
April 29, 2014 22:18 Vehicle System Dynamics brike˙paper18

Vehicle System Dynamics
Vol. 00, No. 00, Month 200x, 1–14

RESEARCH ARTICLE

The bricycle:

A bicycle in zero gravity can be balanced or steered but not both
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A bicycle or inverted pendulum can be balanced, that is kept nearly up-
right, by accelerating the base. This is done by steering on a bicycle. Si-
multaneously one can also control the lateral position of the base: chang-
ing of the track line of a bike or the position of hand under a balanced
stick. We show here with theory and experiment that if the balance prob-
lem is removed, by making the system neutrally stable for balance, one
can’t simultaneously maintain balance and control the position of the base.

We made a bricycle, essentially a bicycle with springy training wheels.
The stiffness of the training wheel suspension can be varied from near
infinite, making the bricycle into a tricycle, to zero, making it effec-
tively a bicycle. The springy training wheels effectively reduce or even
negate gravity, at least for balance purposes. One might expect a smooth
transition from tricycle to bicycle as the stiffness is varied, in terms of
handling, balance and feel. Not so. At an intermediate stiffness, when
gravity is effectively zeroed, riders can balance easily but no longer turn.
Small turns cause an intolerable leaning.

Thus there is a qualitative difference between bicycles and tricycles, a
difference that cannot be met halfway.
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Figure 1. A ‘bricycle’: a vehicle which can transition between bicycle and a tricycle. It is a bicycle with
two extra ‘training’ wheels at the back on a spring-loaded parallelogram mechanism. The spring resists
bicycle lean, more or less depending on its adjustment. When the spring is removed the training wheels are
mechanically invisible, effectively reducing the bricycle to a bicycle. When the spring is locked the bicycle
is effectively a tricycle. The neutral point in-between is the main topic of study here.

1. Introduction

On a normal bicycle, gravity causes a capsizing moment that increases with lean.
If gravity was removed but the rolling constraint retained (using, say, magnetic
wheels) there would be no capsizing moment. We can mimic this zero-gravity bi-
cycle, down here on earth, by adding a righting moment that cancels the gravity
capsizing moment. We have done this using springy training wheels. Questions we
address in terms of this vehicle include: What happens if you bicycle in zero gravity?
What happens if you transition from tricycle to bicycle in a continuous manner?
What is the role of gravity in bicycle control? The results are, perhaps, surprising.
In short (spoiler alert): In zero gravity a bicycle could be easily balanced, but not
steered at all (within the regime of small-lean, linearized equations); halfway be-
tween a tricycle and a bicycle is, effectively a zero-gravity bicycle; and the control
of a bicycle depends essentially on gravity.

1.1. Help from ‘the hand of god’

One way to help someone learn a task is to help them do it, and then gradually
reduce the help. For example, parents might give support to a child learning to
walk, and then gradually withdraw it.

Rehabilitation of patients e.g. stroke victims, often uses physical guidance. Ther-
apists or trainers may guide a motion, and then slowly withdraw the aid. This
helping, and then withdrawal of help, is also used for robot-guided therapy (robots
guiding people, [1, 2]).

The idea of helping and then withdrawing help extends to the machine-learning
automatic control of simulations, for example in the simulations of running and
walking by Van de Panne and Lamouret [3]. In these, a simulated external torque,
“the hand of god” was initially used to hold their simulated characters upright.
As the computer control algorithm learned to control the characters balance, the
external righting torque was gradually reduced. The evolving controller in principle
should gradually learns to balance the simulated characters without the help from
external righting torques.

Richard Klein et al.[4] uses a related idea to help teach disabled children how
to ride a bicycle. In his ‘lose the training wheels’ method, the rider progresses
through a series of adapted bikes, none of which have the stigma of conventional
training wheels. The first has, instead of wheels, rolling pins (slightly bulged narrow
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Figure 2. A Zero rest-length spring is the heart of the righting-moment mechanism. The spring is
adjusted such that it’s force would be zero if the end of the connecting rod at P coincided with the pivot at
Q; that would be the zero-length configuration. Because the spring compression is equal to the distance PQ
a zero rest-length tension spring between P and Q is simulated. The dimensions a and b can be adjusted
by sliding the spring and base plate assembly up or down and re-clamping, changing the effective torsional
spring constant. See also the schematic in Fig. 3.

cylinders) having a center of lateral curvature well above the riders center of mass.
Such a bike stays securely upright. As the rider learns to pedal and steer, the
rollers are replaced with rollers with smaller rocking radius. Eventually regular
bicycle wheels are used.

