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When two objects collide their velocities change in response to the compressive (pushing) force between them.
The difference in (normal) velocities between the objects is thus eliminated or reversed. However, for non-rigid
objects collisions are more subtle. Surprisingly, when a long chain moving lengthwise collides with, say, a wall
or floor, the chain can be pulled into the wall (instead of pushed away) with the approach velocities between the
wall and chain increasing in time (rather than not changing or decreasing). Why? The incremental bits of mass
that are colliding are slowed by the wall. But they can also be slowed by the remaining chain, thus speeding the
remaining chain. The extent to which the impulse which slows the colliding bits comes from the wall or from
the remaining chain determines the acceleration of the remaining chain. We show theoretical limits on how
much a chain can be pulled into something with which it collides, some chain link designs that lead to these
limits, and experimental results which show the sucking of one of these designs into a wall.

I. INTRODUCTION

A common textbook ‘variable mass’ problem is:

Classic problem: A vertical chain hangs just
above a table. It is dropped. What is the force
on the table?

This and related problems are meant to show application of mo-
mentum balance to variable-mass systems.1–5 The intended cal-
culation has the chain falling downwards with acceleration g.
The force on the table is the weight of the chain on the table plus
the momentum flux of the chain coming to rest as it collides. As
the chain falls, the flux grows as the chain speed increases, and
the weight of accumulating chain also increases. Thus the de-
sired answer:

Classic Answer: While the chain falls the force
on the table is three times the weight of the fallen
portion.1

Experiments with chain generally show reasonable agreement
with this theory.6–8 Despite the simplicity of the theory, and the
confirmation by experiments, there are subtleties. The theory
has hidden assumptions which we will discuss throughout the
rest of the paper: the upper chain can actually fall with accel-
eration greater than g. We first review our history with these
experiments, and also the related literature. We then describe
some theoretically bounding cases. Finally, we present a new
experiment which shows a chain being pulled into the surface
with which it collides.

A. The persistent student

We were first tripped up by a chain problem when solving one
at the blackboard for a sophomore engineering dynamics class
at Cornell in 1984. We are generally dogmatic about basing
mechanics reasoning on free body diagrams; we insist that any
use of momentum balance must be based on a (real or imagined)
picture of the system and all the external forces acting on it. We
had drawn a free body diagram of the colliding link and shown
the collision force of the ground on that link. We were caught
out by a student who said, roughly:

Student: You told us to draw a force at any point
where you have cut your system free from its envi-
ronment. You cut the last link free from the chain
above it, why don’t you show a force there? Why
doesn’t the last link pull on the chain above when
it hits the table?

The question was annoying. Obviously we can use the
Key classic assumption: The last link is pushed
up from the table and is thus released from the
falling links above. There is no interaction force
(or impulse) between the colliding link and the
chain above.

Then to our delight, and hopefully yours, we realized that the
assumption that the last link breaks loose from the chain above
is just that, an assumption. Certainly it is generally a reason-
able approximation. However, if there was a force between the
colliding link and the chain above, then the chain above would
fall with acceleration greater than g. For such a chain all the
classic calculations would be wrong. We designed, but didn’t
build, some chains where this key classic assumption was vio-
lated. We called the authors of the textbook in use at the time,5

gave a seminar on the theory, mentioned it as a puzzle to various
people who like mechanics puzzles, and let the problem sit.

As discussed in more detail below, in the intervening years
various others have made related discoveries for related chain
problems and also done more careful experiments revealing re-
lated discrepancies. Our purpose here is to fill in a few fea-
tures of the problem not yet filled in by the literature between
1984 and the present, and to describe our confirming experiment
which differs in some details from others published so far.

First, we review the classic and more modern falling-chain
literature.

