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INTRODUCTION

The present day bicycles and motorcycles are largely the re=-
sult of empirical design based on experience. Very little theoretical
endeavor has been used to develop the single track vehicle.

Back in 1890, F. Klein and A. Sommerfeld were the first to
represent mathematically a two-wheeled vehicle (Ref. 13), when
they set up the equations of motion for a bicycle. Later, in 1922,
Pearsall also published an analytical investigation of the motion of
a bicycle (Ref. 16). In those days, not much was known about
pneumatic tires. Another study was reported by D&hring and Bruns-
wick in 1955 (Ref. 5), who extended the analysis of Klein and
Sommerfeld to set up linearized equations of motion. They measured
three commercial vehicles and used their machine constants to solve
the equations of motion. A more thorough analytical investigation
was carried out by Collins in his Ph.D. dissertation (1963, Ref. 4).

In his study, Collins assumed thin disk wheels without tires
and determined the region of automatic stability. He investigated
the effect of various motorcycle parameters on the stability coeffi-
cients. There is also some additional literature which deals with
explaining the motion of two-wheeled vehicles without going into
mathematical representation (Refs. 12, 23, 24).

Theoretically, if after applying disturbance forces and displac-

1



ing a mechanical system from its undisturbed motion, the system
returns to its original motion under all possible perturbation of
arbitrary magnitude, the motion is said to be totally stable. If the
system returns to its original motion under perturbations of suffi-
ciently small magnitude, the system is stable (automatic stability
of two-wheeled vehicles). Total stability is a mathematical fiction
and does not exist in reality.

In this study, a hypothesis is developed to explain the mean-
ing of stability as applied to the motion of a two-wheeled vehicle.
The discussion infers that for stability study, not only the small
disturbance forces, but also the inputs of driver, should be disre-
garded in setting up the equations of motion.

The study is confined to a motorcycle travelling in very nearly
upright and straight-ahead trim, on a level road at constant speed.
The steering angle and the angle of lean are very small. This per-
mits the linearization of the equations of motion, disregarding the
shift of the contact patch of the front tire, and ignoring the effect
of suspension.

Small angles allow the use of a pair of linear tires. On the
basis of extensive tire data (Ref. 17), suitable constants are as-
sumed to represent a typical tire. Other assumptions have also

been made to make the tire effects more realistic.



The driver input term, in the form of a moment about the steering '
axis, is carried on until the final equation in view of the fact that,
if necessary, entirely as a matter of academic interest, an optimal E
driver control may be investigated for an isolated case of an arbi- ‘
trary motorcycle situation, specifying some external disturbances g
to the machine. For the stability study, however, this term is re-
dundant in the equation of motion.

Several road tests were carried out and their results have been
included in this study. To give a meaningful interpretation to the
roots of the analytical solution, a hypothesis has been established
on the basis of the results of the road tests. Comparison and quali-
tative correlation has been made between the analytical and experi-
mental results.

There is a large number of motorcycle variables. Therefore an
indefinitely large number of motorcycle parameters, taking these
variables singly or in groups of two or more, can be formed to study

their effect on stability. This dissertation essentially presents a

theory describing the motion of two-wheeled vehicles and includes

T g — es

=

the study of only the seemingly more significant parameters. How-

ever the nondimensional formulation of the final equation is particu-

o g

larly adaptable to as comprehensive an investigation as desired.

Recommendations have finally been made for the modification



of motorcycle parameters which are likely to improve the motorcycle
performance.

The analytical study presented here is applicable to any two-
wheeled vehicle. But since a motorcycle was used for the experi-
mental investigations, the two-wheeled vehicle is very often thought
of as a motorcycle and is, in the text of this dissertation, frequently

referred to as such or even as '""machine."



CHAPTER 1
STABILITY CRITERIA

Stability Concept

Every case of a mechanical system corresponding to a mathe-
matically rigorous solution of the differential equations of its mo=-
tion (or the equations of equilibrium) is not observed in actual
practice. To guote one author, ''no one has seen a pencil stand
vertically on its sharpened end on a smooth horizontal table."

This is because small forces and deviations are present not only
in the initial state of the mechanical system, but they also act
continually. These small disturbances, almost always unknown,
have to be ignored even in rigorous theory. But they do exist in
reality and affect the motion (or equilibrium), in some cases only
slightly and in others strongly.

Torricelli proposed a principle which gave only stable positions
of equilibrium. He postulated that '"two bodies, which are connec-
ted in some manner, cannot move of their own accord unless their
center of gravity can fall." The formulation of Torricelli's principle
arose from another principle: In a system of solid bodies in a state
of equilibrium, the center of gravity occupies the lowest possible
relative position.

There is no corresponding dynamic principle for the selection

of rigorous solution for stable motion, although stability problems



have occupied the attention of such eminent mathematicians as

Lagrange, Kelvin, Routh, Zhukovskii and Poincaré. Lagrange
generalized Torricelli's principle, proving the theorem of stability
of an isolated equilibrium of a mechanical system when the force
function of the forces acting on the system has a maximum. Routh,
by simple extension of Lagrange's theorem, developed the method
of ignoring cyclical coordinates and found a stability criteria for
certain cyclical motions.

The general problem of stability of motion in its classical
formulation was solved by Lyapunov (1892). In the definition by
Lyapunov, the stability of motion is considered with respect to
the disturbances of initial conditions.

Let

dy, ;
_d_?r—!] :Yj(T! y1y°-'1yn) }:1,2,...,n) { 1..1)

represent an arbitrary dynamic system in which yj are parameters
related to motion, as for example, coordinates, velocities, and in
general,functions of these quantities.

Consider some particular motion of this system to which cor-
responds a particular solution yj = f (7) of equation (1.1).
This motion may be designated as undisturbed motion to distinguish
it from all other motions. These other motions are called disturbed

motions. The difference between the values of Yj in some dis-



turbed and the undisturbed motion may be called perturbation.
According to Lyapunov, an undisturbed motion is stable with
respect to yj if for each positive number e, regardless of how small
it is, another positive number m(e¢) can be found such that for
all disturbed motions y}. = y},( T), for which at the initial instant
T = 19 the following inequality is true
ly, (o) = £(ro)| < m, (1.2)
and for all values of 1T > 14, the following inequality holds
|yj(T) -fj(r)| <e (1.3)
An undisturbed motion is called unstable if it is not stable.
The physical significance of Lyapunov's definition is that the
stability can be considered with respect to instantaneous disturb-
ances not only of the initial conditions, but also of the equations
of motion as well. A direct generalization of Lyapunov's stability,
defined for continually acting disturbances,is as follows.
Consider the following system of differential equations along
with equations (1.1)

dy; _
g;l— Y}-“’Yl*""yn)+Rj(T=Y1"'°’Yn’ (1.4)

in which Rj are unknown functions characterizing the disturbing
factors regarding which it can only be said that they are sufficiently
small and that they satisfy certain general conditions stipulating the

solution of eq. (1.4) in the vicinity of undisturbed motion being



considered.

The undisturbed motion yj = fj(-r) ( particular solution of equa-
tion (1.1)) is stable with constantly acting disturbances, if for each
positive number ¢ no matter how small, there exist two positive
numbers nl(e) and 112(6) , such that each solution yj('r) of
equation (1.4) satisfying for T = 79 the inequalities

ly (7o) = £(To) | <m(e) (1.5)
satisfies for v > 14 the inequalities

lyj(T)-fj{T)l<e (1.6)
regardless of the nature of function Rj’ which satisfy in the region
T > Ty the inequalities

]Rj{r,yl,---,y2)|<n2(e) (1.7

The problem of stability with constantly.acting disturbances in
most of the practical cases is reduced directly to the problem of
stability as defined by Lyapunov for disturbances of initial condi-
tions. In the definition of stability, it is assumed that there are no
perturbation forces, 1i. e., the perturbed motion occurs under
the actions of some external forces which are taken into account in
determining the unperturbed motion, while the number ¢ is arbitrary
and may be as small as required.

The stability problem in the presence of perturbing forces is
meaningless, if the latter are in no way constrained. If, from case

to case, the perturbing forces vary so little that their variations
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have no effect on the linear terms of the equation of disturbed mo-

tion, the important practical problem of stability in the first ap-
proximation, independent of the terms of higher orders, arises.
The stability of motorcycle has been investigated in this same
class.

The investigation of stability offers very little difficulty
in those cases where the equations of disturbed motion can be inte-
grated in closed form. Lyapunov's predecessors utilized the method
of linearization. In the equations of disturbed motion, the aggregate
of the terms of power greater than one are disregarded, since in the
problem of stability it is natural to expect that the character of the
solutions of equations of disturbed motion for very small initial val-
ues is determined by the aggregate of the terms of the lowest power.
In other words, it is natural to expect that for the solution of the
problem of stability, it is sufficient to examine the system of linear
equations.

It must be mentioned, however, that the solution of linear ap-
proximation may not be rigorous and sometimes may even be incor=
rect. Substitution of the nonlinear equation by a linear one can be,
in some cases, a substitution of one problem by another with which
the former may have nothing in common. It may sometime happen
that an undisturbed motion upon being investigated only to the

first approximation may turn out to be stable, although in reality it
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is unstable, and conversely.

Lyapunov divided the methods of solving the problems of sta-
bility into two categories. In the first category he included those
methods which reduce, in substance, to the direct consideration
of disturbed motion. The aggregate of these methods in. the first
category was termed by Lyapunov '"the first method."

For cases in which equation of motion cannot be integrated in
closed form, or in which the first method could not be used, Lya-
punov developed other methods of solving the problem of stability
which do not require finding the solutions of the equations of dis-
turbed motion, but which reduce themselves to finding certain
functions of the variables involved having special properties, as
for example, Lagrange's method based on maxima of force function.
The methods of Lyapunov are much more sophisticated. The aggre-
gate of those methods of the second category was named by Lyapunov
""the second method.'" As the basis of his second method, Lyapunov
developed several fundamental theorems. These theorems also en-
abled him to solve the stability problem by the first approximation
and permitted him to examine certain principal cases where the first
approximation could not be used. Lyapunov defined several proper-
ties, the concept of which gave not only a method of solution but

also a very vivid geometrical representation.



11

For practical purposes it may be necessary not only to deter-
mine whether the motion is stable, but also the region of permissible

initial disturbance.

Stability of Motorcycle

For the solution of motorcycle stability, the method of lineariza-
tion has been used. The size of the equations of motion is so for—
midable that construction of functions called for by the Lyapunov's
second method isalmost impossible. A considerable effort may solve
an isolated case,but since as many as a few hundred motorcycle
situations have been solved, it seemed most expedient to linearize the
equations of motion. Besides, more important is the fact that the ob-
jective of the study is to compare the stability of motorcycle not only
at different speeds, but also under different motorcycle situations
over a range of road speeds. Such a comparison is not possible by
any method other than solving the equations to give the damping co-
efficients. These coefficients indicate as to how quickly the steer-
ing oscillations die out. What is understood by the term "' steering
oscillation'" and other motorcycle motion features is discussed in
Chapter 3.

The objection suggested to replace a nonlinear system by a linear
system can be effectively answered on the basis of how the stability

of a motorcycle is defined and understood. No mathematically
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rigorous procedure has been used to justify this substitution since
it will not only be an almost impossible task in itself but will com-
pletely obscure the objectives of this dissertation.

Road tests have indicated that a steering oscillation of about
2° is the maximum which the machine showed immediately after the
steering disturbance was introduced and which looked very signifi-
cant on the road. In view of the above fact, during normal running,
the minute disturbances will produce a steering deflection but only of
a fraction of a degree. It is therefore, logical to consider the per—
turbation, with respect to which the stability is being investigated,
as small as desired and call it the linear domain. The region out=
side this domain, in which the linearized equations may or may not
be valid with respect to the motorcycle stability, can be called the
nonlinear domain.

If the character of motion is compared,both on the basis of lin-
earized equations of motion and on the basis of rigorous nonlinear

equations, there are the following four possibilities.

Cases Linearized Equations Nonlinear Equations
1; Stable Stable
2. Unstable Unstable
3 Stable Unstable
4, Unstable Stable
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In the first two cases, the nonlinear equations would give the
same results as those of linear equations. Therefore the study of
linear equations is adequate to predict the stability. In the third
case, the motorcycle will damp out the disturbance and the motion
will be stable as long as the road disturbance is not strong enough
to throw the motorcycle oscillation into the nonlinear domain where
the oscillations tend to grow. If it happens occasionally, the rider
will have to exercise the necessary control and his corrective input
will be imperative to bring the machine back into linear domain of
stability. A more precise description of the third case is that the
motorcycle is conditionally stable. Against the influence of all
disturbances, which do not exceed a certain limit, the machine
always damps out the oscillations. The driver has to make efforts
to control the machine only if a strong disturbance is felt. But in
such an event, the driver will react even in Case 1. Hence a ma-
chine of Case 3, for all practical purposes, can be called stable.

It is also not unlikely that a machine of Case 3 in linear domain may
be more stable than a machine of the Case 1 in the same domain.

It may be mentioned that this was actually observed in the road
tests.

In Case 4, a minute disturbance will produce an oscillation
which will grow in the linear domain till the amplitude of the os~

cillation takes the machine into the nonlinear domain where the
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machine is stable, the oscillations will then damp out and the
motorcycle will return to the linear domain only to build up the
oscillation again. The resulting motion will be an oscillation,
like that of an undamped pendulum, with a critical amplitude that
lies in the region which distinguishes the two domains. Such a
behavior will indeed classify the motorcycle as unstable.

Hence the character of the motion is established in every one
of the above four cases on the Fesults of the linearized equations.
In the subsequent sections of this chapter, the definitions of un-
disturbed and disturbed motions lend further support to the above

| argument.

The Undisturbed Motion

In Chapter 8, the final linearized equation of motion is of the

form

d*e d’e d2e de
Roget + Auges * oAz gre * Mg,

+ AgO = 0 (1.8)

The characteristic equation of the above ordinary differential equa-
tion of the fourth order is
Aoy  +A, Y +A,y2 +Asy+ Ay =0 (1.9)
The solution of the polynomial (1. 9) gives four nonrepeating
roots, two real and two complex, in every motorcycle situation.
Y = YirY2r Y3, V4 (1.10)
It is now necessary to define the undisturbed motion of a motor=

cycle. The undisturbed motion of a motorcycle is the one in which

R —
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the motorcycle is travelling absolutely upright, apg straight

ahead at constant speed. If absolutely no disturbancesg act on

the machine, the motorcycle will keep travelling as gych for st

indefinite period. This is simply the Newton's Fjrg¢ Law regarding

a body at rest or in uniform motion not acted upon byany force. The un-

disturbed motion of a motorcycle as defined above requires
0(7o) = 8(7o) = 8(To) = 8(To) = 0 (1.11)

If the solution of the equation of motion corresponding to the

roots of the characteristic equation (1.9) is

0 = C eV +Ce" +Cie¥ + Gy, (1.12)
the initial conditions (1.11) give
Ci+ Cp+ Ci3+ Cq =20
viCp + v2C, + v3aCs + v4Cy4 = 0
v2Cy + Y3C + Y3Cs +vyiCy = O (1.13)
Y;C; + ¥23C, + ¥3Cs + vaCyq = O
and
det = |1 1 1 1
Y1 Y2 Y3 Y4
Y1 21 ea vé (L34
v oYs Y3 Y4

The determinant (1.14) can be recognized as Vandermonde

determinant, the value of which is not zero for nonrepeating roots
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det # 0 (1.15)
Therefore by Cramer's rule, the equations (1.13) give
C,=C, =C3 =C4 =0 (1.16)
That is, the defined undisturbed motion of the motorcycle is
corresponding to the trivial solution of the equation of motion. Or
in other words, using the subscript '"'u'" to denote the solution of
undisturbed motion,

O =0 =8 =6 =0 (1.17)

Eguation of Disturbed Motion

The general solution of a differential equation gives an un-
limited number of particular solutions corresponding to every arbi-
trarily specified set of initial conditions. As pointed out earlier,
in the definition of stability no perturbation forces were included.
All that is required is to specify one motion corresponding to the
general solution of the equations of motion and designate it as undis-
turbed motion to distinguish all other motions which are designated
as undisturbed motion. The choice of the undisturbed motion
described by equation (1.11), in addition to being the only logical
one, is mathematically very expedient.

Using the subscript ""u'" as before, to denote the solution of
undisturbed motion and no subscript to denote any of the other mo-

tions, the perturbation and their derivatives are
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% =8-=8

u
X = é-Ou

¢ (1.18)

x = 6-86

u
X = E -0

u

The equation of the disturbed motion in terms of perturbation
can be obtained by substituting equations (1.18) into equation
(1.8)

% d* d’ d? i
0 JoA (X H0) +A G (X+0) + A 7 (X468 )+ A3 (x40

+Al(x+0 ) = 0 (1.19)

From equation (1. 8) , the equation of the disturbed motion

becomes
dx* d’x d?x dx
Bo o7 A g3 tAz gz tAsg T Ax = 0 { 1..20)

The equation (1.20) has not changed in form and is same as equa-
tion (1.8), except that © has been replaced by x. In general, x
and 6 are not equal. However, in the case above, the peculiar
choice of undisturbed motion made equations (1.20) and (1.8)
identical.

Since the equation (1.20) does not change in the form, in
subsequent analysis @ has been used to represent the equation of
disturbed motion as well. In fact, 6 has been used synonymously

to denote both the perturbation and the steering angle.
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Routh Hurwitz Criteria

Without having to solve the polynomial (1.9), the Routh Hur-
witz method predicts positively the stability of a linear system.
The criteria for a nth degree polynomial is as follows.

Let the characteristic equation of degree n be so arranged
that apg > 0

=]

n
D(p) =0 =agp i—alpn toee ta

The following array is formed to investigate stability

D = a, 3, 0 g 5l 0
.. .
| a3 a, a
0 2
ag a, a, (1.21)
Yol -3 * T %h

in which all letters with subscript greater than n are replaced by
zero.
In order that the system be stable, all successively larger

determinants on the main diagonal (the principal minors)

, etc. should satisfy the inequality
63 az

A >0 (i = 358 vaspmt) (1.22)
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This is because all the roots of the characteristic equation
will have negative real parts if and only if all Ai > 0. Thus, any
determinant coming out negative means that there is at least one
positive root and the entire system is unstable.

This criteria can readily be used as a convenient tool to check
the stability of an isolated case. But for comparison purposes the
knowledge of the roots themselves is essential and the polynomial

(1.9) has to be solved.

Supplementary Stability Definitions

In a recent S.A.E. seminar (S.A.E. Journal, Feb. 1964), two
terms, ''Neutral Stability'" and '"'Asymptotic Stability,' were defined
and recommended for the use of S.A.E. Recommendation Practice.
These terms only express the concepts which Lyapunov gave,when
he defined some basic terms and formulated his theorems in the
development of his second method.

The S.A.E. definitions are as follows:

Neutral Stability exists at a prescribed trim if a temporary
change in control or disturbance input can be found such that
the resulting motion of the vehicle remains arbitrarily close
to, but does not approach, the motion defined by the trim.

Asymptotic Stability exists at a prescribed trim if, for

any small, temporary change in control or disturbance input,
the vehicle will approach the motion defined by the trim.
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Lyapunov defined two concepts for a function "V' of the

variables involved in the equations of motion, and called them ''sign

definite'" and "'sign constant.'' His theorems are as follows.

Theorem A: If for the differential equations of a perturbed
motion, it is possible to find a sign definite function V,
the total derivative of which with respect to time qav (by
reason of the equations of motion) is a sign constant function

opposite in sense to V, or which identically reduces to zero,
the unperturbed motion is stable.

Theorem B: If for the differential equations of a perturbed
motion, it is possible to find a sign definite function V,
the total derivative of which with respect to time dv (by
reason of the equations of motion) is sign definite function

opposite in sense to V, the unperturbed motion is asymptoti-
cally stable.

