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ON THE MOTION OF A BICYCLE.
By G. R. R. Routh.

Tue four problems we here propose to discuss are as
follows:

(1) The motion of a bicycle when the front wheel is
locked.

(2) The oscillations about a state of steady motion in
a straight line.

(8) Steady motion in a circle.
(4) Oscillations about a state of steady motion in a circle.

In the first of these the machine is constrained to move in
a straight line, and the problem is that of three rigid bodies
connected together. We shall, using D’Alembert’s principle,
reverse the effective forces of the wheels and apply them to
the system. :

In the second we shall neglect the effective forces due to
the wheels, for the mass of a wheel is very small compared
with the mass of the framework and rider. The mass of the
steering pillar and handles will also be neglected.

In the third and fourth propositions we shall assame the
radius to be large compared with the length and height of the
machine, but we shall not in the first instance assume the
angular velocity about the centre of the circle, or the inclina-
tion of the plane ot the frame-work to the vertical, to be small.

I. We have here first to find the effective forces due to
the motion of a wheel.

Let G be the centre of the wheel, G'C normal to its plane,
G A the radius through its point of contact with the ground,
and G'B at right angles to G4 and GC.

Let GM be the perpendicular on the horizontal plane.

Let 6 be the angle G'C makes with the vertical, and ¢ the
angle M4 makes with any fixed straight line in the horizontal

lane.

d Let w,, ,, w, be the angular velocities of the wheel about
@A, @B, GO, and let u, v be the velocities of @ resolved
parallel to M4 and GB, then o, =—sinfY and ,=6".
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Since the point 4 is at rest, we have
u=af sind, v=-—aw, =asinf,

where a is the radius of the wheel. )
Suppose the wheel to be of mass unity, then the forces are
resolved parallel to M4, GB, and vertically

%’g —v ‘2_1’(; =asinf + acosf6” + aw ),
%4_ u % = — aws’ + asinf6Y,
d*z y 80"
W:acoseﬂ — asin66”.
The forces gi: , %: can be replaced by a6 along GA and

6" along G C.
¢ Let g,, 6,, 6, be the angular velocities of G4, GB, GC
about their instantaneous position, then 6, =w, 8,=w, for
GC is fixed on the body and 6, =1 cosf.
Hence the couples round G4, GB, GC are

(1 -4 ciZZt (sin6y") — A6 cosf + Cb'w,

=— Asinfy —246Y cosb + Cow,
(2) 48" + Cw,sin 6y’ — A sinf cos )",
(3) Cw,, '

where 4 and C are the moments of inertia of the wheel about
G4 and GC. .

We have now to apply these results to the case of a bicycle
with the front wheel locked. ) o

Since the bicycle is moving in a fstralght l_me, it follows
that ', 0" are zero, and each wheel is constrained to move
along a parallel to GB through 4. Hence the moment of
the effective forces of the wheel about its trace on the ground
is 40" + A%0". )

Let m,, m, be the masses of the two whecls and a,, a, their
radii, and let 4, A4, be their moments of inertia abou_t a radius,
Let MIC* be the moment of inertia of the rider and framework
about the path of the bicycle, and let A be the length of the
perpendicular from the centre of gravity on to the path.
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Hence, taking moments for the whole system
m, (4, +a) 0" +m, (4, +4) 0" + MK*0"
= — m,ga, cosf — m,ga, cos@ — Mgh cos¥.

This is an equation of the form 6" =—n’cosf, which
becomes ¢ =n’sing if we write i — ¢ for 6.

When ¢ is small we have therefore ¢ =n’¢p and
¢p=1Le*+ Le™ Hence the state of steady motion is un-
stable, and the machine will fall to the ground.

The equation of motion does not involve the velocity of
the bicycle. Heuce the time it takes to fall to the ground is
independent of the velocity with which it is started.

We see then that the motion of two wheels rigidly con-
nected together is very different from that of a single wheel.
In the case of a single wheel oscillations are possible about
a vertical axis, that 1s to say ' and "’ are not zero, and it
is found that the terms involving ¢" and ¢" make the motions
stable.