1.2. Signs of trouble

The gradually-weakening ‘hand of god’ approach to teaching might not always be
effective. Domingo et al.[5] had healthy subjects on a narrow or wide balance beam,
mounted on a treadmill. For some of the subjects assistance was given by springs at-
tached to a hip belt that applied restoring forces towards the beam center. On both
narrow and wide beams, subjects learning without assistance had greater perfor-
mance improvements in maintaining balance while walking, compared to subjects
in assisted groups (measured by failures per minute without assistance on the same
beam). Physical assistance seems to hinder learning in this context.

Indeed, the “guidance hypothesis” [6] is that the provision of too much external,
augmented feedback during practice may cause the learner to develop a harmful
dependency on this source of feedback. The experience of errors and failures is
important for learning. Physical guidance reduces the range of errors and hence
hinders learning. Besides the experience of error, Domingo et al.[5] identify another
factor important to learning, the task-specific dynamics: “Having task dynamics
more similar to the desired task would allow subjects to explore the state-space of
position and velocity parameters and develop the ability to better control balance.”
That is, despite its obvious appeal and common use, one can foresee problems with
the approach.

1.3. The Bricycle concept

Tricycles are easier to ride and steer compared to bicycles, at least for slow moving
beginners. Based on the intuitive appeal of ‘the hand of god’ approach, and ignoring
the forewarnings, we considered making a vehicle (a bricycle) which could, by
adjustment, transition smoothly from a tricycle to bicycle. For example, a beginner
could start in tricycle-mode and change into bicycle-mode as she gains proficiency.
The idea was to avoid the discrete changes needed in the Klein sequence-of-thinner-
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Figure 3. a) Training wheel suspension. The rear wheels are connected to each other via a parallelogram
mechanism. The connection between points P and Q is effectively a zero rest-length spring. The lengths a
and b are adjustable. b) Force generated by the zero rest-length spring, is proportional to the length PQ
and the component of the force perpendicular to PQ is proportional to a sinφ. c) The restoring torque
generated by the spring force Fs about point O is kba sinφ. This counters, less or more depending on
parameters, the destabilizing gravitational torque mgh sinφ.

and-thinner-wheels approach.
The bricycle concept is related to that of narrow tilting vehicles (or narrow track

vehicles, NTVs). NTVs are midway between a car and a motorcycle: they self-
balance when stationary like a car and when moving they lean into turns like a
motorcycle. Examples include the Ford Gyron and General motor’s Lean Machine
[7] and, more recently, the Mercedes F-3000 Life-Jet and Nissan land glider. The
controllers for NTVs tilt the vehicle using some combination of two strategies:
1) Direct tilt control: an actuator on the longitudinal axis of the NTV providing
torque to tilt the vehicle; 2) Steering tilt control: the steering angle applied by
the driver is modulated to control the tilt angle using countersteering [8, 9]. The
spring-righting on a bricycle is a special case of type (1) NTV control, thus the
problems with bicycle control that we describe below need be circumvented in NTV
controller design.

2. Bricycle design details

Figure 1 shows the bricycle. It is an ordinary bicycle with two extra ‘training’ wheels
at the back. The rear wheels are mounted on a parallelogram mechanism. The
mechanism is spring loaded, so as to provide a torque that resists lean. If the spring
is rigid (or equivalently, if the parallelogram mechanism is locked) then the bricycle
is effectively a tricycle. If the spring is removed then the bicycle is effectively a
bicycle. In the same way that gravity causes a falling torque proportional to the
sine of the lean angle, the spring mechanism is designed to give a righting torque
also proportional to the sine of the lean angle, as described below. At an appropriate
intermediate spring setting there can be angle-independent gravity cancellation, as
described in the section 3.