The stability situation resulting from Theorem A is what the SAE
definition of Neutral Stability signifies, and the Asymptotic Stability
of the S.A. E. is the consequence of Lyapunov's Theorem B.

In a motorcycle, the asymptotic stability is desirable. Neutral
stability can be accepted if the actual motion stays very close to the

undisturbed motion defined earlier in this chapter.



CHAPTER 2

TIRE FORCES AND MOMENTS

In a four-wheeled vehicle, aside from aerodynamic inputs, all
other forces influencing the motion of the vehicle are applied
through the tire road contact. But in a single track vehicle, such
as a motorcycle, even a straight ahead motion is affected by the
centrifugal force, the vehicle must generate ( by going momentarily
into a curve) to resist a fall that may have initiated. Momentarily
going into and out of curvature is strongly related to the forces and
moments generated at the contact patch of the front wheel.

The primary forces and moments which affect the directional
control properties of wheeled vehicles are those between the road
and the rolling tire. These moments and forces are nonlinear func-
tions of a large number of parameters such as slip angle, camber
angle, vertical load, tire road friction coefficient, and traction
force, among others. The interaction between the tire and the road
is a distributed force system over the contact patch, which is made
up of normal pressure and shear stress distribution. How the stress
distribution varies under the influence of circumferential forces has
not yet been investigated. H. Martin (Ref. 6) supports the approxi-
mation of the true pressure stress distribution over the length of
contact surface by a quadratic and the true shear stress distribution

21
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by a cubic parabola. So far, no analytical study has resulted in
a sufficiently accurate mathematical model to satisfactorily rep-
resent the complex interactions and nonlinearities of real tires.

Lately, some elaborate tire testing machines have been de-
veloped on which extensive tire testings have been done (Refs.

8, 17, and 18). But tire data for the tires used for Harley David-
son Machines are not available. Since for the stability study, ma-
chine constants themselves are not taken for Harley Davidson
motorcycles, the actual tire data for the tires used on those ma-
chines are of little consequence. The machine constants are taken
from Ref. 4, which are representative of any motorcycle.

A variety of tires were tested on G. M. Tire Testing Machine
(Ref. 17). Though one type of tire was different from another, the
general tire characteristic is very much the same for all tires,
especially at small slip and camber angles. This fact suggested
a possibility to use the G. M. tire data in establishing a system
of linear tire constants, valid for small values of @ and ¢, to
investigate the stability of motorcycle. To fully comprehend the
assumptions made regarding these tire constants, a brief outline
of the general tire characteristics is in order. This outline is given
later in this chapter.

In including the tire effect to study the motorcycle behavior, all

the terms denoting tire forces and moments, and related geometrical
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configurations have been used according to the revised definitions
or Nordeen and Cortese (June 1963, Ref. 17). These definitions
have been approved in a recent S. A. E. seminar at Detroit as the
basis for an S.A.E. Recommendation Practice. The S.A.E. approved
definitions require the use of "inclination angle'" instead of '"camber

angle'" as suggested by Nordeen and Cortese.

Basic Definitions

The tire terms involved in the stability study have the following

definitions.

Wheel Plane is the central plane of tire, normal to the axis
of rotation.

Wheel Center is the point at which the axis of rotation inter-
sects the wheel plane.

Center of Tire Contact is the intersection of the wheel plane
and a vertical plane through the axis of rotation of the wheel
projected onto the road plane.

Origin of the Tire Axis System is the center of tire contact.
The x, -axis is the intersection of the wheel plane and the
road plane with the positive direction forward. The x;-
axis is perpendicular to the road plane with the positive
direction downward. The x,-axis is in the road plane with
an orientation to make the axes system orthogonal and right
handed.

Tractive Force is the component of the force acting on the
tire by the road in the x, ~direction.

lateral Force is the component of the force acting on the
tire by the road in the x,-direction.

Normal Force is the component of the force acting on the
tire by the road in the x3-direction.

Overturning Moment is the moment of the forces acting on
the tire by the road with respect to x, —axis.
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Aligning Torgue is the moment of the tire contact forces
acting on the tire by the road with respect to x; —axis.

Slip Angle is the angle formed between the direction of
travel on the center of contact and x, —axis.

Camber Angle is the angle formed between the x, -x; plane
and the wheel plane.

Cornering Force is the lateral force when the camber angle
is zero.

Camber Force is the lateral force when the slip angle is
ZEero.

Cornering Stiffness is the derivative of cornering force
(lateral force — S. A.E. definition) with respect to slip
angle evaluated at zero slip (S. A. E. definition does not
specify 'at zero slip').

Camber Stiffness is the derivative of the camber force

(lateral force — S.A. E. definition) with respect to

camber angle evaluated at zero camber angle (S.A. E. definition
does not specify 'at zero camber angle').

Applicable Tire Characteristics

One of the most significant characteristics of the tires is that
tire forces and moments are quite independent of the road speed
(Ref. 18). Since in the stability study, only very small values
of & and ¢ are involved, the tire characteristics for small slip

and camber angles are outlined below (Ref. 17).

Up to about 13° slip angle, the cornering force varies
linearly with slip angle and is independent of normal force.

Up to about 1%“ slip angle, aligning torque does vary
linearly with slip angle, but is affected by the normal
force, the greater the normal force the more is the align-=
ing torque. The same is true for overturning moment due
to slip up to about 1° of slip angle.

The lateral force, developed by camber at zero slip angle,
is approximately a linear function of camber angle for
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camber angles less than 5°. Change in lateral force
even at 1" of camber angle can be perceived.

Aligning torque at zero slip varies linearly with camber
angles up to about 3°. For large normal force, the
aligning torque is independent of normal force at small
camber angles. But for smaller normal force (of the order

involved in a motorcycle), the aligning torque depends on
normal force.

Overturning moment due to camber is a linear function of
camber angle for camber angles less than 2°. Up to about

1° of camber angle, the normal force does not affect the
overturning moment.

Assumptions

The slip and camber angles in the stability study are of the
order of only a fraction of a degree. Therefore on the basis of
the results of Ref. 17, as described above, all the tire forces
and moments are assumed as linear function of slip and camber
angles. For such parameters as are affected by normal force,
interpolation has to be made to determine the suitable constants.
Since the motorcycle tires are of smaller size than those tested
on G. M. Tire Testing Machine, 75% of the forces and moments
generated on G. M. tires can arbitrarily be taken as one repre-
sentative set of figures for motorcycle tires. There is no practical
data to justify this arbitrary value, but the fact that.the solutions
have been run for a range of such fractions, does cover all the
tires possible. The objective is to work out a suitable and con-

venient method to include the tire effect and investigate the



26

qualitative correlation of analytical results with what was observed
in the test runs on the road.

Another assumption is that the motorcycle tires are symmetrical.
If there is a nonsymmetry in the tires, there will be lateral forces
and moments even at zero slip and zero camber angles.

If )\ is the slip angle and B the camber angle, the following

linear relationships are assumed for very small values of A and B.

Slip:
Lateral force = = K, X [lbf] (2.1)
Aligning torque =+ K, \ [lbf- ft] { 2.:2)
Overturning moment = + k3 \ [lbf- ft] (2.3)
Camber:
Lateral force = + kgP [lbf} (2.4)
Aligning torque =+ kg5 B [lbf- ft] (2.5)
Overturning moment = = k¢ f [lbf- ft] (2.6)

The sign conventions and tire force and moment configurations

are shown in Fig. (2.1) and Fig. (2.2).
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CHAPTER 3

MOTORCYCLE MOTION PHENOMENA

A stationary motorcycle, which is symmetrical about its longi-
tudinal axis, if set upright and straight ahead, will stay as such as
long as it is not disturbed by any outside force. But this is a very
unstable equilibrium, since the slightest deviation from the critical
upright position will result in the motorcycle falling down on its
side under gravity. However, a motorcycle in motion does not fall
flat,even when it is leaned to either side considerably. The force
that balances the gravity, is the outward centrifugal force. A mov-
ing motorcycle continually experiences small disturbing forces from
road irreqularities, wind, inadvertent movement of rider, etc. These
disturbances keep the motorcycle deviating from its upright position.
If, while in motion, the motorcycle were as incapable of opposing
gravity as it is when stationary, no amount of input from a rider sit-
ting on the machine, either on steering or by shift of his weight, will
keep the machine from falling over. But in motion, a motorcycle is
capable of generating forces to keep itself upright.

The steering geometry of a motorcycle is such as to turn the
front wheel in the direction of the fall, thus throwing the machine
momentarily into a curve and developing a centrifugal force, which
not only prevents the fall, but also restores the upright position.

29



S —=nl e

If the centrifugal force acts longer than is required to straighten

the motorcycle up, the motorcycle leans over on the other side.
This will turn the front wheel in the new direction of fall and the
machine goes momentarily into an opposite curve giving rise to a
centrifugal force in opposite direction, again resisting the fall.
In effect, the motorcycle behaves like an inverted pendulum. A
stable motorcycle is the one which will oscillate with an ever-
decreasing amplitude, and come to upright position after a finite
number of oscillations.

The correct steering response is therefore the key to the sta-
bility of motorcycle. Steering response depends on a number of
factors. If the driver effort is excluded, the forces and moments
tending to turn the front wheel come from the road contact patch.

In addition to the tire forces and moments, the gyroscopic effect
of the rotating parts and moment of the gravitational components
affect the steering response.

The input by the driver on the steering is to assist the steering
response, a skill which is learned by practice. Consider a motor=
cycle which has neither a tendency to build up the oscillations nor
to damp them out, or in other words, the motorcycle is acting like
a pendulum. Also consider that the rider is rigidly connected to the

rear system, and is applying no input to the steering bar. If this
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machine is given only one slight disturbance, it will begin to os-
cillate at a constant amplitude. The oscillations will not die out,
until the driver applies hiscorrective input on the handle bar

and brings the machine back to steady upright motion. The ma-

chine can be brought to steady straight motion by any of innumer-
able possible inputs by the driver. The transient time will, of course,
depend on the particular driver input. Different riders will react to
the same situation differently and impose on the machine different
inputs. Even the same driver is very unlikely to give identical in-
puts twice against the same disturbance. In an actual case, how-
ever, the motorcycle is not subjected to just one disturbance, it
experiences continually, unknown disturbing forces of small magni=-
tude. On such a machine, which has no tendency to damp the mag-
nitude of the oscillation, the rider must constantly endeavor to damp
out every disturbance the motorcycle experiences. And if the motor=
cycle is unstable, i.e., it has a tendency to build up the oscillation,
the rider will find himself continually struggling to keep the machine
under control. Only if the motorcycle is stable,will it absorb all the
small disturbances with little or no driver effort. The fact that the
disturbing forces under discussion are of very small magnitude, needs
emphasis. No matter how stable a machine may be, it cannot sustain

a strong disturbance say in the form of a hard push. Even a disturb-

ance of finite magnitude, if applied at critical instants (resonant
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pushes), will render the machine oscillate with ever-increasing

amplitude. Therefore it is only with respect to small disturbing
forces that the stability has any meaning. The important point

is that the motorcycle should be capable to sustain the small dis-
turbances and tend to damp the resulting oscillations out.

The center of mass of the front system is usually ahead of the
steering axis. When the motorcycle leans, the moment due to grav-
ity component normal to the plane of the front wheel tends to turn
the front wheel in the direction of the lean. This moment is really
a static moment independent of road speed. It acts as long as the
machine is not vertical, and opposes the return of the front wheel
to straight ahead direction even when the motorcycle starts to return
to upright trim. It decreases with decrease in lean and becomes
zero for the upright and straight ahead position of the motorcycle.

The gyroscopic effect of the rotating parts always imparts
directional and attitude stability. This effect is shown by the dia-
grams of Fig. (3.1) and Fig. (3.2), for a motorcycle which has been
disturbed and has sharply turned towards left. The diagrams indi-
cate the chain of events illustrating the gyroscopic effect.

Tire forces and moments play an important role in establishing
the resultant steering response. The directions of these forces and
moments, resolved into the components parallel to body fixed axes

of the two systems, are shown in the diagrams of Fig. (3. 3).
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Gyro Reaction (+) about x, -Axis.

x
311
Fig. (3.1-d) Reaction at Front Wheel (=) Due to Gyro Reaction
about x; -Axis on Rear Wheel.
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Wilson-Jones (Ref. 22) used a method of block diagrams to ex-
plain the mechanism of motorcycle motion. A modified and more
comprehensive block diagram, including all the factors affecting the
stability, is given herewith to explain the rather intricate motor-
cycle motion phenomena. This would be very difficult to explain

in any other manner.
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CHAPTER 4

EXTERNAL FORCES AND MOMENTS

Basic Variables

Strictly speaking, five coordinates are necessary to completely
describe the position of a motorcycle. Two coordinates establish
the point of contact of rear whee'l, two angles give the angle of
the plane of the rear wheel, and one coordinate determines the
angle between the frame and the front wheel. An additional require-
ment is that both wheels must always remain in contact with ground.
With five degrees of positional freedom, the vehicle has only three
degrees of freedom of motion. They are (i) lean of the frame (roll),
(ii) rotation of the hinged part about the steering axis, and (iii)
the forward motion, whose direction has already been determined by
the position of the front wheel. The motion is nonholonomic.

The stability consideration is for a straight travel which essen-
tially means that the average path of the two wheels is straight and
the actual paths of both wheels are very close to the average path.
Therefore, two space coordinates locating the rear wheel are incor=
poreal. In other words, it does not matter as to where on the road
the motorcycle is located at any given instant. The two angles
needed to describe the rear wheel may be ¢ and the rotation about

x3H—axis. The rotation of rear wheel about x3H-axis is negligible,

41
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Hence two angles 0 and ¢ are adequate to completely describe
the position of a two-wheeled vehicle for stability study. It is in

terms of these two variables that the final equations have been

established.

Sign Conventions and Basic Assumptions

X3 direction is taken as positive downwards in the dire-‘ion of
gravity force and right-handed orthogonal system is taken as the
coordinate system, Fig. (4.1).

The motorcycle is assumed to be made up of two connected
physical systems. The front system is made up of the mass which
rotates about the steering axis with respect to the remaining mass
in the rear. This remaining mass is the rear system. The two
systems are supposed to be connected at an imaginary separation
point which is in equilibrium. The origins of the body fixed right-
handed orthogonal axes of the two systems are their centers of gravity
respectively.

Right-handed screw rotation is considered positive and is de-
noted by a vector normal to the plane of rotation. Although the ad-
dition of two rotations corresponds to the product of two matrices,
which is not commutative, the rotation vectors are considered com-

mutative since only very small rotations are involved in the motion for

investigating the stability.
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Rigid Body Motion

If rS be the position vector of an elementary mass &m of
a rigid body relative to an arbitrary space fixed orthogonal axes
system, and if m be the total mass of the body with T the posi-

tion vector of its center of gravity, the following relation can be

written
" mr = ¥bdmrg (4.1)

E Let PS be the force acting on the element of mass 6m, then

: 6mT, = F (4.2)
S S
Summation for all the elements of mass gives

t z6mE = TF (4.3)
or mf¥ = F (4. 4)
where F is the external force acting on the body. The internal

forces vanish in the summation.

The following relationships hold for the moment of momentum

about the origin

d - b _ - = P

dT(rsXémrs) = B KT (4.5)
and

a4 (F X6mr)) = =(FT XF) (4.6

ar ‘2l I s = &L S 6}

In the summation of moments of forces, the internal forces vanish,
and therefore the rate of change of total angular momentum about

the origin is equal to the total moment of the external forces about

the origin.




let T. =T +
& P

4.7
. (4.7)
so that ES is the position vector of element 6m with respect to

the center of gravity, and also by the definition of center

of gravity = ém ES = 0. Then

d - - d o - —_— .
e X = X e}
dTE( Iy 5m1"5) ar (Zom(r+ PS) (r +PS))
= i(mTr>< T+TXSémp
~dT = Ps
- iy —XL
(Z 6m ps) XT +z(6mps ps))
= mTXT +Qz{5 P Xp)
- dt M By iy
and
=(r XPS) = z(rXFS+ pSXFS)
= & = o X_
erPs+z(ps PS)
= rXmT +3(p XES)
Therefore
d s = B - =
o >(6m P X ps) = 2(ps><FS) (4. 8)

The motion relative to the center of gravity may be represented
by a rotation vector @ = _i—m1+ JTmz + Ew3 through the center of gravity,
then

}3'5 = wX ES (4.9)

Since orientation of space fixed orthogonal axes is arbitrary,

the space fixed axes can be assumed to be parallel to the body

fixed axes instantaneously. The angular momentum L about the




center of gravity can then be expressed as

= 2(émp XTP
L =( me ps)
= E(ﬁmﬁsx (GXEF,))
or, expanding the triple cross product
L=6G3 2 - P -3)p ]
W <5JmpS Eém(ps w)PS (4.10)
If ps =03 gs + j g + k?;s, then

L = oxam(€Z + 0l +L2)
| mTom(f e +nw, L w ) (TE +Tn +£;S)
E = iL, + JL, + kLs (4.11)
where

| L = Ihw + 1w, + 130, (4.12-a)
l[{ L, = I w0 + Ipw, + Iw; (4.12-b)
; Ly = Iyw + 3w, + I3ws (4.12-c)
FE The nine coefficients I,,, I,,, etc., are nine elements of trans-
| formation matrix. The diagonal elements are familiar as moment of

inertia and the off diagonal elements as product of inertia. They

are
Ly = zém(n? + L2) (4.13-a)
Ly = Tém(L? + E2) (4.13-b)
sy = Tém(EZ + n?) (4.13-c)

Ly = Iy = -2émE n (4.13-d)
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Ins = I3, = - Zém HSQS (4.13-¢e)

Iy = Iz = *Eémésés (4.13-1)

Due to symmetry of the motorcycle, four of the products of
inertia are zero. .

L = Iy = In =13 = 0 (4.14)
Since the body fixed axes themselves are rotating with angular

velocity ©, the external moment is

M = QLJrQXi
dr
= 1L, + jL, + kLs +a %L (4.15)

and the components are

M, = L +w,Ll3 =wsl, (4.16-a)
M, = L,+wsL, =w Ly (4.16-D)
Ms = Li+w L, -w,l, (4.16-c)

Thethree components can be written in one compact form
M, = L, +w,L, —w L, 4.17
i i wJLk ka] ( )

Rotating Parts

A motorcycle has rotating parts which contribute to the angular
momentum. The angular momentum due to rotating parts can be ex-
pediently regarded as due to an imaginary equivalent rigid body whose

angular momentum has two zero components and whose third component

is I'Q , where I' is the equivalent moment of inertia and  the




angular velocity of the rear wheel. The equations derived above

are valid for this rigid body also, and the external moment will be
equal to the sum of the time rate of change of the two angular mo-
menta. Using prime notations for the angular momentum terms of

the imaginary body, the components of external momement are

M, = Ljtol -wl + I:.‘i oL - ka'j (4.18)

For the imaginary rigid body

Ly = 0, I = 0 (4.19)
and therefore their time derivatives

LYy =Ly = 0 (4.20)
The third component is

I, = I'Q (4.21)
and its derivative is

I, = I'®= 0 (4.22)

since the stability analysis presumes that the motorcycle is travel-

ling at constant speed in very near straight ahead and upright position.

Moment Components

The three moment components can finally be written from equa-

tions (4. 16) and equations (4.18) through (4.22).