II. THE CLASSIC FALLING-CHAINS

Various chains and ropes are used for these ‘variable-mass’
problems.1–5,9–13 In all variants there is a moving part of chain
and stationary part. The moving part falls ‘freely’ or is moved
with prescribed force or velocity. The stationary part is contact-
ing or connected to an immovable wall or floor. The three stan-
dard geometries we will call the ‘bottom-pile’ (our main concern
here), the ‘top pile’ and the ‘U-chain’ (see Fig. 1).
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FIG. 1: The three standard chain configurations: (a) ‘Bottom-pile’
chain. (b) ‘Top-pile’ chain. (c) ‘U-chain’. In all three cases there are
two chain segments, one stationary and one moving. Depending on the
direction of motion (sign of v), the links transfer from moving to still or
vice versa when leaving one segment and joining the other.

Bottom-pile chain. A pile of chain rests on the ground and
a vertical segment of that chain is either lowered on to
the pile or lifted from it. Either the force or velocity is
specified.

Top-pile chain. A pile of chain is on a table and a vertical
segment of that chain falls through a hole or off the edge,
as pulled by gravity.

U-chain. In the ‘U-chain’, also sometimes called the ‘folded
chain’, one end of the chain is held fixed and a stationary
vertical segment hangs from it. The other end is lifted
up to form a U shaped fold at the bottom. As this end is
let go or moved with prescribed force or velocity, mass
passes through the fold from the moving to the stationary
segment or vice versa, depending on whether the chain is
lowered or lifted. Gravity may or may not be present.

In all cases one may choose to model the chain either as a
continuum or with discrete links. The calculations are easier in
the continuum case, but the concepts are more clear with dis-
crete chain links. The following core concept is not in doubt:

Key fact: As a link transitions from moving to sta-
tionary, or stationary to moving, an impulse (or a
large force acting for short time) must be applied
to it.

In all classic treatments, the collisions are taken to be plastic (or
inelastic, the colliding link matches the velocity of the segment
it joins). The pile shape and details of the falling geometry are
usually ignored. In most classic treatments the authors take it as
self evident where the collision impulse comes from: it comes
from the segment the new link is joining. In more detail, the
classically assumed sources of impulse on the transitioning link
are as follows.

Falling bottom-pile chain: The ground provides an im-
pulse to the impacting link and arrests its motion.1–8,11,14

In this case the tension in the falling portion is just from
weight, or zero if the chain is falling freely.
Lifted bottom-pile chain: Each link is accelerated into
motion from an impulse caused by the chain which lifts
it.4,5,9,10,13

Falling top-pile chain: The already falling segment of
chain causes an impulse on the next link to join, acceler-
ating it into the falling motion.2,4,5,9,13,15,16

Lowered U-chain: The lowered link’s motion is arrested
by an impulse from the hanging segment.2,3,5,7,12,14,17–24

Raised U-chain: The link changing from hanging to ris-
ing is accelerated by an impulse from the rising segment
of the chain.5,12

A typical and thorough treatment of the classic approaches
(above) of various discrete chain problems is in the recent edi-
tion of Meriam and Kraige.5

III. QUESTIONING THE ASSUMPTIONS

Some aspects of the classic approaches above have been ques-
tioned, as described now.
The U-chain. That the U-chain might be considered non-
dissipative was already understood, implicitly, by Routh in
1898.25 Although not in the context of collisions per se, Routh
presents the beautiful result that a continuous rope or chain of
any shape has a constant shape dynamic solution wherein it
moves with constant speed tangent to the shape. This solution
is invoked, again implicitly, in the solution for cracked whips
and fishing line.26,27 For the U-chain, the whip and the fishing
line the propagating shape (U or loop), as viewed in the refer-
ence frame of the traveling loop, is the Routh constant-shape
solution. The Routh solution has a tension T = ρv2 where ρ is
the mass per unit length. This is the tension which pulls on the
moving portion of the chain, thus accelerating it.