2.1. The zero-rest-length spring mechanism

The spring mechanism allows gravity, for balance purposes to be reduced, zeroed
or negated. Figures 2 and 3 show the parallelogram linkage and spring. Key is an
emulated ‘zero rest-length’ spring between the points P and Q (Fig 2 and 3). A
zero rest-length spring has tension proportional to the distance between the points
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Figure 4. The classical cart and inverted pendulum. The acceleration of the cart (ÿ) is varied in time
(say by action of a horizontal force) so as to control both the angle φ of the pendulum (mass m) and the
position y of the cart.

it is connecting (P and Q). That is, its rest length is zero and its stretch is its total
length. Hence, the vector force it transmits is proportional to the relative position
vector of its ends P and Q; the components of the spring force along any direction
are proportional to the components of PQ along that direction. The idea of a zero
rest-length spring was used, in a mechanisms similar to this one, by Lacoste in 1934
for use in a long period gravity-meter for a seismograph [10] (shown on the cover
of Scientific American on March 1959) and by George Carwardine in 1932 for his
Anglepoise lamp, the design crudely copied in the two-parallelogram mechanism
of modern common student lamps [11].

Using the geometry of figure 3, the restoring torque about the hinge O, generated
by the spring mechanism, is kab sinφ. The angle φ is the lean of the bricycle, k is
the stiffness of the spring and a and b are the lengths shown. The mechanism gives
a restoring torque (kab sinφ) with the same angular dependence as the capsizing
torque of gravity. Hence the springy mechanism reduces the effect of gravity for
leaning. For small lean angles, the mechanism linearizes to being a torsional spring
of stiffness kab acting at the hinge O.

The stiffness of the effective torsional spring (or equivalently the gravity for
leaning) can be adjusted by mechanically adjusting the lengths a and b as described
in Fig 2. When a is 0, the stiffness is 0 and the training wheel suspension acts like
an bicycle. When a and b are large, the stiffness is high and the system is close
to a tricycle. To get near-infinite stiffness, corresponding to standard stiff tricycle,
the hinge joint O can be locked.

Next we consider the balance and steering control of bricycle by considering 3
models with progressively more complexity, in sequence: 1) An inverted pendu-
lum with moving base, 2) A primitive point-mass bicycle, and 3)The full Whipple
bicycle model.

3. Control of an inverted pendulum with moving base

The simplest analogue to bicycle-balance is the balancing of a stick on a hand,
e.g. a classical cart and inverted pendulum from elementary controls classes. The
tendency of the pendulum to fall is equivalent to the lean (tilt or roll) instability
of the bicycle. Steering a forwards-moving bicycle causes lateral acceleration of
the base, analogous to accelerating the cart at the base of the pendulum. Using an
inverted pendulum as an analogue to bicycle balance was apparently first presented
in detail by Rankine in 1869 [12], as described in Kooijman et al. supplementary
material [13]. Figure 4, shows the cart with an inverted pendulum (point mass m,
length h). The linearized equation of motion around the unstable equilibrium point
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Figure 5. (a) LQR gains for the cart pendulum system as functions of gravity, g (and h = 1). Note
that around zero gravity (g = 0) some of the controller gains go to infinity and others have a finite jump.
System is uncontrollable at g = 0. (b) The time constants of the LQ Regulated, closed-loop system as
function of g. Notice that two of them go to infinity at g = 0 (closed-loop poles/eigenvalues have zero
real parts.) This implies that disturbances in two directions of the state space, cannot be nullified by the
linear controller gains. As g approaches zero, from above or below, two time constants go to infinity for
any controller gains, not just the optimal LQR gains.

φ = 0 is:

hφ̈ = gφ− ÿ. (1)

Alternatively, using the state vector x = [y, φ, ẏ, φ̇]T state is controlled by u = ÿ.
Thus we get the state space form ẋ = Ax+Bu:

ẋ︷︸︸︷
ẏ

φ̇
ÿ

φ̈

 =

A︷ ︸︸ ︷
0 0 1 0
0 0 0 1
0 0 0 0
0 g
h 0 0


x︷︸︸︷
y
φ
ẏ

φ̇

+

B︷ ︸︸ ︷
0
0
1
− 1
h


u︷︸︸︷
ÿ . (2)

3.1. The pendulum loses controllability at zero gravity

As is well known in the controls community (Mark Spong – private communication)
various inverted pendulum systems, when linearized, are not controllable at g = 0
([14] and example 6.2 on page 170 of [15]). When there is no gravity (g = 0) the
balance problem (i.e. the tilt instability) is gone. However, the control authority is
lost for some directions in state-space.