M; = L; +wyL3 - wsl, = w3 I'R (4.23-a)
M, = L, +wsL, —w, L3 (4. 23-b)
Ms = Ly +w,L, = w,L; +wsI'Q (4.23-c)
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Equations (4. 12) and their time derivatives along with equations

(4.23) give

M, = I0 = (I, = Is)waws + Iz (b3 + wywp) = 'S (4.24-a)

M, = Iw, = (Is3 = I;;)wsw, + Liz(ws? = w,?) (4. 24-b)
M; = Issws = (I; = Ip)w,w, + I3 (@) - waws) + I'Qw, (4. 24-c)

Force Components

Taking into account the rotation of the body, the translational

acceleration vector may be written as

a = V+aXvV (4. 25)

The components of the acceleration are

a, = V; + W3V, =W, V;3 (4. 26-b)
ds = 63 T WV, T w,v, (4. 26-c)

or, in compact form, these components are
a, = VvV, +w.v, —w v, 4.27
i i ik “x j ( )
The three components of external forces are

Fi = m(vi + mjvk - mkvj} (4.28)

Rotational Components and Slip

If there is no slip for tires in Fig. (2.2), the angle between the
path of the front and rear wheels is given by the following trigono-

metrical relation,

Cosa

tany = cos¢ cotl - sindsin® ks @)




49

In the close neighborhood of upright and straight ahead position
of the motorcycle, in which the stability has been investigated, both
¢ and O are very small. Therefore the following approximation is

valid

Y = 0O cosa (4. 30)

Before introducing the slip term, some assumptions are necessary.

It seems quite logical to assume that for perfectly upright and straight
ahead position of the motorcycle, i.e., for absolutely straight travel,
the slip is zero on both the wheels. When the handle bar is turned,
slip appears since the path of the front wheel is not described by the
geometrical intersection of the plane of the wheel and the ground.
The same is true for the rear wheel as well. Slip,\, the angle be-
tween the path of the wheel and the geometrical intersection of the
plane of the wheel with the ground, is zero when 6 is zero and
increases as © increases. It is assumed that for very small values
of © involved in the stability study, the slip varies linearly as 6.
This assumption may, at the first glance, appear quite arbitrary. But
the implication of this assumption, that the cornering force for small
values of 0 will vary linearly with 0, seems to support its validity.
The slip will therefore be expressed as a fraction ¢ of the steering
angle 6. The following relation for | can thus be written,

b = (1=-0)0cosa (4. 31)

where the total slip is o0 cosa.

s

e A i e e SR B b

T o e R a1 T e

= PR
v h—
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The use of the term ''total slip" is intended to signify that slip
is present at both, the front and the rear wheels. If X_ and X\

I II
are the slip angles of the front and rear wheels respectively

A - = .
| I' + | ?\H| o0 cosa (4.32)
The major portion of the total slip will be on the front wheel.

Assuming for the front wheel

?\I = z(o0 cosa) (4.33)

the slip on the rear wheel will be
)\II = (1-2z) (o6 cosa) (4. 34)

There is no way to determine experimentally the value of 2z
(and even o) accurately for various motorcycle situations. A typi-
cal value of z may arbitrarily be .75 implying that 75% of the
total slip occurs at the front wheel. The solutions have been run
for a range of values of z and for various values of o.

Another assumption made in establishing the egquations is that

the contact patch of the front tire does not move laterally, since 6

involved is very small.

Referring to Fig. (2. 2)

= ) o2 =
VII V. Ccos | = rIIQ'II
and VI — rIQI
r Q
Therefore Q. = I i1

(4. 35)
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|
| The angular velocity of the rear system about a vertical line is
|

v_ sings padll S 7
_ _ Al i Bl I, .
. = R = R tan (4. 36)

} The angular velocity components for system II are therefore

| ©y 1 = + & (4.37-a)
I
= i = - | i -
\ w, i + W, sing R QII tany siné (4. 37-b)
! W =+ w_Ccos¢p =~ I Q__tan) cosg (4. 37~
\ 311 v - R II 4 P - C)

l Since the two wheels are of the same size, rI — rH and both

r. and r__ are replaced by r. Also, since

I I will be expressed

I

in terms of Q I the subscript "II'"' may be dropped henceforth and

"Q" may represent the angular velocity of the rear wheel. So, the

components of the angular velocity vector of the rear body-system

are
@ = b (4.38-a)
Wy = " én tany sind (4.38-b)
Wy = - én tany cosd (4. 38-c)

The angular velocity vector of the front body-system will be

equal to the angular velocity of the rear system &__ plus the angular

II
velocity of steering rotation. The angular velocity of the rear system

can be resolved into components parallel to the body fixed axes of

the front system.
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The transformation matrix is

J cosa cosb sin® -sina cosB
=cosa sind cos6 sina sin@
sina 0 cos«

and the angular velocity components of the front system are

0= q) cosa cosO -‘é Q tany( singsin® - cos¢ sina cosh) (4.39-a)
Wy 1= -dcosasind - é 2 tany(sing cosd + cosd sina sinbd) (4.39-b)
wyp = b sina -é Q tany cosd cosa + 0 (4.39-c)

Translational Components

Referring to Fig. (4.1) the following relations can be written for

the rear system

Vim T T T

= =12+ -F%Q antanqj sind (4. 40-3)
Vo = Ppé e

= hH&a & aH 'I%Q tany cosd (4.40-b)
Vanr T T %an

= aII é Q tand sind (4. 40-c)

and for the front system

Vv _ cosa _ .,
11 - V111 cosy 1721
cosa a1 _ ‘ o
) - T # e 4. 4]-
o Coqu( b R tanp sing) + 1 I((3050; sin@¢ ( a)







L

+ R 2 tany( sinp cos® - cos¢ sina cosB)) (4. 41-a)
(cont. )
Vg = By Ry
= -aI( b sina —éQ tany cosé cosa + 0) (4. 41-b)

g hI(J.: cosacosf - Fi{ﬂtanm( sing sin® - cos¢ sinacosB))

sina
cosuy

- a ($ cosa sind + éQ tany( sing cos®
+ cos¢ sina sinB)) (4. 41-c)

Angular Acceleration Components

Equations (4. 39) and (4. 38) may be differentiated with respect

to time to give the angular acceleration components of the two body-

systems.
L:JlI = cosa(cos®é - sinbd0) - rEm sec?y siné sin6
+ tany(cosé sin®d + sind cosOH)
- sine( sec?y cos¢ cosBy - tanl(sine cosd ¢
+ cosé sin66))) (4. 42-a)
QZI = cosa(sin®d + cos0d + 6) - én( sec?y singcosO

+tanl(cosd cos®d - sing sind 6)

+ sina( sec?y cosé sind® - tany( sind sin®d cosdcosd 8)))

(4. 42-b)




E'*’j - ¢ sina - E Q( sac?y cosd LL - tany 511’143‘1-) )+ & (4. 42-c)

“i1 T ?
w = = i:]2( sec®y sinq)::h + tany cosd d)
211 R
r - -
W xp = = EQ( sec’y cosdl = tany sind )

Translational Acceleration Components

Equations { 4. 41) and ( 4. 40) can be differentiated to yield the

translational acceleration of the two systems.

. sing I o
= r{ cosa GU(-1+—"tany sin
Wi, = [coszq;“'J( R, Ry Bl @)
a - .
B oo (sec?| sing | +tany cosdd))

W

+ hI(cosa(Zﬁ sin® + $ 6 cos6)

+ = Q(sec?y sino COSG(]J +tany(cosd c:ose&)

o |

- sind sinB 0) + sina(sec?y cosd sinef‘_;
- tanW( sind sin®d - cos ¢ cos0h))) ( 4. 44-a)

. r .
='=a (¢ sina - R Qcosa(sec*d cosou

Vo I

tany singd) + 0) + hI(com(cosOEf)

sin® & 6) - *é Q (sec®y sing sindu

+ tany (cosé sin 8 + tany sing cos68

sina(sec?lcosdcosd | - tany(singcosO ¢

+ cosd sind 6))) ( 4. 44-b)
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Vi, <2 = pEY & b+ ¢ sin@ ¢
Vir I ina 2 g+ dI(COSG’( inB¢ + cosb6$B)

Y

Q (sec?y sind cosO + tanl(cosd cosO b

=}

- sin¢ sin® 0) + sina(sec?y cosé sind

- tany(siné sin®é + cosd cos06))) (4. 44~c)

V. _=—Qa_ (secty sindl + tany cosd é) (4. 45-a)
1IT R IT

\}2 = hHEﬁ = B Er Q (sec?ycosd - tany sing ) (4. 45-b)

{r3 = 3 Er Q (sec?y singd + tand cosd é) (4. 45-c)

Resultant Components of External Forces and Moments

Referring to Fig. (4.1) and considering the tire forces defined

in Chapter 3, the following force components act on the front system.

_ _ _ 242 _ R
FJI TlCI TJPI CIr Q°cosa mIg cosP sina
+ z(Klve)cosa sinp sina + (x4§3) sinB sina (4. 46-3)
FZI == TZCI + rnIg sinp + z(xlue)cosﬁ cosa + (K 413}00553 (4.46-Db)
= = = 202 =4 ~
P.’:I = TBCI TBPI CIr Q°sina + mIg cosP cosa
- z( xlcr@}cosza* sinp - (K4I3) sinp cosa (4. 46-c)

The following force components act on the rear system.

= - - - ré Q2 4. 47-a
Pl ™" Ticn ~ Tienr ~ o ( )
F = ing —(1- 0 5@ COSd+ cosd
211 TZCII+ mHg sing = ( Z)(KIU ) cosacosg (K4¢)

(4. 47-b)



- -7 + m_gcosd + (1-2z) (Klﬂ'o) COsa sing

3CII  ©3PII II

= (l{_itp) sing (4. 47-c)

There is an equilibrium at the separation point. Therefore,

- 1 4 0 . . A i
Ticm = TagpSin@ + Ty cos cosa + T, . sinb cosa (4. 48-a)
Tocm = Tag©0s9 = T)gysind ( 4. 48-Db)

= ‘== e ..‘I T S‘ . : - _}r ) .
TBCII TlCI CosU sina TZCI in® sina + 1301 cosa (4. 48-c)

Combining equations (4. 47) and (4. 48) gives the following

three equations.

F1 I = TlPII = TBCI sina - TlCI cosO sina - TZCI sinf cosa
=C_ra° 4. 49-a)
II
FZ = TJCICOSB = TlCI sin® + qu sing
= (1l-z) (KIUB) cos@ Ccosd + (K4d)) cosd (4. 49-b)
PSII . T3PII + TICI cosb sina + TZCI sin® sma—TSCIcosa

+ mHg cosd + (l-z) (Klge) cosa sind

- (K4¢} sind (4. 49-c)

From Fig. (4.1), the following moment components can be

written for the front system.




=N - & S ina
MII 1lCI TECIdI + z{xzcr 0)cosa cosp sina

= (K5ﬁ)cosﬁ sina - z(x}vﬂ]cosza - (Kbﬁ)COSQ

- z(k.00) hICOSu cosf3 - (Kéﬁ)hICOSf)

1

M, =T

21 TapPr " Tpfy ~ M

2c1~ Ticr?r T Tsefs

- CIrZQ"’(bI-hIcos&) - z(k_,00) cosa sinP

2

+ (r<5}3) sinp + (z(chr B)cosa + {K4|3)) (sina hI

+ cosa aI) sinp

MBI - M3CI - TZCIEI + z((xlcrO)cosa cosf aI

- (chre)cosza cosP - (k,08)cosa sina)

3

+ (K4b)cos;’3 aI + (KSB)COSﬁ cosa = (k,B) sina

6!

The following moment components act on the rear system

M =

11 T.ZCIIdII = MlCII + (1=2) ( k0 0) hII cosa cos ¢

+ (1~=z) {K30'8)C050’ {K4¢)thos¢ = (x6¢)

M =T

22 —
aft = Tipiqy O @ (b Ry

it T Taprton

+ T d..+ M +(l"Z)((l(lJ8)a

.
seir 11 T Ticr®n T Macnn I1

+ (chre))co.ﬁu sing - ( K4dp) staH

+ (x $) sing

(4.

(4.

(4.

50-a)

. 50-b)

. 51-b)



Myt =~ TP ™ Magn ¥ Tagply ¥ (172 (Uee)ay
+ (xzure)cosa)cosq} - (K__lcj))co‘;-:\;)an
- (K59‘J)COS¢>
There is a moment equilibrium at the separation point.
MICII - MBCISim + MICICOSO cosa + MZCISmB cosa
MZ.CII :-M'ICIsine + NIECICOSG
MBCII = MSCICOSQ’ = MiCICOSO sina + MZCI sin@ sina

give

M

M

111

2T

(4. 51-c)

(4.52-b)

(4.52~c)

Equations (4. 51) together with equations (4. 48) and (4. 52)

= (Tj cosO = T

2C1 jetn Gd, ~ M

3C

- M cosO cosa = M

1CI 2CII
+ (1-2z) ( (sclcre)cosc}) hII + (KSU'G))COSQ‘
- IS = — -
(K4¢)“IICO:‘¢ (Kb(r))

= i 20y 2 i - 7
+Cr* ¥ (b =h,) = T

Tl PIIhII II II

+ (=T cosB sina - T2

ICII CI

+ (

T3CI5ma« N TlCICDSO cosa + TZ

] in® + M.
+ WICI sin® 4 MZCI

+ (k,00))cosa sing - (|-c4d>) sind a

sina

I

sinB cosa

sin® sina + T

CI

cosB + (1-z) ((k.0B)a

1

T
II

3PIIOII

3CI

sin® cosa)d

II

(K SLI*) sindg

cosa) 4

II

II

(4.53-a)

(4. 53-Db)




==-M C cosa = M, .. cos0 sina - M,
2

o

+ {TZCI cos@ - T 5in@) £ _

i

{ 1=2)

.. s8in@ sin«
Cl

{ (v .0B8)a

1 IT




CHAPTER 5

LINEARIZED EQUATIONS OF MOTION

linearized Velocity and Acceleration Componéents

Since the stability study is concerned with the motion of the
motorcycle running at constant road speed in very nearly upright po-
sition and straight ahead trim, the angles © and ¢ are of very
small magnitude. The terms involving the sum of first order and
higher order quantities of small magnitude can be linearized to re-
duce the formidable size of the equations of motion and render the
solutions possible.

The following approximations are valid

6 << 1
b << 1
sin ¢ = o
cos ¢ =1
sin®=8
cos 6 =1

tanb =4 = (l=0) 0 cos

L{:f = (1-0) 0 cos «

sinp=p=¢ +0 sina
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Linearized Angular and Translational Velocities

The linearized angular and translational velocity components

are
o = i21c05&+§9 sina cosa (1-o) @ (5.1-a)
War = 0 (5.1-Db)
s . I :
w o = ¢ sina - Rsz cos?a(l-c)0 + O (5.1-¢c)
W g = 0 (5.2-a)
W =) 5.2
211 [8+25)
r
- == 1= ~OS o -
31T Ru{la')GL,o‘_a (Hi2-c)
V]I = =r §l cosa (5, 3=a)
v, = - ald sina--éﬂcosza(l—q)8+é) (5.3-b)
+ hI COS:r((-_,m hé@ sina(l-0) 0)
v,. = =rf sina (25 ... 36)
>l
lII‘ - 2 (5.4-a)
.ar
Vorr© thJ ———-R Q cosa(l-a) 6 (5.4-b)
— O 5.4~
V31r ( @)

Linearized Anagular and Translational Accelerations

The linearized angular and translational acceleration com-

ponents are

dJH = $cosa 'réﬂ sine cosa(l-o) B (5.5-a)

L:.J = 5_"._‘

ag = ¥ (5.5-Db)
6. = & sine ~~Qco?a(l-0)d + 8 (5.5-c)
31 R




63

'“L'm = & (5.6-a)
Wyt = 0 (5.6-b)
% I .
Warp = E.‘.‘z (1-0) 0 cosa (5.6=c)
\}H = 0 (5.7-a)
\}"I = - a{(.q') sina - é Q cosa(l-c) @ + 6)

+ hI(cosapr' + EYP sina cosa (1-0) 8) (5.7-b)
Vi 0 (5-7-¢c)
VHI- 0 . (5.8-a)
v = h.¢ = id Q(cosa(l-0) ) [ 5.8=)

211 II R

V'.%II —J0) (5.8-¢c)

Additional Approximation

The following additional approximations are also valid.

W, W = L, k=123

Linearized Force Components

The above linearized quantities can be substituted in equa-
tions (4-28) which are
F, = m(v, +wv, ~wV,
i m i Uik k ])

and are valid for both the systems.

“VSI} =0 (5.9-a)

)

11 ™Vt T

(%)

Far s mptVop +@a¥yp ~ @ Var

= mI( ( -aI sina + 'nI cosa) ¢ - aI'E'! + (é(aI
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+ h_ sina) (1-0) -1)1r Qcosa 0

I
1,,35-32
cosa(l-0) 0) (5.9-b)
n
rSI = mI(v31+wlIVZI_QEIVlI) = 0 (5. 9=c)
g™ ™ Vigteen Ve~ “snVan T O° (8 1050)
P = ; 5
21 PrVan T nVin T %n Vs
= ] = — Q cos =
'n_?I( '11 ) aII R osa(l-o) 0
+ % Q2 (1-0) cosad) (5.10-b)
Part™ ™ Ve Y9 T Yorr Vi T O (3. 107e)

Linearized Moment Components

The following relations for moment components for both the

systems can be written similarly.

