as simple harmonic motion (1f ¥ 1is
independent of § ) until the slip velocity él returns to zero and
the strength returns to the static level and the cycle repeats. This
type of motion is possible at all load point speeds and spring stiff-

nesses no matter how H depends on time of contact or tangential

stat
load history so long as yu drops a finite amount to i once any
sliding occurs. The static coefficient (T is commonly thought to
be an increasing function of time of contact (Dokos 1946; Dieterich
1972). More recently it has been claimed (Johannes et al. 1973) that
e gy actually depends on the rate of tangential 1oad_application

F/N . 1In either the case of contact time or load rate dependence, the
diminished amplitude of stick-slip oscillations with increased sliding

velocity can thereby be explained, but not the result that the amplitude

of stick slip goes firmly to zero at a critical speed (Rabinowicz 1958).



Displacement Effects

Rabinowicz proposed that displacement memory effects (Heyman et .

1955; Rabinowicz 1956, 1958) could explain inhibition of stick-slip 1t
high load point velocities a and stiffnesses k . Two displacement
effects (memory gffects) were noticed by Rabinowicz and later with ra.:-
by Dieterich (1978) and used to obtain stick-slip criteria. First, as
sliding starts after a "stick," the friction force drops gradually tn
Hg over a characteristic distance. Second, if the surface shows a
velocity dependence and the slip velocity is suddenly changed from one
velocity to another, tﬁe friction force changes its value over a
characteristic distance denoted by dc by Dieterich (1978).

Rabinowicz (1956) further correlated this distance with a characteristi.
distance of force fluctuations during steady sliding. Rabinowicz arpgued
that dc represents a lower limit on the slip distance during a stick-
slip event. If the slip distance that would be expected for a given
R and My (with instantaneous displacement weakening) is less

than dc , no stick—-slip will occur. Since the distance slid in the

simple dynamic analysis is 2(u uk)/k this gives the instabilitw

stat

condition

—

2(u )k > dc + instability . (

static_ukinetic

Dieterich (1978) observes that instability of a quasi-static slip

motion will occur if the frictional force the surface can support drops



more than the spring force during an increment of displacement. Hence,
for a friction law that can be approximated by a linear displacement
dependent drop from the static to the kinetic friction force, this
yields

(u )/ k > dc + instability (2)

static "kinetic
which, although argued differently, is essentially identical to (1)
since dc has not been defined carefully.

Using the concept of a critical distance, both Rabinowicz (1958)
and Dieterich (1978) attempted to explain the relationship between the
dynamic coefficient of friction as a function of velocity Uk(é) and
the static coefficient of friction as a function of time of contact
ustat(t) . Rabinowicz calls dc a lower limit on the 'resolving power
of the friction process' implying the equivalence of steady sliding at

speed v and the intermittent sliding (at an unspecified speed) of

distances dc with stationary times of dc/v . Thus,
= . 3
i ) = K P (3)

where v 1is a steady state slip velocity and dC/v is an equivalent
stationary contact time that causes the same friction force. Similarly,
Dieterich claimed that friction is fundamentally a function of the
average time of asperity contact. If clC is the slip displacement

required to change from one 'population' of asperity contacts to a new
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population then the average time of asperity contact is given by dc/v .
This again leads to Eq. (3). Both Rabinowicz and Dieterich back their
claims with experimental evidence showing that the roughly logarithmic
increase in the coefficient of 'static' friction with time can be
correlated with the roughly logarithmic decrease of kinetic friction
with slip velocity by introduction of a characteristic distance dc .
For sliding with varying velocity where the steady state results do

not apply, Rabinowicz suggested that friction should fundamentally be
taken as a function of some kind of weighted average of the slip
velocity over the distance dc .

More recently Dieterich (1979a) recognized from his experimental
results with rocks that his average time of contact variable < was
not sufficient to describe the frictional behavior. He observed the
following: (1) When the slip velocity was suddenly increased from one
constant value to another the relaxation to a lower friction force over
the characteristic distance dC was preceded by a transient increase in
the friction force. (2) Afterlnominally stationary contact which followed
steady sliding the force achieved when steady sliding was resumed was
greater for large resumed starting speeds (note that this result is
the opposite of that of Johannes et al., (1973), although differences

in the "static" friction experiment may account for this (Ruina 1980)).
Dieterich accounted for these observations by giving the friction
coefficient an explicit dependence on the slip velocity as well as on

his average time of contact 1 . He also gave a rule for how the

variable T should change when the slip velocity is suddenly changed
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from one constant value to another. He then viewed a continuously

varying slip velocity as a sequence of short constant velocity steps.

The full law Dieterich (1979) used is
u = C(1)F(d) (4a)
= s =1
Clr) ¢y + czloglo(c3r+l) oo F = fl + [leoglo(f3/6+10)] (4b,c)

T = (dc/é)(éroldc)exp(-(a-éo)/dc) (4d)

where € s Gy s C3 fl 5 f2 . f3 and dc are material constants.
Equation (4d) describes the evolution of T when the slip speed is the

constant § beginning at 50 , at which point T has the value s

During constant rate sliding new Tys 50 pairs may be assigned from
the current values of T, 8 without altering the evolution of T
Equations (4) were constructed to have the following properties:
(1) Experimental results of Dieterich (1972) for time dependent static
friction are reproduced if T is replaced by time of stationary contact
in (4a,b) and one slip speed is used for all experiments; (2) During slip
at constant rate 6 , the "average contact time" T approaches dc/é
in the evolution law (4d) so as to reproduce the idea expressed in the
discussion after Eq. (3); (3) A sudden change in slip velocity causes a
sudden change in friction force of the same sign as expressed by the

continuity of T with § in (4d) and the direct slip rate dependence

in (4a,c); (4) After sudden changes in slip velocity, the friction force
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approaches a steady state level over a characteristic distance dc 3
(5) The direct dependence of u on slip velocity in (4c) is roughly
logarithmic for ar intermediate range of velocities but finite for all
slip velocities.

One may note that the dependence of u on slip velocity makes
the concept of static friction somewhat ambiguous, however. Furthermore,
Eq. (4c) is not compatible with time dependence of static friction, as
will be discussed, leaving only a subtle connection of Eqs. (4) to
static friction experiments. The association made between My (5) and
ustat(r) in (3) is also effectively lost because of the direct slip
velocity dependence in (4a,c).

Familiarity with the Dieterich law (4) can be obtained from studying
Dieterich (1979a) and especially Figure (6) therein.

Due to the complexity of Eqs. (4), analytic results are difficult
to obtain. Dieterich (1978, 1979a) approximates the law as a displace-
ment weakening law to get stability results similar to Eq. (2). He
also has done a finite element analysis of a deformable block with an
interface law described by Eqs. (4) (1979b), and some numerical spring-
block models using Eqs. (4) or variations thereof (1980). Kosloff and
Liu (1980) have used Eqs. (4) to numerically solve for displacement vs.
time in constant force loading.

Although the initial attention of both Dieterich and Rabinowicz
on friction laws was focused on time dependence of static friction,
later emphasis was on transients in the friction force during sliding.

In fact, in the light of the friction law just described, it is not clear

what is meant by static coefficient of friction Werar
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In both experiments, and in this theory, visible sliding often precedes
the peak friction force. Furthermore, there is strong evidence that the
peak friction force depends on the sliding history preceding the
stationary time, the imposed force history during nominally stationary
contact, and the rate at which displacement or force rate is resumed
afterwards (Ruina 1980).

In the next section we introduce a Dieterich-like friction law
without giving "static” friction such a central role. The law is

deduced on the basis of assumptions that have been or could be tested

experimentally.
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State and Steady State

A constitutive law for friction describes the properties of a
'point,' or representative small section on what is loosely called
the sliding surface. By "sliding surface” is meant a layer near the
surface thick enough to include all the inelastic effects that are not
in the surrounding bulk material, yet thin enough to be considered
mathematically a surface in terms of the bulk material. Further, for
this paper we want the full interaction between the “"surface"” and the
bulk material to be adequately described by the traction vector across
their common boundary. Thus, if the friction force is affected by tempera-
ture alterations due to slip, these alterations must be confined to a
boundary layer small compared to the bulk sample size or else either
of the extremes of an isothermal or adiabatic process must be assumed (the
steady state, to be discussed, is not, however, compatible with an
adiabatic process). We leave as unspecified which of these three
alternatives is most appropriate in explaining experimental observations
and do not refer to temperature explicitly in the constitutive description,
despite the fact that full understanding of the physics of the frictional
process is thus being precluded. If one does want to account for thermal
interaction between the 'surface' and bulk material, assumptions must be
made about the surface constitutive behavior with respect to temperature
variations. Similar considerations apply for diffusing reactive
chemicals and pore fluid where something like the Terzaghi effective
stress law may hold (Jaeger and Cook 1976). These interactions may well

be important in many situations; however, their explicit consideration



15

does not seem to be necessary for the observed slow slip rate experiments
that motivated this paper. Note that neglect of thermal and chemical
interactions does not imply that temperature and chemical environment

are not extremely important--only that the effect of variations of

these quantitues due to the frictional process itself may be neglected
or is tacitly incorporated in the friction law. Neglect of the normal
traction can be rationalized, as discussed earlier, by assuming it is
constant or not relevant to properties of the friction coefficient M .
At any given instant a point on the surface is fully characterized
by the details of the microscopic asperity geometry and composition as
influenced by the external load history. For the'following discussion
the term 'state' means a sufficient amount of this information about the
surface in order to fully predict the instantaneous response to any
controlled macroscopic variables. The term 'response' denotes the
values of any uncontrolled macroscopic variables of interest as well as
the rate of change of the state. In this paper either the slip rate 8
or the imposed coefficient of friction F/N will be considered as the
controlled macroscopic variable and the other as part of the response.
From knowledge of the state at any instant, u as a function of the
instantaneous value of $ » may be thought of as a property of the
state. This particular separation into state and property is motivated by
the observation that the coefficient of friction appears to respond
instantly to changes in slip rate § in a way that changes continuously
depending on 8 (ise., du/dé evaluated at a fixed state is finite

and generally non-zero), On the other hand, even in a very stiff
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machine (Ruina 1980), step changes in é only cause finite changes
in y so there is apparently no explicit dependence of U  on 3
or higher derivatives at a fixed state. In some special cases an
explicit dependence on 3 can provide a course scale approximation
to a constitutive law of the form being developed.
In order for the concept of state to be useful it must be

describable with very few numbers Bi or collectively 8 . The

discussion in the past few paragraphs can then be summarized by

= 1u(8,8) (5a)

u
6, = 8,(8,8) (5b)

where the functions éi (8,8) are finite for finite & . We shall
maintain the somewhat ambiguous notation that U  and 6 are both

the current value of the quantities they describe and functions of their
respective arguments (which may depend on context).