Plugging g = 0 and rearranging the equation 1, we find that for any acceleration
of the base:

ÿ + hφ̈ =
d2

dt2
(y + hφ) = 0. (3)

The variable combination y + hφ is always

y + hφ = C1 + C2t (4)

where C1 and C2 are constants. Thus the variable combination y+hφ is unaffected
by the control u = ÿ. Note that y + hφ is the y-position of the pendulum’s bob
(the point mass m), and for small angles this is unaffected by motions of the base.
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Alternatively, the angular momentum of the system about any point on the y-axis,
~H = −mh(ẏ + hφ̇)̂i, is conserved when g = 0. This implies that the velocity of
mass m remains constant independent of the base acceleration. If m was at rest
initially, it will remain at rest for all time.

Hence, for the case of zero gravity, assuming, say, a stationary vertical initial con-
dition, the position y and the angle φ (balance) cannot be controlled independently.
If one is changed the other has to change to keep the y + hφ = 0.

More simply, in the presence of gravity one possible motion of the pendulum
system is constant acceleration a to, say, the right at fixed lean angle φ with
tanφ = a/g. When gravity is set to zero, there is no small-angle solution (the
constant acceleration is only at a lean of φ = ±π/2).

[Note, the uncontrollability at zero gravity is only true for the linearized inverted
pendulum. The arguments precluding control are heavily dependent on the linear-
ity of the system, and the non-linear inverted pendulum in zero gravity seems to be
controllable. Indeed, simulations by Philip James (private communication — tilt-
ingvehicle@bigpond.com) demonstrate that with appropriate wiggles of the base,
a constant average acceleration of the base can be maintained while holding the
pendulum angle in a bounded range.]

3.2. LQR Control of inverted pendulum

The lack of controllability can also be understood in terms of classical control
theory [16]. Consider a stabilizing linear feedback controller u = −Kx, which drives
a system to the equilibrium x = 0, while minimizing a quadratic cost functional,

J =

∫ ∞
0

(xTQx+ uTRu)dt. (5)

The controller gains K = [Ky Kφ Kẏ Kφ̇] for such a controller can be found using

the LQR approach (MATLAB command ‘lqr’). Figure 5 shows the controller gains
K and time constants τi of the closed-loop system, as functions of gravity g (and
h = 1). Q and R are chosen to be identity matrices of appropriate dimensions. The
time constants τi are inverses of the real parts of eigenvalues of the closed-loop
system ẋ = (A−BK)x.

As we vary the gravity, g from negative to positive, the point x = 0 changes
from stable to unstable equilibrium. Expectedly it is easy to stabilize the pendulum
with negative gravity, it is just like a normal (non-inverted) pendulum. For positive
gravity, as g increases the pendulum becomes ‘more’ unstable (it is ‘easier’ to fall).
Hence, the gains Kφ and Kφ̇ which correspond to φ and φ̇ increase with g, and the
corresponding time constants become smaller.

When g = 0 the system is uncontrollable in certain directions of the state space,
i.e. the deviations in those directions cannot to be corrected using any control
action (at least in the limit of linear system approximation). The uncontrollable
directions are the eigenvectors corresponding to zero eigenvalues of the controlla-
bility Gramian of the system, WC :

WC =

∫ T

0
eAtBBT eA

T tdt. (6)

Given a control input u(t) and zero initial condition x(0) = ~0, the state at time

T can be written as: x(T ) =
∫ T

0 eA(T−t)Bu(t)dt. If one considers all possible input

profiles of unit or lesser energy (
∫ T

0 u2(t)dt ≤ 1), all the states that can be reached
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Figure 6. Primitive model of a bicycle is obtained from the full model described in figure 7 by simplifying
assumptions. The bicycle is assumed to be massless and the rider is modeled as a point mass fixed with
respect to the body frame. The steering assembly has no tilt, trail or caster. The rate of change of the

steering angle δ̇ is taken to be the control input.

in time T or less, lie in an ellipsoid in state space. The axes of this ellipsoid are
along the eigenvectors of the Gramian and axes lengths are square roots of its
eigenvalues. Directions corresponding to the zero eigenvalues are the directions in
the state space which the control inputs cannot control. One is stuck with the
motions that follow from the initial conditions in those directions.

For the cart and inverted pendulum, under zero gravity, the uncontrollable di-
rections/ eigenvectors are: [1/h, 1, 0, 0]T and [0, 0, 1/h, 1]T . These correspond to
the (uncontrollable) variables x̄1 = y + hφ and x̄2 = ẏ + hφ̇. Note that x̄1 is the
same variable combination found before using simpler reasoning, and x̄2 is its first
derivative.