M, = ina)d - I'Qsina ¢
1T (Ill ICObu + 113 ISlI‘d),J I[SZ sina ¢
i .._r o : iy = 1) ) .)
+ (R cosa(l-0) (Il 1 Isma I13Icosce) II) 26
+ I‘IEFQE costa(l-c) 0 (5. 11-a)
MZI = @ (5.11-b)
= i 3 & Y+ C6
M31 {I33Isma + IBIC‘osa)c{) = 1331 + C;8
+ I'I..Q cosad = Er” cosa(l-o) ( ISsICOsaf
C ok Bz o
- ) ! =g - 5. -
IBIsmu}G + II RQ sina cosa(l-o) 6 ( 5:11=¢)
5 r A )
= b - = - 0+ C,8 s
1\/[l I IllIIJ') IlBII RQ (l-0)cosab + fe Sinew
r 2 -
L LY = s 0 B.ld=a
+IHRP(lcr)(:o.f:uH ( )



Q-1 Q(l—a)caasu{nqémsa (5.12-c)

' i
I1 33IT R
Equations (5.9) through (5.12) together with equations (4. 46),
(4.49), (4.50),and (4. 53),and with the assumptions made in the
beginning of this chapter give the following twelve simultaneous
relations involving as many unknowns
TlCI o TIPI ~ Clrzﬂ'zzcosa -mg sina ) L

- Z(x la@} (¢ + O sina) sine + ((K4L‘1) + (xée) sina) (¢

+ 0 sina) sina = 0 (5.13)
= TZCI + TZPI - mIgtcp + 0 sina) + z(KJCrB)Cosa
+ {i<__}c:)) + (K;}O) sina = mI( (hlcoso: - a[sinaf) b
-aET+FI:Q cosa(l=c) (h sina+a.)é—r§2cosaé
I R I I
+ T3 Q2 cosa(l-0) 0) (5.14) it
i Y =~ . B - el I|.f.
TBCI v TBPI = CIlzfz?‘ sina + mrg Cosa L(xlde)\,u.u al o il
t.
+ 0 sina) - ((k ,$) + (% ,0)sina) (d+ 6 sina)cosa = 0 y
4 o =, T {h
(5.15) o
T — i 1€ = 5 — S = -292 = O .I
Pypp = T agptoR = Lyp @088 = By 3 000G = D g ) 4
(5.16) i
A
T_jGI = TlCIB + mHg¢ - (1-2z) (x lve)cosa + (K4¢) il
il | b - = 2 1= 3] }
mH(‘nIIq: aH R cosa (1-0) |

"l
—lr? Q2(1-0) cosab) (5.17)
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=5 m ; : _ ~ v
T3PH + Ter + T.?.CIIS“M S] TSCEL.OS-J + mng
+ (1—5}(:<160)Cosmb = {::4@-») & = 0 (5.18)
—T.EPIHI + MlCI - TZCIdI + Z( *(Klﬁ(-))nI
- (L\'ZU'G) sina - (KBUB)COSQ}COSQ = ((I<4cb)
+ (K__I_G} sina) hI =({ K5(p) + (KSG) sina) sina
B ((Kéif)) + (K,DB) sina)cosa = (Il”c:osa + IBIsma)qa
o T B . e
1iﬁsma¢ "R Q2 cosa(l-o) ( IllI sina Il3ICO_>-.¥) 6
) A .1 Loz 2l e _
IIQB TIIRQ cos“a(l-o)6 (5.19)
_ = - -7 d =- 2 )2
T3pP1 ~ Tt T Macr T Tier®r T Tagrtr Ot (b
"hIcom) + Z(¢ + © sina) ( (hlsma + aIcosa-) (KJG 8)
- (k Zae) )cosa + ((K4q1} + (p<40) sina) (¢ + 6 sina) (hIsina
+ aIc:osa-) + ((;<5¢) + (KBO) sina) (¢ + 6 sine) = 0 (5.20)
MBCI = TZCIEI + z cosa( ( wlaej aI - (KZU'G)COS&"
= (K3U—E}) sina) + {{KIJ:C{'.)) + (K48) sina) aI + (Ksc'p)
+ (KSO) sina) cosa - ((Kbcja} + (:<60) sina) sina
= (133I51na + IBIcosa) ¢ + ISBIB + IIQ cosa ¢
r L o . :
= R £ cosa{l-0a) (IBSICO.‘:Q’ IlSIsmaf) 0
! Er 2%sina cosa(l-0) 0 + (8 (5.21)




LR =T

- M cosa 8 + (1-2)((wx .00) h

+

Tiprr
o T :
2

sinae = M cosa

| - M
) 3CI ICI

: 0
2C1 ICI

2CI § 9 By B 00] )} G 00
LY ] - il = = I [ Y= ~ ool
(k@) hp = (x 9) Han® " e g #i-elcosed

I, e Er (1-0) cosa® + C b smva (5.22)

-. B 2Q? & sina - i
CH( e h_)r (=T sin TZ sina 0

1 ' “Lapnfnt gy CI

Icc:rscc} £ I + (T sine + T, , cosa + T cosa ) d

C I t3cI ICI 2C1 11

- M 6 + M +(1-z) ((«,00)a__ + (k,00))cosa &

s\

+

1CI 2C1 1 IT 2

- ;A .i = : a_.a _ .1—- ‘f
)IBCIL-OSQ - MlCIb no MZCISLH + (TZCI lCIJ I

(l1-z)cosea((k (chre}) - (s<4¢) aH + (=<5c)}

1crE))a.

I.&~-1..._ =0 (l-0)cosab + ' b +C,6 coset (5.24)

1
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CHAPTER 6

SIMULTANEOUS SOLUTION

Basic Variables

The two variables 6 and ¢ are necessary and sufficient to
completely describe the attitude of a motorcycle in stability study.
Hence the twelve equations of Chapter 5 have to be solved simul-
taneously to eliminate the remaining ten unknowns and give two
second order differential equations containing only 8, ¢, and

their first and second order derivatives.

New Variables

-~

Equations (5.13) through (5. 24) can be written as

g T e T My (6.1)
= Lgar =P (6.2)
Taet = Taer = N o3}
TlPII - T3CI sine - TICIC:Dsaf = TZCI cosxf = A4 (6. 4)
Yot " hier® = A5 (65
" Lapn t Ty * Ty R T eese = Ay £5.16)
Mict ™~ Fact®r = & (67

2=l s a.+T.. h. .+ M

SPI=r " “APLT gy

o~

. 8)

I
aer T Yier®r * Taery (

68




69
Mpe ¥ Mapr = Tsarts = B (6.9)
TZCIdII - [‘lCldIIO = MBCIsma - MICICOSQ’ s Mzclcosae
= AlO (6.10)
T ] = 5 ={ __sir i + (-2 i
Yot T Ve ¥ R SR RRemn) ey Shpmlng
sa) 0+ (£ i - +1
+ dHCOba)I‘ZCI + Ii__CC)sazferIIsm::zf}T3CI MlCIG MZCI
=4y (6.11)
'MSCICDSQ’ + MlCIsma - MZCIsmae + (TZCI_TICIQMIlelZ (6.12)
where the new variables .i\j are
T 202 = 4 :
Al = CIr Q°cosa mIg sina + (x4¢)¢> sina
+ z cosa sina (xlcr 8)(d + 0 sine)
+sin2a((w48}(¢o+esina)+(K4_¢:)8) (6.13)
AZ == mIg(q: + 0 sina) - zcosaf(nclcre) = (K(_ch)
- (Kée) sina + mI(hI cosa - a, sina) é
x _ ool
mIaIﬁ tm T Q cosa (1-a) (aI + hI sine) 6
2
= mr Q cosabd + mIIR_ Q% cosa (1-0) 6 (6.14)
Ag = CIrZstina - mg cosa +z Cosza(xltre} (& + 6 sina)
+ cosa sina((x48}(¢+esina) +(K4¢}G) { 6+15)
_ 202
A, =Cr*Q (6.16)
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Ay = mUhHE'p' - moa Er Q cosa(l-o) b

- m g9 - (k 9) + (1=2) (x,06)

-mﬂ%ﬂzil—ﬁ)cosaﬁ) (6.17)
Aé e mHg - (l-2) (v i© 0) cosad + (l<4<1>) & (6.18)
A, = (Il”cosa + Il3Isina) ¢ = I'IQ sinad

;S B - . ;
+ RQ\,oa.af(l a) (Illlsmaf Il3Icoscr)8

- T O - - ¢ - iv
II.ﬁé + 2z cosa ((kc0)h, = («,00)sina

+ {KSJQ)COSQ) + sina( (K4O] hI + (K59) sina

! 1 Zi 2 [ I
+(w69)cosa)—rIIQ G a(l-o) 0 (6.19)

A = 202 " .
AS = CI. Q (bI hICOsa) + ((.<5cp) +

{xﬁa) (hIsina + a cosa))d + (z( "(chre)c_osa

c0)cose sina h_ + («

+ ey I 1

o0) cos?a ag)
+ (K59) sina + (|<40) sina( hIsina + aIcosa') )b

+ (K5¢) sina + (k ,¢) sine( hI sina + aI cosa) )8

+ 2= KZO'G) cosa sina + (Kltre} (hIsinof

+a cosa) sina cosa) + (KSG) sin®a

+ (x,6) sin® a( hIsinaf + a_cosa)) 6 (6.20)

I

Ag = (K4¢)aI =i if qu';) cosa + (K6¢s) sina

20’0} cosa + (|<3ch} sina)

+ z cosa(- aI(w 1cre¢) + (K
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front and rear tires with the road, as the characteristic length and

m*f" the mass of the rear system, as the characteristic mass, the
1

nondimensional terms can be defined. To represent the angular

velocity @, which depicts the road speed, in a nondimensional

form, @ is multiplied by ~NR/g .

Nondimensional Lengths

Front system:
1 |
a; = “a. gy dt_=Td.; ete.
r T Row SgTa% ®
Rear system:

Similar terms represent the nondimensional geometry of the rear

system.

a®_ = ia a* = id etc
II = RTID II R IP ;
Also, R* =1

v 3%
=
[
-
O
o
o




7

. 1

Ry = ) 2
5) m IIg R =)

. 1

34 = . ; K
3 n [g 4
5 ].

K = K
5 m.gR 5
i g
1

K = K
&} m 8 R 6

Nondimensional Road Speed

i

| QF = QNR/ (Froude number)

Nondimensional Moments and Products of Inertia
Front system:
= \ I (f=1,2,3
iil m_ R® “iil T
' II
. 1 1 |
131 m R? 131
| = 1 '[I
I _.R% 1
| My

Similar terms define the nondimensional moments and products of

i inertia of the rear system.

1

Iil‘:. == 2 I y
111l mHR 111l

etc.

Nondimensional Wind Pressure Constant

i Cl = CI(R/mH)

CrL. = CH( I\/I'T'l”_l
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| Nondimensional Steering Damping

| Cf = (Vm Ngr®)C,
L 1

Nondimensional Driver Input

| :rvl'.“ - {]/r'ﬂ gR

Dr Dr

THE FINAL EQUATIONS OF MOTION

First Equation

Substituting the values of A], from the equations ( 6.13) through

(6.24) in the equation (7.1), the following equation is obtained.

- a.) —sin 2a(d_+ h.))

{chre}((z(cos 2a(d I I I

+ (l-z)(—(aII + JEH)cosa + {dH + hH) sina) ) + (xza 0) ((2z-1)cosa)

t+ (x,00)(~(22-1) sina) + («x ,0)((L_+a. ) cos2atana
3 4 I I

:’.(dI + hI) sin®a) + (k0) ( ~sina)
+ (Kbe) (-sina tana) + 6(m_g(4 IcosZa tana - ZdI sin®a)

I

+ (1-0) (é reig 2(ml_( = EIcos?_a + dIsin 2a)

n_(-d_sina +1_cosa ' Q2% < (-2 sinc
| +mH( dchu+ 11°° a))+IIQ R( ina))

Cosla
cos2a % _ i F
| K, d)( S (aI+fI) (dI-I-hI)smaerdH+ it

= (dyp+hp)tana) + (kg 0) (=2) + (k,¢) (-2 tana)

a2
S 2d sina) + m_g(-d.__tana

Hgtmall o e I IT I

i
Ig(

tL4.)) -9(

/C"rn

-ad s2a + a.d._sin2c Til=a
2 1= }(mL\ IICO a-i-ciI‘lIbl a ( a)

L
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- f Ihlcoslc( sina + dIhIsin 2a sina)
|
| S — 2 : sing y
I + mII(a:I IICO'M a‘_’i_._l.aln )) + mIrQ(fIcosZcr
I .
=| ~ d BiE X o N b B 83
c,I. in2a) + R Q(l-c¢)( Il Holu‘.a sina
| _ > , _ o
l, 1331005‘.& cos& + I]3I5m3a 133IICO"Q
l + 1 Sinaf)*’I‘Qsina-rMC) FOQ(I. + I')
: 1311 e S cosa ~f T PUAT iy
|
i E(ml(flcosh(altana - hI) - ZdIsina( - aI sina
cosa + h_ (d._t =i = 5in2
( + hI osa)) mII II( I ana H} I1 Hbll"i o
' t 2a - 2sina - cc
+ I33I ana cosla IlSI{ sin“a - cos2a) + IlBII
- cos2a
-1 a(f ——— =2 j
L lHtana) + 0 mIaI( Tl dIsmce)
I cosZa) _ cos2a M o B (7.1-a)
T 1331 cosa cosa = Dr

Dividing the equation (7.1-a) by mHgR and rearranging the

terms in nondimensional groups, the equation can be written as

ks
¥

(Kl'ﬂ'e) ( z(cosza(ﬂi - ai‘} - sta(dl' + hp;

+ (1-2z) (~cose(a’ +2™¥) + sine(d

Imr e o))
+ (k%00) (cosa(2z-=1)) + (1{20'0) (sina(- 2z+1))

+ (xz 0) ( (cos2a tana(f’; i &

- wioc alc e
I) 2 sin a(dI + hI))

+ (u;‘e) (= sina) + (KE:EJ) (- tane sina) + Of m’f(ﬂ IcosZoz tana

- Zd}:‘ sin?a) + (l-a)(r* Z{m’I‘-={ - J?’:ECOS 2a + dfsin2a)




+ m}:} ( —d:"ilsina + 4 :I"‘Icosa) )+ I}* (%) 2r* (- 2 sina)))

ahe COs 3- o st ke e y
+(wid) (5 (at+ L) ~ 2 sine(d” g
L L et ) Ley ¥ i

l) 3 a¥

I1

+ £>[; - Tx}; e Ina ] b Y _2 {:::: -_2 -
I (dHJth}tdw) + (f5 ¢)(=2) + (v 4) (-2 tana)

o( m* (2% cosla 2q® o ) * = P
+ od(m’ i —=2d7 sina) + m* (- d* ta + B %
I cosa F A II GII ane I

+ (0 VR/g) (rx*(1-0) (m’l“ (- a’ff;"cos?.a + aIuI sin2a)
1

= Se e 2 i N 3 . N 3 P :;-.[: -3
hIJEI cosla sina + dIhI sin2a sina) + mII(“'lfII cosa

gk ¥ e e e 5
a’a’ sina +m 27 (L2 cos2a - d
IT II ») I (

TR 1) (- Il' 1 sin2e sine - I33I COs2a cosa

_'..

y _ ) S I::: e .
IBIsmBa IBSIIcosa» + II3IIsmu} +- ZII Q%sina + ——

. I »x 1 1 ‘:' -3 I sl C 3
+ (dNR/g) (Q {II + IH)) + g(mI( ; c:C)s‘me(aI tana

— h'JI‘E) + Zd’I:‘ sina (- a’f‘ sina + h?cosa})

+ & 1 s ) _ 2::: 1 sin2a + £ tan 2
mH 1H( dII tana II) I1 I sinZ2e 4 133I ne coslo

:]31( 2 sin“a - cosia) - IllI tana + I]3II)

x Cosla

he. R e ol
g I cosa

+ (0 (‘))(m}al(f

sle :
= Zdz sina)

cos2a cosla e
)= MZ =0
33] cosa cosa Dr

Nondimensional Functions

2cos2a

80

3

(7.1-b)

To reduce the size of the equation (7.1-b), the following addi-

tional dimensionless terms can be specified as the function of already

defined nondimensional motorcycle constants.
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N, = z(cos2a(2¥-a®) - sinZe(d™®+ p¥
1 ( ay I qI,J 51 u([li lI)

1-z) (- cosw a¥ 4 2%y 4 sin " i
‘ + (1-2) osa(al + L) 11a(dH+ kH)}

| N, = cos2a tana(L™+ a}:") - 2 sin®of df‘f‘ h™)
| A L

[&¥]

)

A, = f}‘coh,u’a}f tana - Zd'I" sin®a

N, = (1':::)3(f;;cosaa + d}:sianr)

1.8

. = (%) -ciifI sina + £ ’I:‘Icoscz)

15

-~

-

9]

o @
L4220 s
R

>
i}
I

- ¥(- a" 2% cos2a + a*d* sin2a - h* 1% cosZa sina
9 71 b e 171

+ d’I:‘ h’f sin2a sina)

= 56 =}:‘€ £ _ 0 g M —
hio r (aII IICOSQ’ aHdHL sina)

=
L1}

(4 ’I:‘cos 2a = d}'" sin2a)

e ale COC’Z{J’
A = 37 (f et e

= A
I cosa “dI sina)

! A, = JETCOSZQ( a;: tana - h;‘) + Zd’["’ sine( - a:I": sina + h:I‘"'coscr)

)\]q - 1"‘1]_,[( d:["r[ﬁn&’ - 1 i:‘]:)

|
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.ﬂ J'IJ = m I'}\

M = m*X

Mo
i 35
NN

M. = m*
I I :

w

4 7
315 = in?}XS
M, = m’f A 9
M, = m :I::I)\i 0

9 12

wlf) - T hlB

M= mphy
i
{ 1r _ ¥y o " _ ) =

H, ref IllI Sinie sina - [ 337 Cosla cosa

+ I lHsm?)oz = 133HCOS&' + 1131131119}

. B cosla

2 7 331 cosa

§. = =i s _ ok 3 sinZa - 2

.-13 IllISl a + I33Itana cosa - | 131{3 sin“a - cos‘a)
1 - I tana + I*

hyptane + I%pa

I = I'I* r*( -2 sina)

tt 12_ = ’I‘I sine
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Hence equation (7.1-b) in its reduced form can be written as

— _=:= N _::: vl D v :ll: - st
(a{x’ X I-P\ZCD.JQ(._‘. Iy + kl(=2z+1)) + K4?\2

¥~

2
o

- N:;sina - KO tana sina + M . + (l=¢) (M 4

] 2 (827}

(2%)2))0 + (k™

F M (R7)2 N
+ M ( b ¥ 4N

-2 b
3 1 “g

- 2tana KD FMy M)+ (é(\/R/g))(((Mé + M) (1-0)

P Mg+ 1% + 22255 oy L (G (WRTG) ) (1,0%)

T g T A cosa f o 911 (1% (7.1-c)
2 . : " e g g coslZa . x _

+ ( BR/g) (Mg +H,) + (6 R/g) ( My + My +Hy) =S My =0

Physical Character of Nondimensional Functions

)\j are all functions of nondimensional lengths of the motorcycle
geometry (j =1,1,14). The dimensionless terms specified above

have the following physical interpretations.

}\1 : Dependent on slip, related to cornering force.
A, : Independent of slip, related to camber thrust.
A3 — M, : Gravity effect of front system, independent of slip,

Ag — M2 : Dynamic effect of front system, dependent on slip.

Ng — M3 : Dynamic effect of rear system, dependent on slip.

Agi—Independent of slip, related to camber thrust.

A7 — M4 : Gravity effect of front system.

Ag — M5 : Gravity effect of rear system.

Ag — My : Dynamic effect of front system, dependent on slip.

Mo — Mg : Dynamic effect of rear system, dependent on slip.

A1~ Mg, Mz — Mg, M3 — Mj) : Dynamic effect of front
system, independent of slip.

Njg — My, Dynamic effect of rear system, independent of slip.

H; : Inertia effect, dependent on slip.

Hz, Hj3: Inertia eifects, independent of slip.

11+ Gyroscopic effect of front wheel, dependent on slip.

I, : Gyroscopic effect of front wheel, independent of slip.

Ig : Gyroscopic effect of both systems, independent of slip.
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Second Equation

Before substituting the values of Aj from the equations
(6.13) through (6.24) in the equation (7.2), some additional

non-dimensional terms are introduced.

H

£ (h. . cosa - aH & glhIchsa -4 (glsma + tana)

2 1T I
i - j 3
dI Hsma + dHcosa}
§3 = (hH + dH) sina - (aH + £I§1 + 4 II)cosa
1
B4 = hgeesa—iay ¥ (wddiGeone - gl # 0
-1 Hsma + dHcom

£, = (& +——)

5 ° 1 cosa

where gj are all functions of motorcycle geometry.
By substituting the values of Aj in equation (7.2), introducing

Ej just defined, and rearranging, the following equation is obtained.