II. In this proposition we neglect the effective forces due
to the motion of a wheel; for the mass of a wheel is very
small compared with that of the rider and framework.

Let £, @ be the points of contact of the hind and fore

o
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wheels with the ground, and let G be the centre of gravity
of the rider and frame.

Let Oy be the mean direction of motion and Ox be hori-
zontal and at right angles to Oy, and let Ox be measured to
the left as we look in the direction of motion.

The position of the machine is fixed by the coordinates
z, y of the projection of &, the angle ¢ which P@ makes
with Oy, and the angle p the plane G'£Q makes with the
vertical plane through P@Q. We suppose p measured to the
right and ¢ to the left, as we look in the direction of motion.
Let x be the angle the tangent to the front wheel at @ makes
with PQ.

The rider works on the pedals, and the friction between
the hind wheel and ground along the trace of the hind wheel
is the impressed force which causes motion. ILet /" be this
friction. The friction along the trace of the front wheel
merely turns that wheel, and as its mass is here neglected
this friction may also be neglected.

The rider works with an arbitrary force, and turns the
handles at his pleasure. 'We shall treat F and y as given,

When the machine is in steady motion £ is swall, being
anly sufficient to balance the resistances. As these are neg-
lected we shall make F zere when the machine goes uniformly.

Let I, H, be the resolved parts of the frictions at P
and ¢ perpendicular to traces of the wheels, and let B, B,
be the vertical pressures of the ground on the hind and fore
wheels.

The equations of motion are therefore

Mz"=Fsing + H cos¢ + H, cos (¢ + x) l
My" =Fcosgp— I sing — H sin(p+x) .
M =R +R,- My

When the machine is moving nearly on Oy we regard
¢, x» £, II, as small quantities, and 2" is of the sccond order.
Hence the above equations reduce to

Me' =Fp+H + H, .o.ov..ne.. (1),
My'=F ... e veennd(2),
0=R +RB My .................(3)

We have now to find the angular motion,
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_ Let G4, GB, GC be the principal axes at @, then GC
is perpendicular to the plane GPQ, and we suppose it

measured to lett as we look in the direction of motion.

n G

<
Q ~ P

Let G£, G be perpendicular and parallel to PQ.

Let Q, Q,, @, be the angular velocities about G¢, Gn, GC,
and o, o, o, about G4, B, GC.

w,1s given by the vertical displacement of the front wheel
and is of the second crder.

T . , __dp _dp

We clearly have Qa_—;ﬁ R Q‘——Z .
Let B be the angle G4 makes with GQ£.
Then by resolution about G4, GB,

w,==Q,sin3+9Q cosB=p'sinB+¢ cosp,
w,= QcosB+Q sinB=—p cosB+ ¢ sinB.

Let us take Euler’s dynamical equations and resolve along
d€, G, GC, then we get

{do, - (B- C) w,0,} cosf+ {Bw, — (C - 4) 0,0 | sin 8
= moment about GE.
Since o, =0, this reduces to
Aw cos B+ Bw, sin3 = moment about GE.
Similarly
— Ao sin B+ Bw, cos 8 = moment about Gy,

and the moment about G C is zero.
We have now to find the moments of the forces.
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The components of B, are — I, cosp along G and R, sinp
along GC. The components of 11, are II,cosysinp along
@&, H,cosy cosp along GO, and — H,siny along Gn. The
coordinates of Q) referred to G, G, GC are h, [, 0.

Therefore moments of R,, H,, and F about G§, Gy, GC
are

I (R,sinp + H, cosy cosp) about G§,
— & (R, sinp + H, cos cosp) about G'n,
h(F- H,siny)— 1, (— B, cosp + 11, cosx sinp) about G'C.
The moments of R, H, are found from those for R,, H, by
writing —{, for /, and putting x zero. L'hey must be added
to the above. .
Hence, substituting for ,, @,, and remembering that
and p are small, we have
A cosB(p'sinB + ¢ cosB) + BsinB (—p"cosB + ¢ sin B)
=(4—B)p" sinBcosB + (4 cos’B + Bsin’B) ¢
=L, (Rp+IL) =L (Byp+ H) corenieiniiiaencnennns (4),
— AsinB (p'sinB+ ¢" cosB) + BeosB (- pcosB + ¢ sinp)
=—p" (4dsin’B + Bcos’B) ~ (4 — B) ¢" sinf cos B

e h(Bp+H)-h(Bp+H) v rere(8),
0=hF+ LR~ LR, coeeee. et errnns ().