The gains as seen in figure 5 can be transformed to the gains in the eigendirections
and it can be noticed that only the gains corresponding to the uncontrollable
directions x̄1 and x̄2 are the ones that go infinite (x̄2) or have a jump discontinuity
(x̄1) at g = 0.

4. Primitive bicycle model

First we present the simpler of two bicycle models, a primitive point mass model
(Fig. 6). This seems to be the most extreme simplification of a bicycle for un-
derstanding its control, used for example, by Boussinesq, 1899 [17] and Getz and
Marsden, 1995 [18]. All of the mass is concentrated at a point a distance l in front,
and h above the rear contact point. The relevant configuration of the bike is de-
scribed by the x and y coordinates of the rear contact, the heading/yaw angle ψ
of the body frame, the lean/roll angle φ of the body frame and the steer angle δ
of the handle bar. The wheels are massless and infinitesimal (equivalent to small
skates). The steering has no tilt, trail nor caster.

Consider the nominal motion as the upright bike moving along x-axis at constant
speed v i.e φ = φ̇ = δ = δ̇ = ψ = 0, v = constant. The equations of motion for
small perturbations from the nominal motion, including the torque from the spring
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mechanism kabφ, can be written as:

hφ̈ =

(
g − kab

mh

)
︸ ︷︷ ︸

ge

φ− v2

w
δ − vl

w
δ̇,

= geφ− v2

w
δ − vl

w
δ̇,

ψ̇ =
v

w
δ,

ẏ = vψ. (7)

where w is the wheel base. Note that the effect of spring mechanism is equivalent
changing the gravity. The effective gravity ge = g − kab/mh.

While a direct derivation is possible, these equations follow from simplification
of the equations for the full Whipple model [19].

4.1. Primitive bicycle loses controllability at zero gravity

Unlike the Whipple bicycle model discussed later, the primitive bicycle model can-
not be stable without controls. In this paper we are concerned with controlled
stability rather than self-stability so the primitive bicycle is still appropriate. Be-
cause the steering has no mass we cannot be concerned with the dynamics of the
steering angle. We think of the steer angle as the control variable. Lean and heading
are controlled by steering (δ, δ̇) as governed by the equations above.

When ge = 0 we can substitute the second of equations 7 into the first, and use
the third to eliminate ψ to get:

vψ̇ + hφ̈+
vl

w
δ̇ =

d

dt
(vψ + hφ̇+

vl

w
δ) =

d

dt
(ẏ + hφ̇+

vl

w
δ) = 0. (8)

Hence the uncontrollable direction is vψ + hφ̇ + vl
w δ, which can be written as ẏ +

hφ̇+ vl
w δ. Note that

ẏ + hφ̇

is the lateral velocity of the center of mass of the bicycle.
As for the inverted pendulum, 7 can be rearranged into state space form ẋ =

Ax+Bu where the state vector x = [φ, δ, ψ, φ̇]T and the control input u = δ̇. And,
as for the pendulum, the system is uncontrollable when ge = 0. Figure 8(a) shows
the time constants as functions of gravity for an LQR controller. The uncontrollable
mode corresponds to the collection of variables ẏ + hφ̇+ vl

w δ described above.

4.2. What is the uncontrollable mode

Assume a person is initially riding in a straight line i.e. φi = δi = ψi = φ̇i = 0.
Hence

ẏ + hφ̇+
vl

w
δ = 0 (9)

initially and it will remain 0 for all time. Thus
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(1) Heading can’t be corrected without falling. If the rider tries to steer
by giving some steering angle profile δ(t) for some time and then finally
makes the steering handle straight again to stop steering: δf = 0. So vψf +

hφ̇f = 0. Staying upright mens the lean angle is not be changing i.e. φ̇f = 0.
This implies ψf = 0. Hence the heading cannot be changed permanently.

(2) Center of mass cannot be moved laterally. Using the kinematics eqn
ẏ = vψ, and using eq. 7 δ = w

v ψ̇, we get

lψ̇ + ẏ + hφ̇ =
d

dt
(lψ + y + hφ) = 0

Hence we have another conserved quantity whose initial value was zero
(taking y = 0) and final value is also zero. This, along with ψf = 0, implies
that: yf + hφf = 0.

