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We present canonical linearized equations of motion for the Whipple bicycle model
consisting of four rigid laterally-symmetric ideally-hinged parts: front and rear
wheels and frames. The wheels are also axisymmetric and make ideal knife-edge
rolling contact with the level ground. The mass distribution, lengths and angles are
otherwise arbitrary. The terms in the governing equations are constructed method-
ically from mass and geometry parameters for easy implementation. The equations
are suitable for study of, for example, the self-stability of a bicycle. We derived these
equations by hand in two different ways and then checked them against two general-
purpose non-linear dynamic simulators in various ways. In the century-old literature
we have found several sets of equations that fully agree with those here and several
which do not. This conservative non-holonomic system has a seven-dimensional ac-
cessible configuration space and three velocity degrees of freedom parameterized by
rates of frame lean, steer angle and rear-wheel rotation. Asymptotic stability for
lean and steer are demonstrated numerically. For two sets of benchmark parameters
we accurately calculate the stability eigenvalues and the speeds at which the bicycle
is self-stable. These provide a test case for checking alternative formulations of the
equations of motion or alternative numerical solutions. The results here can also
serve as a check for general-purpose dynamics programs.

Keywords: bicycle, dynamics, linear, stability, nonholonomic, benchmark.

1. Introduction

In 1818 Karl von Drais (Herlihy 2004) showed that a person riding forward on a
contraption with two in-line wheels, a sitting scooter of sorts, could balance by
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Figure 1. Bicycle model parameters. For all four parts (R, B, F and H), centre of mass
locations are expressed relative to the x and z coordinates shown (with origin at P and y
pointing towards the reader) and in the reference configuration shown. Other parameters
include the body masses, the wheel radii, the tilt A of the steer axis, the wheel base w
and the trail ¢ and are listed in Table 1. The figure is drawn to scale using the distances
in Table 1. Configuration variables (lean, steer, etc) are defined in figure 2.

steering the front wheel. Later, the velocipede of the 1860’s which had pedals di-
rectly driving the front wheel like a child’s tricycle, could also be balanced by
active steering control. This “boneshaker” had equal-size wooden wheels and a ver-
tical steering axis passing through the front wheel axle. By the 1890’s it was well
known that essentially anyone could learn to balance a “safety bicycle”. The safety
bicycle had pneumatic tires and a chain drive. More subtly, but more importantly
for balance and control, the safety bicycle also had a tilted steer axis and fork offset
(bent front fork) like a modern bicycle. In 1897 French mathematician Emmanuel
Carvallo (1899) and then, more generally, Cambridge undergraduate Francis Whip-
ple (1899) used rigid-body dynamics equations to show in theory what was surely
known in practice, that some safety bicycles could, if moving in the right speed
range, balance themselves.
Today these same two basic features of bicycle balance are clear:

e A controlling rider can balance a forward-moving bicycle by turning the front
wheel in the direction of an undesired lean. This moves the ground-contact
points back under the rider, just like an inverted broom or stick can be bal-
anced on an open hand by accelerating the support point in the direction of
lean. This acceleration has two parts, one a centripital acceleration from the
bicycle going in circles at a given handlebar turn, and another from the rate
of steering that would occur even if both front and rear wheels steered in
parallel.

e Some uncontrolled bicycles can balance themselves. If a good bicycle is given
a push to about 6 m/s, it steadies itself and then progresses stably until its
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Bicycle dynamics benchmark 3
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Figure 2. Configuration and dynamic variables. The 7-dimensional accessible con-
figuration space is parameterized here by the x and y coordinates of the rear contact P,
measured relative to a global fixed coordinate system, and 5 Euler-like angles represented
by a sequence of hinges (gimbals). The hinges are drawn as a pair of cans which rotate
with respect to each other. For a positive rotation, the can with arrow rotates in the di-
rection of the arrow relative to its mate as shown on the enlarged isolated can at the top
left. The % can is grounded in orientation but not in location. For example, a clockwise
(looking down) change of heading (yaw or steer) 1 of the rear frame B relative to the
fixed x axis, a right turn, is positive. The lean (‘roll’ in aircraft terminology) to the right
is ¢. The rear wheel rotates with Or relative to the rear frame, with forward motion being
negative. The steer angle is § with right steer positive. The front wheel rotates with Op
relative to the front frame. As pictured, 1, ¢ and § are all positive. The velocity degrees
of freedom are parameterized by gf), 6 and fr. The sign convention used is the engineering
vehicle dynamics standard (SAE 2001).

speed gets too low. The torques for the self-correcting steer motions can come
from various geometric, inertial and gyroscopic features of the bike.

Beyond these two generalities, there is little that has been solidly accepted in the
literature, perhaps because of the lack of need. Through trial and error bicycles had
evolved by 1890 to be stable enough to survive to the present day with essentially
no modification. Because bicycle design has been based on tinkering rather than
equations, there has been little scrutiny of bicycle analyses.

To better satisfy general curiosity about bicycle balance and perhaps contribute
to the further evolution of bicycle design, we aim here to firmly ensconce some
basic, and largely previously established, bicycle stability science. The core of the
paper is a set of easy-to-use and thoroughly checked linearized dynamics equations
(5.3 and Appendix A) for the motion of a somewhat elaborate, yet well-defined,
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bicycle model. Future studies of bicycle stability, aimed for example at clarifying
especially point (B) above, can be based on these equations.

Many methods can be used to derive the equations using various choices of coor-
dinates, each leading to vastly different-looking governing equations. Even matching
initial conditions between solution methods can be a challenge. However, stability
eigenvalues and the speed-range of stability are independent of all of these differ-
ences. So, for example, a computer-based study of a bicycle based on any formula-
tion can be checked for correctness and accuracy by comparing with the benchmark
eigenvalues here.

The work here may also have more general use. The bicycle balance problem
is close to that for skating and perhaps walking and running. Secondly, there is a
dearth of non-trivial examples with precisely known solutions that can be used to
check general purpose multi-body dynamics simulators (such as are used for ma-
chine, vehicle and robot design). This paper provides such a non-trivial benchmark
system.

2. Brief literature review

Since their inception bicycles have attracted attention from more-or-less well known
scientists of the day including thermodynamicist William Rankine, the mathemati-
cians Carlo Bourlet, Paul Appell and Emmanuel Carvallo, the meteorologist Francis
Whipple, the mathematical physicist Joseph Boussinesq, and the physicist Arnold
Sommerfeld working with mathematician Felix Klein and engineer Fritz Noether
(brother of Emmy). A later peak in the “single track vehicle” dynamics litera-
ture began in about 1970, perhaps because digital computers eased integration of
the governing equations, because of the increased popularity of large motorcycles
(and attendant accidents), and because of an ecology-related bicycle boom. This
latter literature includes work by dynamicists such as Neimark, Fufaev, Breakwell
and Kane. Starting in the mid-1970s the literature increasingly deviates from the
rigid-body treatment that is our present focus.

Over the past 140 years scores of other people have studied bicycle dynamics,
either for a dissertation, a hobby, or sometimes as part of a life’s work on vehicles.
This sparse and varied research on the dynamics of bicycles modelled as linked
rigid bodies was reviewed in Hand (1988). Supplementary Appendix I, summarized
below, expands on Hand’s review. A more general but less critical review, which
also includes models with compliance, is in Sharp (1985).

Many bicycle analyses aimed at understanding rider control are based on quali-
tative dynamics discussions that are too reduced to capture the ability of a moving
bicycle to balance itself. The Physics Today paper by David Jones (1970) is the best-
known of these. The paper by Maunsell (1946) carefully considers several effects.
Qualitative dynamics discussions can also be found in Lallement (1866), Rankine
(1869), Sharp (1896), Appell (1896), Wallace (1929), A.T. Jones (1942), Den Hartog
(1948), Higbie (1974), Kirshner (1980), Le Hénaff (1987), Olsen & Papadopoulos
(1988), Patterson (1993), Cox (1998), and Wilson (2004).

A second class of papers does use analysis to study the dynamics. Some, appro-
priately for basic studies of rider control, use models with geometry and/or mass
distribution that are too reduced to be self-stable. Others, even if using a bicycle
model that is sufficiently general, use rules for the control of the steer and thus
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skip the equation for self-steer dynamics. Such simple and/or steer-controlled ap-
proaches are found in Bourlet (1899), Boussinesq (1899a,b), Routh (1899), Bouasse
(1910), Bower (1915), Pearsall (1922), Loicjanskil & Lur’e (1934), Timoshenko &
Young (1948), Haag (1955), Neimark & Fufaev (1967), Lowell & McKell (1982),
Getz & Marsden (1995), Fajans (2000) and Astrom et al. (2005).

We have found about 30 rigid-body dynamics models that have general-enough
geometry and mass distribution for self-stability to be possible, and which also allow
uncontrolled steer dynamics. These governing equations are complex and different
authors use slightly different modeling assumptions, different parameterizations and
different choices of dynamic variables. And most authors did not know of most of
their predecessors. So only a small fraction of the 200 or so chronologically possible
cross checks have been performed in detail. Of these a large fraction are by Hand and
ourselves. The evaluations below are based on comparison with our own derivations
(Papadopoulos, 1987 and Meijaard 2004), and by comparisons made by the first 6
authors below, especially Hand.

Correct equations for the Whipple model are in Déhring (1955) who built on the
Carvallo model presented in Klein & Sommerfeld (1910), Weir (1972) who checked
Sharp, Eaton (1973) who checked Weir and Sharp, Hand (1988) who checked these
papers and others, Mears (1988) who checked Weir and Hand, and Lennartsson
(1999). Singh & Goel (1971) use Déhring’s correct equations, but we did not check
their implementation. The paper by Dikarev et al. (1981) independently corrects
the same error as found independently by Hand in Neimark & Fufaev (1967), so is
likely correct, but we have not checked the final equations. Psiaki’s (1979) equations
are probably correct, based on graphical agreement of his plots with solutions of
the equations here, but his equations were complex and have not been checked in
detail. We recently discovered papers by Herfkens (1949) and Manning (1951) that
have no evident flaws, but we have not checked them in detail.

Equations of similar models are in Carvallo (1899) which is slightly simplified,
Whipple (1899) which has some typographical errors, Klein & Sommerfeld (1910)
which follows Carvallo and is slightly simplified, Sharp (1971) which is correct before
he eliminates tire compliance and is the foundation for much subsequent tire-based
vehicle modeling, Van Zytveld (1975) which is correct when his slightly incorrect
and more general model is simplified to the Whipple model, and Weir & Zellner
(1978) which has minor errors. Nefmark & Fufaev (1967) has more substantial but
still correctable errors (see Dikarev et al. and Hand).

Others research on complex rigid-body bicycle models include Collins (1963),
Singh (1964), Rice & Roland (1970), Roland & Massing (1971), Roland & Lynch
(1972), Roland (1973), Rice (1974), Singh & Goel (1975), Rice (1976), Lobas (1978),
Koenen (1983), and Franke et al. (1990).

After all this, and despited decades of careful good work by many people, there is
no peer-reviewed paper in English that we are confident has fully correct equations
for the Whipple model. We continue to discover more promising papers (e.g., Kondo
et al. (1963) and Ge (1966)).

3. The Bicycle Model

We use the Whipple bicycle consisting of four rigid bodies: a Rear wheel R, a rear
frame B with the rider Body rigidly attached to it, a front frame H consisting
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of the Handlebar and fork assembly, and a Front wheel F (figure 1). Within the
constraint of overall lateral (left-right) symmetry and circular symmetry of the
wheels, the shape and mass distributions are fully general. The fully general model
that respects these symmetries allows non-planar (thick) wheels. We allow for such
thickness in our inertial properties but, like Whipple, add the assumption of knife-
edge rolling contact, precluding, e.g., contact with toroidal wheels. We neglect the
motion of the rider relative to the frame, structural compliances and dampers, joint
friction, tire compliance and tire “slip”.

The model delineation is not by selecting the most important aspects for describ-
ing real bicycle stability. For understanding basic features of active rider control
the model here is undoubtedly unnecessarily and inappropriately complex. For ex-
ample, some aspects included here have very small effects, like the non-planarity of
the inertia of the real wheel. And other neglected aspects may be paramount, e.g.
the rider’s flexibility and control reflexes. Even for the study of uncontrolled stabil-
ity, tire deformation and frame compliance are necessary for understanding wobble
(shimmy). In summary, the model here includes all the sharply-defined rigid-body
effects, while leaving out a plethora of terms that would require more subtle and
less well-defined modeling.

Our bicycle design is fully characterized by 25 parameters described below.
Table 1 lists the numerical values used for the numerical benchmark. The numerical
values are mostly fairly realistic, but some values (e.g., wheel inertial thickness as
represented by Irgus > Iryy/2) are exaggerated to guarantee a significant role in
the benchmark numerical studies.

The bicycle design parameters are defined in an upright reference configuration
with both wheels on the level flat ground and with zero steer angle. The reference
coordinate origin is at the rear wheel contact point P. We use the slightly odd
conventions of vehicle dynamics (SAE 2001) with positive 2 pointing towards the
front contact point, positive z pointing down and the y axis pointing to the rider’s
right.