The variables Bi represent some kind of averages of the
undoubtedly complicated state on the surface when examined microscopically.
For example, Dieterich (1978, 1979a) suggests a single variable repre-
senting average asperity 'contact time' and more macroscopically,
Rabinowicz (1958) suggests average recent slip velocity. We leave for
speculation or future investigation what, physically, the variables ei
represent. Whether or not there are microscopic models that approximately
or rigorously yield such macroscopic variables as ei is unknown. Their

usefulness, like temperature and ‘entropy in thermodynamics, does not,
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however, rest on microscopic justification, although such justification
would add tremendously to the credence and usefulness of the theory.

A further feature that friction laws seem to have is a fading
memory. This attribute was impiicit throughout the Introduction. More
specifically, if a slip. rate history é(t) is imposed on a surface
and the response §(t) 1is observed then if subsequent to arbitrary
sliding the slip history §(t) is repeated (time origin offset)
then the response “2(t) will approach ul(t) once sufficient time
or displacement has elapsed, depending on the nature of the fading
memory. In other words, reproducible results may be obtained with a
single surface merely by offsetting the time and displacement origin.

A fading memory implies the existence of a steady state corresponding
to constant velocity sliding since then the same slip history is being
reapplied continuously and continuously repeatable results must be
obtained. In terms of the friction law (5) the existence of a steady
state is interpreted to mean that for any value of 8 there are
corresponding values of 8i and ¥ denoted 9?(5) and u*(8) 5
to which 6 and d must approach closely after sufficient time or
displacement a a constant slip rate. Since experimental results of
Ruina (1980) fit well in such a framework we shall for simplicity assume
that the evolution of each state variable depends only on its own
value, éi(g,ﬁ) = éi(ei,é) . Note that this precludes oscillatory

approach of Bi to steady state for fixed & . So we now have
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b= u(,8) (6a)
64 =65(84,8) (6b)
where = > 8;(84,8)/(87(8)-65) > 0 (6c)

and 9:(5) (the solution of é(e’é) =0 for © 1in terms of §) is,
again, the steady state value of 8; corresponding to § . The inequality
of (6c) implies exponential approach to a unique steady state value.
Before proceeding further it should be pointed out that many friction
experiments with rocks do not show the assumed fading memory and steady
state behavior. A typical triaxial test shows a long term transient in
the level of the coefficient of friction for the duration of the experiment
(e.g. Summers and Byerlee, 1967). These tests are, however, limited in
the amount of slip available and are also possibly affected by the
constantly changing normal stress. Further, experiments by Dieterich
(1980) and Ruina (1980), aimed to look at effects like those described by
eqs. (4) or (6) found long term transients in the short term behavior.
Dieterich (1980) suggests that both of these long term transients are due
to the increase in a number of wear particles (fault gouge) as sliding
proceeds and Ruina (1980) notes that progressive chemical contamination
may also contribute. The long term transients of Dieterich and Ruina
changed very slowly after sufficient displacement (l-4 c¢m., which is much
larger than the .00l to .1 mm. of slip in which the features we study
here are exemplified) implying the eventual validity of the steady state
assumption. Even during the transient behavior, a description like eq. (4)

or (6) seemed to apply during any small distance of sliding (small compared
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to total experiment duration but large with respect to characteristic
distances implicit in 6b). In the presence of gouge, large drops in the
imposed coefficient of friction, larger than would occur naturally from
instability, were found to cause increases in y that did not go away
over the distances associated with the fading memory (Dieterich (1980),
Ruina (1980), Summers and Byerlee (1977)). This effect, whatever its

mechanism, is beyond what we claim is explicable in terms of eqs. (6),

(as they are now understood).
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Characteristic Distances

As noted, equations (6) have, as one solution, the steady state

solution, when & = v = constant:

uo=u(@*(v),v) = u*(v) (7a)

63 =0 : (7b)

Linearizing eqs. (6) with regard to © near this steady state we obtain

T OO SR (8a)
all &
6, =0, = (308/9084)0; (8b)

-~

*

where U, =3u/08; and 0y = 8; - 83(v). Equations (8) describe the
55

friction force near the steady state for an unvarying § and have the

full solution:

b= uk(v) + § cpexp((384/384)8/v) (9)
all i

where t has been replaced by 6/v and ¢y

i are arbitrary constants.

Since (8éi/881) is negative the final approach to steady state is thus

a sum of exponentials with characteristic distances equal to —Vf(aéi/BBi).
Experiments indicate that these distances are constants independent of v
(Dieterich (1978, 79a, 80), Ruina (1980)). For sudden small changes in

slip velocity the number of exponentials needed to well approximate the
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approach to steady state is not greater than the number of internal

variables needed to describe the friction law and is equal if

351/391 (OB R fpe B )
i

- y - (10)

and aei/aei # aojfaej for 1 % 3 .

For slip histories with characteristic wavelengths in the variation
of slip velocity much greater than the characteristic distance
(dy = -v/(aéi/aq)) associated with a given internal variable 6;, that
variable may be approximately described as always having its steady state
value 61(5) corresponding to the instantaneous value of & % For slip
histories with characteristic wavelengths much shorter than the character-
istic distance associated with a given 6 that variable may be regarded
as constant in some circumstances (e.g. if the velocity fluctuations are
not so large that nonlinearities in éi(e,é) cause an effective reduction
in dj). Thus, even though a full description of the friction may require
several internal variables, only those with characteristic distances on

the same scale as the slip histories of interest may need to be treated

carefully.
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One Internal Variable

Here we focus our attention on a friction law adequately described

by only one internal variable, e.g.:

o= ale,8) s 8 =8k6,8) (1la,b)

where eq. (6c) is still a restriction on (1lb). First it should be noted
that the expression (1l) is not unique for a given material. The variable

8 could be replaced by q(g) where g 1is any monotonic function.

New functions g(a,é) and a(a,é) can then be constructed from (11)
that represent the same fiction law.
If a representation such as (11) exists it can be found experimentally

as follows: Assign to 6 the value of a paremeter describing a single

parameter family of slip histories, each of which is long enough to
uniquely determine the state. For example, if the single parameter family
of histories is slip at constant velocity-(for sufficient distance to
clear the memory), © may be taken as some point function of the speed
of slip. Or, if stationary contact time could be well defined in terms
of a single parameter it could be used for 8 . (There is some doubt that
this is reasonable, however (Ruina 1980).) Eq. (11) is then deduced by
imposing a range of slip histories 8(t), each of which is followed by a
range of slip velocities § . The function u(6,6) of (lla) is just the
value of | 1immediately following initiation of slip at speed § & ‘The
function é(e,é) is found by solving (lla) for 6(u,8) and the time

derivative of (1lla) for é(e,;,é,é) so that (11b) can be determined from
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- measurement of (u,ﬁ,ésg) at a number of points for various slip histories.
On the other hand, the sets (u,ﬁ,_é,;s.) are overdetermined if (11b) exists
since then one could solve, say, for u(ﬂ,é,g). So, if for given u,é ,3
the variable also depends on previous slip history then no representation
of the form (11) exists.

We now turn to the question of how experimental data (i.e. pairs of
functions wu(t) and §&8(t)) could be used to suggest that a formulation
like (11) applies. Experimental results consistent with (11) need to
satisfy the following two conditions that cannot be proved by data but
could be strongly suggested by lack of discordant evid;nce: 1) The
value of u(t;) 1is uniquely determined by w(0) and 8 (t) for
0 {t<ty. That is, all slip velocity histories equal to & (t) beginning
at an arbitrary time O and causing a given value of yu at time = 0,
cause the same values for y (t) for all subsequent time. In other words,
the state is uniquely determined by the instantaneous values of 1 and
& 2). For given initial conditionms, (uo,éo), very fast changes
(corresponding to changes at a fixed state) must lead to a unique monotonic
relationship between u and é independent of the nature of the fast change.

Note that condition (1) above is much stronger than the similar
sounding condition for the existence of a steady state.

Construction of the form (11) from the above results proceeds as
follows. The condition (2) leads to a family of curves on the U -6
plane that, by condition (1), cannot intersect. Numbers assigned to
these curves in an arbitrary but monotonic manner can be identified as
values of 0 . Thus 6 = 6(y,d), which inverted is (1la). For fast

changes in & the state must be constant thus © can only depend on &
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and higher derivatives in a manner that gives no singularities in 8 for
singular S,gl etc. Assuming, then, that 6 does not depend at all on
g,s‘ etc. we have that 6 can only depend on u and &. Using then
g = 8(u,é) we obtain 6 = é(e,é).

Experiments tending to confirm conditions (1) and (2) above thus
tend to confirm the validity of (lla,b). Experiments that violate these
conditions, like experiments that violate any predictions of (lla,b),
demonstrate that one internal variable is not sufficient to describe the
friction law. However the form (lla,b) may still be a useful approximation.
If, for example, several internal variables with disﬁarate characteristic
distances are required for a full constitutive description, only one may
dominate effects due to slip with the appropriate characteristic wavelength
of variation, as explained before. Also, a description with only one

internal variable may be used as an approximation if for example the

conditions (1) and (2) are not too strongly violated.
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Sample Laws With One Internal Variable

The Dieterich friction law, eq. (4), can be expressed in the form
(11) (Kosloff and Liu, 1980). Differentiating (4d) with respect to time

(not 'contact time') remembering that (4d) applies with § fixed, gives

& = =(6/6%(5))Ln(8/6%(8)) (12)

where T has been replaced by © and ox(8) = dc/s. Eq. 12 is equivalent
to (4c) as used by Dieterich (1979a,b) for non-constant slip velocities.
When the slip speed goes to zero, for any given value of & , eq. (12)
predicts that 8 goes to zero as well. Thus 8 does not evolve with
time for stationary contact and cannot be interpreted as 'average contact
time' as stated by Dieterich (1978,79a). This does not detract from the
usefulness of the law in either its general or specific form, however.
For the purpose of obtaining a few simple analytical results and in
order to highlight the essential features of the Dieterich law a few
simplifications can be made. Equation (42) may be written as the sum of
a memory term and direct velocity term, rather than as a product, without
much discrepancy. since the total variations in that are observed
in friction experiments are small fractions of u . Since we have lost
the 'contact time' interpretation of 6 the 'l' in the first of (4b)
seed not be included. Using Dieterich's (1979b) value of <3 = .5, this
simplification only shows up at slip speeds approaching §= .5 d. and

greater (where time is measured in seconds). Dieterich has chosen the

second of (4b) to be finite for high and low speed limits but to be
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roughly logarithmic in between. Replacing Dieterich's F with F(é) =
Ben(§) seems to cause little problem in practice, however, since extremely
large and small values of § are required before any paradoxes are
reached, for representative values of B. The simplified Dieterich law

is then, with (12):

u= A + Cgn6 + BLnd (13)

where logjg has been replaced with 2&n for mathematical convenience
and the constant A will depend partially on the units used to measure
® and § . This simplified Dieterich law can perhaps be made more
transparent by replacing the memory term C2n® by Mo + czndc and

solving for ;m from (12) to give

y=A+yup+B8 (14a)
@/ = (up(d) - up)/de - (14b)
* - -

um(é) = —=C&nd (lée)

where A in (l4a) is greater than A in (13) by Cin(d¢). An expression
similar to (14b) is given in Kosloff and Liu (1980). Thus the memory

term My 1s described by the fact that it always tends towards the steady
state value corresponding to the instantaneous slip rate u;(é). It
approaches the steady state value at a displacement rate proportional to
its difference from that value. In this case the steady state value is

-Cgné. Solution of (14) for comstant § shows that, with this law,
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approach to steady state is exponential in displacement even for large
deviations from steady state.