(chrB) (z cosa(( ¢ + Osina) (a & ,cosa + 53) cosa

Igl
—*l*g +'l“§ (h ‘asina))+(1-z)l—cosa(§ =& T )
8 °2 6°5'1] I 0 4 511

+ (Kzae) (z c:osmf(l sina (-1 + cosa)

o 55
+ glcosaf{ ¢ + 0 sina)) = (l-z)cosad)
+ (k a0) ( E,SCOSQ‘(I; (z(cosa + sin®a) = (1-2))

i (K4¢) {§laIcosza (¢ + 6 sina) - é £, + £, cosa (¢ + 0 sina)

sina cos?a( ¢+ Osina)

1 1
o 54t Eslhyth

I-l-a sina)) + (K48}(algl

I I
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1
s = T
+ hI§1(¢ + 0 sinea) sin“a(cosa-1) 0 &,Z sina

+ 5 sina cosa (¢ + O sina) + §5h1 sina é}

]
‘ y N =) 2 Hr:
+ (K5¢)(§lcosa sina(¢ + 0 sina) + gs sin“a g (1
- cosa)) + {K6¢) (é &5(cosa + sinfa + 1)
—l = ; gl 202t -
‘ + (Kbe) (e gs sina(cosa + sin“a)) + r“Q* CIIbII}

Z 2 2 . .
+r°Q CI(hIélcos a + 53 sina) + mIg(hIi_E,lsma cosa

2
\ - gzsina = 53 cosa) - mIEZ rzfg cosa (1-0)

1
ix 22 = 2
‘ + aHmHg mng reQ R (1=c)cosa

)

ey L2 1 - |
+ §5(1 cr)RQ coaaf(II(cosa + sina) + III

-t l_ l A 2y 2
% + ¢ §mg 7y &.4 m g+ Eluoaa CI(r Q%) (b,

? = hICOSG’) ) + &( I‘I.Q @5 % sina) (-1 + cosa)

C
45 Bt o 5] f
2.mIrQ cosa 0 (R(l o) (aI + hIsmaf) 1) + 2(sina + tana) 5

+ 6(&

- e il L :
§4mHaH R Y cosa(l-o) 0 + §5(R Q cosea(l-o) ( [l J.Isnm::w

5 I cosal+I cosa S'nal‘f‘l inta
| 131 o " 331 &g+ 13810

D |~

1 l ' _-l_ _ 2
IlSII) II Q o )) + ¢ (§2mI o ( aISma + hICDsa)

1 i .
FEMuh e t 85 (11 €08 + [y sina + 1, 1,

+

e 4 R e
I33Ism a + [ _sinacosa)) + 6 ( F;Zm

1
13] 1°1 e

1 1
| 3 _— i : —
i + §51331 sine e) (E,lsma + tana) 5 M

= 2.-
Dr 0 (7. 2-a)
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Multiplying the equation (7. 2-a) by 0 and eliminating the
higher order terms in summation eXpressions, the equation is re-
duced to

(Klo-e) (z(- §Zcosaf 4 §5(h1_cosar = aI sina cosa))

= (1-2) 54 = E,ShH)cosa} + (KZ 00) (-2 g5 sina cosa(l + cose))

+ (K3cre) (z g5 cosa(cosa + sinta))

R ; ; E aind -
- (K49)( gz sina + gshIsma) + {KSG} (gssm a(l = cosa)
: (2 >
- (Kée) (&5 sina(cosa + sin®a)) + {K4¢:)( §2
- 5,4 + gS(hI + aIsma)) + (K5¢}{§5 sina)
2 202 -
+ (K6¢) (§5(l + cosa + sin‘a)) + 6(r’Q?( CIIbII)

+ erZCI{hlélcosza + §3sina} + mlg{hlgl sina cosa

r‘Qcosa(l-0)

o =

~ §2 sina - §3 cosa) - mI{:‘,Z

= L zesm g
+aHmHg mH§4RrQ (l-0)cose

))

= —5.[- 2 1 T 1
+ 55(1 T) RrQ cosw{II(cosa+ sin‘a) + III

+ ¢>(-§2mig = §4mng) + ¢(§51'In sina(1l + cosa))

+a}>(§51'I Q sina(= 1 + cosa))

. 1, _ 5
+ B(mIrQ cosa (R (1-0) (aI + hI sina) 1)

! L r -
- §4mHaHRchosaf{l o) +§,5{Rﬂcosa (1=w)

{-IBcosa + I, _ cosea sina + 113

331 I

—

sin?a) - I'Q)
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+ 2(sina + tana)Cf) + ¢ ()_:,Zml( = aI sina + hICOSOI)

+ £ m_h +§5(I cosa + I sina + I

4 II II 111 131 1111
g2 D : LB - £
- I33Ism a + 1131 sina cosa)) + B ( §,ma,
+ 55133181111'2) - (E,l sina + tana) MDI‘ = 1) (7.2-b)

Dividing the equation (7.2-b) by (mHgR) and rearranging the

terms in nondimensional groups, the equation becomes

3 b %
(a»cla:}'E!))&z[_,J + {KZUG))\Z? + (K3cr 0) }\28

5 £ s -~ Sy 2
+(k50) hyo + (kEO) R, + (kFO) N, + C (2) 26

ek N M
+ @) 20+ 6(M,, +

M Y2 )-
2zt g VD)

¥y 2712 Wy 2 -
+M,,(QF) 2 (1=0) + I,,(2%)%(1-0))

A

ke sk - 1, ¢ o 7 sl
+kghag) + 6 VR/g ) (M, Q% (1=0) + M, Q%(1-0) + M, Q

28 29

: * Y .'
+ 2(sina + tanaf)Cer HZIQ (1=0) +122§2*‘] + (6 NR/g) (1235‘2*)

+ M + H

. R -

- (?\leina + tana) M* = 0 (7.2~

Dr

Nondimensional Functions

The various nondimensional groups introduced in the equation

(7.2-c) are as follows.
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5 % :
e 3 £ +‘€a‘< .
*21 . g rane(hptdy) dan +dy) = §)
ay =il
I I
x _ s e oley 3K g e .
)\22 = hHCosa aH + gl hI cosa JEI {gl sina + tana)
: . £2
- A% L ¥ o 3k o
dI ﬂII sina + ciHcosa R
N,, = = (h* + d%)sina - (a® +2%¢ +£”‘)cosaf—"Eé
23 II II II il II R
o e e e g -I-
A = W2 -a A i - 4%
24 hII cosa aH + {hI + dI) glc05cr dH( gl + ——
; £4
- g% i ax = -
I sina + HCOSQ R
1
)\25 N g’l cosa §5
A - _ e _ k.
26 Z( ?\ZZCOSQ’ + kaShIcosa 2\25aI sina cosa)
+ (1-2z) ( 3\24cosaf - K25hII cosa)
)\Z? = g ?\25 sina cosa (1 + cosa)
_ 2 b @ - =
)\28 = )\25( z(cos“a + sin“a cosa) (1-z) cosa)
_ ; %, L2 £
?\29 = kzzsma + )\251'11 sina + >L25sm adI
_ - -
)\30 = )\25 sin“a(l - cosa)
_ ; y o2
?\31 = ?\25 sina (cosa + sin“a)
- * 1 - i _— g
7\32 — (hzlhI sina cosa )\22 sina )\23co_;a)
Ryy = By




=
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>\34 = = hzz(r*) 2cosa

Nyg = = A r*) 2cosa

Moy = [=Uop = Ray ® ?\ZSh’I:‘ + N, sina a}"‘ ¥ ?\25}1.’; )
?\37 = ?\25 sina

R38 = KZS(COSQ + sin®a + 1)

>\39 - )\ZZr*( a}kcow + h’I:< sina cosa)
}\40 = —}\24a: r* cosa

Ny = -xzzr*cosa

Ngz = = hzza?

Ky = Bgoli a’; sina + h?[::COSG’}

e = Mgl

Wy m?’%z

My, = mphs

Myy= mpdg,

My = mihys

My == mihy,

Myg = = Midoy

N %
Myg = My Mg




Myg = Bphis

Mog: % By

Mag = BNy

Map = Bplgg
L 4

M _

HZl = kzsr*( Tllsinaf cosa - Il3IcosZa + IBIcosza sina
. IlBI sin®a cosa - Il3II cosa)

Hys = Ay I;“3I sina

Hyy = Al ITIICOSQ i+ I*Blsina + ITIII + I’gﬂ sina
+ 11331 sina cosa)

Tyi = g r'* cosa [I"I"‘(cosaf + sin®a) + I'H]

Ly = Sl I'I""sina (-1 + cosa)

G = c:‘“I"(x‘21 cos?a h}*(r*) ? + X, , r*?sina)

€ = =&y b (%) 2

C, = )\21 cosa (1:-’1k - h;‘cosa) (r*) ZC?

90
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Physical Character of Nondimensional Functions

)\j are all functions of dimensionless geometrical lengths of
motorcycle (j = 21, 1, 44). The physical interpretation of the above

nondimensional groups are as follows.

)\j, (j = 21,1,25): Convenient groupings of nondimensional

geometrical lengths.

}“2‘: Dependent on slip, related to cornering.

A27: Dependent on slip, related to aligning torque.

A2g: Dependent on slip, related to overturning moment.

A29: Independent of slip, related to camber thrust.

A3p: Independent of slip, related to aligning torque.

A3]1: Independent of slip, related to overturning moment.

A3 — M3, A33 — M3, : Gravity effect.

A34 —M 23, A35 — M24 : Dynamic effect, dependent on slip.

N22 — Mjpg, Npgq — Mpy @ Gravity effect.

A36: Independent of slip, involves camber thrust.

A37: Independent of slip, involves aligning torque.

A38: Independent of slip, involves overturning moment.

A3g — M27, Mo —M28: Dynamic effect, dependent on slip.

A4l — M3q9: Dynamic effect, independent of slip.

Ng2 — M3, Ng43 — M3), Ng4 — M33: Dynamic effect, independent
of slip.

Hjy; : Inertia effect, dependent on slip
Hy,, Hp3 : Inertia effect, independent of slip.

Ip1 : Gyro effect, dependent on slip
I>5, I33: Gyro effect, independent of slip
Cl, C2, Cs: Wind resistance effect.




CHAPTER 8

SOLUTION OF THE EQUATIONS OF MOTION AND COMPUTER CODE
Rewriting the equations (7.1-c) and (7. 2-c) respectively in

further simplified form and recognizing that ©* for each solution

is parametric constant.

cosda
— 8.
cosa MDr (8.1)

Y0 +y,0+y,0+y,¢+ Y + Y9
. . v . .

Y79 T ygh+ Ygé FY Pty 0t Y)p¢ = (?\lsma + tana) M‘Dr (8.2)

where

y (k™\, + «* cosa (2z-1) - «"5( 2z-1)) + ¥

T G R 4"2
o e o L " %y 2
kgsina =k, sina tana + Ml + (1 cr)(MZ(Q )
M4 (257 1(2%)?) (8.3)
s = ES
v, = (UM + M) (1=0) + Mg +1,)Q7 + H)) NR/g (8. 4)
= (Mg +H)S (8.5)
YS_ M’9 2l g .
5 E] = & E
¥y ® (K4k6 2145 2 tana K6+M4+M5) (8.6)
v = (1,.2%)VR/g (8.7)
= + + H )B' (8.8)
Yg Mip TMi] v Baly :
_ 3 e s e *
y? cr(Kl }\26+K2)\27+K3?\28} +I{4)L29+K5?\30
% *y 2 %y 2 J
+x6)\3l+cl(ﬁ) +CZ(Q) +MZI+M22
-~ ¥y 2
+ (l-0)(R7) (M23+Mz4+11) (8.9)
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| vg = (((1=0) (M,  + M,q + H,) o+ M,q +n-122)&2*) NR/g (8.10)
- (M. +H, )2 (8.11
Y9 © 30 22'g -11)
= M ¥y 2 % S 3
Yip = Mg ¥ Myp * CqWiT)" ¥ kghyy + Kk oo b iehig (% 1)
v, = (52" VR/g (8.13)
= (May + Mo, +H, ) (2 (8. 14
Yig = (M3 + Map + Hyg) () - 14)

Equations (8.1) and (8.2) can be written as

P]l(D)8+P12(D]¢ F'l("r) (8.15)

PZI(D)B+P22(D)¢ FZ(T) (8.16)

where Pij(i,j = 1, 2) denote the polynomial operators which act
on 6 and ¢ and Fl(T) and FZ{T) are driver's input.

Eliminating ¢ by Cramer's rule,

P. (D) B TD) B ) F.(T)
u | 12 B 11 1 (8.17)

P, (D) P, (D) P,i (D)  F,(7)

or

2 2 |
(y1 +y2D+y3D ) (Y4+Y5D+Y6D ) ‘
0

2 2z
(yy +ygD +vyD%) (Y19 *¥) P +y,D%)

(y, +y,D+y,D?)  F. (7)
i} ¥ ¥y 3 ] 5. 1)
2
(v, +ygD +ygD?)  Fy(r)
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To investigate the automatic stability of motorcycle, the

driver's corrective input is taken as zero. Disregarding the driver's

input term, equation (8. 18) reduces to the following homogeneous

form.
4 3 2 3 —
(}.LOD +plD +L.L2D +|J.3D +p.4}9 = 0 (8.
where
Ko = Yg¥q T Y2¥a (8.
My = Yg¥g v ¥g¥g T ¥11¥y T ¥ip¥p (8.
My = YYg ¥ Vg¥g ¥ V¥q T Y TV 1Y, T YY) B
3 T YgYg TVsY7 T V102 T Y1) s
By = Ya¥q " YY) (8.

The characteristic equation is

4 3 2 e
BoY Y + R ¥" F oyt = 0 (8.

19)

20-a)
20-b)
20-c)
20-d)

20-¢)

21)

A computer program was developed to calculate the coefficients

p.j (j =0,1,4). The output of this program gave the result in the

format required for the input data to the program solving the charac-

teristic equation.
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COMPUTER PROGRAM CODE

The following computer notations have been used in the program

to represent the various quantities.

aI «os Al
Qyp v A2
r:lI vas DI
dII e D&
h[ sws HI
hII s B
JEI I |
JEH «+s ALZ
r . AR
R .. R

IllI"' AIXI
IllII'“ AIX2
IZZI"' AlIY1
Leam... avz
I33I'” AlZ1
13311... AlZ2
1131... PXZ1
IlBII"‘ PXZ2

aI ... XAl
%
aII PRI 47177
%
dI ... XDl
e
dip ... XD2
h* ... XH1
I
-4
hH vex XHZ
.ﬂ.’[*‘ ve. XL1
st
:zH ce. XL2
™ ... XR
sk
LI 1
. XIX
I -+ XIX2
*
I3, XY
:l"
IZZII.. - XIYZ
1’;31... XIZ1
£
I33II'OI XIZZ

Il3I . « o« XPXZ1

als
-~

I1311' :

. XPXZ2



II .+« AIll
III ... AII2
rnI ..« AMI
mII warw (ANEZ
Kj ++« AKPAJ
CI U - |
CII vuse A
Z wes &
A e
i Q7T
Cj eee XXCJ
Hj « oo XHXT
I ... XXH]
Mj veo XXMT
v - Y
Y J
@ ... ALFA
o ... SGMA
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Form of the solutions

If \"j (i =1, 4,1) Dbe the roots of the characteristic equation,

the solution will be a linear combination of the form

= Y17 YaT YaT Ya4T
@ = Cle +Cze +C3e +C4e (8.22)

where Cj (j =1,4,1) are arbitrary constants of the solution.

Two of the roots have been found to be a complex pair.

So ys and vy; are of the form « + ip. A particularly adaptable

form of equation (8.22) is
0 = C'leYl.r + C'ZeYZT + 0‘3 eaTsin(ﬁT + B)

where C'l, C'Z, C'3, and @ are another set of arbitrary constants.




CHAPTER 9
RESULTS OF ANALYTICAL SOLUTION

In the differential equations of disturbed motion, the concept
of stability did not require the small perturbation forces to be in-
cluded in setting up the equations. The driver input may be con-
sidered as another set of perturbations of restoring character,
tending to annul the perturbations due to disturbing forces, which
was why it could be disregarded. Besides, the analytical investi-
gations have been carried out to determine, in addition to the com-
parison of performance of a motorcycle under different motorcycle
situations, the built-in tendency of a two-wheeled vehicle to
straighten itself up without the assistance of driver.

The solution of a differential equation cannot be specified un-
less the initial conditions are known. A motorcycle is subjected
not only to the disturbances of initial conditions, but is acted upon
by continuous disturbing forces and corrective inputs of the rider.
To picture the motion in the presence of continually acting perturba-

tions, a concept of equivalent initial conditions can be developed.

Equivalent Initial Conditions

The equivalent initial condition is a concept based on the gen~
eralization of the Lyapunov's criteria of stability with respect to

initial conditions, but looking backwards.

98
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If, at and after any arbitrary instant T,, all the perturbation
forces are hypothetically eliminated, then from this instant onwards,
the motion can be regarded as though due to a unique set of imagin-
ary initial conditions applied at an arbitrary earlier instant To. In
other words, the resultant motion due to unknown perturbations has
been replaced by the one due to a set of initial conditions at Ty,
such that the motion in both the cases are identical at T,. The
motion between the interval (T,-7o) will, of course, be different
in the two cases. The imaginary unique conditions are termed as
equivalent initial conditions. The concept is helpful in picturing
the motion. The magnitude of the equivalent initial condition will
depend on the actual motion at T, and the interval (T = To).

The interval (7, = 7o) can be of any arbitrary size. For large inter-
vals, obviously, the equivalent initial conditions will be large if
the machine is stable, and small if the machine is unstable. If

(Ty = To) is very small, the equivalent initial conditions will also
be always small, and of the order of neighboring perturbations.
Therefore it is more meaningful to consider (T, - 7¢) as small.

The instant T, is arbitrary, it can be specified anywhere, and so
the stability may be considered at any instant. However, the knowl-
edge of equivalent initial conditions is not necessary to test the

stability of motion. Yet, the interpretation of the roots of the char-

s
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acteristic equation (8. 21) does require the knowledge of a qualita-

tive picture of aggregate motion.

Interpretation of Characteristic Roots

If the requirement had only been to specify the region of auto-
matic stability, and not to compare two different motorcycle situa-
tions or the performance of the same machine at different speeds,
the interpretation of the roots of the equation (8.21) would have
required neither a support of logic, nor any assumptions based on
practical observations. The necessary and sufficient condition for
automatic stability (automatic stability is asymptotic stability as
described in Chapter 1) is that all the real roots and real part of
the complex roots of the characteristic equation be negative.

The input by the driver is quantitatively unknown and even
though it is not included in the solution of differential equations, it
cannot be disregarded inasmuch as the knowledge of the character
of the quantitatively unknown driver input and related concepts
based on observations are essential to make a meaningful interpre-
tation of the four analytical roots.

Of the four roots, two are real, and the other two complex, ex~
cept for few check solutions corresponding to low speeds of 5 and

10 radians per second (RPS)*. The solutions were run for a speed

“One radian per second is equivalent to . 682 mph, and corre-
sponding Froude number is . 41128, for the motorcycle of the theoretical
analysis.
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range of 20 RPS to 160 RPS with 20 RPS increments. Over this

entire speed range, one of the real roots is always a large negative
value. Therefore, the component solution corresponding to this root
i is completely ignored.

The fact that in all the solutions for low speeds of 5 and 10 RPS,

|

{ all the four roots are real and two of them positive, has an important
physical significance. A rider can start a motorcycle and can pass

'. through these highly unstable roots to the operating speed, proves

’ that the rider has an effective control on the component solution cor-

responding to the positive real roots. Furthermore, in all the test

runs, the motorcycles oscillated about zero steering angle. Since

! the complete solution is an aggregate of all the component solutions,
the motorcycle should have oscillated about a mean line other than
\ zero in the absence of an effective control of the rider on the
] component solution corresponding to the real root. Besides, this
_i control did not come from steering input, since the driver did not
‘ : hold the steering bar during the test runs. This control comes mainly
from shift of weight of rider, rather than from steering at the normal
operating speeds.

The character of the control of a driver, interpreted mathemati-
{ cally, is that a rider who has the necessary skill to operate a two-
wheeled vehicle has learned to effectively control the motion com=-

ponent corresponding to the real root, and can give an assisting

| il |
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steering response to the handle bars to control the motion component
corresponding to the complex roots.

The use of the terms "effective control" and "assisting steéring
response'' is with purpose. The solution component corresponding
to real root results in 0 varying monotonically which does not in-
volve _reaction time to perceive it and then react to it. A driver can
exercise full control on this type of disturbance. But the solution
component corresponding to the complex roots is oscillatory, and if
frequency is large, the driver can only assist the steering response.

The assistance to steering for a motorcycle situation, moderately
satisfactory stability-wise, was observed in road tests. A motor-
cycle, with little or no tendency to damp out on its own, stabilized
very soon after the rider held the handle bar.

The region of automatic stability is very limited. No machine
will run on its own without driver input outside this region. A driver
with normal riding skill, on the other hand, can operate a machine
with positive roots without falling over. So, the question is, what
characterizes a machine to be regarded as unstable one?