The radii of the circular wheels are rg and rrp. The wheel masses are mgr and
mp with their centres of mass at the wheel centres. The moments of inertia of
the rear and front wheels about their axles are Iry, and [ry,. The moments of
inertia of the wheels about any diameter in the zz plane are Ig,, and Ip.,. The
wheel mass distribution need not be planar, so any positive inertias are allowed
with Iryy < 2IRae and Ipyy < 2[pgs. All front wheel parameters can be different
from those of the rear so, for example, it is possible to investigate separately the
importance of angular momentum of the front and rear wheels.

Narrow high-pressure high-friction tire contact is modelled as non-slipping rolling
contact between the ground and the knife-edge wheel perimeters. The frictionless
wheel axles are orthogonal to the wheel symmetry planes and are located at the
wheel centres.

In the reference configuration the front wheel ground contact Q is located at
a distance w (the “wheel base”) in front of the rear wheel contact P. The front
wheel ground contact point trails a distance ¢ behind the point where the steer axis
intersects with the ground. Although ¢ > 0 for most bicycles, the equations allow
a ‘negative trail’ (¢ < 0) with the wheel contact point in front of the steer axis.

The rear wheel R is connected to the rear frame assembly B (which includes the
rider body) at the rear axle. The centre of mass of B is located at (zp,yg = 0,25 <
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0). The moment of inertia of the rear frame about its centre of mass is represented
by a 3 x 3 moment of inertia matrix where all mass is symmetrically distributed
relative to the xz plane, but not necessarily on the plane. The centre of mass of
the front frame assembly (fork and handlebar) H is at (zy, yg = 0, zn < 0) relative
to the rear contact P. H has mass my. As for the B frame, Iy, can be less than
Ttze + Inz.. The rear and front moments of inertia of the rear and front asseblies
are:

IBzz 0 Isz IHxx 0 Isz
IB = 0 IByy 0 5 and IH = 0 IHyy 0 . (31)
IBzz 0 IBzz Isz 0 Isz

The steer axis tilt angle A is measured back from the upwards vertical, positive
when tipped back as on a conventional bicycle with —7/2 < A < /2. The steer tilt
is /2 minus the conventional “head angle”; a bicycle with head angle of 72° has
A = 18° = 7/10. The steer axis location is implicitly defined by the wheel base w,
trail ¢ and steer axis tilt angle .

Two non-design parameters are the downwards gravitational acceleration g and
the nominal forward speed v.

This model, or slight simplifications of it, is a common idealization of a bicy-
cle (see supplementary Appendix 1). Motorcycle modelling is often based on an
extension of this model using toroidal wheels, tire compliance, tire slip and frame
compliance. Theories of bicycle control are often based on simplifications of this
model or on simple analogous systems that do not come from reductions of this
model.

(a) How many parameters describe a bicycle?

The bicycle model here is defined completely by the 25 design parameters above
(see table 1). This is not a minimal description for dynamic analysis, however. For
example, the inertial properties of the rear wheel R, except for the polar moment of
inertia, can be combined with the inertial properties of the rear frame B, reducing
the number of parameters by 2. Similarly for the front frame, reducing the number
of parameters to 21. The polar inertia of each wheel can be replaced with a gyrostat
constant each of which gives a spin angular momentum in terms of forward velocity.
This does not reduce the number of parameters in non-linear modelling. But in
linear modelling the radius of the wheels is irrelevant for lean and steer geometry
and their effect on angular momentum is embodied in the gyrostat constants. Thus
eliminating wheel radii reduces the number of parameters by 2 to 19. Finally, in the
linearized equations of motion the polar (yy components) of the moments of inertia
of the two frames are irrelevant, reducing the necessary number of design parameters
to 17. In their most reduced form (below) the linearized equations of motion have
11 arbitrary independent matrix entries, each of which is a complex combination
of the 17 parameters just described. Non-dimensionalization might reduce this to 8
free constants. That is, for example, the space of nondimensional root-locus plots
is possibly only 8 dimensional. For the purposes of simpler comparison, we use the
25 design parameters above.
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(b) How many degrees of freedom does a bicycle have?

Because this system has non-holonomic kinematic constraints, the concept of
“degree of freedom” needs clarification. The holonomic (hinges and ground contact)
and non-holonomic (non-slip rolling) constraints restrict this collection of 4 linked
bodies in three-dimensional space as follows. Start with the 24 degrees of freedom
of the 4 rigid bodies, each with 3 translational and 3 rotational degrees of freedom
in physical space (4 x (3 + 3) = 24). Then subtract out 5 degrees of freedom for
each of the three hinges and one more for each wheel touching the ground plane:
24 — 3 x5 —2 = 7. Thus, before we consider the non-slipping wheel-contact con-
straints, the accessible configuration space is 7-dimensional. The 4 non-holonomic
rolling constraints (two for each wheel-ground contact) do not further restrict this
accessible configuration space: kinematically allowable parallel-parking-like moves
can translate and steer the bicycle on the plane in arbitrary ways and also can rotate
the wheels relative to the frame with no net change of overall bicycle position or
orientation. Thus the accessible configuration space for this model is 7-dimensional.

(i) Description of the 7-dimensional configuration space

This 7-dimensional configuration space can be parameterized as follows (see
figure 2). The location of the rear-wheel contact with the ground is (zp, yp) relative
to a global fixed coordinate system with origin O. The orientation of the rear frame
with respect to the global reference frame O—zyz is given by a sequence of angular
rotations (Euler angles) depicted in figure 2 with fictitious hinges (represented as
cans) in series, mounted at the rear hub: a yaw rotation, 1, about the z—axis, a
lean rotation, ¢, about the rotated x—axis, and a pitch rotation, fg, about the
rotated y—axis. Note that the pitch 6 is not one of the 7 configuration variables
because it is determined by a 3-D trigonometric relation that keeps the front wheel
on the ground. The steering angle § is the rotation of the front handlebar frame
with respect to the rear frame about the steering axis. A right turn of a forwards-
moving bicycle has § > 0. Finally, the rotation of the rear R and front F wheels
with respect to their respective frames B and H are g and 6. In summary, the
configuration space is parameterized here with (xp,yp, ¥, ¢, 9, 0r, 0r). Quantities
such as wheel-centre coordinates and rear-frame pitch are all determined by these.

(ii) Velocity degrees of freedom

With motions akin to parallel parking, consistent with all of the hinge and
rolling constraints (but not necessarily consistent with the equations of motion),
it is possible to move from any point in this 7-dimensional space to any other
point. Thus the accessible configuration space is 7-dimensional. However, the 4
non-holonomic rolling constraints reduce the 7-dimensional accessible configuration
space to 7 — 4 = 3 velocity degrees of freedom.

This 3-dimensional kinematically-accessible velocity space can conveniently be
parameterized by the lean rate gb of the rear frame, the steering rate 6 and the
rotation rate 9R of the rear wheel R relative to the rear frame B.

4. Basic features of the model, equations and solutions
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Parameter Symbol Value for benchmark
Wheel base w 1.02 m
Trail c 0.08 m
Steer axis tilt A /10 rad
(7/2 — head angle) (90° — 72°)
Gravity g 9.81 N/kg
Forward speed v various m/s, see tables b—2
Rear wheel R
Radius TR 0.3 m
Mass mr 2 kg
Mass moments of inertia  (Irez, [Ryy) (0.0603, 0.12) kgm?
Rear Body and frame assembly B
Position centre of mass (zB, 2B) (0.3,-0.9) m
Mass ms 85 kg
Ipgz 0 I 92 0 24
Mass moments of inertia 0 Isyy 0 0 11 0 kgm?
IB;vz 0 IBzz 2.4 0 2.8
Front Handlebar and fork assembly H
Position centre of mass (zwm, zn) (0.9,-0.7) m
Mass my 4 kg
Tzs 0 IHa: 0.05892 0  —0.00756
Mass moments of inertia 0 THyy 0 0 0.06 0
Iny. 0 Jm.: —-0.00756 0 0.00708
Front wheel F
Radius TR 0.35 m
Mass mg 3 kg
Mass moments of inertia  (Iraw, [Fyy) (0.1405, 0.28) kgm?

Table 1. Parameters for the benchmark bicycle depicted in figure 1 and described in the text.
The values given are exact (no round-off ). The inertia components and angles are such that
the principal inertias (eigenvalues of the inertia matriz) are also exactly described with only
a few digits. The tangents of the angles that the inertia eigenvectors make with the global
reference azes are rational fractions. To be physical (no negative mass) moment-of-inertia
matrix entries must all be positive and also satisfy the triangle inequalities that mo one
principal value is bigger than the sum of the other two.

(a) The system behaviour is unambiguous

The dynamics equations for this model follow from use of linear and angular
momentum balance and the assumption that the kinematic constraint forces fol-
low the rules of action and reaction and do no net work. These equations may
be assembled into a set of ordinary differential equations, or differential-algebraic
equations by various methods. One can assemble governing differential equations
using the Newton—Euler rigid-body equations, using Lagrange equations with La-
grange multipliers for the in-ground-plane rolling-contact forces, or one can use
methods based on the principle of virtual velocities (e.g., Kane’s method), etc. But
the subject of mechanics is sufficiently well defined that we know that all standard
methods will yield equivalent sets of governing differential equations. Therefore,
a given consistent-with-the-constraints initial state (positions and velocities of all
points on the frames and wheels) will always yield the same subsequent motions of
the bicycle parts. So, while the choice of variables and the recombination of gov-
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erning equations may lead to vast differences in the appearance of the governing
equations, any difference between dynamics predictions can only be due to errors.

(b) The system is conservative but not Hamiltonian

The only friction forces in this model are the lateral and longitudinal forces
at the ground-contact points. Because of the no-slip condition these friction forces
are non-dissipative. The hinges and ground contact are all workless kinematic con-
straints. In uncontrolled bicycle motion the only external applied forces are the
conservative gravity forces on each part. That is, there are no dissipative forces and
the system is energetically conservative; the sum of the gravitational and kinetic
energies is a constant for any free motion. But the non-holonomic kinematic con-
straints preclude writing the governing equations in standard Hamiltonian form, so
theorems of Hamiltonian mechanics do not apply. One result, surprising to some
cultured in Hamiltonian systems, is that the bicycle equations can have asymp-
totic (exponential) stability (see figure 4) even with no dissipation. This apparent
contradiction of the stability theorems for Hamiltonian systems is because the bi-
cycle, while conservative, is, by virtue of the non-holonomic wheel contacts, not
Hamiltonian. A similar system that is conservative but has asymptotic stability is
the uncontrolled skateboard (Hubbard 1979) and more simple still is the classical
Chaplygin Sleigh described in, e.g., Ruina (1998).

(¢) Symmetries in the solutions

Without explicit use of the governing equations some features of their solutions
may be inferred by symmetry.

Ignorable coordinates. Some of the configuration variables do not appear in any
expression for the forces, moments, potential energies or kinetic energies of any
of the parts (these are so-called cyclic or ignorable coordinates). In particular the
location of the bicycle on the plane (zp,yp), the heading of the bicycle ¥, and the
rotations (fg, Or) of the two wheels relative to their respective frames do not show
up in any of the dynamics equations for the velocity degrees of freedom. So one
can write a reduced set of dynamics equations that do not include these ignorable
coordinates. The full configuration as a function of time can be found afterwards
by integration of the kinematic constraint equations, as will be discussed. Also,
these ignorable coordinates cannot have asymptotic stability; a small perturbation
of, say, the heading ¢ will lead to a different ultimate heading.

Decoupling of lateral from speed dynamics. The lateral (left-right) symmetry of
the bicycle-design along with the lateral symmetry of the equations implies that
the straight-ahead unsteered and untipped (6 = 0, ¢ = 0) rolling motions are nec-
essarily solutions for any forward or backward speed v. Moreover, relative to these
symmetric solutions, the longitudinal and the lateral motion must be decoupled
from each other to first order (linearly decoupled) by the following argument. Be-
cause of lateral symmetry a perturbation to the right must cause the same change in
speed as a perturbation to the left. But by linearity the effects must be the negative
of each other. Therefore there can be no first-order change in speed due to lean.
Similarly, speed change cannot cause lean. So the linearized fore-aft equations of
motion are entirely decoupled from the lateral equations of motion and a constant
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speed bicycle has the same equations of motion as a constant energy bicycle. This
argument is spelled out in more detail in Appendix 4.

A fore-aft symmetric bike cannot be self stable. Because all of the equations of
such frictionless kinematically constrained systems are time reversible, any bicy-
cle motion is also a solution of the equations when moving backwards, with all
particle trajectories being traced at identical speeds in the reverse direction. Thus
a bicycle that is exponentially stable in balance when moving forwards at speed
v > 0 must be exponentially unstable when moving at —v (backwards at the same
speed). Consider a fore-aft symmetric bicycle. Such a bicycle would have a vertical
central steering axis and has a handle-bar assembly, front mass distribution and
front wheel that mirrors that of the rear assembly. If such a bike has exponentially
decaying solutions in one direction it must have exponentially growing solutions in
the opposite direction because of time reversal. By symmetry it must therefor also
have exponentially growing solutions in the (supposedly stable) original direction.
Thus such a bicycle cannot have exponentially decaying solutions in one direction
without also having exponentially growing solutions in the same direction, and thus
can’t be asymptotically self-stable.