Wong’s thorough review of U-chain problems notes that
Hamel was the first to explicitly invoke energy conservation for
U-chains.24,28

The first paper that seems to explicitly ponder whether, or
how much, a real physical chain should be considered dissipa-
tive or not, is a brief mention of the U-chain by Satterly in 1951.7

On the one hand he doubts the classic approach (far above) ‘the
assumption of an acceleration g for the falling chain ... might be
too rash ... ’ On the other extreme, he also says ‘it is a bit dubi-
ous to employ the conservation of energy in impulse problems.’

For the U-chain various authors have considered the en-
ergy conserving model and found that it matches reasonably
well with experiments.5,17,20,22,24 The U-chain is conceptually
the simplest of the three chains in Fig. 1 because a continuum
model of the transition region can be accurate (if the U is wide)
and can be directly analyzed. When folded tight, however, the
continuum approximation is questionable.20 In this tight-fold
case, even in a discrete chain there are no made or broken con-
tacts and thus no explicit collisions. Discrete chain simulations
and experiments show that there is little residual vibration in
the nominally stationary or moving portions of the chain. Thus
macro-scopic energy conservation is found to nearly hold.
Top pile chain. Wong et. al. recently reviewed the top-pile
chain.16 In their experiment the pile was aligned parallel to and
at the edge of table. They found reasonable agreement with
energy conservation. Incorrectly, we feel, Wong et. al. de-
duce energy conservation by appeal to Lagrange equations. By
assuming that Lagrange equations apply they have already im-
plicitly assumed energy conservation. (It seems that by similar
reasoning they could conclude that a block sliding on a plane
necessarily has zero friction or that all colliding bodies have a
coefficient of restitution = 1.)
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FIG. 2: Free Body Diagrams for portions of a lowered bottom-pile
chain. (a) Chain as a whole with weight, mg and reaction from table,
Rtotal. (b) Part of the chain (length x) resting as a pile on table. (c) Last
link (or the jump region), where transition from moving to stationary
occurs. (d) Segment of the chain in the air. The central question here
concerns N2, the tension induced by the collision between the colliding
link and the chain above. Can one can fairly assume that N2 = 0 and if
not, how big might it be?

The bottom pile chain. In their more recent editions (triggered
by our phone call in 1984?) Meriam and Kraige consider falling
of a smooth rope for which they use energy conservation. For
the lifted bottom-pile rope (sample prob. 4/10), they propose
a massless and frictionless feeder as a model of the rope being
lifted smoothly, and without dissipation, from a well arranged
pile.5

Most investigations of the bottom pile chain assume the up-
per chain falls with acceleration g, as per the classic assump-
tions above.6–8 However, recent and more careful experiments
by Hamm and Geminard have revealed that the bottom-pile ball-
chain falls a bit faster than g experimentally.29 Using a contin-
uum model with finite curvature in the contacting region, they
derive the presence of some tension on the vertical segment
of the chain (their mechanics implicitly finesses use of an un-
mentioned bending stiffness and a consequent superposition of
the Routh solution above with an un-mentioned ‘elastica’ solu-
tion).

IV. ANALYSIS OF A BOTTOM-PILE CHAIN

We attempt to clarify the issues raised above. As an example
we focus on the bottom-pile chain with one dimensional motion.
The total length is L, the mass m and the density ρ = m/L.
The length of chain accumulated on the table is x with mass

mx = ρx). The length of the transition region (assumed small,
this represents, say, the last link) is ∆xwith mass ∆m = ρ∆x).
Lets take N1 and N2 (Fig. 2) to be the average forces acting on
the transition region over the transition time ∆t. N1 comes from
the table (and the pile accumulated on the table). N2 is from the
chain above. The main points, expanded below, are that

• Linear momentum balance is not enough to solve such
problems. And

• Energy balance is not enough of a supplement to solve
them either.

Rather, the solution depends on the collision mechanics. These
need to be worked out in detail or described with an appropriate
collisional constitutive relation (continuum jump condition).