Two examples of the simplified Dieterich friction law, eqs. (14) are
plotted in figs. (2). Lines of constant state, yup, are light solid
lines and show the instantaneous positive dependence of | on slip
velocity § . The heavy line is the steady state friction law and is
either a decreasing (2a) or increasing (2b) function of slip velocity.
Above the steady state line y m decreases, below it Um Increases, as
indicated by the arrows. The dotted lines are lines of constant ﬁ,n.

Any slip motion corresponds to a curve on a plot of fig. 2 and is the
simultaneous solution of the friction law and any constraints imposed by

the loading mechanism. The imposition of constant slip rate, for example,
constrains the motion to a vertical line on either fig. 2 and u approaches
the steady state value (solid line) for the given 8, as dictated by

the arrows. Constant force loading (imposed constant F/N) corresponds

to a set of points on a horizontal line and will be discussed later.

Further insight into the simplified Dieterich Friction law can be
obtained from integration of (1l4b):

g ~(6-6')/d
G Fowr s
um(é) = (lfdc)[e u_(8(8"))ds" . (15)

m
-0

Equation (15) says that the memory term Mm 1is the weighted average
* -
of up() (the steady state value of u, corresponding to the instan-

0

taneous value of § ) over the recent sliding past. For the simplified
Dieterich law, where (lé4c¢) applies, 1l 1is the exponentially weighted

average of p* = -Cfné . The Rabinowicz (1958) idea, that the governing
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variable should be some kind of average of the recent slip velocity is
thus incorporated in (14b) so long as exponential decay is an adequate
'distance function' for weighted memory and other functions besides né
are allowed for u*(3). More generally we should replce u gy by 6 in
(14b) and (15) for use in (4b), (lla) or (13) so as not to restrict
dependence on the internal variable & to a linear one (as is the case
with Wy in (14)).

Other internal variable friction laws can be generated from the
exponentially fading weighted average of some function of the slip
velocity. For example if the reciprocal of the exponentially weighted
slip velocity is used as the governing variable ¢ we have

§="2e-a"N/d 1
o [(1/dc)J B (6(5')fdc)d5'] (16a)

8 = (8/0%(8)) - (8/e*(8)% , e*(8) = d /3 (16b,c)

where (16b,c) follow from differentiation of (1l6a).

This law, like the Dieterich law (12) gives no change of state for
zero slip velocities. On the other hand if the governing variable is
taken to be the exponentially weighted average of the 'slowness' = 1/§

then (15) and (1l4b) become

£ mIak CsGmon,
.6(t) = (1/dc)J a I ()=oi(x ))/dﬁdt' (17a)

— O

6 =1-06/6%(8) , o*(8) =d./$ . (17b,¢)
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If this definition of 6 1is used in (13) or (4b) one of the original
aims of Dieterich (1979a) is met that is missed by (12) or (14b,c).
Equations (17b,c) are the simplest definition of § that give 6 =1
for §= 0, and thus the interpretation of § as effective 'contact
time.' This law (17b,c) also gives the steady state solution 6 = 0
when g = dc/é. Egs. (17) have however what appears to be a drawback
in that at constant slip velocity, far above the steady state velocity
&*(9), the steady state value of u is approached linearly.with respect
to 6 . This can be extracted from (13) and (17b,c) or from eq. (6.24) of
Rice (1980). Recent experiments (Ruina (1980), Dieterich (1980)) in a
stiff machine do not seem to confirm this linear decay.

Depending on the constants or functions used in (11), ¥ can either
increase or decrease with steady state velocity. The general property
that all of the laws just described have is that ¥ 1is an increasing
function of the instantaneous slip velocity that is partially, fully, or
more than fully countered by the 'memory' after a sliding distance greater
than d.. The variations between the laws are in terms of the following;
1) The shape of the u vs. 6 curve for fixed 8 , 2) Whether or not
the evolution of state is connected fundamentally with time (i.e. whether
state changes in completely stationary contact), 3) How the effects in
the law vary with § or 6 (for example in the Dieterich law (4b) the
direct velocity dependence becomes negligible at high and low slip speeds).

Even in their simplest forms, the properties of these laws are
somewhat more subtle than in classical velocity, 'time' or displacement
dependent laws. Loosely one may think of U as a function of quality of

contact and slip velocity. Quality of contact may or may not correspond
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to average asperity contacts, etc.. The friction force increases with
both slip velocity and 'quality.' The quality of contact always tends
towards its corresponding steady state value, which is a decreasing

function of slip velocity.
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Experimental Evidence

Indiréét affirmation of the truth of the general one variable law (11) or
a law like the Dieterich law (4) or (14) comes from the predictions these
laws make (mentioned in later sections and by Dieterich 1978, 79a, 79b,
80). Successful predictions do not necessarily come from a unique theory,
however (and definitely do not validate it like an unobserved necessary
consequence invalidates it). An incorrect model can usefully make
predictions if the predictions do not depend on aspects of the model that
are incorrect. This, at best, is the situation with laws of the form
(11). The usefulness of laws the form of (11) or more specifically (14)
come from their incorporation in a simple mathematical form having the
following essential features: =

1) Fading memory and steady state

2) Positive direct velocity dependence competing with

3) MNegative velocity dependence of non-instantaneous (but fading)

memory

and their ability to include the possibly essential features of

4) Fading memory with a characteristic distance of decay independent

of velocity

5) Approximately logarithmic direct velocity dependence

6) Approximately logarithmic non-instantaneous dependence on velocity.
Time dependence or load rate dependence of 'static' friction may be viewed
as a conmplex low velocity limit of a law that includes the above features
(Ruina, 1980). In any case, the results obtained thus far by Kosloff and

Liu (1980), Dieterich and in this paper do not utilize the concept of a
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distinct 'static' friction separate from the above features, and thus
"static' friction does not appear to be an essential basic property of
these friction laws.

The fading memory and steady state feature is implicitly assumed in
almost all experiments or discussion of metallic friction. Few rock
friction experiments provide solid verification of this idea since they
are apparently dominated by transients associated with first sliding.
However, many of the experiments of, for example, Summers and Byerlee
(1977) show a trend towards leveling of 'o' vs. 'e' or repeatable
stick-slip events, both of which are indicative of fading memory. A
superposition of a long term displacement dependence on a fading memory
law (with possibly slowly changing parameters) is a possible correction

in the cases where steady state is not observed. This correction is not

adaquate for samples where the whole 'o-¢ curve is often offset by
'static' holds. Thus, although certain features such as occasionally
observed oscillations and slip preceding instability in the tests by
Summers and Byerlee may seem indicative of the laws we propose here these
experiments do not offer much support.

Recent experiments of Johnson (1980) in a servo controlled triaxial
testing machine show evidence of a steady state, both in the leveling of
"0 vs. € ' curves and repeatability of experiments. Additionally his
experiments substantiate the idea of a direct velocity dependence competing
with a memory to the same extent as tﬁe earlier work of Dieterich (1979a).
Besides these directly supportive aspects of Johnson's work he also has

further results that are consistent with approximations to the Dieterich

law (13) or (14) such as a roughly logarithmic drop in u with time during
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static holds followed by, with resumed sliding, a peak in M that is
roughly loga¥ithmically dependent on the product of 'static' time and
resumed load point velocity as will be discussed with regard to the rate
scaling rule. Servo-controlled experiments by Dieterich (1980) with fault
gouge also give results in support of his earlier work. Because of the
artificial stiffness that servo control provides, this later work by
Dieterich shows clearly the distinctness of the essentially instantaneous
direct velocity dependence from the memory dependence. Some of his results
(unpublished) show a complex relaxation to steady state curve, however,
that does not seem well suited to modelling by the likes of (4) or (14)
even when the compliance in the testing machine is taken into account.
Recent experiments (Ruina 1980) in the 'sandwich' shear apparatus
of Dieterich using servo—control on displacement, measured close to the
slip surface, show some features consistent with the recent discussion
and some new features. Typical results are shown in figure 3a. The
effective machine stiffness is high enough (dotted line) so that the
curves may be viewed as y vs. § . For experiments conducted in one
day, without much sliding in between, repeatability was excellent as was
the existence of a steady state independent of recent history. In figure
(3a) two experiments are shown for step changes in load point velocity
and in both cases u approaches the same level despite the difference
in previous velocities. A step change in uxdé leads to a step change
in y as expected. Often electrical noise would cause an unwanted
servo 'correction' causing a sudden transient jump in u andé . These
very short disturbances (< .1 sec:=y < .ly) caused little or no memory

effects thus supporting the idea of 6 as continuous with §
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and our separation of state (6) and property (u vs. 8
for fixed 8 ). The new features are these:
1) The curve for step changes from .ly/sec to ly/sec does not retrace
the curve for step change from .0lu/sec to lu/sec. This implies that
one internal variable is not sufficient for describing 1y especially if
the short term transient is to be described. 2) The curves retrace
almost exactly an exponential decay after an initial transient decay that
also is roughly exponential. Not visible in figure 3 but clearly observed
(Ruina, 1980) was the independence of the characteristic distances of the
exponential decays from slip velocity. Further, all the jumps in y and
ultimate relaxations were roughly proportional to the log of the ratio of
the velocity after slip to the velocity before slip.

Assuming that an internal variable representation exists and that
each of the exponential decays corresponds to one internal variable, the

experiments are quite accurately described by a friction law of the form;

po=u tuptwt B %né (18a)
]:ll = -(é/d]_)(U]_ + C]_E.né) (18b)
1.12 = —(é/dz)(uz g iné) (18¢c)

two trajectories of which are ploted in fig. 3b as computed with the
spring block model of fig. 1 with a very stiff spring. Eqgs. (18) fit

well for velocity drops as well as jumps. Since the memory terms M 1

and ypp are each identical to the memory term in the simplified Dieterich
law, they do not give 'time dependence' in the limit of zero slip velocity

.