(d) The non-linear equations have no simple expression

In contrast with the linear equations we present below, there seems to be no
reasonably compact expression of the full non-linear equations of motion for this
model. The kinematic loop, from rear-wheel contact to front-wheel contact, deter-
mines the rear frame pitch through a quartic equation (Psiaki 1979), so there is
no simple expression for rear frame pitch for large lean and the steer angle. Thus
the writing of non-linear governing differential equations in a standard form that
various researchers can check against alternative derivations is a challenge that is
not addressed here, and might never be addressed. However, when viewed as a col-
lection of equations, one for each part, and a collection of constraint equations, a
large set of separately comprehensible equations may be assembled. An algorithmic
derivation of non-linear equations using such an assembly, suitable for numerical
calculation and benchmark comparison, is presented in (Basu-Mandal, Chatterjee
and Papadopoulos, 2006) where no-hands circular motions and their stability are
studied in detail.

5. Linearized equations of motion

Here we present a set of linearized differential equations for the bicycle model,
slightly perturbed from upright straight-ahead motion, in a canonical form. To aid
in organizing the equations we include applied roll and steer torques which are later
set to zero for study of uncontrolled motion.

(a) Derivation of governing equations

Mostly-correct derivations and presentations of the equations of motion for a
relatively general bicycle model, although not necessarily expressed in the canonical
form of equation (5.3), are found in Carvallo (1899), Whipple (1899), Klein &
Sommerfeld (1910), Déhring (1953, 1955), Sharp (1971), Weir (1972), Eaton (1973)
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and Van Zytveld (1975). Dikarev et al. (1981) have a derivation of equation (5.3)
based on correcting the errors in Nefmark and Fufaev (1967) as does Hand (1988)
which just predates Mears (1988). Papadopoulos (1987) and Meijaard (2004) also
have derivations which were generated in preparation for this paper.

The derivations above are generally long, leading to equations with layers of
nested definitions. This is at least part of the reason for the lack of cross checking
in the literature. A minimal derivation of the equations using angular momentum
balance about various axes, based on Papadopoulos (1987), is given in Appendix B.
Note that this derivation, as well as all of the linearized equations from the litera-
ture, are not based on a systematic linearization of full non-linear differential equa-
tions. Thus far, systematic linearizations have not achieved analytical expressions
for the linearized-equation coefficients in terms of the 25 bicycle parameters. How-
ever, part of the validation process here includes comparison with full non-linear
simulations, and also comparison with numerical values of the linearized-equation
coefficients as determined by these same non-linear programs.

(b) Forcing terms

For numerical benchmark purposes, where eigenvalues are paramount, we ne-
glect control forces or other forcing (except gravity which is always included). How-
ever, the forcing terms help to organize the equations. Moreover, forcing terms are
needed for study of disturbances and control, so they are included in the equations
of motion.

Consider an arbitrary distribution of forces F; acting on bike points which are
added to the gravity forces. Their net effect is to contribute to the forces of con-
straint (the ground reaction forces, and the action-reaction pairs between the parts
at the hinges) and to contribute to the accelerations (¢, d, 6r).

Three generalized forces can be defined by writing the power of the applied forces
associated with arbitrary perturbation of the velocities that are consistent with the
hinge-assembly and ground-wheel contact constraints. The power necessarily factors
into a sum of three terms

P=> "F;-vi=Tpp+T50+Ty,0r (5.1)

because the velocities v; of all material points are necessarily linear combinations
of the generalized velocities (¢, d,0r). The generalized forces (T, T5, Tp,,) are thus
each linear combinations of the components of the various applied forces F;.

The generalized forces (T4, Ts,Tp,) are energetically conjugate to the gener-
alized velocities. The generalized forces can be visualized by considering special
loadings each of which contributes to only one generalized force when the bicycle
is in the reference configuration. In this way of thinking

1. Tp,, is the propulsive “force”, expressed as an equivalent moment on the rear
wheel. In practice pedal torques or a forward push on the bicycle contribute
to Ty, and not to Ty and T;.

2. Ty is the right lean torque, summed over all the forces on the bicycle, about
the line between the wheel ground contacts. A sideways force on the rear
frame located directly above the rear contact point contributes only to T4. A
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sideways wind gust, or a parent holding a beginning rider upright contributes
mainly to Ty.

3. Ts is an action-reaction steering torque. A torque causing a clockwise (looking
down) action to the handle bar assembly H along the steer axis and an equal
and opposite reaction torque on the rear frame contributes only to Ty. In sim-
ple modelling, Ts would be the torque that a rider applies to the handlebars.
Precise description of how general lateral forces contribute to Ts depends on
the projection implicit in equation (5.1). Some lateral forces make no contri-
bution to Ts, namely those acting at points on either frame which do not move
when an at-rest bicycle is steered but not leaned. Lateral forces applied to the
rear frame directly above the rear contact point make no contribution to Ts.
Nor do forces applied to the front frame if applied on the line connecting the
front contact point with the point where the steer axis intersects the vertical
line through the rear contact point. Lateral forces at ground level, but off the
two lines just described, contribute only to Ts. Lateral forces acting at the
wheel contact points make no contribution to any of the generalized forces.

Just as for a pendulum, finite vertical forces (additional to gravity) change the
coeflicients in the linearized equations of motion but do not contribute to the forcing
terms. Similarly, propulsive forces also change the coefficients but have no first order
effect on the lateral forcing. Thus the equations presented here only apply for small
(<« myg) propulsive and small additional vertical forces.

(¢) The first linear equation: with no forcing, forward speed is constant

The governing equations describe a linear perturbation of a constant-speed
straight-ahead upright solution: ¢ = 0, 6 = 0, and the constant forward speed
is v = —6rrr. As explained above and in more detail in supplementary Ap-
pendix 4, lateral symmetry of the system, combined with the linearity in the
equations precludes any first-order coupling between the forward motion and the
lean and steer. Therefore the first linearized equation of motion is simply obtained
from two-dimensional (zz-plane) mechanics as:

[T%{mT + IRyy + (TR/TF)2 Ipyy éR =Tyg, (5.2)

where m7 is total bike mass (see Appendix A). That is, in cases with no propulsive
force the nominal forward speed v = —rgfg is constant (to first order).

(d) Lean and steer equations

The linearized equations of motion for the two remaining degrees of freedom, the
lean angle ¢ and the steer angle §, are two coupled second-order constant-coefficient
ordinary differential equations. Any such set of equations can be linearly combined
to get an equivalent set. We define the canonical form below by insisting that the
right-hand sides of the two equations consist only of Ty, and T, respectively. The
first equation is called the lean equation and the second is called the steer equation.
That we have a mechanical system requires that the linear equations have the form
Mg+Cq+Kq = £ . For the bicycle these equations can be written as (Papadopoulos
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1987)
Mg +vC1q + [gKo + v?Ka|q = f, (5.3)

Ty
23
The matrix subsripts match the exponents of the v multipliers. The constant entries
in matrices M, C;, K¢ and K3 are defined in terms of the design parameters in
Appendix A. Briefly, M is a symmetric mass matrix which gives the kinetic energy
of the bicycle system at zero forward speed by ¢?M¢/2. The damping-like (there
is no real damping) matrix C = vCj is linear in the forward speed v and captures
gyroscopic torques due to steer and lean rate, centrifugal reaction from the rear
frame yaw rate (due to trail), and from a reaction to yaw acceleration proportional
to steer rate. The stiffness matrix K is the sum of two parts: a velocity-independent
symmetric part gKg proportional to the gravitational acceleration, which can be
used to calculate changes in potential energy with q [¢Ko]q/2, and a part v2Kaz
which is quadratic in the forward speed and is due to gyroscopic and centrifugal
effects.

Equation (5.3) above is the core of this paper. In Appendix A the coefficients
are expressed analytically in terms of the 25 design parameters.

where the time-varying variables are q = [ ? ] and f = [

6. Benchmark model and solutions

The same form of governing equations can be found by various means even with,
perhaps, the constant coefficients being derived numerically. Further, using more
direct numerical methods, motion of a bicycle model can be found without ever
explicitly writing the governing equations. To facilitate comparisons to results, es-
pecially from these less explicit approaches, we have defined a benchmark bicycle
with values given to all parameters in table 1. The parameter values were chosen
to minimize the possibility of fortuitous cancellation that could occur if used in
an incorrect model. On the other hand we wanted numbers that could be easily
described precisely. In the benchmark bicycle the two wheels are different in all
properties and no two angles, masses or distances match.

(a) Coefficients of the linearized equations of motion

Substitution of the values of the design parameters for the benchmark bicycle
from table 1 in the expressions from Appendix A results in the following values for
the entries in the matrices in the equations of motion 5.3:

M- [ 8081722 2.319413 322 087 09 61)

= | 231941332208709 0.297 84188199686 |’ '
K. _ [ 8095 —2.599 516 852 498 72 62)
0 T | _259951685249872 —0.803294 88458618 | '

0 76.597 345 895 732 22

K2 = 10 o265431523704604 |0 *09 (6:3)
o _ [0 33.866 413 914 924 94 64)
17 | —0.85035641456978  1.685403 97397560 | '
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Figure 3. Eigenvalues A\ from the linearized stability analysis for the benchmark bicycle
from figure 1 and table 1 where the solid lines correspond to the real part of the eigenvalues
and the dashed line corresponds to the imaginary part of the eigenvalues, in the forward
speed range of 0 < v < 10 m/s. The speed range for the asymptotic stability of the
benchmark bicycle is vw < v < vc. The zero crossings of the real part of the eigenvalues
are for the weave motion at the weave speed vy ~ 4.292m/s and for the capsize motion
at capsize speed ve &~ 6.024m/s, and there is a double real root at vq ~ 0.684m/s. For
accurate eigenvalues and transition speeds see tables b, b, and 2.

The coefficients are given with 14 decimal places (trailing zeros suppressed) above
and elsewhere in this paper as a benchmark. Many-digit agreement between results
obtained by other means and this benchmark provides near certainty that there is
also an underlying mathematical agreement, even if that agreement is not apparent
analytically.

(b) Linearized stability, eigenvalues for comparison

Stability eigenvalues are independent of coordinate choice and even indepen-
dent of the form of the equations. Any non-singular change of variables yields
equations with the same linearized stability eigenvalues. Thus stability eigenvalues
serve well as convenient benchmark results permitting comparison between different
approaches.

The stability eigenvalues are calculated by assuming an exponential solution of
the form q = qg exp(At) for the homogeneous equations (f = 0 in equations 5.3).
This leads to the characteristic polynomial,

det (MA* + vC1 A + gKo +v?Kz) =0, (6.5)

which is quartic in \. After substitution of the expressions from Appendix A, the
coefficients in this quartic polynomial become complicated expressions of the 25
design parameters, gravity and speed v. The solutions A of the characteristic poly-
nomial for a range of forward speeds are shown in figure 3. Eigenvalues with a
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positive real part correspond to unstable motions whereas eigenvalues with a neg-
ative real part correspond to asymptotically stable motions for the corresponding
mode. Imaginary eigenvalues correspond to oscillatory motions. As mentioned ear-
lier, the time-reversal nature of these conservative dynamical equations leads to
symmetry in the characteristic equation (6.5) and in the parameterized solutions:
if (v, A) is a solution then (—wv,—M\) is also a solution. This means that figure 3 is
point symmetric about the origin as revealed in figure (9) of Astrém et al. (2005).

This fourth order system has four distinct eigenmodes except at special pa-
rameter values leading to multiple roots. A complex (oscillatory) eigenvalue pair
is associated with a pair of complex eigenmodes. At high enough speeds, the two
modes most significant for stability are traditionally called the capsize mode and
weave mode. The capsize mode corresponds to a real eigenvalue with eigenvector
dominated by lean: when unstable, a capsizing bicycle leans progressively into a
tightening spiral with steer proportional to lean as it falls over. The weave mode is
an oscillatory motion in which the bicycle steers sinuously about the headed direc-
tion with a slight phase lag relative to leaning. The third eigenvalue is large, real
and negative. It corresponds to the castering mode which is dominated by steer in
which the front ground contact follows a tractrix-like pursuit trajectory, like the
straightening of a swivel wheel under the front of a grocery cart.

