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Abstract

The second order kinematic constraint (acceleration constraint) between two rigid
bodies that are rolling, twisting, and slipping against each other while maintaining
point contact, is derived by differentiation of the first order constraint and by including
the geometry of the surfaces at their contact. This constraint is derived with a view to
facilitate the simulation of such motion with general purpose dynamics simulators, and
more specifically for the Newton dynamic simulator developed at Cornell University.
The constraint is first derived for planar motion and then generalized for motion in
three dimensions. Some simple, but representative, examples are presented.

*Supported by ONR Grant N-00014-86K-0281, ONR Grant N-00014-88K-0591, NSF Grant DMC
86-17355, and Sandia Contract-75-6562.



1 Introduction and Motivation

An important kinematic constraint that occurs between interacting rigid bodies is that
they roll, twist, and slide against each other, while maintaining point contact. More
specifically, this sort of constraint has to be modeled for modeling dextrous hand
manipulation of objects through robotic end-effectors, simulation of compliant motion
during assembly and manufacturing, design of automobiles and other mechanisms, etc.;
all of which form an important part of computer modeling and simulation activities of
current interest [Hopcroft 19388].

When simulating the general three dimensional motion of two rigid bodies that
move while maintaining point contact (figure 1), using the Newtonian formulation of
their equations of motion [Cremer and Stewart 1989], one encounters the following set
of 12 scalar equations! (eqns. 1), in 15 scalar variables (i‘l,ﬁul@z, F.)

yr = Z F+F.
[Jl]u‘.’l + wy X [Jl]wl e Z(I‘ b4 F) +c1 x Fe¢
mafe =Y F —Fe
[Jz]ibz + wg X [Jz]wz = Z(I‘ X F) —co2 x Fe¢ . (1)
involving body masses (m; and m,), linear accelerations of the centers of masses (71
and Fg), angular accelerations (w; and W), mass moments of inertia about mass
centers ([J1] and [J2]), external forces and moments (F and M), and the contact force
F. between the two bodies (assuming no moment) at their point of contact C.
The three extra equations for getting unique answers to the above system are
provided by the kinematic constraints imposed on the system due to the nature of

their motion, i.e. the two bodies maintain point contact. We have the following two
cases: '

1. The bodies roll and twist without slip at the contact: Here we as-
sume that the normal and the tangential (friction force) components of the
contact force, and the other external forces and moments, conspire to pro-
duce pure rolling and twist of the two bodies at their point of contact. This
condition leads to a second order kinematic constraint of the form,

fr(¥1,F2,w1,w2) =0 (2)

which gives us the extra three equations to make our system determinate.
If the solution to the system with the above assumption of no slip between
the surfaces yields a contact force F. that does not obey the friction law,
then obviously this assumption is incorrect. This leads us to the second
case.

bold letters denote vectorial entities, e.g. r1, and ordinary letters their scalar magnitudes, e.g. 71
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2. The bodies roll, twist and slip against each other while maintaining
contact: This condition leads us to a second order kinematic constraint of
the form, .

fr(F1,Fe,w1,02,a5) =0 (3)

where ag is the relative slip acceleration between the two bodies at their
point of contact C. So along with these three constraint equations, we
have also introduced three extra scalar variables (as). The friction law (like
Coulomb friction) comes to our rescue now giving us three more equations
involving the contact force F, in the form:

fo(Fe) = 0 G

For example Coulomb friction gives us one equation relating the magnitude
of the normal component Fcy, and the tangential component Fet (in the
tangent plane at the point of contact) of the contact force, and two equations
giving the direction of the tangential component of the contact force in terms
of the relative slip velocity direction vs. These equations are of the form:

v
Fct = I—“Fcn'""'s"' .
|vsl
where p is the coefficient of friction. Hence equations 1, 3 and 4 give us 18
scalar equations in 18 variables, making the system determinate.

In either of the above two cases, we need the second order kinematic constraint
(equations 2 and 3) obtained by differentiation of the first order velocity constraint
for rolling. This constraint involves the relative motion parameters between the two
surfaces and some geometrical information (principal radii of curvature) on the surfaces
at their contact.

Facilitation of the correct and accurate numerical simulation of rolling and slipping
motion between general rigid surfaces on the Newton dynamics simulator [Cremer
and Stewart 1989] through the implementation of appropriate generalized kinematic
constraints, provides the basic motivation for deriving these constraints in the rest of
this report. Other things specified, the Newton dynamics simulator solves for linear
and angular accelerations #,#3,w,Wws, @, from the above set of equations.

More information on the subject of rolling and slipping of surfaces can also be
obtained from Nelmark and Fufaev [1972], Montana [1986}, Zexiang, Canny and Sastry
[1989].

