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Paper [1] derived the equations of motion of a controlled and uncontrolled bicycle
and investigated the stability of motion of simplified models. Simplification of the mod-
el involved disregarding the angle of inclination A of the steering axils and the stagger
g of the front wheel. Since, for actual bicycles, A and o are usually nonzero, it is of

interest to investigate the stability of motion of an uncontrolled bicycle in relation to
these parameters.

In this paper we refine the equations of motion of [1] for an uncontrolled bicycle.
As a result of 1investigating these equations we identify the region of stable motion in
the space of parameters o A V¥, where V 1s the velocity of the bicycle.

As regards rolling dynamics, bicycles and motorcycles are machines of the same type,
and therefore everything in the paper 1s applicable to motorcycles as well.

1. Consider a model of a bicycle with rigid wheels. 1In accordance with the notation
in Figs, 1 ana 2, the coordinates cf the centers of mass Ml and M2 of the rear anad frqnn

parts of the bicycle respectively are expressed in terms of generalized coordinates =z, 6,2 ¥
Lo within second-order small guantities:

zy=z+hy—L,0

bi=yhod + "BT:)" +h-R) (=5 LR v)

c

to=h, (;—’f?l) il (Ml v- xw)
T=r+hy—LO—dy 0
Y= y+hayb+l, ( fime 6—2) —dp8 +[ (b,Hm% siuA—d cos 3.] % =

—(h:-mf;'-w
o 1) () ()

e nave employed the rollowing notation: R is the wheel radius (m); c is the

Here w
vase of the bicyele (m); d 1z the distance from the center of mass of the front part to
tne sresring axis (m); b is the distance from the center of the front wheel to the steer-
ing ‘axis (m); & is the coefficlient of viscous friction in the steering column (kg.m ‘sec“});
~ 1ls the angle of inclination of the steering axis relative to the vertical (rad); V is the
velocity of the bileyele (m+sec™t); ¢y is the stagger of the front wheel, e=ccosd (m); g=cyec!

15 the dimenzionl=2ss stagger of the front wheel; g is the acceleratior due to gravity (m-

*sec 2); F is the Rayleigh dissipation function; U is the poiential energy of the picycie
and rider; m; is the mass of the rear part of the bicycle with rider (kg); Zl and h, are

the coordinates cof tLhe center of mass Ml of the rear part (m); Ay and B, are the central

moments of inertlia relative to the horizontal ayis and the axis that 1s perpendiculartc it,
which lie in the plane of the rear wheel (kg-m )3 Dl is the centrifugal moment of inertia

relative to these axes (kg-'m ), Cl is the moment of inertia of the rear wheel relative t2
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1ts axis of intrinsic rotation (kg-mz}; and Tl 15 the kinetic energy of the rear part of

the blecycle with rider. ) R iR : L
The parameters of the front part of the bicycle are denoted by the same letters, witn
a subscript 2: !
ly==cx cos Go+P SiD @s,  hy=H—g 8in Go+f cos g,

ly==d coB o+ deon h—dysin &, hy=R—asin pe+dsind+d, cos h
£ de=hy sin A+ (lz—e) cos A—eq

. The refinement of the equations of motion of a blcycle and motorcycle as obtained in
[1] involves the fact that in the expression for the angle ¢ in terms of §, ¥ we should
take account of terms of the power serles expanslion in ¢, % up to second-order small quan-
tities. In this approximation, the angle ¢ 1s expressed by the relationship

P=0ps +%(¢‘ sinA—2yy) {1.2)

Note that in [1, 2] the expression for ¢ was obtained only to within first-order
small terms inclusively. It follows from (1.2), however, that in thils approximation the

angle ¢ 1s constant.

Taking account of (1.2), the kinetlc energiles Tl and T2 of the rear and front parts
respectively have the form
Tymm '51”' L [ (@=L +hy ) =2V (L0—Ay) 0 +2VA 6 +
+2v Z_' (h,—R) (sin xw'—-w‘-—w‘J] + :— (Aix"*=2D,3 0" +B,6™) +
4 V:‘: 20"

P o (.1:'+h,x'—1.8'-—d¢')’+m,l’{ (hax—L0-d$) 6" +

e (h—R) . e.(hs—R) :
-1-[(——c—sm?..—dcos3\.) 1:—dB-——:-—-x]¢. -

¢, (h.—R A 4 e
+[k=9-"s_)1’]x }+T{As(z —¢ gind)? +
+ 2D, (3" —¢"sin ) (8¢ coa X))+ B, (8"+ cos 1) ] —

47 A :
R [¥x" cos A-+8"(WainA—x) ]

With the same degree of approximation, we can define the potential energy of the bi-
cyecle by the expression

D‘——%[bx‘+(m.d+%) (q:’sinl—:!m]

The Lagrange function L=T+Z,—U. We introduce the operator Ly=(d/dt)(oL/éq")—(9L/3g) and
compute L, L, L, Ls: .