At very low speeds, typically 0 < v < 0.5 m/s, there are two pairs of real eigen-
values. Each pair consists of a positive and a negative eigenvalue and corresponds
to an inverted-pendulum-like motion of the bicycle. The positive root in each pair
corresponds to falling, whereas the negative root corresponds to the time reversal
of this falling. For the smaller pair lean and steer have the same sign during the
fall, whereas for the larger pair lean and steer have opposite signs. When speed
is increased to vq ~ 0.684m/s two real eigenvalues become identical and form a
complex conjugate pair; this is where the oscillatory weave motion emerges. At first
this motion is unstable but at vy, & 4.292 m/s, the weave speed, these eigenvalues
cross the imaginary axis in a Hopf bifurcation and this mode becomes stable. At
a higher speed the capsize eigenvalue crosses the origin in a pitchfork bifurcation
at v. ~ 6.024 m/s, the capsize speed, and the bicycle becomes mildly unstable.
The speed range for which the uncontrolled bicycle shows asymptotically stable be-
haviour, with all eigenvalues having negative real part, is vy, < v < v.. For rigorous
comparison by future researchers, all four eigenvalues are presented with 14 decimal
places at equidistant forward speeds in table b and table 2.

7. Validation of the linearized equations of motion

The linearized equations of motion here, equation (5.3) with the coefficients as
presented in Appendix A, have been derived by pencil and paper in two ways
(Papadopoulos 1987, Meijaard 2004), and agree exactly with some of the past lit-
erature, see §2, in particular: Dohring (1955), Weir (1972), Dikarev et al. (1981)
and Hand (1988) who mader also made further comparisons. We have also checked
equation coeflicients via the linearization capability of two general non-linear dy-
namics simulation programs described below. Comparisons with the work here using
non-linear simulations have also been performed by Lennartsson (2006 — personal
communication) and Chatterjee, Basu-Mandal and Papadopoulos (2006).
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v [m/s] A [1/s]
v=0 As1 = £3.131 643 247 906 56
v=0 As2 = £5.530 943 717 653 93

(@) |, = 0.684 283 078 892 46
vy = 4.292 382 536 341 11

Ad = 3.782 904 051 293 20
Aw = 01 3.435 033 848 661 44 %

ve = 6.024 262 015 388 37 0
v Re(Aweave ) Im(Aweave )
[m/s] [1/s] [1/s]
0 _ _
1 3.526 961 709 900 70 0.807 740 275 199 30
2 2.682 345 175 127 45 1.680 662 965 906 75
3 1.706 756 056 639 75 2.315 824 473 843 25
(b) 4 0.413 253 315 211 25 3.079 108 186 032 06
5 —0.775 341 882 195 85 4.464 867 713 788 23
6 —1.526 444 865 841 42 5.876 730 605 987 09
7 —2.138 756 442 583 62 7.195 259 133 298 05
8 —2.693 486 835 810 97 8.460 379 713 969 31
9 —3.216 754 022 524 85 9.693 773 515 317 91
10 —3.720 168 404 372 87 | 10.906 811 394 762 87
v )\capsize )\castering
[m/s] [1/s] [1/s]
0 —3.131 643 247 906 56 —5.530943 717 653 93
1 —3.134 231 250 665 78 —7.110 080 146 374 42
2 —3.071 586 456 415 14 —8.673 879 848 317 35
3 —2.633 661 372 536 67 | —10.351 014 672 459 20
(c) 4 —1.429 444 273613 26 | —12.158 614 265 764 47
5 —0.322 866 429 004 09 | —14.078 389 692 798 22
6 —0.004 066 900 769 70 | —16.085 371 230 980 26
7 0.102 681 705 747 66 | —18.157 884 661 252 62
8 0.143 278 797 657 13 | —20.279 408 943 945 69
9 0.157 901 840 309 17 | —22.437 885 590 408 58
10 0.161 053 386 531 72 | —24.624 596 350 174 04

Table 2. (a) Some characteristic values for the forward speed v and the
from the linearized stability analysis for the benchmark bicycle from figure

etgenvalues A
1 and table 1.

Fourteen digit results are presented for benchmark comparisons. (a) weave speed vy, capsize
speed ve and the speed with a double root vq. (b) Complex (weave motion) eigenvalues Aweave
in the forward speed range of 0 < v <10 m/s. (¢) Real eigenvalues A .

(a) Equations of motion derived with the numeric program SPACAR

SPACAR, a program system for dynamic simulation of multibody systems. The
first version by Van der Werff (1977) was based on finite-element principles laid out
by Besseling (1964). SPACAR has been further developed since then (Jonker (1988,
1990), Meijaard (1991), Schwab (2002) and Schwab & Meijaard (2003)). SPACAR
handles systems of rigid and flexible bodies connected by various joints in both open
and closed kinematic loops, and where parts may have rolling contact. SPACAR
generates numerically, and solves, full non-linear dynamics equations using minimal
coordinates (constraints are eliminated). The simulations here use the rigid body,
point mass, hinge and rolling-wheel contact features of the program (Schwab &
Meijaard 1999, 2003). SPACAR can also find the numeric coefficients for the lin-
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earized equations of motion based on a systematic linearization of the non-linear
equations.

As determined by SPACAR, the entries in the matrices of the linearized equa-
tions of motion (5.3) agree to 14 digits with the values presented in §6a. See sup-
plementary Appendix 2 for more about our use of SPACAR.

(b) Equations of motion derived with the symbolic program AutoSim

We also derived the non-linear governing equations using the multibody dy-
namics program AutoSim (Sayers 1991a, 1991b). AutoSim is a Lisp (Steele 1990)
program mostly based on Kane’s (1968) approach. It consists of function defini-
tions and data structures allowing the generation of symbolic equations of motion
of rigid-body systems. AutoSim works best for systems of objects connected with
prismatic and revolute joints arranged with the topology of a tree (no loops).

AutoSim generates equations in the form

q=S(q,t)u,  u=[M(qt)] ' Q(qut). (7.1)

Here, q are the generalized coordinates, u are the generalized velocities, S is the
kinematic matrix that relates the rates of the generalized coordinates to the gen-
eralized speeds, M is the system mass matrix, and Q contains all force terms and
velocity dependent inertia terms.

Additional constraints are added for closed kinematic loops, special joints and
non-holonomic constraints. For example, the closed loop holonomic constraint for
both bicycle wheels touching the ground cannot be solved simply in symbolic form
for the dependent coordinates (requires the solution of a quartic polynomial). An
iterative numerical solution for this constraint was used, destroying the purely sym-
bolic nature of the equations.

Strictly speaking, standard AutoSim linearization is not applicable for our sys-
tem due to the kinematic closed loop of the wheel ground contact. Fortunately,
with the laterally symmetric bicycle the dependent coordinate (the pitch angle)
remains zero to first order, for which special case the linearization works. The final
AutoSim-based linearization output consists of a MatLab script file that numeri-
cally calculates the matrices of the linearized equations.

The entries in the matrices of the linearized equations of motion (5.3) as deter-
mined by the program AutoSim agree to 14 digits with the values presented in §6 a.
More details about the AutoSim verification are in supplementary Appendix 3.

8. Energy conservation and asymptotic stability

When an uncontrolled bicycle is within its stable speed range, roll and steer per-
turbations die away in a seemingly damped fashion. However, the system conserves
energy. As the forward speed is affected only to second order, linearized equations
do not capture this energy conservation. Therefore a non-linear dynamic analysis
with SPACAR was performed on the benchmark bicycle model to demonstrate the
leakage of the energy from lateral perturbations into forward speed. The initial
conditions at t = 0 are the upright reference position (¢,d,60r) = (0,0,0) at a for-
ward speed of v = 4.6 m/s, which is within the stable speed range of the linearized
analysis, and an initial angular roll velocity of ¢ =0.5rad /s. In the full non-linear
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equations the final upright forward speed is augmented from the initial speed by
an amount determined by the energy in the lateral perturbation. In this case the
speedup was about 0.022m/s.

¢ [rad/s] 4.70

& [rad/s] /\v v Im/s]
0.5 s 4.65

0P\ 4 Y B == 4.60

t [sec]

Figure 4. Non-linear dynamic response of the benchmark bicycle from figure 1 and
table 1, with the angular roll velocity gf), the angular steering velocity 5, and the
forward speed v = —0rrr for the initial conditions: (¢,0,0r)0 = (0,0,0) and
(¢,6,v)0 = (0.5 rad/s,0,4.6 m/s) for a time period of 5 seconds.

Figure 4 shows a small increase in the forward speed v while the lateral motions
die out, as expected. The same figure also shows that the period for the roll and steer
oscillations is approximately To = 1.60 s, which compares well with the 1.622 s from
the linearized stability analysis. The lack of agreement in the second decimal place
is from finite-amplitude effects, not numerical accuracy issues. When the initial
lateral velocity is decreased by a factor of 10 the period of motion matches the
linear prediction to 4 digits. The steering motion 4 has a small phase lag relative
to the roll motion ¢ visible in the solution in figure 4.

9. Conclusions, discussion and future work

This paper firms up Carvallo’s 1897 discovery that self-stability is explicable with
a sufficiently complex rigid body dynamics model. This only narrowly answers the
question “How does an uncontrolled bicycle stay up?”’ by the assertion that it
follows from the mathematics. This paper does not at all address the question of
how a controlled bicycle stays up.

Rather, this paper presents reliable equations for a well-delineated model for
studying controlled and uncontrolled stability of a bicycle more deeply.

The equations of motion, equation 5.3 with Appendix A are buttressed by a
variety of historical and modern-simulation comparisons and, we feel, can be used
with confidence. They can also be used as a check for others who derive their
own equations by comparison with: a) the analytic form of the coefficients in equa-
tion (5.3), or b) the numerical value of the coefficients in equation (5.3) using either
the general benchmark bicycle parameters of table 1, or the simpler set in the Sup-
plementary Appendices, or ¢) the tabulated stability eigenvalues, or d) the speed
range of self-stability for the benchmark parameters.

In a future paper we will use the equations here to address how bicycle self-
stability does and does not depend on the bicycle design parameters. For example,
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we will dispel some bicycle mythology about the need for mechanical trail or gyro-
scopic wheels for bicycle self-stability.
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Appendices

These main appendices include A) definitions of the coefficients used in the equa-
tions of motion, and B) a brief derivation of the governing equations. Additional
supplementary appendices not included with the main paper include 1) a detailed
review of the history of bicycle dynamics studies, 2) a detailed description of the
SPACAR validation, 3) a detailed description of the AutoSim validation, 4) Detailed
explanation of the decoupling of lateral from forward motion, and 5) a reduced
benchmark for use by those with simpler models.

Appendix A. Coefficients of the linearized equations

Here we define the coefficients in equation (5.3). These coefficients and various
intermediate variables are expressed in terms of the 25 design parameters (as well
as v and ¢g) in table 1 and figure 1. Some intermediate terms defined here are also
used in the derivation of the equations of motion in Appendix B.

We use the subscript R for the rear wheel, B for the rear frame incorporating
the rider Body, H for the front frame including the Handlebar, F for the front wheel,
T for the Total system, and A for the front Assembly which is the front frame plus
the front wheel.

The total mass and the corresponding centre of mass location (with respect to
the rear contact point P) are

mr = MR+ ms+ mg+ mr, (A1)
xr = (zpmp+ zampg + wmyp)/mr, (A2)
2r = (—rRmR + 2BMB + 2Hmy — TFmF)/mT- (A 3)

For the system as a whole, the relevant mass moments and products of inertia with
respect to the rear contact point P along the global axes are

ITxx = IRzz + IBzz + Isz + IFxx + mRT%{ + mBZ% + mHZI%I + mFTl%v (A 4)

Ite: = IBe»+ Iz — MBTBZB — MHTHZH + MPWTE. (Ab)

The dependent moments of inertia for the axisymmetric rear wheel and front wheel
are
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IRzz = IR;E;Eu IFzz = Ime (A 6)
Then the moment of inertia for the whole bike along the z-axis is
ITzz = IRzz + IBzz + Isz + IFzz + me2B + meI%I + me2' (A 7)

The same properties are similarly defined for the front assembly A (the front frame
combined with the front wheel):

ma = My -+ mr, (A8)

xp = (xamp + wmp)/ma, za = (zamu — remy)/ma. (A9)

The relevant mass moments and products of inertia for the front assembly with
respect to the centre of mass of the front assembly along the global axes are

IA;E;E — IH;E;E + IF;E;E + mH(ZH - ZA)2 + mF(’f'F + ZA)27 (A 10)
Ing: = Ige. — mu(zg —za)(za — 2a) + mep(w —za)(re + 24), (A11)
IAzz — Isz + IFzz + mH((EH - (EA)2 + mF(w - :I:A)Q' (A 12)

Let A = (sin \,0,cos \)T be a unit vector pointing down along the steer axis where
A is the angle in the zz-plane between the downward steering axis and the +z
direction. The centre of mass of the front assembly is ahead of the steering axis by
perpendicular distance

up = (A —w —c)cos A — zasinA. (A13)

For the front assembly three special inertia quantities are needed: the moment of
inertia about the steer axis and the products of inertia relative to crossed, skew axes,
taken about the points where they intersect. The latter give the torque about one
axis due to angular acceleration about the other. For example, the Az component is
taken about the point where the steer axis intersects the ground plane. It includes
a part from I4 operating on unit vectors along the steer axis and along x, and also
a parallel axis term based on the distance of m4 from each of those axes.