In the following sections of this paper, rolling and slipping in a plane (2D case) is
first analyzed and the kinematic constraint thus obtained is appropriately generalized
for three dimensional rolling, twisting and slipping of surfaces.



2 Rolling and Slipping in a Plane

Consider two rigid planar bodies bounded by surfaces S; and S; that are free to move
in the X — Y plane while maintaining point contact, by rolling and slipping against -
each other as shown in figure 2. Their center of masses are at r; and rs and their
angular velocities are w; and wg respectively. Hence the angular velocity of S; relative
to S7 is wy = wy —wsy. The vectors joining the center of masses of the two bodies
to the instantaneous point of contact C at re, are c; and cz respectively. S, slips
against S; with a relative slip velocity vg at their point of contact C. If t is a unit
vector in the common tangent plane to the two surfaces at C, then vg = v,t, due to
the no penetration condition between the two rigid bodies. The rolling and slipping
condition between the two surfaces (while maintaining contact) can now be stated as
eqn. 5, which says that instantaneously the relative velocity between material points
at S; and Sy at C is vs.

i +wi X €1 = Vs + g+ wy X ca (5)

Differentiating the above equation with respect to time gives us eqn. 6,

1 +w1 Xcp 4w X€ =as+Fz+ w2 Xcz +wz X C2 (6)

where ag = Vg is the relative slip acceleration between material points at S; and S5 at
C. To make the above second order constraint on the accelerations of the two bodies
meaningful and implementable, we have to express ¢1 and €3 in terms of the geometry
of §; and S, at the point of contact. It can be seen that:

¢1 =F¢—1r1 and €3 = Fe — I'z (7)

To facilitate the calculation of I'¢, we attach a local reference frame z —y to S at
its center of mass. If the velocity of the contact point C in the reference frame z — y
is denoted by v, then:

fc = V¢ + Iz + wg X C2 (8)

Substitution of eqn. 8 and eqn. 5 into eqn. 7 gives:
€] =Vetwy XC1— Vg (9)

€3 = Vet wa X c2 (10)

Returning to the calculation of v¢, from the no-penetration condition between the
two surfaces we have v = v.t. Assume that in an infinitesimal time interval dt, the
point of contact moves to point C’ by traversing a distance ds; and ds; on 5; and 5
respectively, as shown in figure 2. Then:

d-Sg

>y (11)

Ve =

4



The angles between the tangents at C and C” to the surfaces S; and S, are given by
d¢, and dg, respectively. Then the total change d¢ in the angular orientation between
the two bodies in time dt is:

d¢ = déy + d, 44
From the geometry of the two surfaces we have that: 2.°
_4d¢ _dé  d¢ ds dsy 1,

:n-—-—-}-;gz—__ 7

dt ~ dt = dt 14 dt (12),

r

where «; and &, are the curvatures along the direction t at C of Sy and S, respectively.

The fact that S is slipping against S, with vg at C, gives us: . (Vavyt o Ve o
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Substituting eqn. 13 and eqn. 11 into eqn. 12 and some algebraic manipulation gives:
Ve = (El -+ 52)-1(‘-”1' + I'G]_U,) (14)

Substitution of eqns. 9 and 10 into eqn. 6 gives us the required second order kinematic
constraint, expressed by eqn. 15, as follows:

Iy +wp Xe1+wyp X (Vc-l-wl)( C1—V3) =ag+T2+ws Xcy +LU2X(VC+L:J2XC2) (15)

with v, given by eqn. 14.
In the following subsections we consider some simple examples of planar rolling
and slipping, and derive the appropriate second order kinematic constraint.

2.1 Cylinder Rolling on a Block Without Slipping

Let us consider the example of a cylinder of radius R rolling on a moving block without
slipping, as shown in figure 3. Here

Vszo, a5=0, I‘C‘ZZO

Ve = R(wy —ws) or ve=—(w1 —wa) X1 (16)

Substitution of eqn. 16 into eqn. 15 gives us the following second order constraint?.

Fi+u1 xep4ws X [(wl —wz) X cﬂ—{—wl X(wz XCl) = Iy -i—wz X Cg+wsg X ((.dz X Cz) (17)

2This constraint equation matches exactly with the constraint equation derived independently by
Jim Cremer and Daniela Rus to simulate this motion, using different methods.