We have now to find two geometrical equations.

The velocity of the point of contact of each wheel perpen-
dicular to the wheel is zero. )

The velocities of P due to rotation are zero parallel to PQ
and (- (Q,~hQ) cosp perpendicular to P@. Therefore
velocity of @ due to rotation is (,Q, ~ h&,) cosp perpendicular
to PQ. _

The velocities of @ parallel and perpendicular to PQ are
2’ sing +y cosg and &' cosgp —y sing. Therefore the con-
ditions are
& cos¢p — y, Sil](j) - (IlQl + ]L‘Qv) cosp = 0,
and
— (&' sing + ' cosg) siny + (¢’ cosp — ' sing) cosy
+ 1,0, - hQ,) cospcosy =0,
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Reject the squares of small quantities and subtract the first
of these equations from the second.

Therefore =gy — (L, +22)=0.cccunnnn. (7),
and —y'x+12,=0, where I=10+1 . ccceuunn... (8).

We have now to solve these equations.

In uniform motion F'=0, and we write V for y in (7)
and (8), for ¢ and y are small.

Substituting in (5) from (1) and (3), we have

—p" (Asin’8+ Beos’B) — (4 — B) ¢" sinB cosf
=— hp (Mg) =k (BLe").
From (8) we have /¢’ = Vy, and from (7)
2" =Ty = (Lg" - hp")y=0.

Therefore

- p" (Asi’B + Beos’B) — (A - B) ¢ sinB cosfB
=—hpMg—rMVy — RM (1¢" — kp")...(9).

In practice a rider, when he finds his machine inclined to
the vertical, turns the handles a little more than is sufficient
to rectify it, and turns them slowly back as perpendicularity
is restored, so that the machine becomes vertical and the front
wheel straight at the same time. We are here concerned
with first powers of p and yx only, and we put y=—up.

Hence /¢’ =— unTp' and therefore ¢’ = — 'lil—-p.
Equation (9) becomes

,
P (A + M)+ “_; P (MK~ B') + Mhp (";’ - 5,) =0,

where A" = A sin’B + B cos’B,
B'={A4 — B) sin BcosB.

To solve this let p=¢", and we get a quadratic for «.

If the last term be negative the roots will be real and one
is positive. In this case p will increase indefinitely with ¢ and
the motion is unstable.

v

Hence E—l— — g s positive or u> %,l, .
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Hence p decreases rapidly as V increases, and g is smaller
for bicycles with a short base than for those with a long base
such as tandems, &ec.

For an ordinary single bicycle /=38% feet. Ilence at
11 miles an hour u> |7, and at 5} miles an hour x> 7.

Let p = )I\;]gl, so that A is a little greater than unity.
The quadratic for « now becomes
(44 M)+ N (M0, — BY) 4+ Mgh (~ 1) =0,

The roots of this equation may be real or complex. If
real they must both be negative, and if complex the real part
of each must be negative. Either of these conditions is satistied
if Mhl — B’ is positive. In a single bicycle £ is about 8 inches
and % is about 44 feet, so /Al is not large. IHence B’ must
be negative or a small positive quantity. If the rider sit
nearly erect (4 — B) is considerable, but B is very small, while
if the rider bends forward 8 may be considerable, but 4 will
nearly equal B. In either case then B’ is small and the
condition is satisfied.