Inan = maui + Tagesin? A+ 21, sin Acos A + Ia,. cos? \, (A 14)
Indg = —mauaza + IageSin A+ oz, cos A\, (A15)
Iny: = maupaxa + Iaz.sin A+ Ia,, cos . (A16)

The ratio of the mechanical trail (i.e., the perpendicular distance that the front
wheel contact point is behind the steering axis) to the wheel base is

g = (c/w)cosA. (A17)

The rear and front wheel angular momenta along the y-axis, divided by the forward
speed, together with their sum form the gyrostatic coefficients:

SR = IRyy/’I”R, SF = IFyy/TF, St = Sr + Sk. (A 18)

We define a frequently appearing static moment term as

SA = maup + pmrxr. (A19)
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The entries in the linearized equations of motion can now be formed. The mass
moments of inertia

Mgy = Itex  Mps = Iaxe + plraz,

Msy = Mgs . Mss = Iaxx + 2udar: + pi* Iz, (A 20)
are elements of the symmetric mass matrix M = Mgy Mys . (A21)
Msy  Mss
The gravity-dependent stiffness terms (to be multiplied by g) are
Kopy = mrzr , Kogs = —Sa,
Kosy = Kogs , Koss = —SasinA, (A22)
which form the stiffness matrix Ko = [ Kogs  Kogs } . (A 23)
Kosg  Koss
The velocity-dependent stiffness terms (to be multiplied by v?) are
Kopp =0 , Kags = ((ST — mrzr)/w) cos A,
Kose =0 , Kass = ((Sa + SpsinA)/w) cos A, (A24)
which form the stiffness matrix Ko = [ K200 Kaos } . (A 25)
Kosy  Koss

In the equations we use K = gKo + v2?K,. Finally the “damping” terms are

Cl¢¢ =0, Cl¢5 = ,uST + Sk cos A+ (ITIZ/’LU) COS\ — umrzr, (A 26)
Cisp = —(uSt + SrpcosA), Ciss = (Iax./w)cos A + pu(Sa + (I1../w) cos A),

which form Cq = { gldub glw ] where we use C=vC;. (A27)
156 Clss

Appendix B. Derivation of the linearized equations of
motion

The following brief derivation of the linearized equations of motion is based on
Papadopoulos (1987). All derivations to date, including this one, involve ad hoc
linearization as opposed to linearization of full nonlinear equations. No-one has lin-
earized the full implicit non-linear equations (implicit because there is no reason-
ably simple closed form expression for the closed kinematic chain) into an explicit
analytical form either by hand or computer algebra.

For a bicycle freely rolling forward on a plane, slightly perturbed from upright
straight ahead motion, we wish to find the linear equations of motion governing the
two lateral degrees of freedom: rightward lean ¢ of the rear frame, and rightward
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steer § of the handlebars. The linearized equation of motion for forward motion is
simple 2D mechanics and has already been given in equation (5.2).

We take the bicycle to be near to and approximately parallel to the global
z-axis. The bicycle’s position and configuration, with respect to lateral linearized
dynamics, are defined by the variables yp, 1, ¢ and §. In this derivation we assume
not only ¢ and 0 but also yp/v & 1 small, such that only first order consequences
of the configuration variables need be kept.

Forces of importance to lateral linearized dynamics include: gravity at each
body’s mass centre, positive in z; vertical ground reaction force at the front wheel:
—mrgzr/w; horizontal ground reaction force Fr, at the front wheel, approximately
in the y direction; a roll moment Tg4 applied to the rear frame and tending to roll
the bicycle to the right about the line connecting the wheel contacts; a steer torque
pair Tys, applied positively to the handlebars so as to urge them rightward, and
also applied negatively to the rear frame.

Initially we replace the non-holonomic rolling constraints with to-be-determined
horizontal forces at the front and rear contacts that are perpendicular to the wheel
headings. We apply angular momentum balance to various subsystems about some
axis u. On the left side of each equation is the rate of change of angular momentum
about the given axis:

Z [r; x a;m; + Liw; + w; x (Liw;)]-u
i€{bodies}

where the positions of the bodies’ centres of mass r; are relative to a point on the
axis and the bodies’ angular velocities and accelerations w;, w; and a; are expressed
in terms of first and second derivatives of lateral displacement, yaw, lean and steer.
The right side of each equation is the torque of the external forces (gravity, loads
and ground reactions) about the given axis.

Roll angular momentum balance for the whole bicycle about a fixed axis in the
ground plane that is instantaneously aligned with the line where the frame plane
intersects the ground (this axis does not generally go through the front ground
contact point) gives:

— mriyprT + ITm95 + Iszd; + IAMS + 1/}vST + SUSF CcoS A
= TB¢ — ng2T¢ + gSA5. (B 1)

In addition to the applied T, the right-hand side has a lean moment from gravita-
tional forces due to lateral lean-induced sideways displacement of the bicycle parts,
and a term due to lateral displacement of front-contact vertical ground reaction
relative to the axis.

Next, yaw angular momentum balance for the whole bicycle about a fixed ver-
tical axis that instantaneously passes through the rear wheel contact gives

mriprT + ITmzé + ITzz'lL =+ IA)\Zg — éUST — (5’USF sin A = ’U}pr (B 2)

The only external yaw torque is from the yet-to-be-eliminated lateral ground force
at the front contact.
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Lastly, steer angular momentum balance for the front assembly about a fixed
axis that is instantaneously aligned with the steering axis gives

madipua + Iaxed + Iarst + Iaand + vSe(—¢cos A + sin \)
= Tus — cFpycos A+ g(¢ + dsinA)Sa. (B3)

In addition to the applied steering torque Ty there are torques from both vertical
(gravity reactions) and lateral (yet to be determined from constraints) forces at the
front contact, and from downwards gravity forces on the front assembly.

The final steps are to combine equations (B 2) and (B 3) in order to eliminate the
unknown front-wheel lateral reaction force Fg,, leaving two equations; and then to
use the rolling constraints to eliminate 1 and yp and their time derivatives, leaving
just two unknown variables.

Each rolling-contact lateral constraint is expressed as a rate of change of lateral
position due to velocity and heading (yaw). For the rear,

yp = vih. (B4)

Equivalently for the front, where yq = yp + wi) — cdcos A, and the front frame
heading is the rear frame yaw augmented by the steer angle:

d(yp + wtp — ed cos N)/dt = v(¢) + d cos \). (B5)

We subtract (B4) from (B5) to get an expression for ¢ in terms of § and § and
then differentiate

= ((Wd+cd)/w)cosA = = ((v6+ ¢b)/w)cos\. (B6)
Finally we differentiate (B4) and use (B6) to get an expression for jjp,
iip = ((v%6 4+ ved) Jw) cos . (B7)

Substituting (B6), (??), (B7) into (B1), we get an expression in ¢, ¢ and 0,
§ and 5, with a right-hand side equal to Tsg. This is called the lean equation.
Eliminating Fr, from (B2) and (B 3), then again substituting (B 6), (??), (B7), we
will have another expression in ¢ and § and their derivatives, where the right-hand
side is Tys (the steer torque). This is called the steer equation. These two equations
are presented in matrix form in (5.3).

Note that from general dynamics principles we know that the forcing terms can
be defined by virtual power. Thus we may assume that the torques used in this
angular momentum equations may be replaced with those defined by the virtual
power equation (5.1). Therefor, where this derivation uses the torques Tgy and Ths
the generalized forces Ty, and T actually apply.

Since 1 and yp do not appear in the final equation, there is no need for the
bicycle to be aligned with the global coordinate system used in figure 2. Thus z,y
and 1 can be arbitrarily large and the bicycle can be at any position on the plane
at any heading. This situation is somewhat analogous to, say, the classical elastica
where the lateral displacements and angles used in the strain calculation are small
yet the lateral displacements and angles of the elastica overall can be arbitrarily
large.
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For simulation and visualization purpose we can calculate the ignorable coor-
dinates xp, yp and v by integration. The first order differential equations for the
yaw angle ¢ is (B6). Then the rear contact point is described by

Tp = vcos, yp = vsiny. (BY)

Note the difference in ¢p from the small angle approximation used in equation B 4
for the equations-of-motion derivation.

Intermediate results may be used to calculate constraint forces for, e.g., tire
modelling. For example equation (B2) determines the horizontal lateral force at
the front contact. And lateral linear momentum balance can be added to find the
horizontal lateral force at the rear wheel contact.
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Supplementary Appendices

associated but not printed with the paper

Linearized dynamics equations for the balance and steer of

J. P. Meijaard, J. M. Papadopoulos, A. Ruina and A. L. Schwab

a bicycle: a benchmark and review
by

Introduction

Appendices in the main body of the paper (not included below) are

A) Definitions of the coefficients used in the equations of motion, and

B) A brief derivation of the governing equations.

These supplementary appendices (below) include:

1.
2.

A detailed history of bicycle dynamics studies with an expanded bibliography

An explanation of the verification of the linearized equations with the aid of
the numerical dynamics package SPACAR.

An explanation of the verification of the linearized equations using the sym-
bolic algebra package AutoSim.

An detailed explanation of how lateral symmetry implies that for unforced
forward motion v = 0 is one of the linearized equations of motion.

A reduced benchmark for use by those who have a less general bicycle simu-
lation and want to use the results here for validation.
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1. History of bicycle steer and dynamics studies.

“Fven now, after we’ve been building them for 100 years, it’s very dif-
ficult to understand just why a bicycle works - it’s even difficult to for-
mulate it as a mathematical problem.” — Freeman Dyson interviewed
by Stewart Brand in Wired News, February 1998.

This appendix builds on Hand (1988) and is the source of the brief literature
review in the main body of the paper. We divide the literature on bicycle dynamics
in three categories:

a) Qualitative explanations of stability and self-stability that do not use the
differential equations of motion.

b) Dynamical analyses that use any number of simplifications that preclude
study of hands-free self-stability.

¢) Equations of motion describing a model with enough complexity to predict
hands-free self-stability.

The historical discussion below is in chronological order within each of the three
categories above.

(a) Qualitative discussions of stability

Basic features of balance by means of controlled steering are accessible without
detailed equations, and are reasonably described in many papers.

In contrast, the self-stability of a bicycle involves complex dynamic phenomena
that seem to us to be beyond precise description without appeal to correct governing
equations. Thus the qualitative discussions of self-stability below are necessarily less
definitive.

1866 Lallement’s velocipede-improvement U.S. Patent, which is on the addition of
front-wheel pedals (as opposed to pushing the feet on the ground), includes
a concise explanation of balancing by steering: “If the carriage is inclined to
lean to the right, turn the wheel [to the right], which throws the carriage
over to the left...”. Within five years, the U. S. patent literature begins to
show pictures of bicycles further improved with trail and an inclined steering
axis. Whether or not these improvements conveyed genuine self-stability is
not known.

1869 W. J. Macquorn Rankine, engineer and thermodynamics theorist, presents
semi-quantitative observations on lean and steer of a velocipede. This seems
to be the first description of ‘countersteering” — briefly turning to the left to
generate the rightward lean necessary for a steady rightward turn. Rankine
discusses steer only by means of rider control and seems to have been unaware
of the possibility of self-stability.

1896 Archibald Sharp, an engineering lecturer at what was to become Imperial
College, publishes his book covering nearly all technical aspects of bicycle
theory and practice, including sections on stability for which he earned an

Article in preparation for PRS series A



Bicycle dynamics benchmark 31

honorable mention in the 1898 PRIX FOURNEYRON (see Bourlet below).
Sharp also later authored the classic 1910 11th edition Britannica entry on
bicycles. In calculating the handlebar torque required to maintain a steady
turn, Sharp’s equation 6 is wrong, first by the typographical error of a sign
change in the second parentheses, and second by neglecting the centrifugal
force on the mass centre of the front assembly. Sharp also neglects precessional
torque on the front wheel. However, he explicitly recognizes the mechanical
trail and implicitly recognizes the quantity we call Sa.

Sharp developed his equation to investigate no-hands riding. Sharp concludes,
correctly in part (see Jones 1970 below), that the no-hands rider probably
exercises control of steering through upper-body lean causing frame lean,
leading to gyroscopic precession of the front wheel. A rider can thus control
this precession and make corrective turns much like he or she would with
direct handle-bar torques.

Sharp seemed unaware of the possibility of bicycle self-stability.

1896 Appell, in his dynamics textbook, summarizes Bourlet’s analysis (see cate-
gory b below) of balancing and steering a velocipede. Surprisingly, this master
of the differential equations governing dynamics includes none in his discus-
sion of bicycles.

The later 1890’s are a period when numerous mathematical analyses are initi-
ated. Appell mentions a few both in later editions of his textbook (1899 through
1952), and in a monograph (1899) on the nonholonomic mechanics of rolling bodies.

1920 Grammel provides some discussion of gyroscopic moments in bicycling, but
provides no equations of motion.

1929 Wallace’s long technical paper on motorcycle design contains thoughtful qual-
itative discussions on the likely handling characteristics of various motorcycle
designs (pp. 177-184). He examines steer torque, including the contribution
of toroidal tires and gyroscopic torques. Wallace’s analysis of non-linear ge-
ometric effects (pp. 185-212) erroneously assumes no pitch of the rear frame
due to steering.