Noting the geometry in fig. 6, we see that y + hφ is the y co-ordinate of
the center of mass. That is, the mass remains at the same lateral location
in a steering maneuver. Hence the bicycle steering problem is really strictly
analogous to the cart and inverted pendulum problem. The uncontrollabil-
ity of both the primitive bike model and the point-mass cart pendulum, in
zero gravity, boils down to inability to move the center of mass sideways,
by any control efforts (assuming small angle approximations).

(3) Leaning causes sideways displacement. We have yf + hφf = 0, this
can be rewritten as yf = −hφf . Hence after a steering maneuver the rider
can get sidetracked and have a resulting lean angle that is proportional to
the distance sidetracked, yf .

(4) If you keep steering you’ll fall. If δ is not zero by the end of a maneuver,
then ψ̇ = v

wδ will cause the heading ψ to increase (or decrease) continuously.

Thus conservation of x̄ will lead to a non zero lean rate φ̇. The rider will
progressively fall.

5. Whipple model

Figure 7, shows the more sophisticated Whipple bicycle model as presented by
Meijaard et al.[19]). The relevant configuration of the bike is described by the x
and y coordinates of the rear contact P , the heading/yaw angle ψ of the rear frame,
the lean/roll angle φ of the rear frame, the steer angle δ of the handle bar, and
the rotation of the front and rear wheels θF and θR. The equations of motion as
described in equation 5.3 of Meijaard et al. are:

M

[
φ̈

δ̈

]
+ vC1

[
φ̇

δ̇

]
+ (gK0 + v2K2)

[
φ
δ

]
=

[
Tφ
Tδ

]
,

ψ̇ =
( v
w
δ +

c

w
δ̇
)

cosλ. (10)

Where Tφ is the lean torque, Tδ is the steering torque, v is the speed, c is the trail,
w is the wheel base, λ is the steer axis tilt, M , C1, K0, and K2 are matrices as
described in equation 6.1-4 in Meijaard et al.2007 [19]. For the case of bricycle,
the lean torque is provided by the spring mechanism: Tφ = kabφ as in Fig. 3. Now

instead of steer torque, Tδ we can take δ̈ (which is fully controllable by Tδ) to be
the input to the system. This way the steer dynamics can be neglected, and the
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Figure 7. 7-D configuration of a Whipple bicycle (courtesy Meijaard et al.[19]). The x and y are coordi-
nates of the rear contact P . Angles are represented by a sequence of hinges drawn as a pair of cans rotated
with respect to each other. The clockwise (from top view) heading/yaw of the rear frame B is ψ . The
ψ-can is grounded in orientation but not in location. The lean (‘roll’ in aircraft terminology) of the rear
frame to the right is φ. The rear wheel R rotates with θR relative to the rear frame, with forward motion
being negative. The steer angle is δ with right steer of the Handle bar H, as positive. The front wheel F ,

rotates with θF relative to the front frame. The three velocity degrees of freedom are parameterized by φ̇,

δ̇ and θ̇R. The rates-of-change of the remaining variables are determined by 4 non-holonomic constraints.

reduced equations of the system are:

M11φ̈+ vC1,12δ̇ + (geK0,11)φ+ (gK0,12 + v2K2,12)δ = −M12δ̈

ψ̇ = K3δ +K4δ̇ (11)

The terms C1,11 and K2,11 are zero as shown in Meijaard et al.2007 [19]. Note that
the term (gK0,11 − kab) has been replaced by the effective gravity term geK0,11.
However the gravity g, unaffected by the spring mechanism still appears in the
δ term (that is, in the full Whipple model the system center of mass position is
directly affected by steering).

Equations 11 can be rearranged into the state space form ż = Az + Bδ̈ where
the state vector x = [φ, δ, ψ, φ̇, δ̇]T . The zero gravity case ge = 0, is when the
bricycle is in neutral equilibrium for leaning when the steer angle is also zero. As
expected this is an uncontrollable system. The uncontrollable direction is:

x̄ =

(
vC1,12 − (gK0,12 + v2K2,12)

K4

K3

)
δ +

(gK0,12 + v2K2,12)

K3
ψ +M11φ̇+M12δ̇,

(12)

Similar conclusions can be drawn using the uncontrollable mode, as for the case
of primitive bike, except that the point which preserves its horizontal position is
not exactly the center of mass. Figure 8(b) shows the closed-loop time constants
as functions of gravity for an LQR controller (with identity Q and R matrices and
v = 6 m/s). The qualitative behavior, and even the quantitative behavior, is the
same as in the case of the primitive model.