The motion component corresponding to the real root is effectively
controlled by the rider unless it is a very high positive value. But
if the motion is unstable relative to the complex roots, the driver

will have to make efforts persistantly to aid the steering. He will

_
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feel that unless he keeps struggling, he will fall over. According
to the mathematical definition (also S.A.E. definition of neutral
stability), the machine with driver input is stable, since the os-
c_:\illations do not go beyond a certain limit. But such a machine
will be termed unstable and even unsafe from the point of view of
a rider. The more the driver has to struggle, the more unstable the
machine. In other words, the more the machine has a tendency to
build up its oscillation, the more unstable it is, and vice versa.

In emphasizing the response of driver on component motion,
it is not at all meant that a human is capable of distinguishing motion
components from an aggregate motion, and react to it in correspond-
ingly required distinct components of human input. The conception
is purely abstract, and the actual physical meaning to be understood
in mathematical terms is that the skill of riding a two-wheeled ve-
hicle is reacting to perturbations, so that the driver input creates
at each instant, such equivalent initial conditions, that the arbitrary
constant associated with real root is very close to zero and the arbi-
trary constant associated with complex roots has smallest value
possible.

The above discussion lays down the background for the interpre-

tation of the four roots. After disregarding the one large negative root,

the stability is considered in the following five regions.
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Region 1 is the region of automatic stability in which the one
rea? root under consideration and the real part of the complex roots
are both negative. In this region, the real part of the complex root
is significant in comparing stability.

In Region 2, the real root is small positive quantity and the real
part of complex root is negative. Region 2 may not always yield un-
disputed comparison, but the real part of the complex root is likely
to compare the stability admitting the driver control.

In Region 3, the real root is large positive quantity and the real
part of complex root is negative, In this region, the real root is sig=
nificant in comparing instability.

In Region 4, the real root is negative, but the real part of com-
plex root is positive. Here, the real part of complex root is signifi-
cant in comparing instability.

In Region 5, the real root and the real part of complex roots are
both positive. In disputable circumstances, judgment may be required
to make a choice. If the real root is a small positive quantity, the
real part of complex root may be of significance for comparison of

ins tability.

Presentation of Data

The complex root is plotted on Gaussian plane with the variable

being investigated as parametric constant. The speed is represented

—
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by Froude number and contours of constant Froude number are
drawn. The closeness of these contours indicates that the rate of
change of damping coefficient with respect to road speed is small,
and vice-versa. The real root has been plotted in the form of a
grid with horizontal lines of constant motorcycle parameter. On
the grid are superimposed the contours of constant Froude number.
The damping coefficients and frequencies are both plotted corre-

sponding to their nondimensional value.

Nondimensional frequency, £ = fm

Nondimensional damping coefficient, o™ = a\/E./-g?

The plot on the Gaussian plane and on the grid is particularly
adaptable to compare the performance of a motorcycle in which a
machine parameter is being changed.

There is no distinct boundary between Region 2 and Region 3,
so they are separated by broken lines. In the grid, the values of
Froude number on y-axis gives the necessary values of those num-
bers to specify the different regions on the Gaussian plane.

Since the characteristic roots represent both damping and di-
vergence, depending upon whether they are negative or positive, they
have often been mentioned as stability coefficients, rather than

damping coefficients.
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Results of Analytical Solution

In all the motorcycle situations, there is only a little range of
automatic stability ( Region 1). Also, over the entire speed range
and in all the motorcycle situations, Region 5 never appears.
Region 3 is likelyto be present in a singular case of Fig.(9-15) at
very low speeds. The presence of Region 1, 2, and 4 implies that
the roots on the Gaussian plane are significant in comparing the
stability (or instability).

The following two general characteristics of the performance
of a two-wheeled vehicle are conspicuous over the entire range of
Froude number, and for all the motorcycle situations.

i. The frequency of oscillation increases as the Froude number
increases. This increase is more appreciable in the higher range of
Froude number than in the lower range.

ii. There is a decline in stability coefficient on the Gaussian
plane as the Froude number increases. This is true except in only
one case. The effect of large value of I'¥, in the high speed range,
is to improve stability as the Froude number increases, contrary to

the usual behavior in other motorcycle situations.

1. Effect of Slip o, Fig. (9.1): ¢ is varied from .03 to .07.

It is not realistic to change o over a wider range, while Kj

(j =1,2,3) are held constant. There is no appreciable change in
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stability coefficients from one value of o to the next successive
value. But as ¢ is increased, there is an indication, both from
real root and real part of the complex root, that the motorcycle will
become more and more unstable. The frequency decreases slightly

for higher values of o.

2. Rear Tire, Fig. (9.2): The effect of rear wheel tires of varying
cornering stiffness is very slight. The frequencies corresponding

to the rear tires of higher cornering stiffness, for the entire speed
range, are slightly more than those for tires of lower value. The
stability is not very noticably better for tires of higher cornering
stiffness, but the improvement is reflected in both the characteristic

roots.

3. Front Tire, Fig. (9.3): The effect of changes of KJ, (i =1,6,1)
of front tire is more appreciable than the effect of same changes on
rear tire. The general trend is however, same. Stability improves

with higher Kj values and the reduced frequency f* increases.

The results do not indicate an optimum tire.

4. Both Tires, Fig. (9.4): The trend in the change of motorcycle
performance, when both the tires are changed together, is same.
The combined effect of the change of both tires does not seem to
be an aggregate of the Results 2 and 3. Increasing Kj values of

both the tires appears to have a slightly more profound effect on the

—
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motorcycle performance, particularly at higher Froude number.

The trend in the change in frequency is the same.

5. Rake Angle, Fig. (9.5): An increase in rake angle results in
an improvement of stability. The real root, however, tends to in-
crease towards positive side, thus there will be a limit imposed

by the real root on the higher values of rake angle. In the Gaussian
plane, the machine may be stable even at very large value of rake
angle, but the large positive value of the real root will bring the
motorcycle in Region 4 or Region 5, depending on the Froude number,
resulting in a tendency of the machine to collapse under gravity.

An optimum value of rake angle is possible.

6. Trail, Fig. (9.6): Increasing the trail improves stability as re-
flected on Gaussian plane, but the real root grid shows an opposite
effect. As long as the component motion corresponding to the real
roots is under control of the riding skill of a driver, increasing the
trail will help the stability. The stability root, even on the Gaus-
sian plane, tends to flatten out, and therefore increasing the trail
indefinitely will be of very little value. Besides, avery little advan-
tage gained on complex roots will be offset by the high positive
value of real root. This positive value will make the machine un-

stable in Region 3, and in Region 5,if it did appear. An optimum

value of trail is suggested which will be specified on the Gaussian
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plane, but should also be acceptable on the real root grid. Decreas-
ing the trail from optimum value results in a decline of stability, as
indicated by both the stability coefficients. This decline continues
even after the trail has reached zero and crossed it. The frequency
increases as the trail decreases, becomes maximum at zero, and

decreases for negative values of trail.

T, I'I*, Fig. (9.7): The effect of increase of the moment of inertia
of the front wheel (i.e., the gyroscopic effect) is to improve the
stability substantially at higher Froude numbers, without seriously
impairing the stability at lower Froude numbers. However I'I’k can
not be increased without limit. The real root grid suggests that a
very large value of I'* is likely to make the real characteristic root

I

a very large positive number, which will make the machine unstable,

particularly at low speeds.

8. I'I'I“"", Fig. (9.8): The effect of increase of I'I?Ik (increased gyro
effect of rear wheel) at lower Froude number is quite inappreciable,
but at higher speeds, a small improvement in the stability is per-

ceived with an increase in I'I’I:= . The frequency decreases slightly

for higher values of I‘I;“ :

9. m’I“ , Fig. (9.9): For smaller values of m’I:’, stability is better

on the Gaussian plane in the entire range of Froude number. The
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real root grid is of the same character. The frequency increases

with increase in m? ;

e
3

19, T Fig. (9.10): In the Gaussian plane, a decrease in I

33p 33]

results in an improvement of stability and an increase in f* over

the entire range of Froude number. Smaller value of I’; at higher

31

Froude number, results in greater change in f*. The real root grid
shows very minor change in stability root. No optimum value of

I:Z:’;SI is indicated by the analytical results.

11. a*, Fig. (9.11): The stability roots on the Gaussian plane

I
very definitely indicate an optimum position of the front center of

gravity measured along the x”-axis. The frequency decreases with

increase in a}" . The real root grid is not critical.

12, h’I", Fig. (9.12): The effect of change of the height of the

center of gravity of the front system is very slight, showing an im=-
provement for smaller values of hI“ . The reduced frequencies f*
have, over the entire range of Froude number, larger value for
smaller hf , although the change is very nominal. The trend of both
the characteristic roots, with change in h’I:‘, is the same. There is
no optimum value of h¥.

I

1.3 h}"‘I, Fig. (9.13): The effect of decreasing h;’I is to improve

stability, which is reflected in both the roots. The reduced frequency




increases as the center of gravity of the rear system is lowered.
There is no optimum value of hﬂ;I.
14. a’lf‘I, Fig. (9.14): At low Froude number, the effect of change

of a)IkI is inappreciable. At higher Froude numbers, however, a

small improvement in stability, with a very little increase in f*,

2
I

is observed for larger values of a
15. Steering Damper, Fig. (9.15): At low Froude number, the
steering damper affects the stability very adversely. The real root
increases more sharply than does the real part of the complex root

on Gaussian plane. At low speeds, there is no optimum damping.
Between the values 32.9 and 41.128 of 2¥, a slight damping seems
to be better than no damping on the steering at all. But at higher
Froude number (% > 41. 128), there is definitely an optimum damp-
ing. The slope of stability coefficients in the real root grid indicates

that very large damping on the steering will not only tend to make

i the motorcycle unstable at high speeds, but also make it inoperable

at lower speeds.
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CHAPTER 10

EXPERIMENTAL INVESTIGATIONS

Development of Instrumentation

A rather simple but quite satisfactory system was developed to
record the motorcycle performance on the road. Since 6 and
¢ completely define the motorcycle orientation, an attempt was
made in the initial stages to develop suitable instrumentation to
record both these angles. A potentiometer pickup on a mechanical
extension was used to measure steering angel 6 (Fig. (10.1)).
This arrangement stayed as such in principle even afterwards,
though the location of the potentiometer was changed when an ex-
perimental model with variable steering head was tested. In this
machine it was found that for extreme positions of steering head
configuration (rake and trail), the front system interfered with
mechanical extension. The potentiometer was relocated in front of
the handle bar (Fig. (10.2-a)).

For the calibration of steering angle 6, a graduated arc, its
center coincident with the steering axis, was used. This arc was
fixed relative to the rear system and a pointer, attached to the rotating

front system, indicated the steering angle 6.

127
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Fig. (10.1) Steering Pickup on Mechanical Extension
( Production Model)

Fig. (10.2) Relocated Steering Pickup on Experimental Model
with Variable Steering Geometry (Trail Setting)

!
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Fig. (10.2-b) Variable Steering Head (Rake Angle Setting)

7 IE iE
it

Fig. (10.2-c) The Experimental Model Test Machine of the Harley
Davidson Motor Co.
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For the measurement of angle of lean ¢, at first an acceler-
ometer was tried. The accelerometer was mounted on the rear
fender and the gravity component corresponding to the lean of the
motorcycle was supposed to give the value of ¢ on a predetermined
calibrated scale. This was true, but the accelerometer was also
picking up, in addition to the gravity component, the lateral ac-
celeration of the motorcycle and the vibrations from the engine,
thus completely obscuring the small angle of lean q:.‘ So, a device
immune to a.celeration was necessary, and a gyroscope was tried
(Fig. (10.3)). In the beginning,the gyroscope seemed to work
satisfactorily but it was soon discovered that the gyroscope failed
to retain its orientation every now and then and began to gyrate
ceaselessly. This may be because an accessory known as self-
righting mechanism was missing in the gyroscope. It is believed
that a rate gyro or any other expensive gyro would have been the
most suitable device to measure ¢. The use of gyro had another

advantage. The police model of the motorcycle uses a radio where

the gyro was mounted, and the gyro replaced this radio by about

an equal weight without changing the motorcycle configuration.
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| Fig. (10.3) Gyroscope on the Rear Fender of a Production Model

Since an expensive gyro could not be procured, the use of a
third wheel was attempted (Fig. (10.4)). The relative rotation

of the rectangular frame holding the third wheel with respect to

the rear system of the motorcycle was calibrated to give ¢. The

1

J magnitude of ¢& was picked up by a potentiometer mounted on the

’ frame of the third wheel (Fig. (10.5)). The calibration was done
| by a plumb pendulum. The third wheel with normal tire pressure

| was apt to bounce on the road. But with soft tire on it, the

’ bouncing could be reduced materially. Loading the third wheel

! with a sand bag weight with tires also soft, could substantially

subside the bouncing.
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‘ Fig. (10.4) Third Wheel Assembly on the Production Model

Fig. (10.5) Lean Angle Pickup on the Third Wheel Frame
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Fig. (10. 6) shows a typical record made with this arrangement.
The third wheel was abandoned due to two main reasons, (1) the
test machine was not quite the same motorcycle since the drag on
the third wheel did affect and alter the natural performance of the
machine and (2) the test runs appeared to be dangerous, especially
at the higher speeds. The attempt however did not go entirely in
vain, since the data thus obtained do substantiate the motorcycle

motion phenomena as described in Chapter 3.

SPEED 65 Pl

o ]
| F/f-f

Fig. (10.6) Typical Oscillograph Record of 6 and ¢ with the
Third Wheel on Production Model with Standard
Suspension.
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Final Measuring Device

It was noticed that the trace of ¢ from the third wheel pickup
was not suitable to compute the damping coefficient and that the
trace from steering, if made on a more enlarged scale, would prove
very satisfactory to determine the damping coefficient even without
the ¢ trace.

In subsequent test runs therefore, ¢ was not recorded. The
results that are given in this chapter are based on the record of the
steering angle 6 alone. Since 0 and ¢ are interrelated as de-
scribed in Chapter 3 and the characteristic equation of the linearized
eguation of motion is same for both 6 and ¢, the stability with
respect to only one variable, either 0 or ¢, is sufficient to repre-
sent the stability of the motorcycle motion.

The steering angle pickup was energized by two 1. 5-volt
batteries which were mounted on the motorcycle itself. A cable con-
nected the steering pickup on the motorcycle to a recording oscillo-
scope on a slave car (Fig. (10.7)). The signal was fed to the os-
cilloscope through a suitable filter without any amplification. A

schematic of the electric circuit is shown in Fig. (10.8).

Test Procedure

The driver introduced a steering disturbance by a gentle push on

the handle bar grip. To minimize the driver input during the test

run, the driver removed his hands from the handle bar and allowed the
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Fig. (10.7) An Actual Test Run, The Test Motorcycle Following
The Slave Car Closely at the Same Speed
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e AMAAMAAA

Potentiometer

Filter
i;

Oscilloscope

Fig. (10.8) Schematic of Recording Circuit.
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machine to stabilize itself on its own (Fig. (10.9)). Only in situa-
tions when the motorcycle appeared to be going out of control, did
the driver grasp the handle bar again. The motorcycle was run at a
safe distance behind the slave car at very closely the same speed

as that of the car. During each run, the speed of the motorcycle was
maintained as nearly constant as possible. Several recordings were

made for each run, and the runs were made over a range of road speeds.

Fig. (10.9) An Actual Test Run. Driver Minimized His Input
by Removing His Hands From the Handle Bar.

Computation of Damping Coefficients

. The decay of the steering oscillation is according to the rela-

tionship
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l. B = pe (10.1)

where © is the amplitude of oscillation ( steering angle) read on

the envelope of the peaks on the oscillograph record, p an arbi-
trary constant depending on the initial disturbance and @ the
factor governing the decay or growth of the oscillations.

‘ By reading any two arbitrary points on the oscillograph record,

two relations can be obtained in which, with ® and T known, there

are two unknowns, p and a.
0, = pe ! (10. 2)
0, = pe 2 (10. 3)

@, the damping coefficient, is invariant for a given motorcycle
situation whereas p is not, since it depends on the initial disturb-
ance. The term of importance and concern here is a, since it rep-
resents the tendency of the motorcycle to stabilize itself after it is
disturbed. A negative value of « indicates, as pointed out in
Chapter 9, that the machine is stable, since the right hand side of
equation (10.1) will tend to zero as T increases. A positive value
of @ indicates instability since, no matter how small p is (p
can be made as small as desired by making initial disturbance
small), the right hand side will grow without limit as T increases

without limit. If however a = 0, the motorcycle is like an undamped

pendulum with no tendency on its own to damp out the oscillation.
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The fact that the trace of 0 is oscillatory, means that «
is a complex quantity. The imaginary part represents the frequency
of oscillation and the real part its damping. Since points are read
on the envelope of the peaks of 6-trace, the equations (10.2) and
(10.3), when solved for «a, will give the real part of the complex
quantity representing the damping. The method of reading the points

is shown on a typical oscillograph in Fig. (10.10).

1] F
Fig. (10.10) ATypical Run on Production Model Illustrating the

Method toRead Points for Computation of Damping
Coefficient

] || }

Equations (10.2) and (10. 3) give

In6, -1ln#8,

a = (10, 4)
(7y = 73)
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The value of T can be read on the oscillograph record taking arbi-
trarily any instant as zero, since in the equation (10. 4), only a differ-

ence term (T, - T,) is involved.

Initial Divergence and Subseguent Damping

In some test runs the motorcycle displayed two distinct tenden-
cies. In the beginning, immediately after the steering disturbance was
given, the oscillations had a tendency to grow before the damping start-
ed. This initial character is named as initial divergence and the damp-
ing that appeared afterwards is named as subsequent damping. In few
cases, the initial behavior is not a divergence but a damping at a rate
slower than that of the subsequent damping. Fig. (10.11) and Fig. (10.12)

illustrate two typical traces of the two situations described above.

|

[ |
=4

|

| [ | | ;
“'P]zED|70- |

w

! | | Texas-6&

Fig. (10.11) A Typical OscillographRecord of Production Model,
Illustrating Initial Divergence.
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Fig. (10.12) A Typical Oscillograph Record of Production Model
Showing Initial Behavior as a Damping at a Rate Slower
than that of Subsequent Damping.

The Test Variables

The effect of the following variables was investigated in the

road tests:

1. Tire parameters
(a) Pressure
(b) Brand

2. Steering Damping

3. Weight distribution on rear system

4, Position of driver on the machine

5. Inertia of the front system

6. Moment of inertia of the front wheel affecting the
gyroscopic effect

7. Rake

8. Trail

| ;
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These are by far not all the variables that can be investigated

to study their influence on motorcycle performance. But they are

the ones which can be readily changed without bringing about any

change in the design and manufacture technique of the production

machine. The last two variables could be investigated only because

the experimental division of the Harley Davidson Motor Company

developed an experimental model with variable steering geometry.

In this machine rake angle and trail could be changed independently.
The results of the test runs are presented graphically in Fig.

(10.15) through Fig. (10, 35). The results on Fig. (10.15)

through Fig. (10.24) are of the test runs carried out at Madison,
| Wisconsin. The results of the runs carried out at San Angelo,
Texas, with the help of three tables are shown in Fig. (10.25)
through Fig. (10.35). The initial divergence wherever present is

shown by broken lines.

There are a number of uncontrollable factors involved in the

| road tests, which make it exceedingly difficult to assign quantita-

‘ tive significance to the experimental results. Besides, the motor- |
cycles tested were not measured for their geometrical, mass, and

!l inertia constants to warrant any quantitative information. The re-

|

producibility of the test runs is somewhat limited. But the data do

indicate qualitatively the characteristics of the motorcycle
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performance, and the general character of the motorcycle behavior

is satisfactorily reproducible (Runs 10 and 10-a on Fig. (10. 30)).