A. Proper free body diagrams: is N2 = 0?

It seems self-evident that the collision of the bottom link with
the table separates that link from the link above, soN2 should be
zero. This is the intuition behind what is called the ‘complemen-
tarity’ conditions in collisional mechanics. And these conditions
are not just taken as reasonable by most authors, but as accurate.
But this is a mistake, there are clear counter-examples.30 In the
case of the chain, what if the collision of the bottom link excited
vibrations in that link and those vibrations caused, before sepa-
ration, a momentary increase in the contact force between that
link and the link above it? This would transmit a force N2.

One possible rebuttal is that the chain links are modeled as
rigid, so there is no place for considerations of such vibrations.
However, if one is modeling the chain links as generally rigid,
still there is no fundamental reason to exclude a force or impulse
N2; one can’t apply the assumption of non-deformation during
the collision,31 and it is during the collision that N2 is said to
vanish. Or not.

In addressing such chain problems one may not want to get
involved with the details of the mechanics of the links. Who
is to say what kind of mechanics might apply during the col-
lision of some chain links of unspecified design? Thus, again,
we are forced to consider that N2 might be present. Between
1984 and the present, various authors have noted the possibil-
ity that N2 6= 0 (or some equivalent expression) , especially in
regard to the U-chain.18,21,23,29,32,33 Any solution which invokes
energy conservation is implicitly assuming that N2 > 0. The
theory and experiments presented below support the results in
these papers, in that we agree that it is possible that N2 > 0.

B. Momentum balance

The linear momentum balance (LMB) for the transition re-
gion, the last link, is

Impulse = ∆Momentum

(N2 +N1)∆t = (Mass) ·∆v
(N2 +N1)∆t = (ρẋ ·∆t) ẋ

N2 +N1 = ρẋ2. (1)

This is the so called Rankine-Hugoniot jump condition for shock
propagation.18,21 It says that the net force matches the momen-
tum flux. Here, and below, we use the language of links but
write continuum equations.



4

Linear momentum balance for the chain portion above the
colliding link gives:X

F = ma (down is positive)

ρ(L− x)g| {z }
weight

+N2 = ρ(L− x)| {z }
mass

ẍ|{z}
acceleration

. (2)

If N2 is zero and the top part of the chain falls freely then

ẍ = g. (3)

In that case (3) can be integrated with zero initial velocity (be-
cause the chain was released from rest) and plugged into (1) to
give N1(t). One can calculate the total table reaction (which
according to Fig.2b, is N1 plus the weight of the chain piled on
the table) as:

Rtotal = N1 + ρxg = 3xρg

= 3 · (weight of chain on the table). (4)

This is the classic solution quoted at the start of the paper. From
(3), the length of chain in the pile x, increases parabolically in
time from zero to L, and correspondingly the Rtotal also goes
from 0 to 3mg.

However, if we don’t assume thatN2 = 0, combining (1) and
(2 ) we get:

ẍ = g +

„
N2

N1 +N2

«
ẋ2

L− x . (5)

So the problem is actually not determinate, at least not without
adding extra assumptions that determine N2.

C. Assume positive mechanical energy dissipation

The table reaction force Rtotal doesn’t do any work on the
chain because the material point-of-application is at rest on the
table surface. Assuming no heat transfer the system is adiabatic
and the first law of thermodynamics applied to the whole chain,
for a small interval of time from t to t+ dt, gives:

d
`
U + ρg(L− x)2/2 + ρ(L− x)ẋ2/2)

´
= 0, (6)

where U is the internal energy of the chain and next two
terms are gravitational-potential and kinetic energies respec-
tively. Plugging (1) and (2) into (6) one gets:

dU =
1

2
dx(N1 −N2). (7)

A thermodynamic argument for the equivalence of macroscopic
mechanical energy dissipation and positive entropy production
is given in O’Reilly and Varadi.33 Alternatively we can take it
as a postulate for this system that the macroscopic mechanical
energy is non-increasing so dU ≥ 0 and thus

N1 ≥ N2. (8)