The roots of the quadratic are real if

43V (A" + M)
g (Mhl — B')*

(1)

is positive, X is greater than unity, but if the rider be skilful
A will only exceed unity by a small quantity, so we can write
1+ 6 for A and reject &°.  We thus get

_ {MIH” (A + 1) ) &
g (Mhi, - By —°

is to be positive.
In a single bicycle [, =8 inches and % =4} feet approxi-
mately. Let us regard the rider as a rod 6 feet long, then
A'=3M, B'=0. Let V=16 fect per second, then the above
condition reduces to 8 <zlg. lIlence A must lie between 1
and §21. This will be impossible in practice, so that in general
there will be a periodic term in the solution giving an oscilla-
tion whose period is
4w (A" + MF)
2 3

{4 (" 4+ M) Mgk (h = 1) =5 (g, B'y}*

)
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Taking 4, k, and V, as before, and supposing A =4, we
obtain 4+4 seconds tor the period of a complete oscillation.

Alterations in the velocity have very little effect on this
period. At 8 feet a second the period is 45 secs., while at
32 feet a second the period is 437 secs. M - BY

) _ e Ay (MR- '

The real part of cach root is VA A

Taking 7 to be 16 feet per second and giving the other
constants their previous values, we find this expression to be .
Thus the amplitude of the oscillations will be reduced to half
its original value in 7 9 seconds and to one-tenth its original
value 1 126 seconds.

IIT. In this proposition we shall use polar coordinates,
taking the centre of the circular path for origin.
The equations of motion are then

M —r8%) = Fsing + H cos¢ + H, cos{¢ + x) ....[1),
d . )
Jl[; 7 (r°6") = Fcos¢ — H sing — I sin (¢ + x).ene(2),

Jl_[(%x (h cosp).—.Rl—f-Rz—l’l[q ..... Cersees secasesesscrnnas ..(3).

Taking axes GE Gn, GC as in the last proposition, we
have for the angular velocities of the system

Q =(p —8)cosp, ,=—p, w,=— (¢~ &) sinp.

1

From these we get by resolution
0, =—0,sinB+Q cosB=p sinB + (¢' - ) cos p cosf,
w,=Q,cosB+Q,sinB=—p cosB+{p' — ) cospsing,
w,=— (¢'— ) sinp.

We are going, as in the last proposition, to use Euler’s
dynamical equations for motion about G, GB, GC. These
involve o, ,, w, &c. ..., when ditferentiating the above
expressions for @, o, o, we remember that p" and ¢’ are
small and 6" is nearly equal to the mean angular velocity of
the bicycle in its path which we shall call w.

o
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We thus get
w, =p"sinB+ (9" = 6") cosp cos B + w sinp cos By,
o, =—p"cosB+ (¢ —0") cospsinB + o sinp sin Bp/,
o, =~ (¢" = 0") sinB + wp’ cosp,
w,w, = — p'wcos Bsin p+2w¢sin p cos psin B—8"sin pcos Bsin By
w0, =p'wsinBsinp + 2w’ sin pcospcos 8 — 6"%sin pcos p cos By
w,0,= p'wcosp cos2S — wg¢' cos’psin2B - 4" cos’p sin 8 cosf.

The moments of the forces R, H, F, &c. about Qf, G,
G C will be the same as in the last proposition.

We thus get the three equations of angular motion about
GE, Gy, GC, viz.
L,=1,(B,sinp + H, cos y cosp)— I, (B, sinp + H cosp)...(4),
L,=—h(R,sinp+H,cosycos p)— . (B,sinp + I cosp)...(5),
L =h (Fv- H,siny) —1,(— R, cosp + H, cosy cosp) -

+ (=B, cosp+ H, sinp)...(6),
where L,, L, L, are Euler’s dynamical equations resolved
about G¢, Gy, G'C, and can be written down as we require
them from the values of o', w,, w,, &c. just found.

We have now to find two geometrical relations.
The coordinates of P, referred to G§, Gy, GCyareh,—1,0.
Therefore the velocities of P due to rotations are tQ,

parallel to GE, (—1,Q, - hQ,) parallel to G C, and hQ, parallel
to Gn.

The velocities of G are r'sing + 78’ cos¢ parallel to PQ,
and 7 cos¢ — 76’ sing perpendicular to PQ.