(e.g. ﬁl and ﬁz go to zero as & goes to zero).
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In these particular experiments the short term relaxation given by
pp in (18b) almost exactly negates the direct velocity dependence Bgn&.
If C =B exactly, eqs. (18) can be re—expressed by combining ﬁl and

BZné into a single short term response ug so that

W=y +ug +u (19a)

dug = =(ug/dy)dé + (B/8)ds (19b)
S pan .

ng = (1/dl)f e™(9=%")/d1 (~q p/8)as" (19¢)

-0

where Mg = u, + Bﬁné, U, still obeys (18c¢) and Uo 1s still a constant.
The superposed dots denote differentiation with respect to time. The

term Hg includes both the short term memory and direct velocity
dependence. It exponentially approaches zero for constant glip velocity
(d6=0). If the fractional slip velocity change over the slip distance

d; is small and the velocity is slowly changing (characteristic wavelengths
>> dy) then (19) reduces to u_ = d(*dlB/é)/dt = (dlﬁféz)g « That {is,

for motion with a distance scale large compared to d; the coefficient

of friction appears to depend on slip acceleration. The surface can be
thought of as having a velocity dependent "inertia."

In numerical spring-block models the two internal variable laws (18)
or (19) yvield results that differ in some details from use of the one
variable law (14). However the differences are in the detail of behavior
not the quality. For example one or the other of the two characteristic
lengths scem to dominate depending on the simulated experiment. The
calculations that follow (except the scaling law) are based on the use of

one internal variabhle.
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Constant Force Loading

The constitutive laws thus far have been written for yu in terms of
slip history. However, assuming the necessary invertability they acan be
re—expressed to solve for slip from the friction force. For exanple the

simplified Dieterich law egs. (14) can be expressed:

§ = exp((u-A=up)/B) (20a)
il a5 = (1=G/BY Gin(u)e) fidd (20b)
um(u) = (C/B)(u=A)/(1-C/B) . (20c)

For constant M loading this system can be solved for & in terms of
§ as:

e S s "—'XP(((C/B)—l)(S/dC)
§ = 8*(u)(S,/8%(n)) (21)

where é*(u) is the steady state value of § that corresponds to yu ,
50 is the slip velocity at 6 = 0. For C < B the solution decays to
the steady state solution. For C > B steady sliding is extremely
unstable. If éo > 5*(u) infinite velocities are reached in finite time
since in (19) 5(5) is of greater order than § (i.e. Jdt -

(1/5(6))65 = finite). If 8o < §*(u) slip stops in finite time. The

condition C > B corresponds to a friction law that has ¥ decrease

with steady state slip speed, e.g. du*(§)/dé < 0.
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Constant force loading constrains the motion to horizontal lines on
figure 2. The arrows governing ﬁm indicate the subsequent velocities
for given initial conditions. The stability conditions from the last
paragraph are apparent with brief inspection.

The figures (2) can be used to show qualitative response for other
loading by remembering that sudden changes in u or § (or some
combination) must be along lines of constant state. Slower changes must
yield to the arrows.

As noted in Kosloff and Liu (1980) and Dieterich (1979a) sliding
occurs, with this style law, before instabilities. In particular, unless
sufficient force is applied to bring the slip speed up to the steady
state value corresponding to that state, accelerating slip instabilities
cannot occur. If the friction force is an increasing function of the
steady state slip velocity, fig. 2b, slip velocities may grow quickly
during and subsequent to quickly growing imposed load u, but they remain
finite and approach the steady state velocity corresponding to yu .

Unsurprisingly, stability of sliding at constant y for any law of
the form (11) is critically dependent on dy*/d§, as was the case in the
last example. We examine the stability by looking for solutions near a
steady state solution at slip speed §&*, p*(§*), e*(é*) and 6 = O.

Linearizing (11) near this solution one obtains:

u u*(é*) + o=k §%) + ueﬁ'*' u ¢ (22a)
é
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where 6 = 6 — 6%, u'= p— u*,

O 2e
[
Ons

I
Che
*

and subscripts denote partial
differentiation.
For fixed u loading, u = 0. Solving for § in (22a) and applying

this to (22b) we have

@D

= (8. /u ) u =8 /8 du lo - (23)
6 § 3 3 8 "8
The term in square brackets is dy*/dé. This can be seen by applying
de*/ds = —é.fée (from implicit differentiation of §(g,4) = 0) to the
S 3
"total' derivative of (lla) with respect to & at steady state. The

first term may be re-expressed by use of the association of ée with -

v/d. made in the discussion following eq. (9). So (23) reduces to

]

5- —(v/dcu.)[du*/dé]é (24a)
§

5 —(v/dcu,)[du*/délg (24b)
(o)

where (22a) has been employed to obtain  (24b).

Assuming a positive direct velocity dependence (u_ > 0), eq. (24)
has solutions that grow or die exponentially depending inly on whether
du*fd5 is less or greater than zero.

So, for constant force loading the stability criterion with a memory
and velocity dependent law is the same as with a strictly velocity depen-—
dent law. If force decreases with steady state velocity, steady slip is

not stable. This similarity between the stability behaviors for the two

laws breaks down, however, when a finite compliance is used in the loading.
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Steady Sliding With a Spring-Block Model

Here we look at the nature of slip 1f the spring-block model (fig.
1) is used with a memory dependent law (egs. 11) with the load point
moving at a constant speed v. The friction force must equal the force

transmitted through the spring.
#(6,8) = k(u=-g) (25)

where for constant rate loading u = vt.

We are interested in the stability of steady-state sliding solution
6% = vt = uk(v)/k, 6 = 0. To examine the solutions near the steady state
solution equations (25) and (11b) are linearized, as for constant force

loading (eqs. 22), to give

[
-~

M =1yu6+yuds=-ks (26)
B -
8
where u = p - u*(v), 6=9 - o*(v), § = § - (vt=y*(v)/k) and (22b)
still applies for the linearization of § . The coefficients of all the
"' variables are subsequently regarded as constants. The linear constant
coefficient equations (22b) and (26) govern the motion of the block near

steady state sliding with constant load point velocity.

The solutions of (22b) and (26) have the form:

y o= Re[A;e%'] , 8 = Re[A,eSt] (27)
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where Re[ ] denotes the real part of | ]. Application of the solution
(27) to the linearized expression for 8 (22b) one can solve for A2 in
terms of Al . Application of this result to (26) leads to the following

quadratic equation and solutions for g

s2 + (Tk/u )s + Dkz/u? =0 (28a)
§ §
s = (k/2u_)(-T (12-4D)1/2) (28b)
§
T = v(au*(§)/dd)ka_+ 1 , D=y v/kde (28¢,d)
§

The identification of dc as —v/ée has been employed as well as
the identity du*/dé = o = ééuefée . If, in either of the solutions of
(28b) s has a positiveéreal part then perturbations near the steady
state will grow exponentially by (27). Since small perturbations can

always be assumed to exist, steady following of the load point by the

block is impossible if Re(s) > 0 .

From the solution to the quadratic equationm (28b) we have
T <0 or D <0 z>instability . (29)

Since the direct velocity dependence u, is expected to always be positive
8
D is always greater than 0. So the stability criterion reduces to

- (dy*/d8)/d. > k/v & instability (30a)
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or
(C-B) > kd. = instability (30b)

Equation (30b) is (30a) applied to the simplified Dieterich law (14).
The dimensionless quantity T 1is negative when steady sliding is
unstable and positive for possibly stable sliding and can serve as a
measure for degree of stability. When s has an imaginary part the
approach to, or growth away from the steady state solution will, from

eqs. (27,28) be oscillatory. The condition for this, from (28b), is

2 - [v(du*/ad)/kd_+ 1)] < 4y v/kd, = 4D (31)
;

At neutral stability, T = 0, and, from (28), s 1is given by

s = 1(v/d ) ((=dy*/d§)/, )1/2 (32)
)
and the slip displacement wavelength of the associated stable sinewaves

is

wavelength = 2nd_(y_/(-du*/a§)1/2 . (33)
8

The nature of the solutions to (22b,26) is described mostly by the

eigenvalues s of (28) and not the “"eigenvector” (A1,A2) which determines

the relative phase and magnitude of @ and § and shall not be discussed

further.
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Steady state sliding with the spring block is unstable if the steady
state velocity dependence is sufficiently negative (eq. 30a). This is
different from the strictly velocity dependent law, for which steady
gliding was unstable for any amount of velocity weakening. Near the
condition of neutral stability oscillatory solutions are expected that
may grow or die depending on the sign of T (egs. 31-33). The wavelength
of the oscillations is on the order of 2wd., depending on other
constitutive parameters.

A few complications may be added to the problem without complicating
the solution. If a dashpot is added, parallel to the spring in figure
(1), the solution is only modified by the addition of the dashpot constant
to both y and du*/dé. This further stabilizes the motion. Incidentally
one may note that for purely viscous loading (no spring) the solutions
can qualitatively be obtained graphically from the likes of fig. 2 since
the loading could be represented as a single constraint curve (between §
and u ) on the graph. If a direct displacement dependence is added to
the law it can be included so long as it can be modelled as constant slope,
u = cx. The corresponding solution is modified by linearizing about the
steady state solution §% = kv/(k+C) instead of §* = v and replacing
Eeby Ll e —an results that depend on k. An added positive displacement
dependence is stabilizing since it increases the effective stiffness of
the spring.

I have not found a simple rationalization of the main result of this
section (30a), except in the somewhat singular case where there is no
explicit velocity dependence, u_ = 0. Imagine the block sliding at the

§
steady state solution corresponding to the load point velocity. 1f the



43

velocity of the block were suddenly to change to a new, say greater speed,
the friction law would require that the friction force must begin changing.
However if the block speed has changed, the spring begins to relax since
the load point speed is constant. Eqn. (30a) is a statement of the fact
that the spring force drops less quickly than the friction law force for
imagined jumps in slip velocity and that force is thus imbalanced towards
the direction of motion. A similar argument applies for imagined sudden
drops in velocity.

A surprising feature of the stability criterion (30a) is that it
contains no explicit reference to the direct velocity dependence M,
neglected in the last paragraph. That is, only the amount of the ;ieady
state velocity weakening, and the characteristic distance d., determine
whether or not stable sliding is possible in a given system, no matter
how large the transient velocity strengthening. However, as can be seen
from (29-33), the direct velocity dependence u does determine whether
or not oscillations can occur, what their wavelength is, and, if sliding
is unstable, at what rate instabilities grow.