Lo=mz"—10" Ry "—mad”, L;=ha I8 -V (C,°+C,°) 0"+l " —
_gllx—J.ﬂ\"—vc.“ cos Ap g ( mad — li) )
w (4

Lo=—lz 08" —Tux + V{2~ C0) y +1 " —¢ €,V ain (1.3)
Lym=—m, dz"+]8" +VC, sin a0'—Joy " +C,°V cos hy" +

+g (m,d + %) xtiy —g (M.d*i'i:i) BiDAY

Here we have introduced the following notation: mem.+m; 1s the mass of the entire sys-
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Fig. 2'I _;; i

tem (bicyecle and rider),

T=myly+ mgly,  he=mh+ mahy
J=md?4+ 4. sin® A—D; sin 2)+ By cos? ),
Ji=mh Ay mehte Ay,  Jymmyl 2 +By+ melst 40
Ji=mzhzd4 Ay sin A—D.casd, Jy=mqdls—D; sin &+ B: cos i 5
Jiz=myhyly+ Dy mzhsly—Dy,  €,°=CiR-', Ci==CiR~t

In accordance with the eguations of the kinematlc relations that express rolling of
the wheels without slip,

'+ V=0, c8'=cp’+{Vcosh (1.4)

the dynamic equations of the bicycle model under consideration can be written as follows:

aF
L=0, ¢ (L. +-é?) + e Lm0

Using (1.3), ve can eliminate parameters x and ¢ from themusing nonholonomic linkege
equations (1.4), after which the equations of motion become

| ay = ag—a " —a, Vip+ (a—a. 1) =0

|
3 i Ls
i O b VY (B2 V7 —by) —boy "+ by Vi +byy=0 (1.5)

Here the expressions for the coefficients a; and t"i are the same as the corresponding

pressions . [1]. The cnly difterence involves the ccefficients ai, b, by, in which the
factor Mg is replaced by m.d+le,/e. This constitutes the refinement of the egquations of

metion of the bigycle.

igate tne stability of rectilinear motvion of an uncon‘irollad bicycle.
ye Lthe motion of the representative point in configuration space ¥,¢
rium state at the coordinate origin x=¥=0 corresponds to rectilirear
r:ccq* rolled bleycle. The stability of this stale is. determined by the roots
vh=-uraer characteristic equation: .

L
-4
i

ap'tap't (a:—eas) Pt (ai—eas) pHe (ea—a;) =0
ap=g,lp—a-b, oy=agiy+ubi—ayb,
@y=aphstasby—ast,, @i=abpsaghs—azby—ah, (2 vk )
ay=ashy, ay=aby+als—azbs, te=aby—aily
ar=ah:—a:by, e=1/1

The guantitlies z. and L. are given by the expressicns

age=cly, a@y=cgh, apmcly+cydis
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ds = (a4 60a") 008 A+E, (A+CHCr%),  ay=cg (m,d g P, )
) c

€ 1
o = (h+C+CP)oos A,  bemmcl42eidy +——1Jy,  bymJicos A+
e

1 ey : Igy
+e (m,a+—1.m:.)+7+ca.. b:—(m:d+€:‘;inl+ )w’sl.
€ c
hyw=cg (mad+le; / ¢) sin A, " bemelyteiia

: ) 3
bemmcCi® 008 A+ 6, (C4CrY),  bemcg (...,d+w51-) Vb=

We fix all the parameters of the system under consideration except for the angle of
inclination A ofr-the steering axls, the stagger o of the front wheel, and the velocity V
of the bicycle, which will vary in the following ranges: 0<i<023 rad, 0<e<05, 0<V<i5 m/sec.

Assume thal the remalning parameters have
5 S the following values: R = 0.35 m, Zl = 0.4
& J 1 m, ¢ = 1.04 m, 22 = 0.9m, g = 9.8 m/sec2
2 .
ars| 3 A12= 3.3, kg'm, my = 80 kg, AEE 0.036 kg-
‘mt, m, = 2.7 kg, Bl = 6.7 kg-m", hl = 0.9 m,
arf / B, = 0.22 kg- m?, h, = 0.5m, C; =C, = 0.5

kg-mz.

2

05t PO

’ az Using the Routh-Hurwitz criterion, and

4 497 an M-220 computer, we plotted the boundaries

0 § 0 LA 4 of the stabllity reglon in the space of param-
Fig. 3 eters A, o, V;vthey are shown in Filg. 3, where
° N the arrow indicates the stability region.

I

In plotting the boundaries we obtalned values of V,o0.k satisfying the equations

. u“'ﬂn ax-og a;—ea;—o

ai—en=0, eas—oa,=0 (2.2)
(mi—eas) [@) (o —ews) —a. (2i—eas) ] —e (eea—o: ) @, '=0

which are obtained when the Routh-Hurwitz conditions are turned into egualities.
The above results yield the followlng conclusions.

1. Rectilinear motlon of an uncontrolled bicyele 1s stable for any physical param-
eter relationships only on & finite velocity interval V,<V<V:, where the minimum and maxi-
mum velocities V; and V2 are determined on Fig. 3 as the points of intersection of the

straight line A=const,o—const and the boundaries of the stability region.

Z. To obtain motion that is stable on the largest interval of velocities, we should
=ry to reduce the ange of inclination ) of the steering axis, while maintaining a suffic—
iently large stagger o cf' the front wheel

3. The resultant boundaries of thes stability region enable the designer to choose,
for a given bileyzle modsl, the inclination A of the steering axis and stagger o of the
front wheel in such & way as to ensure the greatest stability margin. A bieycle with these
rarameters will evidently possess optimum controllabiiity as well.

L. Construetion of the boundaries of the regiorn of stable motion fTor various values
o' tne coefficient ol viscous friction 6 1in the steering column revealed that this coeffi-
cient does not markedly affect the behavior of these boundaries.
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