When there is no dissipation, and mechanical energy is con-
served, then N1 = N2 (U̇ = 0). In this non-dissipative limit
N2 transmits all of the kinetic energy of the last link to the
upper portion of the chain. That energy conservation implies
N1 = N2 was noted before for the U-chain.17,33
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FIG. 3: Four different link designs that give N2 > 0. (a) A slightly
tilted rod hits the ground at a small angle. The other end would speed
up if not connected to the upper chain. The mechanics of this design are
explained with reference to Fig. 4. Our experiments are based on this
design. (b) Each link is a 4-bar deforming diamond. When the bottom
corner hits, the top corner would accelerate but for its connection to the
upper chain. The connecting string (shown dashed) holds the diamond
when hanging. (c) Each link has a mass, a massless rod and a pulley.
When the rod hits the ground it stops. Assuming no jump in the upper-
chain speed, the pulley kinematics dictates a halving of the mass speed.
Half of the impulse needed for this comes from the string connected to
the upper link, thus pulling on the upper chain. Later the mass hits the
ground. The dashed cord holds the chain together when hanging. (d) An
energy conserving chain. Each link has two rollers. As they fall down
they frictionlessly move down the guides and spread out, coming to rest
smoothly. Their energies are fully transferred to the upper chain.

V. SEARCH FOR CASES WHERE N2 6= 0

Can a discrete bottom-pile chain be made where N2 is not
zero? Consider a collapsing building, triggered by a ground
floor explosion for example, as the lowest floor hits the ground
the ground reaction force resists the downward motion of the
floors falling above. For a falling building the slowing of the
collapse of the upper part is due to N2 6= 0, in fact with
N2 < 0 as per the sign convention in Fig.2. Of course buildings
are different than chains in that they can support compression,
but in terms of our basic energy, entropy and dissipation argu-
ments, the collapsing building is like a falling chain. There are
no fundamental limits on how negative N2 can be. The limit
−N2 →∞ corresponds, say, to the whole upper portion having
an instantaneous decrease in velocity (e.g., coming to a stop like
a rigid object).

The more counterintuitive regime is where N2 > 0 (but re-
stricted toN2 < N1) in which the colliding link is pulling down
the upper portion. The next section discusses link designs for
which N2 > 0.
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FIG. 4: Mechanics of the ‘sucking’ chain from Fig. 3a. (a) End B of
a rod falling onto a surface speeds up when the other end A collides
with surface. (b) In a simple model of a chain composed of such rods as
links, when the end A collides the end B pulls down the upper chain via
the connecting string. The string connecting the end A to upper chain
slacks. (c) Free body diagram showing impulses at first collision when
the link just collides. (d) Impulses when the link has its second collision
with ground and finally comes to rest. (Assuming sticking-collisions)

A. Designs for a ‘sucking’ chain, with N2 > 0

Fig. 3 shows four link designs where the colliding link pulls
down on the ones above (N2 > 0). Our experiments used the
first of these.

Consider a uniform rod of mass m and length L inclined at
a small angle θ moving vertically downward with velocity v to-
wards a rigid surface (Fig. 4a). First consider this ‘link’ as not
connected to an upper chain. When the end A hits the surface
the other end B speeds up as required by angular momentum
balance about point A. Assuming a sticking collision (and small
angles), the downwards velocity of B increases to

v+
B = 3v/2 > v. (9)

This means the second collision when, B hits the ground, is
faster than was the collision at A, and a clattering sequence will
ensue. This is a consideration for, say, design of impact resis-
tant cell phones.34 Now consider this link connected to an upper
chain made of many such links. Fig. 4b. shows such a chain.
The upper part of chain is lumped into a mass M which is large
compared to the link mass m. As the end A undergoes a stick-
ing collision (assumption), the ground provides a normal im-
pulse I1 and end B pulls on the upper chain with an impulse I2
(Fig. 4c). Finally the last link hits the ground again and looses
all its momentum by an impulse I3 (Fig. 4d). Using linear and
angular momentum balance, along with post-collisional equal-
ity between velocity of end B and the mass M , these impulses

are, assuming θ � 1:

I1 = mv/3 collision of A

I2 = mv/6 collision of B

I3 = mv/2 final collision with the ground. (10)

I2 is of interest here as the impulse associated with ourN2 (I2 =R
N2dt).
In obedience to the quasi-thermodynamic restriction (8), the

total impulse from the ground (I1 + I3) to bring the link to rest
is (5 times) greater than the impulse I2 between the link and the
chain above.