2.2 Small Cylinder Rolling on a Bigger Cylinder Without
Slipping

Consider the small cylinder of radius r that is rolling, without slipping, on a fixed
bigger cylinder of radius R as shown in figure 4. Here

VSZaSZf2:P2:W2=LL‘2:0

Also
1 1
K1 = —, K3 = ==
r
Hence: R
T 1 T
== = X 18
Ve "+ R or Ve e R(wl n) ( )
and the second order constraint is:
'I"I—FLL'1XC1+W1X(VC+W1XC1)“‘-:0 (19)

To verify that the above constraint is indeed correct, we can perform the following
check. If n is the unit outward normal to the bigger cylinder at the point of contact,
then we know that: -

riw?

1 = r{w1 x n), F1=—T+RH+T(@1 Xn)‘, C1 = —rn
Substituting these in eqn. 19 gives:
ratE TR
- n+r{wy xn)—r{w; xn)+wy x wiXn—rwy Xxn)=0
r+R+(w1 ) — (W ) + w1 (r+R1 1 )
which reduces to
0=0

1.e. the constraint equation is correct.

2.3 Small Cylinder Slipping on a Bigger Cylinder With a
Fixed Point on it Contacting the Bigger Cylinder

Consider the small cylinder of figure 4 slipping on the bigger cylinder with a relative
slip velocity vs and a relative slip acceleration ag at a fixed point C on the small
cylinder that makes contact with the bigger cylinder. Here the second order constraint
becomes:

i:1+LD1XC1+w1><(VC+W1XCI—VS)—as=U (20)



If t is a unit vector (in the tangent plane) in the direction of vg, then:

2

VS e vat-, ag = ’&Jt e —Rj—n
Vs . Us
Wi -—-.-}—2-, wy = E
rR vy vg
= = —_t—)=YV
c r+R(R s s

We also know that:

kT

: 2
- s (R+7‘)v,t_(R+r)v,n

it R

VS’ i:l =

s €1 = —rn

Substituting all these in the constraint eqn. 20, we can again verify that it reduces
to

0=0

i.e. the constraint equation is correct.

3 Three Dimensional Rolling and Slipping of Sur-
faces

We can now generalize our results from rolling and slipping in a plane to three di-
mensional rolling, twisting and slipping of surfaces. As shown in figure 5, we attach
a local reference system z — y (coinciding with the principal directions of at least one
of the surfaces at C) to the tangent plane at the point of contact C. n is the unit
vector normal to this plane. Now the curvatures of S; and S, at C are matrices given
by [k1] and [k2], both expressed with respect to the local coordinate system z — y.
The relative angular velocity w; — wz between the two surfaces can be thought of as
having two components. A twisting (or pivoting) component wyp along the normal to
the tangent plane at the contact, which does not cause the point of contact on the two
surfaces to move, and a rolling component wy that causes the point of contact to move
on both the surfaces. These components are given as:

wp = [(w1 —ws2) -n]n wr = (w1 —wz) —wp (21)

If vs is the velocity (in the tangent plane) with which S; is slipping over S; at C, and
both wr and vg are expressed in the local coordinate system z — y as:

W, v
Wy = T Vg = sx
wry UG!J
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then analogous to equation 14, the velocity v, of the contact in a reference frame
(parallel to z — y) fixed to S; at its center of mass, is given by:

ve= | b | = (ol fraD ([ e |+ v (22)

Vey Wey

Substituting the value of v from eqn. 22 into eqn. 15 gives us the required second
order constraint for the three dimensional slipping and sliding motion. We consider
some examples [Lamb 1943] below as illustrations.

3.1 Thin Disk Rolling on a Plane

We consider the classical problem of nonholonomic constraints dealt with in most
mechanics texts, that of the rolling (without slipping) of a thin disc (of radius R) on
a fixed horizontal plane with angular velocity and acceleration w and &, as shown in
figure 6. The thinness of the disc implies that it is making contact at a point with the
plane and for all practical purposes it can be considered as a circle rolling on the plane
without slipping. The principal directions of the disc in the tangent plane to the point
of contact are t, the unit tangent vector to the path traced out by the contact point
on the plane, and p, the unit vector perpendicular to t. From figure 7 and geometry,
we get that if the inclination of the disc with n is 4, then:

(k2] = [0], [m]:[no” n?p}:[c%se gJ

If the component of the angular velocity of the disc in the p direction is given as
wp, then:
P

cos§

Substituting this in eqn. 15 gives us the necessary constraint for the rolling of a thin
disc without slipping on a plane:

4 nj=0 | (23)
cos 8

F+rwxectwx[wxctwpx

3.2 Torus Rolling on a Plane

The case of the rolling torus, figure 8, is similar to that of the rolling disc. If all the
terminology were to remain the same as for the disc, then:

cos§_ 0

kol =[0], [ma] = [ iy ] _ { Rt

r

A

U, v) = (R4 a5 u)gos o) + ((R4tos u)sen r) 3 s (rsmu)k
" 2 '8

= A 1

. \ fo)
P —> ; (o) g [u)
o { e { x4} 2 _@__“l U) 4

: 72 % A/ s = =

O Q0 { — Cyof - mat
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Also,
R R
Ve = wpx(m +7r)n + wgxrn = wWpX—=n + (w —wn)xrn
Substituting this in eqn. 15 gives us the necessary constraint for the rolling of a torus
without slipping on a plane:

i R
r+w><c+wx[wxc+wpxmn+(w—wn)xrn]=O (24)

3.3 Sphere Rolling Inside Fixed Hollow Cylinder

To get an interesting simulation, let us consider the case of a sphere (or radius r) rolling
(without slipping) inside a hollow vertical cylinder of radius R, as shown in figure 10.
The sphere is rolling with angular velocity and acceleration w and w respectively. If
n is a unit vector pointing radially inward into the cylinder axis, d is a unit vector
pointing vertically downwards and t = d x n, then:

=[5 3] =[] =[ 5]

r

O =

If wg and wy are the components of w along the d and t directions respectively,
then: ' ’

Ve = wg X n 4+ wyXrn

rk
R—r
Substituting this in eqn. 15 gives us the necessary constraint for the rolling of the
sphere inside the hollow cylinder:

i‘+c£;><c+wx[wxc+wdeTR n+wgxrn] =0 (25)

4 Conclusions

The generalized second order kinematic constraint between rigid -surfaces that are
moving against each other while maintaining point contact was obtained so that it
incorporates, amongst other things, the geometry of the surfaces in contact. It is
expressed in a form so that it is easily programmable. Its complete implementation on
the Newton dynamics simulator [Cremer and Stewart 1989] would give the simulator
the capability to accurately simulate the above described motion.

Implementation of this constraint (by Jim Cremer) on the Newton dynamics simu-
lator for the rolling of a thin disk on a plane have yielded correct simulations. Motions
of the disk that had closed form solutions were tried out for analytical verification.
This implementation has also allowed the simulation of an automobile (by Xue Dong
Yang) and a bicycle (by Suresh Goyal), by making the wheels of these vehicles as thin
disks rolling on planes without slipping.
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Rigid body
bounded by
surface S

Inertial
reference
frame

C

F¢ contact force

Rigid body
bounded by
surface Sg

Figurel Newtonian mechanics of two rigid bodies that move while
maintaining point contact, F¢ is the contact force (assuming no moment) at the
contact point C.
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Figure 2 Two rigid surfaces S; and Sg relling and slipping against each other
in the plane while maintaining point contact. In time dt, S; rotates by angle ddi
and the contact point moves to C' by traversing distance ds;; Sz rotates by angle
dds and the contact point moves to C' by traversing distance dsz. X-Y is the
inertial frame, -y is fized to Sg.

12



cylinder

Figure 3 Cylinderrolling on a moving block (in 2D) without slipping.
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moving cylinder

Fixzed big cylinder

Figure 4 Small cylinder rolling or slipping on a fixed bigger cylinder in 2D.
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wp twisting
angular
velocity tangent

plane at C

wr rolling
angular
velocity

\ Surface So

Figure 5 Two surfaces rolling, twisting and slipping in 3D, w, is the relative
angular velocity between them in the tangent plane to their contact, g4’is their
relative angular velocity normal to this plane . W,
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thin disk

path of contact
between disk
and plane

thin disk

//// (///////// fixed plane
C

Figure 6 Thin disk rolling on a fixed plane, t is the unit vector tangent to the
path of contact on the plane, p is perpendicular to t in the plane, n is normal to
the plane, 0 is the angle that the plane of the disk makes with n.

16
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'/‘ disk thatis tangent to
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R, radius of disk \

-

R/Cos 8, principal !
radius ofcurvature /,’

plane on which
disk rolls

Figure 7 Construction showing principal radius of curvature of inclined thin
disk along the direction tangent to its path of contact on the plane, 8 is the angle
that the plane of the disk makes with the vertical to the rolling plane.
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torus

side view of torus
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Figure 8 Torus rolling on a fixed plane, same parameters as the thin disk
rolling on the plane.
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circumscribing sphere of
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plane on which
disk rolls

Figure 9 Construction showing principal radius of curvature of inclined torus
along the direction tangent to its path of contact on the plane, 6 is the angle that
the central plane of the torus makes with the vertical to the rolling plane.
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fixed cylinder

Figure 10 Sphere rolling inside vertical hollow cylinder without slipping, unit
vector n points radially inwards, unit vector d points vertically downwards.
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