1946 Maunsell quantitatively estimates the relative sizes of many of the potential
effects that can cause an uncontrolled bicycle to turn into a fall. Although
the paper does not use complex modeling, it clearly lays out and partially
answers many questions about bicycle stability. Maunsell is candid about the
difficulty of using full dynamics equations “I have not yet had time to follow
out in full the long and involved calculations of [Carvallo’s| paper... I hope to
do so in the future.” (Carvallo is discussed in section (c) below).

1970 David E. H. Jones’ Physics Today article (re-printed in 2006) is perhaps the
single best-known paper on bicycle stability. With simple experiments Jones
showed that, for the bicycles he tried, both front-wheel spin momentum and
positive mechanical trail were needed for self-stability. Jones also observed
that a rider can easily balance almost any bicycle that was not self-stable
by turning the handlebars appropriately. But when riding no-hands, Jones
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had difficulty stabilizing a bicycle whose front-wheel gyroscopic terms were
cancelled by an added, counter-spinning wheel. And he was unable to master
no-hands balance of a bicycle with negative trail. Jones’ experimental obser-
vations indicate useful trends, but, as we will discuss in a future paper, do
not represent precise boundaries on what is or can be stable or controlled.

On the theoretical side Jones wanted to counter the widely-quoted simple
gyroscopic explanations of no-hands bicycle control presented for example in
Sharp (1896) above and un-controlled no-hands bicycle stability (presented
for example in Sommerfeld and Klein (1910)). His experiments with a variety
of bicycles pointed to mechanical trail as another important factor in bicycle
stability.

Jones did no dynamical modelling, and focused only on trail’s effect on steer
torque as a function of lean. His thought was that the “static” torque would
define the steering tendency for a leaned bicycle, and thereby explain self-
stability. In effect Jones explored only the gravitational-potential part of one
entry in the stiffness matrix, while ignoring the velocity-dependent centrifugal
and gyroscopic terms. A variety of subsequent investigators have built on
Jones’ potential-energy treatment.

1942-98 Various other qualitative discussions, none making use of already pub-
lished governing dynamics equations, were authored by Arthur Jones (1942),
Den Hartog (1948), Higbie (1974), Kirshner (1980), Le Hénaff (1987), and
Cox (1998). Most of these papers, somewhat like David Jones (1970), de-
scribe one or another term in the dynamics equations (e.g., centripetal forces
or gyroscopic terms) but overstate, we think, their singular role in bicycle
stability.

1984 Foale’s book comprehensively explores factors affecting motorcycle handling.

1988 Olsen & Papadopoulos’ qualitative article discusses aspects of dynamic mod-
elling based on the uncontrolled bicycle equations in Papadopoulos (1987).
Supplementary material for that article is available on the internet.

1993 Patterson developed a series of dynamically based design rules for improving
rider control authority.

1999 Cossalter presented an entire book with qualitative explanations of his decades
of quantitative modeling work on motorcycle handling.

2004 Wilson’s Bicycling Science includes a chapter by Papadopoulos which quali-
tatively discusses bicycle stability.

(b) Simplified analyses that use dynamics

Simplified dynamic models have appeared from the mid 1890s to the present
day. These papers use one or more of the following 3 types of specializations:

i) Simplified geometry and/or mass distribution. In these models some col-
lection of the following assumptions are made:
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e inertia axes of rear frame are vertical /horizontal

e inertia axes of front frame are vertical/horizontal or aligned with steer
axis

e 1o spin angular momentum of wheels

e point masses for the frames and/or wheels
e massless wheels

e massless front assembly

e vertical steer axis

e zero trail

e vanishing wheel radii

Such simplified models are most often incapable of self-stability, as we will
discuss in a future paper.

ii) No steer dynamics because steer angle is fully controlled by the rider.
In these models balance is effected entirely as a result of rider-controlled
steering angle, and the steer angle § has no uncontrolled dynamics. For these
models there is no need to derive the relatively less intuitive equation for
steer dynamics. Appropriately controlled steer angle is indeed the only way to
stabilize many simplified bikes. Because velocipedes (primitive bicycles with
vertical steer axis, no trail, and front-assembly essentially on the steer axis)
were not self-stable, it is natural that all of the early mathematical analyses
incorporated a controlled-steering assumption.

Note that controlled-steer-angle treatments cannot illuminate a bicycle’s self
stability because, in the small-angle regime, a bicycle with locked steering has
no self stability.

Many modern studies of controlled stability also reasonably use mechanically
simplified models like described in (i) above.

iii) Mathematically simplified models. To make the mathematics more tractable,
or to illuminate controlling factors, some authors eliminate terms from the
equations. A possible consequence of such mathematical, as opposed to me-
chanical, simplifications is that the resulting equations may not describe any
particular physical model, so that theorems or intuitions based on mechanics
may not apply.

A common geometric issue. Many of these simplified-dynamics analyses in-
clude some non-linear terms (e.g., sin¢ instead of ¢). However, all purportedly
nonlinear simplified-bike treatments of which we are aware, starting with Bourlet
(1894), do not actually write non-linear equations that correctly describe any me-
chanically simplified model of a bicycle. That is, the equations are not a special
or limiting case of the equations of Whipple and his followers. In these treatments
wheel base, trail, frame pitch, path curvature and other such quantities are treated
as being independent of the lean angle, even for non-zero steer angle. That these
quantities actually all vary with lean angle for an ideal bicycle is demonstrated
by considering a small leftward steer angle. As the lean angle goes to -90 degrees,
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with the bicycle almost lying on its left side, the front contact point moves forward
around the front wheel approximately by 90 degrees, while the rear contact point
moves backward around the rear wheel the same amount. This alters the wheel base
length, the angle between ground traces of the two wheels, and the trail. Depending
on the frame geometry, this lean also places the front contact well outside the rear
frame’s symmetry plane, and introduces substantial pitch of the rear frame about
the rear axle, relative to the ground trace of the rear wheel. Even the simplest
bicycle (with vertical steering axis, zero trail, and vanishing front-wheel radius) is
subject to at least an alteration of the front-wheel track direction, due to the lean
of a steered wheel. In particular for such a bicycle, the angle ¥ that the front wheel
track makes with the line connecting rear and front wheel contacts should obey
cos ¢ tan ) = tand rather than the commonly used ¥ = § for (where J is steer and
¢ is lean).

In some cases the authors may be making conscious approximations that are
valid for modest lean angles, in some cases they are making mathematical models
that are not intended to literally describe any simplification of a bicycle, and in
some cases these seem to be errors. The resulting governing equations are sometimes
correct descriptions of an inverted pendulum mounted on a controlled tricycle. Such
a tricycle might be considered a simple model of a bicycle.

1894-1899 Mathematician Carlo Bourlet devotes several papers and both editions
of his encyclopedic bicycle treatise to the lateral balance of a steer-controlled
velocipede (vertical steer axis and no trail). All inertias have vertical principal
axes, and spin angular momentum of the wheels is included. The treatment is
largely nonlinear, but has the front-contact position issues described above.
When linearized, his final roll equation (Eqn 29 bis) lacks the gyroscopic
moment from steer rate, but seems to us to be otherwise correct.

Bourlet considers steering moves that can eliminate a lean, or follow a path.
His final and most technical paper on bicycle dynamics (1899) is awarded
the Prix Fourneyron (submitted 1897, awarded 1898). Bourlet claims to have
outlined the practical design factors leading to self-stability in another book
dedicated to the design of bicycles, but he does not address them analytically.

The PRIX FOURNEYRON prize is offered biannually by the French Académie
des Sciences. In 1897, the Fourneyron mechanics challenge was “Give the the-
ory of movement and discuss more particularly the conditions of stability of
velocipedic devices” and was later amplified to include “whether in a straight
line or a curve, on a flat plane or a slope.” Boussinesq and Léauté were on
the prize committee, and Appell was interested in the entries. Bourlet, Sharp
and Carvallo submitted entries, as did others whose names are unfamiliar to
us. Bourlet won first place, Carvallo shared second with Jacob (whose work
we have not found), and Sharp received honorable mention. Both Bourlet
and Carvallo published their entries, and Appell prominently cited these and
other papers in more than one book. Shortly after the prize was awarded,
Boussinesq published his own thorough analysis, and Léauté also published a
note. It seems that the dynamical analysis of bicycles is a French innovation.
Bourlet (1894) may have started this, then the Prix announcement produced
a singular peak of bicycle research activity.
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1899 Physicist Joseph Boussinesq wrote two papers (and four prior ‘notes’) on
velocipede balance and control. These are similar in approach and content to
prior work by Bourlet but slightly anticipating Bourlet’s later more sophisti-
cated dynamical modelling. Boussinesq neglects gyroscopic contributions ex-
pressed as F/R for each wheel, which Bourlet remarks correctly is a minor
effect for roll dynamics. Boussinesq also notes that the system’s center of mass
can usually be displaced sideways by upper-body lean relative to the frame
(This is the means by which an inverted double pendulum can be balanced
by actuation of the connecting hinge). Self-stability was not addressed.

The simplest point-mass bicycle model (vertical steer axis, no wheel mass,
zero-radius wheels, no trail, no mass in the front assembly or equivalently
mass balanced with respect to the steer axis, and controlled steer) should
probably be credited to Boussinesq.

1899 G.R.R. Routh (son of famous dynamicist E.J. Routh) considers steering
strategies for roll stability and path following of a slightly more general model
of a velocipede than was considered by Bourlet (1899) and Boussinesq (1899).

1910 Bouasse, in his dynamics textbook, reviews some geometric relations from
Bourlet (1899), and presents the model and analysis of Boussinesq (1899).

1915 Bower investigates the stability of an uncontrolled velocipede via linearized
equations that are missing terms (Hand, 1988). However, Bower’s central re-
sult, that such a bicycle has no self-stability, happens to be correct. Compara-
ble treatments without fully correct equations are also presented in Pearsall
(1922, citing Bower), Lowell & McKell (1982, citing Pearsall), and Fajans
(2000, citing Lowell & McKell). Typically, one or several terms are missing
from each equation of motion sometimes by intentional neglect of supposedly
small contributions. However, one can often find cases where the neglected
terms or approximations are significant in effect.

1934 Loicjanskii & Lur’e, in their textbook, study an uncontrolled velocipede
which is cited by Letov (1959), Nefmark & Fufaev (1967), and revisited in
Lobas (1978). We have not seen this book.

1948 Timoshenko & Young’s well-known dynamics text presents the ” Boussinesq”
(simplest) bicycle analysis of Bouasse (1910).

1955 Haag independently derives bicycle equations of motion in his book, but
simplifies by inconsistently ignoring various terms involving trail, spin mo-
mentum, front assembly mass, cross terms in the potential energy, etc. The
resulting incorrect differential equations of a simplified bicycle model lead him
to conclude (incorrectly) that bicycle self-stability is never possible.

1959 Letov gives what seem to be correct linearized roll equation for a ”Boussi-
nesq” bicycle, attributing it to Loitsianskii and Lur’e. Gyroscopic torques on
the steering due to roll rate are incorporated in the dynamics of the steer
controller, with reference to Grammel.
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1967 Neimark & Fufaev, in their classic text on non-holonomic dynamics consider
the full Whipple model (see section (c) below) which the simplify to a veloci-
pede model (vertical head, no trail, fore-aft balanced front steering. In this
model the only contribution to self-correcting steer is due to lean, the basic
mechanism for stability discussed in, e.g., Sharp. However, they also include
linear viscous friction in the steering column. Without this friction, the steer
angle is proportional to the integral of the lean angle. They mistakenly omit
the mass from the second term in equation 2.65 (English edition p. 354), leav-
ing a dimensionally incorrect quantity v to propagate through to equations
2.67 and 2.68. However, the overall form of their differential equations is cor-
rect. Even for this simple model they find self-stability if there is sufficiently
large steering friction, a result we trust despite the algebra error noted above.

1995 Getz & Marsden consider the possibility of following an arbitrary path with-
out falling over, when not only the steering but also forward speed may be
controlled. Their simplified nonlinear “Boussinesq” model incorporates no
wheel radius nor wheel inertias. Like some others before them (e.g. Bourlet
1894) this paper makes geometric assumptions that are equivalent to mod-
elling a bicycle as an inverted pendulum mounted on a tricycle (see discussion
above on a “geometric issue”).

2005 One small part of the paper by Astrom, Klein & Lennartsson treats a sim-
plified bicycle model. The paper also describes decades of experiments on
bicycle stability as well as the development of super-stable bicycles for teach-
ing disabled children to ride. This paper is discussed briefly in section (c)
below.

The simplified model in Astrém et al. is aimed at basic explanation of bicycle
control and self-stability. We comment here only on the sections relevant to
“Self-Stabilization” and not on the paper’s focus, which concerns control.