Now the horizontal velocity of P resolved perpendicular to
the trace of the wheel is zero. :

Hence we have

' cosp — 78’ sing — (1,Q, + rQ) cosp + 1Q,sinp =0,
or since Qcosp—Q,sinp=¢' — 0,
' cosp—r6'sing - I (¢ — 6) - hQ, cosp = 0...(7).

Again the velocity of @ resolved perpendicular to the trace
of the front wheel is zero.
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To find the velocities of Q from those of P we write

| - I, for I, and we get

— (+'sing + r6' cos¢g) siny + (" cos¢p — 6’ sing) cosx
+ 1 (p'—0)cosy— kL, cospcosy — hQ, siny =0.
Multiply (7) by cosy and subtract from this equation.
Therefore
— (' sing + 76 cos¢) sinx+1 (¢'— &) cos x hQ, sin x=0...(8),
where I=1,+ 1, as before.
In steady motion ', ¢, p’ are zero and

f=w, Q=—wcosp, 2,=0, o,=wsinp.
Hence (7) becomes
~awsing + Lo =0,

. {
Therefore sin¢ = :; .

Hence ¢ is small. It does not depend on the velocity and
is smaller tor those bicycles in which /, is small.
Equation (8) becomes

- awcos¢ siny — lw cosy — hw sinp siny = 0.

acos¢p + hsinp
Therefore —coty=—"—"7—"""s
or, if we reject A sinp as compared with [, y =- 2"

Hence  is small also and if we reject Asinp does not

depend on the velocity.
We shall in future reject squares of ¢ and .
Hence in steady motion the first three equations become

— Maw’=H, + H,
0=—(IIL+HQ)¢_B;X7

0= 'RI + Rﬂ b Mgv
YOL. XXVIIIL,

M



162 MR. ROUTH, ON THE MOTION OF A BICYCLE.
Hence, substituting in (5), we get
L,= — hsinp (Mg) + Maw’l cosp.
Now
L=—{dow/ - (B-C)ww}sinB+ {Bo,—(C-4)ww]cosfS
=—(B-C)o'sinpeospsin’B+ (C—4) o’ sihp cos p cos’3
=(C~ 4 cos’B — Bsin’B) w*sinp cosp.
Therefore
(C—-Acos’B—DBsin’B) w’sin pcosp=— Mghsin p+ 3uw'hcosp;

4
or, writing — for o,
" a

7n

{C~ Acos’B- Bsin’B8) '(If sinpeosp=— Mghsinp+ Jl% hcosp.

This is the equation for steady motion.

A cos’B + Bsin’B is the momont of inertia about (£, and
it seems probable from the position of the rder that this
moment of inertia is less than ¢, that is the left-hand side of

the equation is positive.
If we regard the rider as a rod as before, then

A cos*B + Bsin*8

. V

is zero and C=38M. Now — cannot be very large, for even
72

if 7 be 30 miles an hour and « only 10 yards, = will be <4,
(2

Hence the left-hand side of the equation will be very small
compared with MMgh.

2
If we neglect the left-hand side we obtain tanpz—q_-,
a

which is approximately correct. Hence the inclination is very
nearly independent of k. The following table approximately
gives the inclination of the machine to the vertical for different
values of V and «.

The possibility of the machine skidding is not here con-
sidered, which would make some of the larger inclinations
impossible.
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The first row indicates the miles per hour and the first
column the radius in yards.

5 10 15 20 25

10 3°13' 12°38’ 26°44’ 41°50’ 54°23'

20 1°36’ 6°:%4' 14°9° 24°7’ 34°58'
30 14/ 4°16 9°32’ 16°37' 25°0'

40 0°48’ 3°13’ 7°11’ 12°38’ 19°17"
100 0°19’ 1°17 2°58' 5°1' 7°58'

To take into account the possibility of either wheel
skidding, we require the values of 71, 11, R, R,.
Substituting for ¢ and y in (2), we have
0=—1II1 + H[.

Ilence (4) becomes

L _1p 1R,
SII]p
We also have
— Maw*=H + II..cccocuvvenennn.(2),

My =R, + B, veererererreereren (1),

. . .. ¥V .
Solving these equations and wyiting P for w, we obtam

i, MI,T A MLV

TR, T a(yl, = L cosecp)’ ~ R, a (gl + L, cosecp)’
M2
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The back or front wheel will skid first according as --J-;‘- 1

. H, 1
18 greater or less than -5
In steady motion Z, is found to be
— (4 - B)sinf cosf3 sinp cosp.