The solution of (28b) for k> * implies that for a very stiff
system perturbations decay to steady state as is in the constitutive law
for constant slip velocity. As the stiffness goes to zero the constant
force loading results are approached (compare (30) to (24)). At intermediate
stiffnesses the characteristic lengths v/s 1in the exponential solutions
are not d.. For example for compliances not quite large enough to cause
oscillatory approach to steady state (equality in (31)) the characteristic
distance of the approach to steady state v/s 185 by 7(29),

2d, /(=du*(8)/dé).
§
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Simultaneous solution of the spring-block constraint (25) with the
simplified Dieterich law (not-linearized) (14) has been carried out
numerically and is shown in fig. 4a. The steady state solution is
perturbed by suddenly changing the load point velocity a small amount.
In a very stiff machine the effect is small and gives the result that
would be predicted by a sudden change in the rigidly controlled slip
velocity. With more compliance decaying oscillations are observed. At
neutral stability, equality in (30b), oscillations persist with the
wavelength of about 2md. as predicted by (33) with C = 2B in (14).
With still a more compliant machine oscillations grow, beyond the
applicability of the previous linearizations, to a massive instability.
This is indicated by the nearly vertical slope in force vs. load point
displacement implying nearly infinite slip velocities. This indicates
the failure of the quasistatic calculation and the onset of dynamic
instability.

Oscillations like we discuss here were first noticed by Scholz, et
al. (1972) and were seen to occur in the transition from stable sliding
to dynamic stick slip as the normal stress was increased. A sample of
their results is reproduced in figure (4b). Assuming u is independent
of normal stress o ,, as discussed, increases in normal stress are
equivalent to decreases in stiffness i since both decrease the normalized
stiffness £‘= k/N which governs the stability of motion (see also
Dieterich 19783, 79a). We have carried out experiments where the stiffness
was electronically controlled (Ruina, 1980). Perturbations were imposed
by changing, stepwise, the motion of the 'load point' (an imagined point

in the electronic control). As the stiffness was decreased there was a
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transition from steady state to decaying oscillations to large sustained
oscillations bordering on dynamic stick slip. Results are shown in fig.
(4c).

Oscillations of this type are seen in some of the results of Summers
and Byerlee (1976) as well as Shimomoto (1977). That these works do not
show these small quasistatic oscillations more frequently may be due to
the fact that in fault gouge layers instabilities of the type discussed
thus far are mixed with instabilities associated with localization of

deformation in the gouge layer.
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Localization of Deformation

The slip displacement § may represent the deformation of a layer
of finite thickness. In rock friction experiments, surfaces of intact
rock are often separated by a layer of gouge, either generated by sliding
or introduced artificially. If the deformation in this layer is homogeneous,
u,é relationships like (14) measured in experiments are actually
measurements of u as a function of shear strain history. In the
constitutive laws (11) (and following) the slip displacement ¢§ should
then be replaced by the average shear strain in the layer y = §/h, where
h. is the thickness of the layer. The characteristic distance(s) in the

law d. should be replaced by a characteristic strain y. as suggested

implicitly by Dieterich (1978). The laws (11) then take the form

w=u(e(y),y (y)) (34a)

8(y) =6 Caly), v(¥)) (34b)

where y 1is distance in the direction perpendicular to the macroscopic
surface. A restriction like (6c) is still assumed to apply. The question
arises as to when deformation governed by (34) leads to localized
deformation. With large restrictions on possible 2- and 3-dimensional
effects, we now consider the conditions for the stability of homogeneous
simple shearing deformation.

Assume that the shear strain <y = 36/ 3y depends only on y and
that there is no deformation in any plane.parallel to the surface. The

normal stress is still assumed to be constant or irrelevant, so effects
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of elongation strain perpendicular to the surface are, if important,
incorporated in (34).
The simplest criterion for localization is the growth in time.of
small perturbations from homogeneous deformation for a given macroscopic
loading. We restrict our attention to a homogeneous material and thus
only discuss perturbations of state or deformation rate. Although possibly
of interest, perturbations of properties are not considered here. The
obvious variable to consider, the shear strain vy» 1s in fact not sensible
because it does not appear in the constitutive law (34). That is, the
growth or diminution of shear strain perturbations would depend on an
arbitrarily associated perturbation in the state g or strain rate y.
Consider a homogeneous deformation pp(t), &y(t),y h(t) that
satisfies (34) as well as the given remote boundary conditions. The
perturbation is the difference between the values of relevant variables

and their values in the reference homogeneous deformation:

3u (£) = u(e) - up(t) (35a)
36 (y,t) =@8(y,t) - ox(t) (35b)
3y (y,t) = y(y,t) =y p(t) (35¢)

where force balance requires p and 3du to be independent of y. This
set includes both homogeneous and inhomogeneous perturbations. The degree
of inhomogeneity in the perturbation can be measured by the quantities

A;, 4¢ and Ay which are the differences between the values ;,8 and

at two points in the layer, (e.g. aAg (t) = 8 (y1,t) -0 (ya,t) where we
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assume yj] and yp are such that Af is positive. Force balance (or
the first of (35)) requires Ap to be zero. For small perturbations the

quantities A8 ,(A6), Ay and Au can be related by linearization of (34):

0 = Ay = paae-+ p.a§ (36a)
Y
Go) =686 +6 Ay (36b)
Y

where subscripts denote partial derivatives of the functions on the right
sides of (34) evaluated at the values eh,-}h in the corresponding
homogeneous deformation.

The equations (35a,b) can be re-expressed as

(a8) = (8, - 6, (ug/u,))ae (37a)
¥
= (ee/u;)(du/dy)é Fiwaq. OB (37b)
by = =(u,/uw )48 (372)
Y

where, again, all derivatives are to be evaluated at the corresponding
values of 8 h(t) and yp(t). Equation (37b) follows from (37a) by
evaluating dpu( &%) subject to the constraint dé(e,;) = 0. Since we
assume throughout that u; > 0 (or else localization follows immediately
without any discussion of state variables) and éa < 0 (by a constraint
like (6c) that allows the concept of steady state) we have that (4A® > 0
if (du/d§)é < 0. Since pp 1is positive by definition (A8) > 0

fixed
implies growth of inhomogeneities in state 8 and thus the localization

condition
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du/dy)e

( ufdy)e fixed< 0 (38a)
b2 u*@§) + (B8-C) (38b)
MA(Y) = g + (B=C)gn(y) (38¢)

where (38b,c) is (38a) evaluated for the strain analog of the simplified
Dieterich slip law (l4c). Since the inhomogeneity in strain rate Ay
can be found from the inhomogeneity of state A® from (35¢c) we can view
(38a) as the condition for localization of strain rate. This is not
strictly true, however, since the coefficient of A8 in (37¢) may change
in time if the reference homogeneous deformation is not at steady state.
The localization condition (37) can be found graphically on figures
(2a,b). Where lines of constant § (dotted lines) have negative slope
localization takes place. In the case where the reference homogeneous

deformation is at steady state the localization condition (38) reduces to:

du*/dy < 0 (39a)

B=0 03 (39b)

Thus steady state homogeneous deformation is unstable if the material is
strain rate weakening for steady state deformation. This result could be
obtained directly from the analysis of constant force loading for the
slip law, equations (24), by considering a perturbation that has zero
average strain and thus keeps the layer under constant force lecading no

matter what the boundary conditions.
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A few interesting features of the localization results should be
mentioned. Localization is possible even when the load  1is below the
steady state value for the current state. Thus localization can occur
even when 6 > 0 and the layer is strengthening (i.e. the level of /‘
required for macroscopic slip is increasing). If the load yu 1is below
the level required for localization (i.e. is in the region of fig. 2
where lines of constant 6 have positive slope) then a homogenization
process takes place. Finally, localized deformation is possible even in
a material that allows stable steady sliding for force controlled loading.
I1f, as in figure 2b, B 1is greater than C then a suddenly applied u

much greater than u*(8) brings the material into the region of localization

in fig. 2b (i.e. negative slope of the constant 6 lines).
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Relationship of Localization to Instability

With homogeneous deformation of the gouge zone, stability of an
elastic system with finite compliance is determined largely by
y(du*/dy)/d. where the characteristic relaxation distance d -.fch. If
localization of deformation reduces -the thickness of the most actively
deforming region the effective relaxation distance will also be diminished
and instability is encouraged. The thickness of the localized deformation
could mathematically go to zero but must be limited physically by the
deformation mechanism. Presumably fully localized deformation of a gouge
layer has similar constitutive properties to the friction of relatively
intact surfaces. So homogeneous or continuum response 1is to fully
localized response like the shear of a deck of playing cards is to the
slip between two cards. Macroscopic response and stability of a system
like in fig. 1 will be different for homogeneous deformation than for
localized deformation and may depend on the transition from one to the
other. A few possibilities will be considered.

The stability of the spring block system depends on the degree of
steady state velocity weakening (eqs. 30). Any strain rate weakening
whatsoever for all %elevant strain rates leads to localization that must,
in order to be compatible with constant slip rate on the boundary, lead
to fully localized deformation (i.e. most of the deformation is only in
one minimally thin layer). So homogeneous deformation does not persist
at steady state and stability of steady state sliding depends on the
fully localized constitutive behavior. In the case of constant force

loading the condition for stability of steady state motion is identical
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wiﬁh the condition for localization. The exponential growth of fluctuations
in macroscopic slip velocity & is in fact independent of whether or not
there is associated localization. So, near the steady state, fully or
partially localized deformation leads to identical response as homogeneous
deformation for constant force loading. The thinner the actively deforming
layer, however, the sooner the much faster than exponential instabilities
like that given by (19) can occur.

If homogeneous deformation leads to stability in the spring block
model for a given macroscopic loading and fully localized deformation
leads to instability then the localization process and instability might
be intertwined (as might also be the case if both are unstable). For
example cousider an initially homogeneous layer deforming at steady state
with the load point velocity u about equal to the slip rate § 1in the
model of fig. 1. Any through the thickness perturbation with zero average
strain must have some accelerating region in order to keep tﬁe through
the thickness tangential stress independent of position. So long as the
material is strain rate weakening for steady state deformation at all
deformation rates, the localization process thus initiated must lead to
fully localized deformation, and possibly elastic unloding instability.
As the localization process takes place, the steady state force required
to maintain steady state diminishes since the actively deforming region
must have higher strain rates for a given macroscopic displacement rate & .
There is then an unloading process due to the localization that is
different from the unloading that could have occurred if the deformation
was fully localized from the start. If fully localized deformation leads

to instability then the localization process itself may lead to instability.
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After an instability with large elastic unloading the force drops
possibly into the region where (bé) is negative (positive slope of
dotted lines in fig. 2). This leads to homogenization that may leave the
layer more or less homogenized at the next reloading up to the steady
state level (the level required before any macroscopic instabilities are
possible). The next instability may or may not be localized in form
depending on whether the layer is effectively homogenized by the time at
low load level or whether the fully localized layer still has a distinctly
different state than its surroundings (or its properties have been altered
by the localization).