In a continuum limit, where the number of links becomes
very large, using N2 = N1/5, and assuming no interference
between the links, the equation of motion (5) becomes

dv/dt =
v2

6(L− x)
+ g, (11)

with ẋ = v. We can contrast this solution with an energy con-
serving chain (N1 = N2), the fastest chain allowed by non-
negative dissipation, where the governing equation is

dv/dt =
v2

2(L− x)
+ g. (12)

In this energy conserving chain, as the chain falls down the ini-
tial mechanical energy gets concentrated into the chain section
that is in the air, and ultimately to the last link. For N2 > 0
the governing equation is generally singular as x → L because
more and more energy is concentrated in a shorter and shorter
length of chain, so the speed v → ∞. In a discrete, energy-
conserving chain, all of the initial energy is ultimately held as
kinetic energy in the last link. A design which in principle con-
serves energy is shown in Fig. 3d. Making a bottom-pile design
that approaches mechanical energy conservation is difficult in
practice because of the dissipative nature of link collisions, link
interference, slack in the strings, friction etc.

VI. EXPERIMENTS

A physical realization of the N2 = N1/5 chain of Figs. 3a
and 4 is shown in Fig.5a. The experiments used two nomi-
nally identical chains as in Fig.5a for which the total lengths
are 1.251m ± 2mm, and masses 218g ± 2g. The 25 links in
each are cylindrical rods made of wood dowels and have aver-
age length of 10.5cm and diameter 1.25cm. They are inclined
at an average angle of 13 deg with respect to horizontal and
the mean centre to centre distance between consecutive links is
5.21cm. A thread made of unbraided Vectran (chosen for its
tension stiffness) fibers holds the links together.

The top (horizontal) links of the two chains were dropped to-
gether from a height of 2.01m above the table, by a mechanical
release (See Figs. 5b-5d). One chain falls onto the table while
the other falls in the air, providing a clear picture for compar-
ing the faster-than-gravity performance. This particular setup
evolved to solve two problems.

1. Air friction. Our original idea was to drop, say, an apple
and compare that to the falling chain.29 But the air fric-
tion on an apple is different from that on the chain, so
there would be a confounding effect.
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FIG. 5: Experimental apparatus (a) Two ‘sucking’ chains hanging from
their simultaneous-release-mechanism. (b) Mechanism in zip-tied state
with a loaded spring at the back. Chains are hung from two small (1.5
mm) posts protruding from the front. (c) A release post zoomed-in. (d)
When the zip-tie is cut spring retracts the posts, releasing the chains
‘simultaneously’ (<3 ms).

2. Elastic contraction. When a chain is released the ten-
sion in the chain drops nominally to zero. Because the
chain has some elasticity, this drop-to-zero starts an over-
all chain contraction that continues as the chain falls.29

Use of Vectran reduced this contraction (the top of a
nylon-string-based chain falls measurably faster than the
Vectran chain). To eliminate this confounding effect,
and the air-friction effect, we compared two simultane-
ously falling identical chains, one falling on a table (be-
ing sucked in to the table) and one falling freely next to
the table.

Motion was filmed with Phantom V7.1 camera at 2000 fps.
To make sure the chains were sufficiently similar we inter-
changed the chains and obtained the same results. Fig. 6, shows
when the last link of the falling-on-the-table chain just hits its
pile. It has won the race with the chain in air by almost 8 cm.