Hence, in order that there may be no skidding, the coeffi-
cient of friction between a wheel and the ground must be
greater than the greatest of the fractions

MLV

a {Myl, + (4 — B) sin3 cos 3 cosp}
MLV?

a {Mgl, — (4 — B) sinf3 cos3 cosp} *

Generally 4 will be greater than B, but f3, thorgh small,

will be negative, so the back wheel will skid first.
2
Each of these fractions is nearly equal to -aV— that is to

and

tanp. Hence the approximate condition that there shall be
no skidding is that the angle of friction shall be greater than
the inelination of the machine to the vertical.

IV. We have now to find the small oscillations about
steady motion. Let

r=a+B 0 =0+0, ¢p=¢,+® p=p,+P x=x,+X%,

where ¢, p,, X, are the values of ¢, p, x in steady motion.

Let us winte H+ K, H+K, R +8, R, + S, for
I, H, B, R, so that H, H, R R, represent the values
of the reactions in steady motion.  We shall reject terms
involving the squares of small quantities, and shall retain only
those which involve the first powers of B, Q, H, K, &e.
Equations (1), (2), (3), and (5) become

M(BR" — Bo' — 200Q) =K, + K, «ccovevnririnennnnnnn, (1),
MER®+aQ)=— b Hb — HX oo @),
— Mk sinpopl' = S] + S, ........................... cesnee (3),

L,=—h(R,Pcosp,+ 8, sinp,— H, sinp, P+ K, cosp,) (5),
— k(B Pcosp,+ S, sinp,— H, sinp P+ K, cosp,),
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Equations (7) and (8) become

B —awd -1 (& — Q) + AP cosp,=0 coeevreeen M,
—awX +1(® — Q) —hosinp X=0 verennneenes(8).
Now H 't H,=— Maw’,
and =—(H, + H) ¢,— Hxo)
therefore Hy,= Maw'¢, =M o,
2
therefore H,=Z’[;(’:o )

therefore, substituting in (2) and dividing by M,

l
2R'w+aﬂ'=aa)’¢——‘—2X ..... eeennn(9),

and substituting in (5)
L, =—hMgP cosp, + MR sin’ p, P’ — Maho' sinp,P
’ — Mh cosp, (R" — RBo® — 2a0Q).
Next, to find L,, |
'~ P'sinf+ (@ —Q)cosp, 03B + w sinp, cosBP,

w, =

voar . . 03P’
w, =—P" cosf3 + (¢ - @) cosp, sinf3 + wsinp, st BF,

wzw;;: - P,(l’ COSB Sinpo + (D@’ Sin 2p0 sin B . .
— P cos 2p, — ©Q 80 2p, SI0 B,

0,0, =P wsinfsinp, + w®’ sin2p, cos B
— @' P cos2p, cos B — wQ sin2p, cosf3,
and L,=— {4o, — (B~ 0)w,0 )} sin B
+{Bw,— (C—4A) 0w} cosf3..
From these we obtain
L =—P" (45’8 +Beos’3) — (@" —@) (4 - B)sinf cos 3
~ (@' - Q) wsin2p,(C—4 cos’3 — B sin’B)
+'Pcos2p,(C— Acos’8—B sin’B).

e e e
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Hence we have four equations, viz., (7), (8), (9), and
—P" (4sin*B+ Bcos’B) ~ (" — Q') (4— D) sinB cosB
— (¥~ Q) wsin2p,(C— 4 cos’8 — Bsin*B)
+ o'Pcos2p,(C— A cos’B—B sin°B)
= —MghP cosp, + Mi*P" sin’p, — Mahw® Psinp,
— Ml cosp, (R — R’ — 200Q) wuveeveerereeeeenennnn, (10).
To solve these let E=DMe*, Q=Mure", P= Mg