Results and Conclusions

The following general conclusions are drawn from the road

tests.

1

A motorcycle is more stable at the lower test speeds than
at the higher test speeds in most of the motorcycle situa-
tions.

The frequencies of steering oscillation at all speeds
remain very close to 2 cycles per second, and therefore
they have not been plotted on the graphs representing

the experimental data. The frequency at the lowest test
speed (40 mph) is slightly less than 2 cps, and at the
highest test speed (80 mph), it is slightly over 2 cps.
The frequencies not only remain close to 2 cps even in
different motorcycle situations, but also show the same
trend of minor variation over the entire range of test-speeds.
Rigid suspension does not make significant difference in
the motorcycle performance with respect to the stability
considerations and almost none in the general trend.
However, the stability with rigid suspension is slightly

better than that of the standard production model (comparing
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Figures (10.15), (10.16), and (10.19) with Figures
(10.20), (10.21), and (10.22) respectively).

Motorcycle performance does not change substantially
with the change in eizher the rake angle or the trail.

All the combinations of three rake angles, 29.1°,

31.6°, and 31.1° and three trails, 5.75", 6.90", and

8. 00" were tested. The combination of 29.1° rake angle
and 5. 75" trail turned out to be the best of all, and the
combination 34.1° — 8. 00" poorest with regard to sta-
bility. In some cases a critical speed is suggested

where the stability is minimum.

The experimental model, in all the test setting of the steer-
ing head (including the poorest), is more stable than the
production model using the same pair of tires.

Effect of increased moment of inertia of the front wheel

(i. e., the increased gyroscopic effect) is helpful in all
the circumstances tested. This effect is more predominant
at the higher test speeds. The effect is so significant,
that it tends to make the motorcycle more stable at higher
speeds than at lower speeds contrary to the usual trend
(Figures (10.19), (10.22), and (10.24), and runs 22 and
23 compared with runs 22-a and 23-a respectively in

Table (10. 3).

EEsss—s————_——_—_—————————T |
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7. The tightening of steering damper decreases the stability.

However, at higher speeds, the steering damper is often
P helpful.
8. The smooth tires make the machine sensitive to additional

weilights on the rear fender.

9-a. When the cause of instability is quick steering response
resulting in "'shaking of its head," a steering damper is

very helpful (Fig. (10.13-a) and Fig. (10.13-b)).

T B I o
I | | |

SPEAD .;;5:,,73/;:/,_, Eod [ ||

Fig. (10.13=a) Production Model With Standard Suspension;
Smooth Tires; Front Tire - 13 psi; Rear Tire - 16
psi; 53 lbs on Rear Fender; No Steering Damper.

ﬁ .
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T T T 3 Rigar

i
SPEED <5 ppp/o/.

=" ée'# F-g-63-/¢

Fig. (10.13-b) Same Motorcycle Situation as that in Fig. (10.13-a)
With Steering Damper Turned All the Way Down.

9-b. Situation in Fig. (10. 13-a) also improved by increasing the
moment of inertia of the front wheel. The resulting increased
gyroscopic effect was not sodominant as the steering damper.
But as the speed went up, the gyroscopic effect became
more significant. The following three oscillograph traces
indicate this fact.

10. Weight on the rear fender affects the stability adversely.

11. Soft front tire decreases the stability at all speeds.
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Motorcycle Situation Same as That in Fig.

(10.14-a)

Fig.

(10.13-a); No Steering Damper; Front Wheel

Moment of Inertia Increased. Speed — 45 mph.

SPEED 50 p77o%

|

Same Motorcycle Situation as That in Fig.

(10.14-a).

(10.14-b)

Fig.

Speed — 50 mph.
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| | _I| i ! [ ‘
bLo | SPEED |fﬁ 77224
i BREEERER il

| RREER |;'I | | || \9-8-63-23
i 1} TN T O A | | | Pl

Fig. (10.14-c) Same Motorcycle Situation as That in Fig.

12.

T3

(10.14-a). Speed 55 mph.

Fig. (10.23) compared to Fig. (10.15), runs 10 and 10-a
on Fig. (10.30) compared to all the runs on Fig. (10.25)
through Fig. (10.30), and a comparison of run 27 in
Series—4 with all the other runs in the same series in
Table (10. 3), indicate very conclusively that the smooth
tires with greater cornering power provide greater stability
to a motorcycle than do the other tires.

The results of runs 2, 3, 4, and 5 in Fig. (10.26) and
Fig. (10.27), suggest that it helps to have, at higher
speeds, a front tire with higher comering power, but at

lower speeds on the contrary, a front tire with smaller

cornering power, as compared to that of rear wheel.
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14. Old tires, if uniformly worn, do not seem to affect the
stability adversely (run 12 in Fig. (10.30 ) compared
torun 1 in Fig. (10. 25)).

15. Moving the weight of the driver forward results in an

improvement,
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TABLE 10.1
SPECIFICATIONS OF TEST RUNS
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Run Machine Front Tire

Rake
Rear Tire deg.

Trail
Inches

1 Goodyear
Eoiid SUDEI;I Eagle
2 Goodyear
63-332-E
32 4 Goodyear
o Super Eagle
a
4 O 1"
~ =
o B % Goodyear
£ = 63-332-A
— e
e b O Firestone
| -
v 7 8 U.S.Royal 1
8 = U.S.Royal 2
9 U.S.Royal 3
10 Smooth
10-a° 7
11 Worn S.E.1*
12 Worn S. E. 2°

Goodyear
Su per IEagle

i

Goodyear
b63-332~E
Goodyear
63-332-A
Goodyear
Super Eagle
Firestone

U.S. Royal 1
U. S. Royal 2

U.S.Royal 3
Smooth
Worn S. E. 3°
Worn S.E. 3

lLess Right Saddle Bag

2 .
Machine wobbled even when the driver held the handle bar

3
Run 10 repeated next day for check

4Wom S.E. 1 had too high central ribs

5
Worn S.E. 2 and 3 were uniformly worn (S.E. — Goodyear

Super Eagle Tires)
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TABLE 10.1 (continued) — SPECIFICATIONS OF TEST RUNS

Run Machine Front Tire Rear Tire Rake Trall
deg. inches
13 2 Goodyear  Goodyear 29.1 5.75
8 Super Eagle Super Eagle
14 = L L 291 6. 90
15 = " 2 29.}) 8. 00
S 16 - d i 31. 6 5.75
@ 17 Z " " 31.6 6. 90
= 18 2 " " 31.6 8. 00
w19 e " " 34,5 5,75
20 - G B 34.5  6.90
21 " It L 34.5 8. 75
22 . :%4 Worn S.E.1 Worn S.E. 3 29.1 5.75
g 22-5% S.E': EZ_. E i 1" " 1"
o) o
e e E S|
7 B = =
—
23 E Goodyear Goodyear 29.1 5.75
O Super Eagle Super Eagle
23_63:( 2 " A " ]
]
<
24 E' i Goodyear . "
” x 63-332-A
% 25 E Firestone Firestone o i
= 26 § U.S.Royal 1 U.S.Royal 1 s "
ol 27 ﬁ Smooth Smooth & ok

1,

-P‘Balanoe weights on front wheel




TABLE 10-2
STABILITY COEFFICIENTS OF SERIES 1 and 2

Run Machine Front Tire Rear Tire Damping roots
40 mph 50 mph 60 mph 70 mph
Goodyear Goodyear + . 05093
1 Super Eagle Supe'r' Eagle -1. 02571 - . 72448 = . 31559 - ., 29455
" Less right + .18209% + ,51263%
1-a saddle bag -1.01338 - ., 55939 - .33243 - .11165
Goodyear Goodyear + .23392%
2 63-332-E Super Eagle -1.20337 - .80019 - .35079 - .2385l
Goodyear Goodyear - .20975% + .27394%
3 e Super Eagle 63-332-E -1. 50033 = 95313 - .54203 - ,15187
S Goodyear Goodyear + .43588% + .34607%
4 @) 63-332-A Super Eagle -1.11817 = .51926 - .35232 - .55410
= Goodyear Goodyear + . 18302
5 % Super Eagle 63-332-A -1.37648 - ., 89445 - . 64467 - .24101
e + . 06801 4+ .36686* + ,65498%
6 O Firestone Firestone - . 87386 - . 60684 - .42199 - . 28923
a + .04520% + .07729%
7 g U.S5.Royal 1 U.S.Royal 1 -1.05256 - . 62308 = ..53903 - ., 39828
A - . 09369% + .13673%
8 U.S.Roval 2 U.S. Royal 2 -1.13748 - . 65098 - 37872 - 27671
+ .12553% 4 .51974
9 U.S.Royal 3 T.S. Royal 3 - . 98229 - . 70448 - .47216 - 42738
Goodyear Goodyear
10 Smooth Smooth -1, 39778 = . BB557 - . 66805 - . 44537
10-a =-1,39010 -1.21437 -~ .81894 - .61296
Worn Super Worn Super - .03623% + .11907%*
11 Eagle 1 Eagle 3 -1.18920 - . 62946 = . ZTT50 - .14598

291



TABLE 10-2 (continued) — STABILITY COEFFICIENTS OF SERIES 1 and 2

Run Machine Front Tire Rear Tire Damping Roots
40 mph 50 mph 60 mph 70 mph

12 Production Worn Super Worn Super + .08234% + ,29503%

Model Eagle 2 Eagle 3 -1.06401 - .673634 - .36772 - .38427
13 Goodyear Goodyear - ,28779%

Super Eagle Super Eagle ~-1.66219 -1, 44547 -1.10268 -1, 04096
0. 00000

14 ' H -2. 07159 -1. 38774 -1.10115 =~ . T3155
1 + .18537%*

15 o, " " -1. 82036 -1, 36422 - . 94362 = 67221
a - .
9] - .01592#

16 = L L -1.72309 -1.33335 -1.10079 - .69799
’::7 + .50219:%

17 EZ" " L -1.42097 -1. 23601 - .99852 - .67207
z + .92101%

18 é o 1t -1.67152 =-1.31001 - . 70609 - 1191
= + ., 23828%

19 ﬁ " " -1, B7850 -1.46101 -1,06643 - ., 72039
+ .20439%

20 11 1 -1.75039 -1. 46650 - , 821302 - .69257
0, 00000 +1. 20547

21 H 1 -1.60036 -1.32383 - . 87403 - .6b6516

Roots representing initial divergence.

€91
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TABLE 10. 3
RESULTS WITH EXPERIMENTAL MACHINE

Damping coefficients at 70mph-Damping coeifficients at 80mph

Run
., . . .Remarks on « @, . . . Remarks on «
initial @, second initial @, . second
initial initial
13 - ,28779 o -1.04096
14 0.00000 = = TS LeS
w8 k18357 = = praas ekl
16 - . 01592 - - .69799 :
“ 17 +.50219 - - .67207 seres.
’; 18 + .9290 b L I B8 B |
m 19 + .23828 - - .72039
W 20 + .20439 = - . 69257
21 +1.20547 - - . 66516
22 0.00000 = - .53102 + .40436 - - .48739
22a = .03233 - - 826567 + .23479 = - .72093
23 - .34215 = - .62327 + .25423 occurs - 45446
| once—not
& conclusive
_ 233 None#* = - .89160 + .70437 not conclu-
i 2 0.00000  sive - .77768
; o 24 + .34218 not -1,04640 + .90189 = - .84514
| A - .20845 conclu-
! - sive
; M25 None = - .51521 +1,23170 = = .54372
| ~ 26 None - - .,68984  None - - .69054
'; tj 27 +1.64159 occurs =-1.18887 + .29385 & -1.04042
g once, onc
g not
conclu-
sive

""None'' signifies that there was no initial divergence in steering
oscillation.
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CHAPTER 11
DISCUSSION OF RESULTS AND CORRELATION

The analytical investigations were carried out for machine
constants of a representative motorcycle, and not for the motor-
cycles used in the road tests. This entirely excludes any quanti-
tative correlation and comparison of the analytical results with those
of the road tests. At best, only a qualitative comparison of motor—
cycle performance, as indicated by the analytical solutions and
as observed in the test runs, can be made.

The method of reduction of data implies that the real part of the
complex root has been evaluated from the oscillograph records.
This implication will be true even if the component motion corre-
sponding to real roots were significant ( which were really not in
any run). The real root is of consequence in comparing instability
in Region 3 and possibly in Region 5. In the theoretical solutions,
Region 5 never appears, and Region 3 might have appeared, but only
in one case (the steering damper study), at very low speed and
high steering damping. There is no sharp boundary between Region
2 and Region 3, because there is no way to predict the maximum
positive value of real root, which is beyond the control of normal
riding skill unaided by extra driver effort. Therefore, the behavior

of the motorcycle in Gaussian plane is significant in comparing the

experimental results.

-J
o
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The most important agreement in the analytical and experimental
results is the general decline in stability as the road speed goes
up, with t}*;e same exception in each case. The exception is the
motorcyvcle situation in vhich front wheel moment of inertia I“I'*
is increased.

The most significant disagreement between the theory and the
experiment is on the variation of the frequency of oscillation over
a range of speed. It was found from the results of the road tests
that the frequency of steering oscillation, for all the motorcycle
situations, remained close to 2 cycles per second over the entire
speed range. The theory indicates a change of reduced frequency
% from 1.5 at Froude number 8. 226, to 1. 76 at Froude number
32.90. This will be, for the representative motorcycle model of
the theory, approximately equivalent to 3.6 cps. at 13. 6 mph and
4. 28 cps. at 54. 4 mph. The representative motorcycle model of
the theory is smaller than the Harley Davidson Machine. Therefore
the equivalence of £ will require higher value of "f' for the
model of the analytical study. This tends to explain the higher fre-
quency values obtained in the theory. As a matter of fact, the vari-
ation of frequency is more sizable in higher speed range of theoreti-

cal results.

The frequency contrast pointed out above is not very objection-

able considering that the figures, illustrating the difference, have
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a lower speed of only 13. 6 mph, whereas the minimum test speed
was 45 mph. Still, there is no indication to suggest that tests
on lower test—-speeds would have resulted in any decrease in fre-
quency.

The theoretical results of Chapter 9 cannot possibly explain
the initial divergence observed in some of the runs of the road tests,
since the magnitude of © in those situations are of the order of 2°

-~ O

to 3° and the validity of the linearized equations in this domain is
Tuestionable. However, on the basis of stability criteria discussed
in Chapter 1, there is a very likely explanation. In those motor—
cycle situations, which show initial divergence, the characters of
motion in the linear domain and in the nonlinear domain are not the
same. In the nonlinear domain, the motion is unstable while in

the linear domain it is stable. Immediately after the steering input
of the driver, the machine is thrown into the nonlinear domain ( since
6 is large), and the oscillations begin to grow. Although the rider
had his hands off the handle bar, he is surely introducing corrective
input, by shift of his body weight (Fig. 11.1), to control the ma-
chine when the steering oscillations grow up to a magnitude where
he cannot help reacting to it. Once the oscillations are cut down by

the corrective input of the rider, to within the linear domain, the 8-

trace indicates what is termed as subsequent damping. In those

cases, where the initial behavior is not a divergence but a damping
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Fig. (11.1) Driver Input by Shift of His Weight During Actual
Test Run
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at a rate slower than that of subsequent damping, the character
of motion, although stable, is significantly different from that in
linear domain.

The study of the effects of variation in ¢ was made more for
the purpose of examining the sensitivity of the theoretical solutions
to change in o, than to investigate and compare the stability itself.
Since the effect is not very appreciable, and does not change the
character of the solution over the entire range of Froude number,
the constant value of .05 for o, used to solve all the motorcycle
situations, is not likely to. introduce any sizable error in the
solutions.

Investigation over a range of .65 to . 85 of General Motors'
tire values was also done with adual purpose. Besides investigating
the tire effect, it is important to establish that an apposite value
.75 for z, represents realistically a certain tire pair which can
be used to investigate the effect of other machine variables. The
results show that although stability roots are affected by tires of
different z-value, the character of motion is not. Hence 2z = .75,
representing an arbitrary tire, is quite justified to be used to investi-
gave other motorcycle parameters. Besides, the object of the study
is only to compare the motorcycle performance, and not to compute

quantitative stability coefficients to match with experimental data.

—-
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The theoretical results of Figs. (9.1), (9.2), (9.3), and (9. 4)
imply that tires of higher cornering power are good for stability.

This improvement, suggested by theory, conforms to the improve-
ments which were found in the road tests by the use of smooth tires.
However, the theoretical improvements do not appear to be quite so
substantial as that brought in by the smooth tires.

There are no inverse trends in results of Fig. (9.2), (9.3),
and (9.4), and none with the change in Froude number, to suggest
theoretically that different tires on the two wheels will conform to
the experimental observation described in Chapter 10 (conclusion
13). The theoretical investigations have assumed symmetrical
tires. An unsymmetry in either of the two tires, in actual practice,
will be a source of disturbance and is likely to modify the motorcycle
performance.

The effect of change in rake angle found from theory, in order to
be correlated with the observed experimental results, needs discus-
sion based on the hypothesis of the control of component motion
corresponding to the real root. As long as the component motion is
under the control of the riding skill, the effect of increasing rake
angle improves stability. But for large positive value of real root,
the motorcycle tends to be unstable. Since in practice, a driver will

oppos¢ oscillations about an off-zero mean, his large input may
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result in forced oscillations in the unstable situation caused by a
large positive value of real root. In the road tests, the change in
motorcycle performance for the three different rake angles was small.
In the theory too, the change in stability coefficient is less signifi-
cant at higher Froude number than that at lower Froude number.

The slight change in the stability with change in rake angle,
as observed in the road tests, contrary in trend to the theory, may
be due to lack of effective control of riding skill on real root at
larger rake angles. This supports the view that an optimum value
of rake angle exists.

The effect of increase in trail in the Gaussian plane, like the
effect of increase of rake angle, results in an improvement in the
stability, which is also contrary to a small improvement trend ob-
served on road with decrease in trail. This, however, lends itself
to a similar explanation as is given for the rake angle effect. Only,
the trend of real root grid in the trail study emphasizes the explana-
tion more strongly. Making the trail negative has very adverse effect
both in the Gaussian plane and on the real root grid. Negative
trails were not tested, and no data are available to verify the theory
for negative value of trails.

The gyroscopic effect of front wheel vields similar results both

in theory and in test runs. Theoretical results however, show that




indefinitely increasing I‘I* may have an adverse effect at lower
speeds. Experimental data are not available to check this conclu-
sion. The result of change in m}:: and of the effect of increasing
I‘I":‘ at lower speeds lend support to each other.

Study of change of gyroscopic effect of rear wheel was not
experimentally made, therefore there are no data to verify the

theoretical indication that this effect is only slight.

ale
e

Both theory and experimental data suggest that reducing mI

results in an improvement of stability. According to the theory,

this improvement is more pronounced at the lower Froude number
than that at higher ones. Enough data are not available to check
this fact.

In one of the test runs, head lamp, mirrors, windshield and

al,
sle

signal lights were removed. This not only reduced mI

slightly,

but also reduced the value of 135[.

A slight improvement in stability
supports the theoretical trend of similar improvement for lower values
of 1’_;:3I.

The experimental model had its center of gravity more forwarded
in front of the steering axis as compared to its location on the pro-
duction model. The experimental model had better stability than

the production machine. But there are not enough data to verify the

theoretical suggestion that there is an optimum value for a}h' .

-
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]' No road test data are available to verify the analytical results
that Hl nas little effect on stability and that decreasing h?l
improves stability at all Froude numbers.

The fact that loading the rear fender in some of the test runs

impaired, and forwarding the weight of the driver improved the

stability, conforms to the theoretical indication of small improvement

sle
52

on increasing a e

The experimental runs included only one additional steering
damper setting — the damper tumed all the way down. The test
1! results agree with the theoretical ones. Experimental data are not
available to verify the theoretical indication of the performance of

motorcycle at very high steering damping.