Consider now the steady state deformation of a layer that has a
positive steady state velocity dependence, as in fig. 2b (positive slope
of heavy line). 1If, as some recent experiments indicate, (Dieterich
1980, Ruina 1980a), there is a gradual transformation in properties with
deformation from positive to negative steady state rate dependence, then
steady sliding becomes gradually unstable. There are two possibilities
for instability. The first is similar to that just discussed. At the
point where slip first becomes velocity weakening at steady state (e.g.
du*/dy < 0) localization begins. The localization process, being a
concentration of deformation, could enhance the trend towards rate
weakening and instability could occur as part of the localization process.
Alternatively, the deformation could become fully localized without
elastic unloading instability, then when the constitutive law has sufficient
negative velocity dependence instabilities could begin, starting with the

oscillations described previously.
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As was implicit in (29) - (33) and the related discussion, gradual
change of friction parameters, normal load or stiffness during steady
sliding can lead to massive instabilities only by means of a transient
oscillatory imnstability (so long as ' and k are both positive). The
only exception to this rule, within thg context of the laws we describe
here, seems to be if the instability occurs simultaneously with localization
as just discussed.

A fuller consideration of localization incorporating 2 or 3 dimensional
effects could only lead to the possibility of the onset of localization
even before it is anticipated in our 1 dimensional (deck of cards)
analysis. In general it seems then, that except in cases where an
initially homogeneous sample (either due to virginity or substantial
rehealing) is deformed or there is a gradual change of parameters during
'steady state' deformation, that instabilities can be assumed to occur
only in samples where the deformation is previously fully localized to a
very thin layer.

Dieterich's (1980) recent experiments with fault gouge showed no
scaling of characteristic distances with layer thickness implying localized
deformation as predicted here. However his characteristic distances were
an order of magnitude greater than with surfaces polished to the same
approximate roughness of his gouge particle size. Thus the mechanism of
deformation apparently does not localize as much as might have been
expected. The characteristic distances might then be governed by the
sizes of particle aggregates that move more or less rigidly rather than

the size of individual particles as proposed by Dieterich (1979a).
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Application to Fault Mechanics

A popular qualitative model for earthquakes is the occurence on a
fault of a frictional instability similar to that observed in laboratory
'stick-slip.' In order to flesh out the model a particular friction law
must be applied to a fault of specified geometry in a medium with specified
properties and with specified loading.

Efforts in this direction are frequently based on the spring block
model of fig. 1. For example if motion modelled as roughly homogeneous
on a planar fault acted on by normal stress O, with characteristic
distance 6 in a medium with modulus G the average slip displacement
§ 1is related approximately to the average imposed UM by
B = (G/fo,)(2y_~8) where Y_ 1is the far field shear strain (Walsh 1971).
This relationship makes obvious the association u = 2¥_, k = G/%0, for
spring block modelling (remember we use a stiffness based on v )s Or if
homogeneous motion is assumed on a very large fault that is constrained
at a distance ¢ away from the fault to a displacement u, as in the
geometry of fig. 4, then the spring-block model may be used with the
stiffness k = G/%0, again.

The two geometries just mentioned lend themselves to analysis with
the spring-block model so long as no effects are missed by the 'lumped'
displacement. In particular the stability results discussed previously
may be applied to these 'zero-dimensional' faults.

Earthquake rupture, however, need not correspond to homogeneous slip
on a surface. The application of a Dieterich-like law to an elastic

continuum leads to difficult problems that may only be answered numerically.
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Such numerical work was initiated by Dieterich (1979b) énd is now being
pursued by Gary Mavko (U.S.G.S. Menlo Park, CA) and Kosloff and Liu (also
USGS). The primary discovery of Dieterich's experiment work with large
rock blocks was the spatial propagation of a slipping zone precursory to
massive instability. In his numerical model of his experiments the
propagation of creep (aseismic slip) was fundamentally connected to spatial
gradients in the difference between applied load and surface strength (or
state). The rate of propagation of these frictional 'fractures' is then
given by the ratio of the far field stress loading rate to the strength
difference gradient. This kind of propagating slip could be predicted by
a friction law that is only displacement dependent as well. In contrast,
it is interesting to consider the possibility of spatial propagation of
slip for a homogeneous material with no spatial inhomogeneities in initial
conditions. For example, spatial inhomogeneities may be generated by the
instability processes (the localization of deformation is a kind of
analogy). Some rough evidence that this might be so is given in the next

section.



57

Creeg Waves

We now endeavor to investigate the possibility of spatial instabilities
with the simplest possible model. The long elastic slab of fig. 5 is
modelled as 'a rod on an elastic foundation.' This is the continuum
equivalent to a long train of blocks separated by springs with each block
connected to the displacement controlled boundary by another spring. The
interconnecting springs cause a net force on a block 1if spacing is not
even (§gx # 0) and the boundary springs cause a force 1if slip displacement
is less than boundary displacement. This model should well approximate
an elastic layer for deformations with wavelength large compared to £ ,
the slab thickness.

The governing force balance equation is
b= k(um8) + (k2 a6 (40)

where k = G/ognt, o = 3G/E = 3/2(1+v). 21, The stiffness k is defined

to be consistent with previous discussions. G, E are shear and elengation
moduli, v is Poisson's ratio. The assigned values for k and a ip
(3?) may be determined by assuming that planes normal to the x direction
do not deform (Simons, 1979). For homogeneous deformation § xx = 0 and
(40) reduces to (25) and all spring-block results apply. The general
single internal variable friction law, eq. (11) is used. 1If the imposed
displacement rate is constant, u = vt, then homogeneous slip at speed

vV, with § and  at Steady state values, is a solution. We look for
solutions near this Steady state solution. Linearizing as for the spring

block model (26)
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G0+ “56 = -k + (k?/a) by (41)

"

with the '°' variables defined as before and with (22b) still applying

for linearization of © . Assume a solution of the form

(=21

- exp(lulfleﬂ + qvt/dc) (42a)

~ ~

6 = ad (42b)

where A, q and a are to be determined. Application of the assumed
solution (42) to the linearized equations (41) and (22b) yields an equation
quadratic in both q and A . It can be solved for A in terms of gq

or q in terms of A

A =+ (1+Tq+Dq2)1/2/(1+q)1/2 (43a2)

q = (A2-T) * ((2-1)2 + 4D(A2-1))1/2)/2D (43b)

where T and D are defined as in (28¢,d).

Small perturbations can be decomposed into a sum (or integral) of
terms that are spatially sinewaves and thus correspond to XA as pure
imaginary. Stability of a perturbation of given A 1is determined by
whether or not the corresponding q has a positive real part. Let

A =i (B real) then from (43b) motion is unstable if

-1 >82 or -(du*/d§)/d_ > k(1+8%)/v (44)
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The most relaxed condition is for B = 0 which corresponds to waves
of infinite wavelength and the solution of the spring block model. For a
given T < O there is a corresponding B for which sliding is neutrally
stable (Re{q} = 0). Waves of greater wavelength are unstable, those
with smaller wavelength are stable. The critical spatial wavelength is,

from (44) and (42)
crit. wavelength = 2ng(-oT)"1/2 (45)

The velocity of propagation of such a wave is given from (42) by

(qv/di)/(Bel/2/2) which can be found from (43) to be

wave speed = *(vi/d oal/2)[(du*/dé)/u T] (46a)
:
or
wave speed = (v/anc)[('du*/dé)/u_11/2 (wavelength) (46b)
8

The results (44-46) can also be derived directly from the spring-
block .model by observing that for a propagating sine wave of spatial
wavelength ZWQ/Adlfz in a slab, as modelled, the slip displacement is
related to the friction coefficient by u = =k(14+3A2)8. Each point of the
surface may be then treated as with the spring-block model with the
stiffness k replaced by k(1+)2). The velocity of propagation is then
determined from the frequency as determined by the ratio of the nominal

slip velocity to the slip displacement wavelength from (33).
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The propagation of a small disturbance of any shape can, in principle,
be determined by decomposition into sinusoidal components with the above
results used for superposition to obtain the general solution. Qualitatively
one can note that the components with wavelength smaller than the critical
will decay, possibly in an oscillatory manner (if close to the critical
wavelength). Components with larger wavelength will grow in time. The
disturbance will propagate, if at least some wavelengths are greater than
critical. The growth of instabilities is, then, insensitive to small
wavelength (stiff) perturbations and very sensitive to long wavelength
(soft) perturbations.

Further investigation of slip on a continuous boundary is left for

future work.
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A Rate Scaling Rule

Consider a friction law of the form

H o =p, + chﬁnei + Boné (47a)

6; =63(65) or di/ds = (1/8)641 (é61) (47b)

where, in this case, each éi is taken to depend only on the product
591. The apparently special friction law (47) includes as special cases
the simplified Dieterich law (12, 13 or 14), the simplest truly time
dependent law (13,17), the velocity average law (13,16) and the two
internal variable law (18). The &n function may also be a useful
approximation for friction laws described by a power law with a small
exponent.

Consider also a displacement field u(x,t) and associated velocity
and stress fields wv(x,t), o(x,t) 1in a linear elastic solid, where X
is the position of solid material points in a reference configuration.

On a frictional boundary the elastic displacement is equal to the slip

u=g and v

]
| one

(or s is the jump in u across an interior slip
surface)s If changes of direction change the constitutive description
(47) then it is assumed that u and Vv are restricted to fields that
only have slip in one direction on the slip surfaces. Assume that
alv,t), vix,t) o(x,t) satisfy the equations governing the deformation
of a linear elastic solid. Assume also that a friction law of the form
of (47) as computed with the velocity field v(x,t) 1is in mechanical

equilibrium with the elastic¢ field r;(x,t) (iees u=T1 /o n Where T and
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o 5, are shear and normal tractions). The slip surface need not be
homogeneous, but a law of the form of (47) is assumed to hold at each
point.

Now consider the same velocity field viewed in fast or slow motion

and a compatible field,

v(x,t) = s v(x,st) (48a)

ulx,t) = u(x,st) + ug(x) (48b)
where s 1is the ratio of velocities at corresponding points in the motion
and ug(x) 1is a displacement field that is constant in time.

Under a few interesting loading conditions a constant field gs(g)
can be found so that u(x,t), v(x,t) leads to an elastic stress field
that is in mechanical equilibrium with the friction force as computed
from (47). That is, corresponding to the velocity field v that satisfies
the elasticity and friction laws, is a family of rate scaled fields i
which also satisfy the elasticity and friction laws.

Application of the scaled field (48) to a linear elastic body yields

(on the slip surface)

T(x,t) tlx,8t) + 1. (%)
= e 2 (49)
o (x,8) o (x,st) + crns(g_c_)
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where Tg and o, are the shear and normal traction due to the constant
S

in time field wug. Application of the rate scaled field to the friction

law (47) gives as one solution

83(t) = 0;(st)/s - (50a)

H(t) = u(st) + (B Cy)ins (50b)

where it is assumed that sufficient slip has occurred that initial
conditions don't matter or that initial conditions are altered according
to (50a).

The scaling rule is then the statement that ;(E,t) = ?(g,t)/gn(g,t)
for an appropriate gg(x).