P=Me', X=Me".
Then the four equations become

Mk —awM,—le(M,~ M)+ heM, cosp, =0...(1 1),
—awdl, + Ik (M, ~ M,) — ko sinp M, = 0.....(12),
2M ko +ak’ M, = aw’M,— ;—' w'M......... (13)
0
— M’ (4 sin’B + Beas'B) — & (M, — M) (4 — DB)Bsin cosfB
—wk(M,~M,)(C~ 4 cos’B— Bsin’B) sin2p,
+ w*M, cos2p,(C— 4 cos’8 — Bsin*B)
=—Mghl, cosp, + M¥ sin’p«* M, — Makhe® sin P,
— MP cos p,(Me* — M0 — 2a0M k) o.vevueeann.... (14).
From (12) we obtain

& (M —-M)= w Mo,
ﬂ[S(l’

Xa

ﬁlultiply (11) by w, sabtract from (13) and divide by «,
and we get

Mo+ akdM,=holl, cosp,

) 1 e
Again, M, = M, —-7;(2 ; hence, substituting in (11), we get

0
Maw® 1Mo

Ju;lf - awﬂ[z = —
£Xo

—hiedl cos p,...(1 6).

MR. ROUTH, ON THE MOTION OF A BICYCLE. 167

Multiply (15) by —w and (16) by «, and add.
Therefore
Maow® [ Mrw
Xo Xo
— LM, cosp, (kK + ).

Me'— Mo’ —2M aw0c=—

Substitute in (14), and put M, =— pM, and we get

A B2 p %#’(C—,-A cos’ B — Bsin’B) sin2p,
0

Xo

+ o’ cos2p (C— 4 cos’B - Bsin’f3),

=— Mgk cosp, + M «* sin’ p, — Muhw® sin p,

: ] 2 2 2 2
— Mk cosp, (’u;m + ’li;’fg>+ﬂ[h cos’p, (k" + w®),
0

0

or ~ (A + M) + ﬁ;’-‘ (MM, - B)
0

_ 9 0 A cosB—Bsin'B) sin2p,

0

+ w*cos2p, (C— A cos’8 — Bsin’B)

3
aw .
+ Myh cos p,+ Muhw® sinp + Mk cosp, RIY  Mitw’ cos’p,=0.

0

If we substitute for (C—A_COSzﬁ—Bsinzﬂ) from the
equation of steady motion, we obtain for the term independent

of &
2uMgh . pMake’ cosp, .. , sin’p,
. sinp, — BV + Mygh cosp,

2
+ Malo® 9591—:1 Lo _ pf1i0? cos’p,,
o

or

Mygh sinp, <2—’L + tan po) + Mahw® cosp, (— —;— + cot po)
Xo

0

— MR’ cos’p,.
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This must be negative or there will be a positive value
of k. 'This term would increase indefinitely with ¢, and would

destroy equilibrium. ,

Let us reject terms involving % ; then by the equation of
steady motion Mgk sinp, = Mahe® cosp,.
Hence — = must be greater than tanp, + cot which is
satisfied by X ‘
pa 1

>,
{7~ sinp, cosp,

or o> ——
a sinp, cosp,
Hence p is smaller for bicycles with a short base than for
those with a long base.
This can be put in another form, viz.

or B>t e

. o . l S
Since we are rejecting %’ this reduces to p > LqV;, which is

the same as for rectilinear motion.

Supposing this condition satisfied, the roots may be real or
complex. It real they will be negative, or if complex the real
part will be negative if

po M, — B’
xo ME+ 4
wV Mhl, — B’

t.e if T A S positive.

is negative,

Hence, just as in rectilinear motion, MAl, must be greater
than B'.
Thus we see that, if @ be so large or V be so small that
2

% may be rejected, the equations and periods for small oscilla-

tions are identical with those for rectilinear motion.
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We have throughout the work neglected the fact that when
the front wheel is turned its point of contact no longer lies in
the plane of the framework.

This deviation is extremely small, but makes it possible to
ride the machine without using the handles.

__In the problems above considered we have supposed the
rider to turn the handles, and this deviation merely makes it
easier for him to do so.