Recommendations

The recommendations to improve the performance of a two-
wheeled vehicle, on the basis of the theoretical investigations,
can be divided into two general groups. The first group includes
those variables which do not have an optimum value. They can be
changed as much as the design and the manufacturing considerations
will permit. The second group consists of those machine variables

which have optimum values.

The recommendations of the first group are

A ad- b

1. I’;,‘,I should be small.

TV

|. _
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(&%)

m;’ should be small.

3. nH should be small.

4, .':1}"‘I should be large.

5. Effect of h’f on stability behavior is slight, but its smaller
value is more conducive to stability.

6. K}:‘ (j =1, 6,1) should be large, i.e., tires of higher corner-

ing power are better for stability.

The recommendations of the second group are as follows.
1. Rake Angle = 31°

, ; . =
2. Trail (nondimensional) = 7.39 X 10

y ~Z
3 I'I"‘ = 1.73 X 10

4, a’Ik = . 1480 to . 1570

Many of the factors which affect stability also affect the handling
characteristics, Therefore, some judgment is necessary to effectively
use the recommendations of this section, especially of the second
group.

On Gaussian plane, the effect of increase of I‘I* is adverse at
lower speeds, but profoundly stabilizing at higher speeds. Very high
value of I‘{’= is likely to result in a very high positive value of real
root in the real root grid, and a motorcycle may fall in Region 3 or

Region 5. Theoretically, there is no way to assign a limit to the

maximum positive value of real root which is under effective control
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. of normal riding skill, and experimentally, it is ot even possible
to detc mine th = value of the reual roots. However, a mathematically
plausible value on real root grid, for situations where optimum con-

ditions appear, is zero.

The recommendations in this section are made on the basis of
an arbitrary positive value of . 075 on the real root grid and Froude
number 16. 5, presuming that the riding skill will more than compen-

" sate the small positive values.

At lower speeds, steering damping has adverse effect, but at
higher speeds the damping has an optimum value. At higher Froude
number, a small damping is better than no damping at all. The
bearing friction of the steering does ini oduce some damping. But
without the practical data, it is not possible to determine if the
friction damping will give optimum condition at larger Froude num-
bers. If additional damping is needed in higher speed range, the
different requirement of steering damping over the entire range of
speed can simultaneously be met only if a damper is provided which
can be applied or released as desired.

It was observed on the road tests that small positive values of
real part on Gaussian plane were under the control of the driver
without any extra effort or fatigue. Hence it seems reasonable that

a machine, having good handling characteristics at low speeds, but

|
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having very small positive values on Caussian plane at higher

1

speeds,

[ 7]

should be considered a good motorcycle.

4

In view of the zbove fact, the following additional guiding

values are recommended.

Limits Motorcycle

Real part of complex root < 0 Desirable
0 < Real part < + 0. 4 Acceptable

+ 0.4 < Real part < 0.75 Needs continuous effort
of driver

Real part > .75 May be dangerous

The above values are suggested entirely on the basis of experi-

mental observations, and are to be taken only as a measure of ac-

ceptibility of a design.




CHAPTER 12
SCCT- OF FURTHER WORK

A very elaborate testing program is needed, if the theory pre-
sented here is to be effectively and completely checked. It is sug-
gested that a motorcycle, such as the experimental model of the
Harley Davidson Motor Co., be completely measured for its machine
constants. This measurement will be of little value unless reliable
tire data for the tires to be used in experimental investigations are
available. Although measurement of tire forces and moments will
be a project in itself, yet without its undertaking a more rigorous
verification of the theory cannot be done.

A knowledge of slip angle is essential, if the use of arbitrarily
assumed value of o is to be avoided. There seems to be no way to
accurately determine the value of ¢ by experiment. However, an
experimental method, which may give a fairly correct value of o,
is outlined below.

Let a motorcycle run on a known curve at constant speed and
radius. There should be suitable instrumentation to measure accurate-
ly, not only the steering angle 8, but also the angle of lean d.
Knowing the speed, the degree of curve, ¢, and motorcycle geometry,
it is easy to compute very accurately the steering angle required to
keep the machine on the curve under equilibrium. The difference

188
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between the steering angle measured and the one computed multi-
plied by the cosine of rake ar sle is slip.

The theory presented in nondimensior al form is particularly
adaptable for aside information. Various parameters have physical
assoclations. The computation of these parameters require only
two statements, PUNCH and FORMAT, in the computer program. A
simultaneous plot of some of the more significant parameters will
present a more comprehensive pict re of (1@ motion. Effect of a
group of variables on the stability can also be investigated.

The hypothesis used to interpret the roots of characteristic
equation involved the unknown input of the rider. Still, for investi-
gating stability, the riding skill and guantitative driver input are
only of academic interest. The important practical problem is to

perfect a motorcycle such that it tends to absorb small disturbances

over a satisfactory range of speed without much effort of the driver.




APPENDIX A
Motorc'cle Constants*

= = 0;8 F J = =0l 3
aI 0 It 1 3 ft
5 = 2f £ = 2
“11 ‘ 11 t
b = 3 ft mI = 4 Sl
1 = 2 f m = 15 81
Sy ke 1 g
C, = 0.008 lbfsecz/ftz I o= 0 8LEE

= 0,002 ; 2 /tr2 = 4
CII 0 lbfsec /ft Il 30T 0 Sl ft
C = 0 1lb. ft sec r =
f i3 I

= 2 r =1
dII ft I ft
hI = .5 ft o = 30°
hII = L.5 ft o = ,05

= 2 o = 5
IllI' 1 81 ft z . 15
IllII: 3 S1 fte© ST 8580 lbf
Lo 0. 5 B f2 k, = 152 lb ~ft
331 2 f

= 3 c+2 = 2/ =
I33H 3 81 ft KS 68 lbf ft
I'I £ 1 81.f° kK, = 942 1bf-ft
! = 2 ft? = 26. -
III S Tt ke 6.8 lbf ft
R (computed) = 5. 413 ft. Kg = 642 lbf-ft

Machine constants other than tire parameters are taken from
Ref. (4).
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APPENDIX B

Computer Programs

The computer programs were written for an IBM~1620 computing
machine.

The program computing the coefficients of the characteristic
equation takes about six minutes reading time, and about two minutes
to solve each motorcycle situation. This program is run on FOR-TO-
GO.

The dumped deck of the '""Root Solver" takes about three minutes
reading time, and one and a half minute to solve each equation. This

program is run on FORGO.
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MACHINE fONqTANTa

READsA1sA23B1sB2+sCleC2eD20H1aHZsALT sALZAR<AITL+ATIZ2

RE AU&&KP“lsﬁkPA¢sﬁhrAEpAKPﬁﬁ-PKnﬁ7~ARPPE

READ s AIXLsAIXZ29ATZLsATZ2sPXZ]1sPXZ2e AM]1 «AMZ2 G

Z=475

SGMA=.05

PAEE=3414159

SALFA=28.

PUNCH 6000s SALFA

FORMAT (21H ALFA IN DEGREES = F4el)

ALFA=(SALFA/1804)%PAEE

S D]gt1./COJF(ALFA)1*{Hﬁ+ﬁ“+fINF(ALFﬂ}*(“l AL1))=H1

R={A1-AL1)*#COSF(ALFA)+A2+AL2+(H1+D1)#*SINF(ALFA)

= XKPA1=AKPALl/ (AMZ2%G*R)

XKPAZ2=AKPA2/ ( AM2¥*G¥#R)

E XKPA3=AKPAZ/ (AM2+*GH*R)
AKPA4=AKPA4/ [ AM2%#G*R)

= XKRAS=AKPAS /L AMZEGHR)
XKPAG=AKPAG/ (AM2%G¥*R)

= XAl=A1/R
XKA2=A2/R

B XB1l=B1/R

XB2=B2/R

e XCl=CRERAAMD
XC2=C2%¥R/AM2
XP1=p1/R
XD2=D2/R

- XH1=H1/R
XH2=H2/R

- Xl =ALLAR

| XL2=ALZ/R

I- XR=AR/R

| XII1=AIT11/(AM2*R#*R)

= X112=A112/(AM2#R¥R)

XIX1=AIX1/({AM2¥R#R)
— XIX2=AT X2/l AM2ERXR )
XIZ1=AIZ1/{AM2%R%¥R)
X122=A1Z22/ 1 AM2#R%#R)
XPXZ1=PXZ1/{AM2%R*R)
XPXZ2=PXZ2/ (AM2#R%K)
XM1l=AM1/AM2
e . J{MZ l. D .
5 24 C 05 F{z.ffLFﬁ}“(XL1"Xﬁ )=SINF{2«*ALFA)*(XD1+XH1))
S2=(1e=Z)#(SINF(ALFA)E(XD2+XH2)=COSF(ALFA)* (XL2+XA2))
a1*51+”2
FOJF{/'*ALrAj“{XL1+XA1)WJINF{ﬁLrﬁifCUu[[JLFA]
—SINFIALFA)ESINFIALFAY*(24#{XD1+XH1) )

e szaﬁkaq — .
Q3=SINF(ALFA)*IXL1*COSF(2+*ALFA)/COSF(ALFA)=2+%XD1*SINF(ALFA))
Q4=XR*¥XR* (=XL1¥COSF (24 #ALFA)I+XDIH*SINF(2.%ALFA))
QE=XR#XR¥ (XD2*STINF(ALFA)+XL2¥COSFIALFAY)
55=(14/COSF(ALFA) ) ¥ {COSF(24%ALFA) ¥ (XLI+XAL)=SINFIALFA)¥(XD2+XH2))
Q6=S5+XA2+XL2-2 ¢ *SINFIALFAYR{XDI+XHI)

— G7=XL]1%COSF{2%ALFA)/COSF(ALFA)=2*XD1*SINFLALFA)

f."" \_
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QB=—-XD2#SINF(ALFA)/COSF(ALFA)+XL2
SE=XRFCXDIHSINF (2 e FALFA)®(XAL+XHI®SINFIALFA) )

& Q9=56—XR¥XL1¥COSF(2+*ALFA)*(XALI+XH)I*SINF(ALFA))

. — QlO0=XR#XA2¥ (XL2*COSF(ALFA)+XD2¥SINF(ALFA))

; Ql1=XR¥(XLI*®¥COSF(2«*ALFA)-XD1I#*SINF(2«*ALFA) )

— —Q-2= XA}W(XL{fCOJFI2-fALFA)/FU’F[ALFA}"?o“XDI"“INF(&LFA})—-

. ST=XL1*¥COSF(2«*ALFA)* (XAL1*SINF (ALFA)/COSFIALFA)—XHL)
E— Q13=ST7=2 ¥ XDIHSINFLALFA)®(XAL#SINFLALFA)-XHI*COSF (ALFA))
R14=XH2#*(XD2*SINF(ALFA)/COSF{ALFA)=XL2)

I

- Q21=( (SINFLALFA)/ZCOSFIALFA) ) #(XH2+XD2) +XA2+XL2) 4 (XAL1=XL1)

i S21=COSF(ALFA)* (XH2+Q21%XH1+XD2)=-XA2-XD1

R G22=521 =S NFLALEAI #IXL 12 (Q21+1«/COSFLALEA) JbXL2) o —

Q23=—-SINF(ALFA)#(XH2+XD2)=COSF (ALFA) ¥ [ XA2+XL1#*G21+XL2)

. $22=COSF(ALFA)*(XH2+Q21%(XH1+XD1)+XD2)=XA2=XD2%*W21

Q24=522-XD2/COSF(ALFA)=XL2*¥SINF(ALFA)

E Q25=Q21+1¢/COSFIALFA)

: S23=Z¥COSF(ALFA) #(~W22+Q25% (XH1~XA1*SINF (ALFA)))

 026=523+(}e=Z )} RCOSFLALEANLUR24=025%XH2) E—— o

e Q27=-2%Q25%*SINF(ALFA)*COSFLALFAY¥* (1. +rﬂLiIﬂIFA1)

E— $24=Q25%COSF (ALFA) % (2% (COSF (ALFA)+SINF(ALFA)*SINF (ALFA)))

[ Q28=524-Q25%(1e=Z)*COSF (ALFA)

B Q29=SINF(ALFA)#(=Q22+Q25% (XH1+XA1*SINF (ALFA)))

: 030=Q25*SINF(ALFA)*SINFIALFA)*(1e—COSF (ALFA))

f______"_@3L;Q25ﬁ5LNELALEA¢£L@05ELALEA¢*51N;{ALFA1f51mFLaLEA¢L__ I .
032=5SINF(ALFA)*(Q21%*XH1*¥COSF (ALFA)=Q22)-UW23%COSF(ALFA)

lﬂ Q33=XA2

J Q34==Q22% [ XR*¥XR)#COSF{ALFA)

F—— Q35=—Q24% (XR*¥XR ) *COSF (ALFA)

} Q36=—Q22-024+Q25% (XHI1+XA1%SINF (ALFA)+XH2)

f— Q37=Q25%*SINFLALEA) :

Q38=025%(COSF(ALFA)+SINF (AL EA)*SINF (ALFA)+1a)

S Q39=Q22¥XR*¥COSFLALFA)* (XAL+XH1%¥SINF (ALFA))

“ QuO=-Q24%XA2%XR#COSF (ALFA)

E- Q41==Q22%XR*COSF (ALFA)

& Q42=-Q22*%XAl

o Q43=—Q22*XATRSTINFLALFA ) +Q2 2% XH1*COSF LALFA) ey

£ Q44=Q24%XH2

XXM1=XM1%G3

XXM2=XM1%Q4

AXXM3I=XM2#*Q5

mE= e A g 111

]
i
i
B
[
i
o
r

AXMG=XM1*Q7
—KXME=AM2*Q8
XAME=XM1*Q9
XXMT7=XM2%Q10
XXMB8=XM1%*¥Q11
XAMY=XML*¥Q12
XXM10=XM1#Q13

XXM L=XM2%Q 14—

XXM21=XM1%*Q32
XXM22=XM2%Q33
XAM23=XM1#Q34
XAM24=XM2%Q35
XXM25=-XM]1#Q22
XAMZE==XM2EQ24
XXM2T7=XM1*#Q329
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= XXM28=XM2¥Q40
KXM29=XM1#Q41

.- xxM30=KM1ﬂQq2
i3 XM31=XM1%Q43
L xxmaz XMarQub I

S31=XR¥E(=XIX1I*#SINF(2%ALFA)#SINF(ALFA)=XPXZ1¥SINF (3. TﬂLFA‘)

EZF- XHX1=531-XPXZ2¥SINFLALFA)—COSFLALFA)¥(XIZ1%COSFL2%ALFA)+XIZ2Z)

XHX2=XIZ1%COSF(2«¥ALFA)Y/COSF(ALFA)

E 532==XIX1¥SINF (2 *ALFA)+XIZ1%COSF( 2 #ALFA) %S INF (ALFA) /COSF(ALFA)

533=XPXZ1# (3 *SINFIALFAI*SINFIALFA)=COSF(ALFA)*COSFLALFA))

B XHX3=5324533=XIX2#S5INFLALFA)LCOSFLALFA)=XPXZ2 . =

534=Q25%XR*¥SINFL{ALFA)*COSFIALFAI®IXIXI+XTZ1#COSF(ALFA))

- S35=Q25%XR¥COSFLALFA)® (XPXZ1#COSFIALFA)+XPXZ2)

XHX21=534+535-Q25*%¥XREXPXZI*¥SINF(ALFA)*¥SINF(ALFA)®¥COSFIALFA)

R XHX22=Q25%XTZ1#SINFLALFA)

S36=Q265% (XIX1%¥COSFIALFA)I+XIX2-XPXZ1#SINF(ALFA)Y*(1a+COSFIALFA)Y))

e XHX2325364+ NI LIRS INE(ALFA)RSINFLALFAY) - - — e

XXHL=XIT1#XR*%¥(=2.%#SINF (ALFA))

- XXH2=2e ¥ XTI 1*SINF(ALFA)

KXH3=XTT14X112

E_ XXH21=Q25#XR*¥COSF(ALFA)*(XTII11%(COSF(ALFA)+SINF(ALFA)#¥24)+XI12)

XXH22=-Q25#%#XII1

- - A*XH23=025#¥X 11 1¥SINE(ALFEA)L®E (=] «+COSELALFA)) P

AXC1=XC1#XREXR¥ (XH1*¥Q21¥COSF(ALFA)*CO SFlﬂLF&}ihHﬁ*dINF(&LFQJ)

- XXC2==XC2%¥XB2¥ ( XR¥*¥XR)

XXC3=Q21%COSF(ALFAY#(XB1-XH1#COSF{ALFA) ) #{XR#*XR)*¥XC1

| - W=20.

3 PUNCH 7» W
7 FORMAT(11H — OMEGA-—= F5.ls18H RADIANS PER
XW=W/SQRTF(G/R)

n

ECe) S B

E XX W= XWX W

SY1=SGMA# ( XKPAL1#Q1+(2«e%Z-1a ) ¥ (XKPA2#C

OSF (ALFA)=XKPAZ%STINF (ALFA) ) )

i SY2=XKPA4#Q2=SINF(ALFA)*XKPAS=(SINF(ALFA)*#2./COSFLALFA)) ®XKPAG

SYZ3=XXMI+(1e=SGMA ) #XXWH ( XAMZ2+XXMI+XXH])
_¥Y1=SY)l+S5Y2+5Y3 o o
Y2=5QRTFI(R/G)#*( (1~ 5GMA)H* (XXManXMT+KHxT1+XXM5+XxH2!*xW

E- Y3=(R/G)I*¥(XXMI+XHX2)

Y4=XKPA4*QE-2 e ¥XKPAS=2 s ¥XAKPAGXSINF(ALFA) /COSF (ALFA)+XXM4+XXMS5

B Y5=SQRTFIR/G) ¥ ( XXH3¥XW)

Y6=(R/G)® (XXMLO+XXM11+XHX32)

F_  PUNCH 100s Yls Y2s Y3s Yi&s Y5 Y& ——— =

100 FORMAT(5XF1le5s 5F1l1la5)

= SY4=5GMA% (XKPAL1*Q26+XKPA2¥Q27+XKPA3#Q28) +XKPA4*UW29+XKPAS*Q 320

SY5=XKPAG¥QI1+XXCI¥FXXWAXXC2¥XXW+XXM2 14X XM22

= YT=5Y44+5Y54+(1e—SGMA ) ¥XXWH (XAM2IH+AXM24+AXH2]1)

Y8=SQRTF(R/G)¥XW#k( (] ,—5GMA) ¥ (XAM2T+XXM2B8+XHX21 ) +XXM29+XXH22)

B V9= RAGYH#AXKMB O+ XHX22) e,

Y10=XXM25+XXM26+AXCA#XXWH+XKPA4*Q3E+XKPASHQ3T+XKPAE*U3E

- Y11=SQRTF (R/G)®XXH23#XW

Y12=(R/G)#* [ XXMBL1+XAM3I2+XHX23)
PUNCH- 100+ Y7+ YBs Y%s - Y10s Y11le Y12
YYO=Y6*Y3-Y12¥Y3

F—— —PUNCH—5+—¥¥0— R —

YY1=Y5%YQ+Y6*Y8-Y11*Y3-Y]12%Y2
PUNCH 5+ YY1
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%

40

YY2=Y4%YO+YEHYB+YEHY 7Y 10%Y3~Y11%Y2=Y12%Y]

PUNCH 5s YY2Z2

YY3=Y4*YgrY5HYT-Y1U#Y2-Y11%Y]

PUNCH 5s YY3
YY4=Y4a#YT-Y10%Y]

PUNCH 5» YY4
FORMAT(G6XEL14e7)

W=wW+20

IF(W=1604) 3323935
SALFA=5ALFA+1.
IF(SALFA-32.) 50005000540
STOP

END
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