If the loading is such that the normal traction on the slip boundary
does not depend on time (i.e. o,(x,t) = o,(x)) then take for Us, Jg
any static field that satisfies the following traction boundary conditions

on the slip boundary:
g_ d(x)m 0 1o =i, (BLCy)ns (51)

In this case equation (49) with the assumed solution u,v,g 1implies
that the rate scaled field E}EJQ also satisfies the elastic and friction
laws. Note that the rate scaled field is not strictly rate scaled since
the field ug, g5 has been added to the strictly scaled field. However
in observing instabilities and transient motions the absolute value of

field quantities is of little interest: it is the variations in these
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quantities during the motion that is interesting. In the scaling rule
just derived, the velocity field VvV and stress rate field é do strictly
scale. So, in terms of motion the rule says the following: Any solution
for motions occurring in an elastic solid with constant normal stress on

a frictional surface governed by (47) is also a solution when viewed in
fast or slow motion. A curve of stress at any point as a function of
strain or displacement at any other point is changed only by a constant
due to the rate scaling.

Motions occurring near a steady state motion in an elastic system
loaded remotely at constant rate also must scale according to this rule.
Therefore, conditions for stability of steady state motion in a constant
normal stress system governed by (47) must be independent of remote
loading rate. Condition (30b) is an example of this rate independence.

In systems where the normal stress depends on slip displacement and
where slip is homogeneous the spring-block model (normalized by normal
force) may appear as a linearization if the normal force does not vary by
a large fraction of its value. The scaling rule is easily seen to apply
to a system described by p = k(u-§) where k and u represent effective
stiffness and displacement as explained in the earlier discussion of the
spring block model. Thus, if (47) applies for surfaces with varying
normal stress, "bi—axialf experiments like those of Scholz et al. (1972)
or sawcut "tri-axial®” experiments like those of Johnson (1980) also lend
themselves to application of the scaling rule.

The strongest app;ication of the rule is to the results of Johnson
(1980). In these "time dependent friction” experiments a load point

(analogous to the load point in figure 1) was controlled to move at a
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speed v, while slip was taking place, then the load point was stopped
for time t* after which the load point motion was resumed at speed Vg
Both the friction force and a displacement nearly equal to the slip
displacement were measured. Johnson found that the force drop during the
hold time t* (due to "creep” of the surface) depended, to a good
approximation, on the product Vot*. He also found that the difference
between the friction force after the load point was stationary for time
t* and the peak force occurring after the load point motion was resumed
at speed v, was dependent, roughly, on the product Vot*.

Two motions of the load point which have the same product vot* are
related by the rate scaling relation (48). Thus, if the friction law
(47) holds, the scaling rule also applies (We neglect questions of whether
or not solutions are unique here). Therefore all variations of stress
should vary in rate but not magnitude between experiments with the same
value of v t*. In particular, the force changes reported by Johnson
should be the same for different experiments with the same vot* or, in
other words, the force changes should depend on the product vot*.
Johnson's experiments highlight the fact that "time-dependence” is only a
manifestation of a general load history dependence, since, in these
experiments slip velocity has an equally prominent role. It was,
incidentally, these experiments that prompted investigation of the scaling
rule for the friction laws (47).

In a bi-axial experiment Scholz et al. (1972) found that during the
accelerating motion preceeding dynamic slip the slip displacement as a
function of time scaled with remote load point velocity. That is, the

amount of precursory slip was independent of remote load point speed but
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occurred at a rate proportional to load point speed (see fig. 9 of Scholz
et al. 1972). They inferred that the accelerating motion was basically
stable and that, implicitly, the friction force was only displacement
dependent. However, the friction law (47) leads to the same result by

the scaling rule. That is, corresponding to a slip history due to a
particular loading rate is a family of slip histories scaled with a family
of loading rates. The slip occurring could be very unstable in that it
would, for example, continue even if the load point was stopped but still
be consistent with the experimental observations of Scholz et al. The
initial conditions required for the scaling rule are not strictly satisfied
by the experiments, however, since the slip in the instability preceding
the noted observations is apparently dynamic and thus does not satisfy

the equations of elastostatics that were assumed here. This apparent
shortcoming might be overcome by the fact that, since the dynamic slip

is very fast, the memory (ei ) 1is dominated by the slip history occurring
during the nominally still part of the instability cyvcle as the force
increases.

The scaling rule is also consistent with the results of Dieterich
(1979b) that propagation rate of slip events is proportional to the load
rate. Here again, however, there is some doubt about the applicability
of the appropriate initial conditions as well as the varying normal stress

in a sample with inhomogeneous slip.
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Concluding Remarks

We have started with the ideas of Rabinowicz (1958) and Dieterich
(1978a) about representation of memory dependence in friction laws. The
approach of Dieterich is equivalent to an internal variable representationm,
that is in turn expressible in terms consistent with ideas of Rabinowicz
as a dependence on the weighted average of some function of the velocity.
Several consequences of friction laws of this type have been shown with
some reference to experimental results. The stability results have been
obtained by assuming that one internal variable yields a sufficiently
accurate constitutive description. All of the stability results highlight
the central role of édu*/dé, the slope of the steady state dependence
of the coefficient of friction on slip velocity. However, as highlighted
in Dieterich (1978, 1979a), stability is determined as much by the
stiffness of the loading apparatus and by normal force as by the frictional
laws.

A one internal variable law suggests that continuous deformation is
localized to a narrow band before elastic unloading instabilities are
possible and thus that, for stability analysis, friction parameters should
not scale with the thickness of the frictional deformation zone.

It should be emphasized that the linearizations used in the analysis
here preclude knowledge of the full range of instabilities that are
possible. Full non-linear analysis may show that what is observed as
"stick=slip"” may be possible, for example, even when steady sliding is

stable.
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A property that seems to be approximated by many experiments is the
linear dependence of the friction coefficient on the log of the slip
velocity. The resultant scaling law should highlight the fact that the
phrase 'time-dependence' does not have an obvious meaning in laws of the
type discussed here.

The range of experimental evidence is too slim to know which aspects
of the description here can be generalized and employed for useful
prediction of frictional phenomena. This paper will have 'served its
purpose, however, if it demonstrates that constitutive relations for
friction warrant more attention than has apparently been applied previous

to the paper of Dieterich (1978).
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APPENDIX
Experiments on Friction

Introduction

Following similar work with metals Dieterich (1972) demonstrated a
dependence on the time of nominally stationafy contact of the friction
force required to initiate macroscopic slip. This time dependence, with
later experimental observations of displacement dependence (Dieterich,.
1978, 1979b) serves as the basis of the constitutive description that
is the starting point of this thesis. These experiments, were performed
in a testing machine in which slip velocity was manually controlled at
a point somewhat removed from the slip surface. The interaction of the
testing machine and the slip surface along with the lack of detailed
control inhibited investigation of the details of the constitutive de-
scription. Particular details of interest are, 1) the applicability of
a description based on a single internal variable, 2) high and low slip
speed limiting forms of the constitutive description, and 3) the form
of the constitutive description with particular interest in the implica-
tions of the form for nominally stationary contact experiments.

The "time dependence of static friction” aspect is of particular
interest for two reasons: - 1) unless machine-block interactions are in-
cluded, the constitutive description used by Dieterich does not yield
t ime—dependent static friction as a low slip speed limit. 2) Experiments
with metals (Johannes, et.al., 19?3, Green and Brockley, 1974) unknown
to Dieterich, showed that the apparent time dependence of static friction
was really an apparent dependence on the rate of increase of friction

force previous to macroscopic slip.
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The concept of time dependence in Dieterich's original conceptuali-
zation in terms of average contact time is incompatible with the load
rate dependence just mentioned. The empirical law used by Dieterich as
well as the law used here are, however, in at least qualitative agreement
with both "time-dependent” and "load-rate dependent” static frictiom if
the details of the experiments used are taken into account.

This appendix will discuss experimental methods and results for
experiments very much like those of Dieterich (1978, 1979a) only with

finer control. Following will be a brief speculative discussion about

time dependence of static friction.

Experimental Method

Experiments were conducted in the apparatus used by Dieterich
(1978, 1979a) as modified for use with servo—control and with slight
change of sample geometry and support. A similar arrangement was used
by Dieterich (1980) though a few differences are noted here.

The sample geometry is as in Figure 6. A central piece of rock is
pushed between two outer pieces. The outer pieces are supported by a
thin piece of copper as close as possible to the central block. This
reduces the moment arm of the couple due to the friction force and
support force on the side blocks so that the normal traction can be
uniform and still maintain static equilibrium. The uniformity of the
normal traction can be indirectly checked by the uniformity of the wear
particles generated by slip. Figure 7 shows two samples, one before
slip (left) and one after slip (right) and the wear is seen to be fairly

uniform. Nonuniformity in normal stress is, however, only significant
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to the extent that the measured frictional forces are not proportional
to normal stress since force measurements are a total of friction
forces over the whole surface.

The arrows in Figure 6 show where force is applied by means of
hydraulic pistons in series with load cells (measuring force). The
horizontal force (normal force) is kept constant by connection with an
accumulator (gas reservoir). The vertical force is controlled by a
servo-valve (MOOG) as will be explained. The coefficient of

friction is given by one-half the ratio of vertical to horizontal force.

The Servo System

The servo system controls a valve connnecting the vertical force
piston to either a drain or a high pressure oil reservoir. The valve
(i.e. rate of draining or filling) is roughly proportional to an elec-—
tric signal, provided by the comparator, which is proportional to the
difference between a reference (intended displacement) signal and the
measured displacement. Neglecting inertia and time lags the control
system can be thought of as causing a correction rate proportional to
the deviation from the intended displacement. Depending on the gain in
the comparator, the response time of the system is on the order of
30 x 10”3 seconds. This estimate is based on unstable resonances of
about 30 ¢.p.s. that occur if the comparator gain was too high relative
to the effective stiffness of the displacement measure (the effective
stiffness is the ratio of force change to measured displacment with

no slip).
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The Reference Signal

The intended displacement history was provided by a reference signal
from the 12-bit digital to analogue converter ("D to A") on a PDP-11
computer. The computer was thus used as a versatile signal generator.
The minimum displacement step for a 12-bit D to A is 1/4000 of the full-
scale slip distance. This causes noticeable steps in force if the dis-
placement measure is stiff. These steps are visible in Figure 3(a) for
slip at .01 u/sec. but not at higher slip rates due to the slow
( ~.1 sec.) response of the vertical load cell amplifier; later experi-
ments used a faster load cell. The more recent experiments have been
conducted (following a suggestion of Dave Lockner) using the sum of two
D to A channels (at a relative gain of 16) for a reference signal. This
reduced the step size to 1/64000 of full scale with 16 interspersed
steps of about 1/4000 of full scale. Electronic integration of a com-
puter specified rate was found to be a less useful way to avoid steps
because of problems with drift (due to capacitor leakage) at low load
rates. A single higher resolution (16-bit) D to A was not used because

of cost restrictions.