The experimental results are compared in Fig. 7 with previ-
ously derived theoretical models. Our central experimental re-
sult shows as the horizontal separation of the two points labeled
as C. For our experimental chain, when each link collides with
the table it pulls on the chain above it. Hence the chain is, in
effect, pulled into the table it is falling on. The table which can
only push up effectively sucks down. Towards the end, the chain

FIG. 6: The chain falling on the table counterintuitively wins the race
when competing with the chain falling freely. At the instant shown
(0.59s after release) the vertical distance between top links of chain on
table and air is 7.6cm.

acceleration is substantially more than g.
Videos of the experiments can be viewed at

http://ruina.tam.cornell.edu/research/topics/fallingchains/.

VII. DISCUSSION

Consistent with all the experiments, the theory in the present
paper shows that the simple chain problems are not well posed.
Proper calculation depends on more information about the con-
stitution of the chain. Different designs for links, their manner
of falling, and the nature of the surface they fall on, generate
different solutions.

At one theoretical extreme is the classic solution, where the
chain falls with g and each link is slowed by the table (N2 =
0). In the other theoretical extreme energy is conserved and the
chain accelerates downwards much faster than g and each link
is slowed equally by the table and the chain above (N2 = N1).

We have conclusively shown that the assumptions in the text-
books, regarding absence of interaction between the link hitting
the ground and the chain above, are not universally valid.

To be fair, we used our set up to compare the falling of a pair
of conventional metal chains with open oval links which easily
disengage at collision. For such chains others have measured
that the reaction force rises to 3mg as classically predicted6–8.
Indeed, we could not detect any difference in the falling accel-
eration of the open-link chain falling freely and the open-link
chain hitting the table. Thus classical open-link chains do seem
to reasonably obey N2 = 0.

Hamm and Geminard tested a ball chain, where links do not
get disengaged at collision and also found an acceleration faster
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FIG. 7: Fall-distance x (from release to present instant) versus veloc-
ity squared for various types of chains. ‘Gravity (theory)’ is the falling
inextensible chain with acceleration of g. ‘Chain in air (expt)’ is our
free-falling chain, falling a bit slower than the gravity theory. ‘Chain
on table (experiment)’ is our primary experimental result shown by the
higher velocity at point C than for the point C with the chain in air. ‘Uni-
form rods (theory)’ is based on the N2 = N1/5 theory of our rod-based
chain. ‘Energy cons (theory)’ is based on an N1 = N2 calculation and
is theoretical upper limit for speed of a non-negative dissipation chain.
All chains fall together until the bottom hits the table, or not.

than g.29 They claim their contraction and air drag effects are
negligible, so they did not need the side-by-side experiments. In
their analysis the factor γ (what we would call N2/(N1 +N2))
is estimated from experimental curves and they notice its depen-
dence on the geometry at the fold.

The need for a constitutive law. For the U-chain Schagerl18

implicitly points out that to calculate a motion, a constitutive
relation for string material (continuum) or the chain links (dis-
crete) is needed. Tomaszewski et. al,23 also hint at this indirectly
at the end of their paper “A falling rope exhibits even more in-
teresting behavior because dissipation plays a more important
role and elasticity becomes a crucial factor.” McMillen21 puts
it directly: “without taking into account the constitutive rela-
tion, the rate of change of energy is not determined, which can
lead to incorrect results”. O’Reilly and Varadi33 discuss the U-
chain problem from a thermodynamic perspective; and with a
model including a free parameter e (the constitutive parameter)
they show the energy conservation and plastic impacts to be the
two theoretical ends of the solution spectrum, as e varies from 0
(N2 = 0) to 1 (N2 = N1). This paper extends these results to
the bottom-pile chain.

Although these problems are generally considered theoreti-
cal exercises, the principles apply to systems of practical impor-
tance where a line, wire or chain is rolled in or unrolled, one
example being a satellite antenna wire.35
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