The reductions leading to the simple model come in two stages, mechanical
and then mathematical. First Astrom et al. assume that the wheels have no
spin momentum and are thus essentially skates. They also assume that the
front assembly has no mass or inertia. However both non-zero head angle and
non-zero trail are allowed and both point-mass and general-inertia rear-frame
mass distributions are considered. Astrom et al. then add further mathemat-
ical simplifications by neglecting non-zero trail contributions except in the
static (non-derivative) terms. This eliminates the steer acceleration term in
equation 14 therein (roll dynamics), and alters the steer rate term. In equation
9 (steer dynamics), where all torques arise only through trail, this eliminates
the terms involving steer rate, steer acceleration, and roll acceleration.

Their reduced 2nd order unforced (uncontrolled) steer equation implies that
steer angle is proportional to lean angle (note the contrast with the inte-
gral feedback implicit in Neimark & Fufaev above). The resulting system is
thus stabilized in the same way a skateboard is self-stable. In a skateboard
mechanical coupling in the front “truck” enforces steer when there is lean,
see Hubbard (1979) and pages 6 and 17 in Papadopoulos (1987). That bicy-
cle lean and steer coupling might approximately reduce to the much simpler
skateboard coupling is certainly an attractive idea.
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However, the governing stability equation in Astrém et al. , equation 15 ap-
pears to show the emergence of self-stability at high-enough speeds for quite
arbitrary bicycle parameters. Examination of the full fourth order equations
of motion for their simplified bicycle (without their additional mathemati-
cal simplifications) seems to show that stability is only obtained for special
parameters. For example, the point-mass version is never stable. An extended-
mass version can be stable, but only with a rather special mass distribution,
as discussed in Papadopoulos (1987), on page 6 and figure 3 therein. Even in
those cases where their mechanical model has self-stability it is not clear that
the having steer proportional to lean is an appropriate simplification. So we
have some doubt about Astrém et al. ’s reduction of even a simple class of
bicycle models to 2nd order skateboard-like equations. Limebeer and Sharp
(2006) also question Astrém et al. conclusion about the central role of trail
in stability.

2006 Limebeer and Sharp present a large colorful historical review of various issues
associated with bicycle and motorcycle handling, including anecdotes, simple
models and complex models. One small part of this paper includes an analysis
of a “Boussinesq”-like simple bicycle. The nonlinear roll equations therein
implicitly assume a zero-radius front wheel. Also, in the first roll equation (4)
the term (0 — ¢/v) was mistyped and should be (¢ — ¢)/v), which vanishes.
Roll equation (5), and its linearization used for control analysis, seem fully
correct.

(¢) Equations of motion for a general bicycle

Here we discuss literature on linear equations of motion for general bicycle mod-
els with uncontrolled steering similar to the model in this paper. Papers in which e.g.
toroidal wheels, tire-slip models, frame or rider elastic deformation, rider steering
inputs or rider-controlled torso lean were difficult to remove from the analysis are
generally not discussed. Nonlinear treatments are not discussed systematically. The
nonlinear literature is further reviewed in Basu-Mandal, Chatterjee & Papadopou-
los (2006).

1897-1900 Carvallo was already an accomplished applied mathematician and me-
chanician when he shared second prize in the Prix Fourneyron (see discussion
of Bourlet in section (b) above), for a 186-page monograph on the dynamics
of uncontrolled monocycles (single wheels surrounding a rider) and bicycles
for a paper that was probably submitted in 1897. As far as we know, this is
the first genuine analysis of bicycle self-stability.

Although Carvallo’s bicycle is slightly specialized by neglecting the mass and
moments of inertia of the front frame (in comparison to those of the front
wheel), his equations for his model are correct. Carvallo identified the four
standard eigenmodes, and presented equations for the upper (capsize) and
lower (weave) limiting velocities for hands-free stability. Carvallo mentions
the use of Grassman’s geometric calculus, and stability calculations similar
to Routh-Hurwitz. According to Carvallo, bicycle constructers of his time
recommended that the steer axis be designed to pass under the front axle,

Article in preparation for PRS series A



38 J. P. Meijaard and others

half way between axle and ground, a feature approximately maintained to the
present day.

1899 Whipple, apparently unaware of Carvallo, undertakes the second substantive
analysis of the self-stability of a bicycle. Whipple was a Cambridge University
undergraduate at the time, and was a Second Wrangler in the Tripos mathe-
matics exam. Whipple later had a long career in mathematical meteorology.
See Limebeer and Sharp (2006) for short biography. Whipple’s parameters
are fully general and his model is equivalent to the model presented here.
His paper was awarded Honorable Mention for the prestigious Smith’s Prize.
Whipple first undertook the difficult task of a fully nonlinear analysis, which
was flawed by an incorrect expression of the front-wheel ground—contact ver-
tical constraint. However, when linearized this error is irrelevant, and Whip-
ple’s linearized equations are correct, except for a few typographical errors.
Whipple’s results include scaling rules, the dynamic modes (nowadays known
as weave and capsize), rider control inputs via torso lean, etc. Whipple also
recognized that the exponential decay of lean and steer pertubations is not
inconsistent with energy conservation. He cites Bourlet.

Because of ambiguity in submission and publication times, Whipple is often
credited as the first to write equations of motion for a complex bicycle model,
but it seems to us that Carvallo was actually first.

Although Whipple had the same editor as Routh, neither cited the other.

Whipple and Carvallo laid solid foundations for future work. But despite Car-
vallo being cited in two books by Appell, and both authors being cited by Som-
merfeld & Klein (1910), and mentioned both in the 11th edition Encyclopedia Bri-
tannica (Gyroscope article), and in Grammel’s 1920 Gyroscope textbook, their
achievements languished for decades. The only path by which they seemingly in-
fluenced posterity is via Noether (writing in Sommerfeld & Klein, next in this list)
who seems heavily influenced by Carvallo. Noether’s analysis was expanded to the
full Whipple model by Dohring (1953), and in turn was expanded further by Singh
& Goel (1971), see below.

1910 Klein & Sommerfeld’s 4th volume on gyroscopes appears with an exten-
sive chapter on bicycles written by Fritz Noether (brother of mathematician
Emmy). These governing equations for a slightly simplified bicycle model (like
Carvallo’s), derived by Newton-Euler techniques used for other gyroscopic sys-
tems, are equivalent to those in Carvallo (1900) and seem fully correct to us.
While Noether claims to have compared his equations with Whipple as well
as Carvallo, he erroneously states that Whipple used a Lagrangian derivation,
and acknowledges neither Whipple’s more general model nor his typographi-
cal errors. Noether’s discussion of gyroscopic contributions and of holonomic
and nonholonomic degrees of freedom is clear and informative. Noether is
keen to point out (incorrectly we think) that gyroscopic effects are necessary
for self-stability, and that steering torques on the trailing front ground con-
tact are not sufficient for stability. In effect Noether introduces, explains and
dismisses the trail effects that were later a central interest of David Jones
(1970).
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1948 Kondo in Japan wrote reports on bicycles between 1948-1964. In discussion
of a paper by Fu, Kondo says he wrote equations of motion for the meeting of
JSME in November, 1948, unpublished (we have not seen this). Neither have
we checked Kondos later work that included tire models.

[1949] Herfkens writes a report deriving equations for the Whipple model in
Dutch for the Delft Bicycle Institute The work is clear and organized with no
conspicuous signs of flaws and every sign of competence, but we have not yet
checked it in detail. Using Routh-Hurwitz stability criteria, he looked at the
effect of some key parameters (namely trail and front-wheel inertia, and head
angle) on the range of self-stability. He knew of Carvallo and Whipple but
found them to analytical. The report never seems never to have been copied,
distributed or cited.

1951 Manning, in a technical report of the British Road Research Laboratory,
appears to provide correct nonlinear configuration geometry, and a well-
organized derivation of the linearised equations of motion for a full Whipple
model. We have not yet checked the equations in detail, but the work shows
great care. Manning acknowledges Carvallo’s work but that he had “[Carvallo
has] not yet been compared with the results in this note”. Manning writes
“even if this work is merely a repetition of Carvallo’s, it will be valuable to
have the theory in a more accessible form, in a more up-to-date notation,
and in English.” Exactly the sentiment of the present paper (but with re-
spect to Whipple). Ironically and unfortunately Manning’s report is stamped
“RESTRICTED Not for publication” and is only available by special request
from, and pay to, his former employer.

1953-1955 Dohring, University of Technology Braunschweig, Germany, writes a
PhD thesis on the stability of a straight ahead running motorcycle. He builds
on the model by Noether (Klein and Sommerfeld, 1910) to make the mass
distributions as general as Whipple, of whom he seems unaware. Déhring
misdates Klein and Sommerfeld as 1890, the time when Klein and Sommerfeld
started writing their multi-volume book. Dohring’s equations seem to agree
with ours in detail (Hand, 1988). Dohring’s are the first perfectly correct
equations of a general model presented in the open literature (Whipple had
small errors, Carvallo and Klein were slightly less general). Dohring also did
some eigenvalue stability analysis. He also did experiments on a motor-scooter
and two different motorcycles (1954) to validate his results. Déhring’s paper
was translated into English by CALSPAN but is not published.

1963-1964 University of Wisconsin dissertations by Collins (1963) and Singh (1964)
both involve multi-page equations employed chained parameter definitions.
Collins relied on Wallace’s (1929) problematic nonlinear geometry, but this
should not affect the correctness of his linearization. Although we did not
compare Collins’s equations in every detail, we noted a missing term and Psi-
aki (1979) found computational disagreement. Singh’s subsequent conference
and journal publications were based on Doehring’s (1953) equations (which
seem correct), rather than his own.
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1966 Ge in Taiwan has a paper with a promising title. And Ge’s other publications
indicate expertise in rigid-body mechanics. But we have not seen the paper
nor succeeded in contacting the person.

1967 Neimark & Fufaev, in their authoritative book on non-holonomic dynamics,
present an exceptionally clear and thorough derivation of the equations of
motion for a Whipple bicycle (we read only the 1972 English translation).
Unfortunately, their treatment has several typographical errors, and also has
a flaw in the potential energy: equation 2.30 ignores downward pitch of the
frame due to steering. This flaw was later corrected by Dikarev, Dikareva &
Fufaev (1981) and independently by Hand (1988).

In 1970 there was a sudden jump in single-track vehicle research, perhaps be-
cause of the advent of digital computers and compact instrumentation, increased
popularity of large motorcycles (and attendant accidents), and a surge in bicycle
popularity. Most authors incorporated tire models which simplifies the equation for-
mulation by avoiding having to implement geometric constraints. But tire models
add empirical parameters and complicate the resulting equations and their inter-
pretation.

1970-8 CALSPAN. One concentration of single-track research was at CALSPAN
(then the Cornell Aeronautical Laboratory), funded by the U.S. government,
Schwinn Bicycles and Harley Davidson. CLASPAN generated about 20 bi-
cycle reports and papers. The CALSPAN program included hand calcula-
tions (involving linearized equations and algebraic performance indices for a
somewhat simplified model), nonlinear computer models (including high-order
rider control inputs), and a comprehensive experimental program (including
tire measurements and comparisons to real-world performance).

CALSPAN reports include: Rice et al. (1970), Roland and Massing (1971),
Roland and Lynch (1972), Rice and ROland (1972), Lynch and Roland (1972),
Milliken (1972), Roland and Rice (1973), Roland and Kunkel (1973) Roland
(1973a), Kunkel and Roland (1973), Roland (1973b), Anonymous (1973),
Roland (1974), Rice (1974a), Davis and Cassidy (1974), Rice (1974b), Roland
and Davis (1974), Rice (1974c), Davis (1975) Kunkel and Rice (1975), Anony-
mous (1975a), Rice et al. (1975), Anonymous (1975b), Kunkel (1975), Kunkel
(1976), Rice(?) (1976), Rice and Kunkel (1976), Rice (1978).

Six of these reports are singled out below in their chronological places.

1970 Rice & Roland, in a CALSPAN report sponsored by the National Commis-
sion on Product Safety, included an appendix on nonlinear equations (except
linearized for small steer angles), where compliant, side-slipping tires avoid
the need to apply lateral or vertical contact constraints. Rider lean relative to
the frame is included. Thus the governing system includes all six velocities of
a rigid body, plus the two extra degrees of freedom (steer and rider lean). The
tabulated 8 x 8 first order system is forbiddingly complex, and terms such as
wheel vertical force require a host of subsidiary equations to be defined. This
report seems to contain the first use of the term ‘mechanical trail’ to describe
the moment arm of the lateral front-contact forces about the steer axis.
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1971 Roland & Massing, commissioned by the Schwinn bicycle company, write a
CALSPAN report on the modelling and experimental validation of an un-
controlled bicycle. The mix of modelling, measuring, and testing is unusually
thorough. After correcting an expression for tire slip, then linearizing and
imposing constraints their equations agree with the equations here.

1971 Robin Sharp considers a model with tire slip, and front-assembly inertia
tensor aligned with the steering axis. His partly-nonlinear model treats rear-
frame pitch as zero, with a constant force acting upward on the front wheel.
When he linearizes and takes the limit of infinite lateral tire stiffness, he
introduces minor algebraic and typographical errors (see Hand 1988). This,
Sharp’s first of many bicycle and motorcycle dynamics papers, has had a
lasting influence. It includes his original naming of the two major rigid-body
eigenmodes as ‘weave’ and ‘capsize’.