That is, the Whipple bicycle model and primitive bicycle model show essentially
the same lack of controllability when the effective gravity is set to zero.



April 29, 2014 22:18 Vehicle System Dynamics brike˙paper18

12

−9.8 0 9.8
0

2

4

6

8

g  (m/s2)

T
im

e 
co

ns
ta

nt
s 

(s
)

−9.8 0 9.8
0

2

4

6

8

g  (m/s2)

T
im

e 
co

ns
ta

nt
s 

(s
)

e e

(a) (b)

τ1

τ2 τ4τ3 and

τ2τ1 and

τ1

τ2τ1 and
τ4τ3 and

τ2τ1 and

τ1 τ1

τ2
τ5

Figure 8. The time constants of the LQ Regulated closed-loop system as function of ge: a) for the
primitive bicycle model as described in figure 6 and b) the complete model as described in figure 7. Notice
that in each case one of the time constants goes to infinity at ge = 0 (closed-loop poles/eigenvalues have
zero real parts) . This implies an uncontrollable direction in the state-space, deviations in that direction
cannot be corrected.

6. Riding the bricycle

The bricycle was built to test the above theory. A video showing the rider’s expe-
rience in various spring setting is available at http://www.youtube.com/watch?

v=rNQdSfgJDNM.
When the spring is removed or has low stiffness, the bricycle behaves like a

normal bicycle. Riders lean into the turns and a component of gravity provides the
centripetal acceleration. Moment balance gives a lean angle φ, in a steady turn of
radius r at speed v, as tanφ = v2

rge
. To initiate this leaning, some counter steering

is needed. When the spring is stiff, or the mechanism is clamped, the bricycle
behaves like a tricycle. Because there is then little leaning, the rider experiences
the centrifugal push away from the center of turn. Moments are balanced by the
asymmetrical normal reactions on the rear wheels. Figure 9, shows the lean angles
in a steady turn for various speeds and stiffnesses (i.e. effective gravities ge).

When the spring is set to cancel gravity (ge = 0) it was observed that a rider
initially moving straight, cannot perform a steady turn. As expected based on the
discussion in section 4, he/she ends up sidetracking and is left with a constant
lean in the opposite direction. If counter-steering is done to initiate the turn, the
rider is unable to change the heading, and ends up side-tracking away from the
desired turn with a fixed lean angle into the desired turn, and vice-verca if no
counter-steering is used. If the rider keeps steering (e.g. with a constant steer angle
δ) he/she will fall. Lean angle φ goes towards 90 degrees (bike moves flat on the
ground) and tanφ is infinite, as seen in figure 9. This is why, riders after a few
initial trials, learn (perhaps unconsciously) to give up on the steering and instead
just preserve balance.

7. Discussion and conclusions

The theory and experiments in this paper show that there is a qualitative difference
in the dynamics and control of a bicycle and of a tricycle. A smooth transition
between them cannot be achieved using a bricycle-type design. At some transition
point (effectively zero gravity) the system is uncontrollable. The idea of providing
aid to help learn a motion or activity works for many situations as described in
section 1, but may not be a good idea in this case, at least if steering is to be

http://www.youtube.com/watch?v=rNQdSfgJDNM
http://www.youtube.com/watch?v=rNQdSfgJDNM


April 29, 2014 22:18 Vehicle System Dynamics brike˙paper18

13

−9.8 9.8

−90

45

90

g
e

m/s  2

−45

ϕ
  (

de
g)

v = 8 m/s
Turning radius 3m

v = 4m/s

v = 6m/s

Figure 9. Lean angles in a steady turning radius of 3m for various speeds and gravitational accelerations.
For a bricycle the effective gravity can be changed by adjusting the stiffness of the spring mechanism. Note
that for zero gravity the steady state turning angle is 90 degrees, i.e. the bike is flat on the ground. For
negative gravity (i.e. tricycle like situations) the lean angle is negative (i.e. away from the turn).

learned as well as balance. A bricycle cannot be used to transfer the steering skills
from a tricycle to a bicycle in a continuous fashion.

Balance and control are not independent issues for a controller to solve. Gravity,
the force which causes instability and loss of balance, is also the force that facil-
itates the control of position and heading. Without gravity, balance and control
maneuvers, like steering and navigation, cannot be performed independently.
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