Displacement Measure

The displacement signal used for control was provided either by a
Hewlett—Packard Linear Voltage Displacement Transducer (LVDT) or a small
contilever beam. In either case the signal could be modified to vary
the effective stiffness.

The LVDT was mounted as in Dieterich (1978, 1979a, %980) and, if

the signal was unmodified, led to an effective stiffness of about
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42 1b./ym or (over 8 in.?2 surface) about .37 bars/um or, in the normal
force normalized stiffness k used in the main paper (for 30 bars normal
stress), k ~ .012/,m. However, if the difference between the LVDT
measured displacement and the frictional slip is due to linear elastic
deformation, the effective stiffness of the machine can be modified.
The stiffness is modified by either adding or subtracting a fraction of
the load cell output (in a summing amplifier) to the LVDT output and
using the summed signal for control. Subtraction of a fraction of the
load stiffens the machine, addition softens the machine. Figure 4(c)
shows an experiment with the LVDT and a progressively reduced stiffness.
A constant must be subtracted from the load cell signal so that changes
in gain, as the stiffness is altered, do not cause alterations in the
displacement signal.

In the finer experiments (less than .1 mm full scale) displacement
was measured using a small cantilever transducer (Fig. 8). The canti-
lever is mounted on one rock and a pin on the adjacent rock (see Fig.6).
Slip causes the pin on one rock to bend the gantilever mounted on the
other. Semi-conductor strain gauges on opposite sides of the cantilever
make up half of a 4-arm resistance bridge, the output of which is a
signal proportional to the cantilever beam tip deflection. This trans-—
ducer has the features that: 1) It is small and mounted next to the slip
surface and, thus, records a displacement very close to the slip dis-
placement. 2) It is sensitive to very small displacements (on the order
of 108 meters). 3) Because it is small, it is fast (slowest vibration
frequency ~ 20 Khz.). The compliance in the system under cantilever

—~—

control is due to shear of the rock between the pin and heam supports
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as well as elongation of the sample if the pin and cantilever are not
mounted directly opposite each other. The effective stiffness of the
machine with control on cantilever measure displacement is about

2200 1b./uym. In terms of the normal force normalized stiffness this

is about k = .6/pm. That is, the full elastic loading, leading to slip
at a friction coefficient equal about .6, involves a measured displace-
ment of about 1lym. Artificial increases in stiffness, by subtraction
of a fraction of the load signal from the displacement signal lead
eventually to large drifts in the force. That is, small displacement
noise (in the transducer or electric noise) leads to large force fluctu-
ations in a stiff machine. Stiffness is inherently limited by dis-
placement meas;rement (and reference signal) accuracy. Without
artificial stiffening by load subtraction 1/60 im displacement steps
caused quite finite jumps in load. For similar reasons the LVDT could
not be used for very (artificially) stiff control since there was a

hysterisis of about .5 ym in the LVDT readings for reversed loading.

Sample ‘Preparation and Experimental Conditions

All experiments were performed with Eureka Quartzite at a normal
stress of about 30 bars. The samples were lapped with #90 abrasive in
water before any slip and flatness was only checked by feel during prep-
aration and indirectly by uniformity of wear after the friction experi-
ment. The abrasive was washed off with water and then the rocks were
rinsed with acetone and air dried. Electron microscope pictures of the
surface after preparation (right) and after about 1 cm. of slip (left)

are shown in Figure 9.
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Experiments

Following the approach of Dieterich (1978, 1979a) experiments were
performed with step changes in “"load point” velocity. Because of the
high stiffness of the system with cantilever measured displacement
servo controlled, one can think of the slip displacement as being con-
trolled, for most experiments. The friction coefficient u is plotted
for several such experiments in Figs. 10(a),(b). The range of slip
speed is .0l to 2 pm/sec.. This range was limited on the low side by
the minimum step size and patience, and on the high side by not under-
stood problems with stability of the servo-control system.

Several features of these experiments are, perhaps, worth noting.
1) No matter what the previous slip history, the friction coefficient
approached a steady state value that depended on slip velocity. We
denote this steady state velocity dependence p*(v) and it is plotted
in Figure 1l. The steady state dependence is approximated by negative
linear dependence on the log of the slip velocity. The existence of a
steady state dependence of the friction coefficient W on slip velocity
v 1s strongly suggestive of a state (as described in the body of the
thesis) that also has a steady state. This is further supported by
the consistency of the results of step change in velocity experiments,
independent of previous slip history. 2) Coincident with sudden changes
of slip velocity is a jump in the friction coefficient. This jump Ap
depends, approximately, on the ratio of the new slip velocity to the
previous steady state velocity V*. This result is shown in Figure 12.
3) After sudden changes in slip velocity there is a relaxation to steady

state. This relaxation seems well approximated by the sum of two
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exponentials, as illustrated in Figure 10(b). As noted before,

the fact that the two curves in Fig. 10(b) do not retrace implies that
a single internal variable is not sufficient for accurate description
of the friction law. The constitutive law (18) is constructed to match
the noted features and the simulation of Figure 3(b) shows that, at
least for experiments with step changes slip velocity, a good approxi-
mation has been obtained.

A further experiment, though not systematic in nature, indicated
other features of possible interest.

Using the LVDT for displacement control slip was continued for
several centimeters beginning with a freshly prepared sample. Following
Dieterich (1980) the slip velocity was changed about every 100 Hm. from
fast to slow (or visa-versa). The response to the velocity change, as
noted by Dieterich, changes slowly as slip progresses. In one case, the
sample was used within 1/2 hour of an acetone rinse. In this case the
frictional behavior changed slowly from velocity strengthening to veloc-
ity weakening with displacement. In a later, similar test, the sample
was left for a day in open room air before testing. Here the sample was
velocity weakening from the start. A possible cause of this difference
is that the presence of absorbed water is reSponsible for the weakening.
The change-from velocity strengthening to weakening may be a process
related more to surface contamination then comminution as Dieterich

(1980) suggested.
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Speculations About Time Dependence

The friction law that approximates these experiments (18), as well
as the Dieterich law (4), the simplified Dieterich law (14) and the
velocity average law (13,16) have the property that no state changes
occur in the limit as slip velocity goes to zéro. Consider a friction
experiment of this form: A load point in a spring-block model is moved
steadily at speed v, , stopped for time t* and then moved again at
speed vy . What is the peak force after the load point motion has
resumed? A numerical simulation is shown in Fig. 13 using the friction
law (18). This plot shows a definite apparant time-dependence in the
static friction. In fact, however, the friction law used is not time-
dependent. The peak forces observed are due to state changes due to
slip when the load point was stationary.

Therefore, it is seen that results similar to those reported in
studies of "time-dependent” frictional strengthening in "stationary
contact” (Dieterich, 1972) are, qualitatively, consistent with the pre-
dictions of a slip-rate and surface-state dependent law. It remains for
future work to make quantitative comparisons and also to examine effects
of the rate of load application. For example, predictions of the rate
and state dependent law are also qualitatively consistent with Johannes,
et.al. (1973) observation that friction strength decreases with

increasing rate of load application.
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FIGURE CAPTIONS

FIGURE 1: Spring-Block Model. The load point moves a distance u

causing a force F = k(u-g) where & is the rigid block slip
distance. Alternatively, the load point moves u causing an im=
posed coefficient of friction u = k(u-8). The slip may represent

deformation of a layer with thickness h .

FIGURE 2: Simplified Dieterich Friction Law. The friction law of

Eqs. (14) is plotted. The light lines give u Vs. § for fixed
state yp o The heavy solid line gives 1y Vs. & at steady state
(i.e. u*(3)). The arrows indicate the rate of change of state . g ,
um 1ncreases below the solid line and decreases above. Lines of
constant ﬂ m are dashed.

a) .01 =C >B = .005, instabilities near steady state are

possible depending on loading.

b) .02 =B > C = .01, steady state is stable.

FIGURE 3: Friction vs. Displacement for step changes in load point

velocity in a very stiff machine. The load point velocity is
suddenly changed from either .0lpm/sec. or .lum/sec. to lim/sec..
The dotted line shows u vs. u for no slip (slope = k)
a) Quartzite finished with 60#-90# abrasive at approximately 30
bars normal stress in room environment (from Ruina 1980).
b) Numerical simulation of (3a) using u-= ”d+Ul+U2+BRné 5
jo = #5045, B = 011, = ~(8/+25u)(u) * .011 % ),
-(8/5.2)Cup + .0092 ta8), & measured in W/sec.

]

42
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FIGURE 4: Frictionally Induced Oscillations

a) Numerical model of stiffness effect on steady sliding of spring-
block (Fig. 1) with simplified Dieterich law (Eq. 14) and C = 2B.
The load point speed is suddenly reduced a small amount at u = O.
Slip goes from stable to unstable as (C-B)kd, goes from less to
greater than 1.

b) Experimental record of displacement (something between u and §
from Fig. 1) vs. time (from Scholz et.al. 1972). This oscilla-
tion observed at the transition from stable sliding to 'stick-
slip' with increasing normal stress.

c) Stiffness effect in experiment with quartzite at about 30 bars
normal stress. Stiffness is controlled electronically in a
servo-controlled testing machine. Transition from stable sliding
through oscillations to fast instabilities is observed as stiff-
ness is decreased. At higher stiffnesses (preceding this graph)
perturbations decayed to steady state. The load point velocity

was alternated between .8 and lum/sec..

FIGURE 5: Creep Wave Model. An infinitely long elastic layer of thick-

ness 1 1is deformed in shear by the controlled displacement u .
Slip of amount §&(x,t) occurs in accordance with the simplified
Dieterich friction law and the elastic law of the layer. The layer
is idealized as satisfying the relation

b= k(u=4) + (22/a)k3%6/5x% | where Kk = G/f0_, = =1 .
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FIGURE 6: Sample Geometry. Two rocks on outside squeeze inner

rock which is pushed down.

FIGURE 7: Sample Wear. Left: before slip; Right: after about

1 cm. slip at 30 bars.

FIGURE 8: Cantilever displacement transducer (with beard hair

for scale).

FIGURE 9: Scanning Electron Micrographs of surface before (right)

and after (left) about 1 cm. of slip.

FIGURE 10: (a),(b). Friction coefficient vs. cantilever measured

displacement with step changes in velocity.

FIGURE 11: Friction as a function of steady state velocity after

a variety of slip histories.

FIGURE 12: Jump in friction due to step changes in slip velocity.

FIGURE 13: '"Time-dependent friction" from law with no time dependence.
Friction law is the same as in Figure 3. Machine stiffness in this
simulation is about 1/2 that of the servo-controlled system with

cantilever control.
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