1971 Singh & Goel use Dohring’s (1955) correct equations and not Singh’s (1964)
suspect equations.

1972 Roland & Lynch, commissioned by the Schwinn bicycle company, write a
CALSPAN report on a rider control model for path tracking, bicycle tire test-
ing, experimental tests to determine the effect of design parameters on the
stability and manoeuvrability of the bicycle, and the development of com-
puter graphics for display purposes. For the bicycle model the equations from
Roland & Massing (1971) are used.

1972 Weir’s PhD thesis explicitly compares his correct equations with the previous
slightly incorrect and slightly specialized results of Weir (1972). Weir appears
to be the first to perform such a check. Weir’s thesis is widely cited.

1973 Eaton presents governing equations without derivation. He explains that he
reconciled his own derivation with (corrected) Sharp (1971) and Weir (1972),
although using his own notation and somewhat embellishing the tire models.

1973 Roland reports in the open literature, rare for CALSPAN, basically the same
equations as in Roland & Massing (1971). Apparently few if any typos were
corrected and some further typos seem to have been introduced.

1974 Rice at CALSPAN uses simplified linearized analysis to develop steady-state
and transient performance indices. He investigates the stiffness matrix (with
rider lean included, statically equivalent to a lean moment), which requires
only point-mass bicycle parameters. A lot of the complication depends on tire
parameters. As in Carvallo (1897) and Whipple (1899), formulae are given for
capsize speed and for the low speed at which turning leaves the rear frame
perfectly upright (when the displacement of the front contact and front c.m.
perfectly balance the roll moment of centrifugal force).

1975 Van Zytveld’s M.Sc. thesis on a robot bicycle controller develops equations
that agree with ours except for some of the terms involving ‘rider lean’ which
drop out for the rigid rider assumption used in our Whipple model. Accord-
ing to van Zytveld, his advisor David Breakwell had developed independent

Article in preparation for PRS series A



42 J. P. Meijaard and others

equations of motion, without a rider-robot, that matched van Zytveld when
simplified to remove rider lean (see also Breakwell 1982).

1975 Singh & Goel elaborate the Whipple model to allow deviations from left-right
symmetry and incorporate more sophisticated tire models, leading to a very
high order system of governing equations. The derivation appears to follow
Sharp (1971) but we have not checked the results in detail.

1976 Rice writes a CALSPAN report on simplified dynamic stability analysis. He
assumes all inertia tensors to have a vertical principal axis. This report ex-
plicitly identifies the frequently-occurring combination of terms which we call

SaA.

1978 Weir & Zellner present Weir’s equations but introduce a sign error in the
mistaken belief they are making a correction, and commit several typograph-
ical errors (Hand 1988). Weir’s thesis (1972), not this paper, should be used
for correct equations.

1978 Lobas (in translation misspelled into Gobas) extends the treatment by Nefmark
& Fufaev (1967) to add forward acceleration. When we set acceleration to
zero, it appears that the static lean contribution to Lobas’s steer equation is
in error.

1979 Psiaki writes a dense Princeton undergraduate honors thesis on bicycle dy-
namics. Starting from a fully nonlinear analysis based on Lagrange equations
with non-holonomic constraints, he developed linearized equations for both
his upright configuration and his hands-free turns. The equations of motion
were complex and we have not checked them in detail, but his numerical re-
sults match ours to plotting accuracy suggesting, to us, probable correctness.

1981 Dikarev, Dikareva & Fufaev in equation 1.2 therein correct the errors in
Neimark & Fufaev (1967). They write subtly about their “refinement” that
“Note that in [Neimark and Fufaev] the expression for ¢ was obtained only
to within first-order small terms... 7. This should make their final equations
correct, but we have not checked them in detail. This same error was corrected
later independently by Hand (1988).

The early 1980s essentially mark an end to the development of sound equations
for the Whipple bicycle model. Equations from Sharp, Weir or Eaton are widely
cited as valid, even though explicit comparisons are rare. Subsequent research on
motorcycle and bicycle dynamics tends to focus on elaborations necessary for mod-
elling tire and frame deformations.

1985 Sharp presents a very comprehensive review of extended motorcycle dynamics
equations, with an emphasis on capturing weave motions that seem to depend
on tire and frame compliance. He has some errors in his description of the
pre-1970 literature. Sharp (1985) identifies Sharp (1971) as ‘confirmed’, with
which, but for minor errors, Hand (1988) agrees.

1987 Papadopoulos focused on achieving a compact notation and simple deriva-
tion of the equations of motion, using Hand’s (1988) results as a check. The
equations in the present paper are based on this report.
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1988 Hand’s Cornell MSc thesis compares a variety of publications and settles on
a compact, transparent notation. Hand’s thesis was advised by Papadopoulos
and nominally by Ruina. Hand shows that several approaches, e.g. (Dohring
1955, Neimark & Fufaev 1967, Sharp 1971, and Weir 1972) all led to the same
governing equations once errors were corrected. Hand’s, unaware of the work
of Dikarev, Dikareva & Fufaev (1981) independently corrected Nefmark & Fu-
faev 1967. Nonetheless, Psiaki (2006, personal communication) also checked
Hand’s derivation which is Similar to Niemark and Fufaev and said it has
some missing terms in the Lagrangian that, fortunately, drop out in the lin-
earization.

1988 Mears verified Weir’s (1972) thesis and noted Weir’s later (1978) errors.
Mears also checked against Hand (1988).

1990 Franke, Suhr & F. Rief derive non-linear equations of a bicycle, with neglect
of some dynamic terms. This paper was the topic of an optimistic lead ed-
itorial in Nature by John Maddox (1990). We did not check the derivation.
The authors did not find agreement between integration of their differential
equations for small angles and the integration of the Papadopoulos (1987)
equations (1990 — private communication). However, recently Lutz Aderhold
(2005 — private communication) applied our benchmark bicycle parameters
to an updated form of the Franke, Suhr & Riefl non-linear model and obtained
agreement of eigenvalues in an approximately upright configuration, within
plotting accuracy. Thus the well-concieved Franke et al. model is likely to me
largely correct, but perhaps for possible for details corrected by Lutz.

2004 Meijaard in preparing for this publication, makes an independent derivation
of the linearized equations of motion that agrees with the equations here.

2004 Schwab, Meijaard & Papadopoulos write a draft of the present paper and
present it at a conference. The present paper subsumes Schwab et al. (2004).

2005 Astrom, Klein & Lennartsson present a wide-ranging paper, part of which
is discussed in section (b) above. Another discussion in the paper builds on
Schwab et al. (2004) and Papadopoulos (1987) and presents some parameter
studies based on them.

Astrom et al. also presents Lennartsson’s [1999] simulations from a general
purpose rigid-body dynamics code. In addition to some non-linear dynamics
observations, they show agreement with the benchmark equations in Schwab
(2004), although not with enough precision to assure correctness. Recently
Lennartsson (2006 — private communication) made a high-precision compar-
ison for the current benchmark parameters, and found agreement to at least
12 decimal places.

2006 Limebeer and Sharp, in part of a large review paper, use the equations of
Schwab et al. (2004) (the equations that the present publication archives) for
some control analyses.

In summary, although many reports, theses, and papers have models at least
almost as general as Whipple’s model, and many of these are largely correct, we
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know of only one set of correct equations for the Whipple model that are peer
reviewed and in English. This paper, Dikarev et al. (1981), is not widely known nor
cited.
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Supplementary bibliography

This bibliography is a superset of the bibliography in the main paper. It includes all
of the main paper references and several dozen more. We have chosen this redundant
approach because length limitations prevented a longer reference list in the main
paper, but we wanted serious researchers to be able to use a single list, this one.
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2. SPACAR model

The SPACAR model for the benchmark bicycle is sketched in figure 5 and the input
file for the SPACAR program describing this model is presented in §2 a.

Because the SPACAR program is based on finite-element methods (FEM), the
input file shows an FEM structure. SPACAR is designed to minimize the informa-
tion needed in the input file. The SPACAR input file is roughly divided into four
parts: element declaration and connectivity, nodal data, boundary conditions, and
some additional data like masses, inertias, applied forces and simulation settings.

In the first section of input in §2a the elements are declared, they are given a
type, a unique element number followed by a list of node numbers and an initial
rotation axis. These element statements implicitly define the associated nodes. The
nodes are either translational or rotational. A hinge element allows large relative
rotation between two rotational nodes. A wheel element allows rolling contact at
the contact point node. A pinbody element generates a node within a rigid body by
which another finite element can be connected. Within this finite element approach
a rigid body can be defined in two ways: either as a deformable element with
all deformation modes set to zero or as a body with one three-degree-of-freedom
translational node and one three-degree-of-freedom rotational node.

In the second section of the input file the nodes, which are placed at the centre of
mass of the rigid bodies, are given their reference-configuration coordinates. Trans-
lational nodes have three coordinates (x,y, z) in a global reference frame whereas
rotational nodes are parameterized by four Euler parameters. These parameters are
set to (1,0,0,0), the unit transformation, in the reference configuration.

The approach in establishing a bicycle model is to consider it in a reference
configuration: upright, orientated along the x-axis, and with the rear contact at
the origin. This configuration is used to define nodal positions and rigid body
orientations. Relative to this reference configuration it is easy to set an initial lean
or steer angle and set the rates as initial conditions. To do a simulation from an
arbitrary configuration, however, you have to drive it there by specifying a path
from the initial configuration to the desired initial state.

Any consistent set of units may be used. Here SI units are used.

In the third section the boundary conditions are set, the implicit definition is
that all nodes are free and all elements are rigid. A node’s position or orientation
in space can be fixed by the fix command; otherwise it is free to move in space.
An element can be allowed to “deform” e.g. a hinge element is allowed to rotate,
by the rlse command. A non-zero prescribed “deformation” mode is specified by
inpute, e.g. the forward motion of the bicycle in this example. For generating
linearized equations of motion the line command identifies a degree of freedom
to be used. The enhc command ties a nonholonomic constraint to a configuration
space coordinate so as to identify those configuration coordinates for which the time
derivative is not a velocity degree of freedom.

In the last section mass and inertia are added to the nodes, one value for trans-
lational nodes and six values for rotational nodes (the terms in the upper triangle
portion of the inertia matrix in the initial configuration). Finally applied (constant)
forces are added and some initial conditions and simulation settings are made.

When the program is run, for each output time step, all system variables (coor-
dinates, deformations, speeds, accelerations, nodal forces, element forces, etc.) are

Article in preparation for PRS series A



Bicycle dynamics benchmark 53

written to standard files which later can be read by other software for plotting or
analysis. At every time step the numeric values of the coefficients of the SPACAR
systematic linearization are also written to standard files.

translational nodes e : #

. N
rotational nodes: #
elements: @)

Figure 5. Sketch of the bicycle model for SPACAR input together with node numbers
(straight arrows for translations 1---8, curved arrows for rotations 9---15) and element
numbers encircled.

(a) SPACAR Input file
The sketch of this model is shown in figure 5.

% SPACAR input file for bicycle benchmark I
% SECTION 1, ELEMENT DECLARATION AND CONNECTIVITY:

% type number nodes rotation axis vector

hinge 1 9 10 0 01 % yaw angle rear frame between node 9(ground) and 10
hinge 2 10 11 1 00 % lean angle rear frame between node 10 and 11

hinge 3 1113 010 7% pitch angle rear frame between node 11 and 13(frame)
hinge 4 13 12 0 1 0 % rear wheel rotation between 13(frame) and 12(wheel)
wheel 5 312 2 010 9% rear wheel, cm nodes 3, 12, contact pnt 2

pinbody 6 413 3 % node 3(rear hub) in rigid body nodes 4, 13(frame)
pinbody 7 413 b5 % node 5(head) in rigid body nodes 4, 13(frame)

hinge 8 13 14 0.32491969623291 0 1.0 % steering angle between 13 and 14
pinbody 9 514 6 % node 6(cm fork) in rigid body 5, 14(front frame)
pinbody 10 514 7 % node 7(front hub) in rigid body 5, 14(front frame)
hinge 11 14 15 0 10 % front wheel rotation between 14 and 15(wheel)

wheel 12 7 15 8 010 % front wheel, cm nodes 7, 15, contact pnt 8

pinbody 13 1 9 2 % node 2(rear contact pnt) in rigid body nodes 1, 9
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% SECTION 2, NODAL DATA:

% mnode initial coordinates, all rotational nodes are initialized:(1,0,0,0)
1 0 0 0 % fixed origin

0 0 0 % rear contact point

0 0 -0.3 % rear hub

0.3 0 -0.9 % cm rear frame + rigid rider
0.80757227339038 0 -0.9 % steering head

0.9 0 -0.7 % cm front fork + handle bars
1.02 0 -0.35 % front hub

x 8 1.020 O % front contact point

% SECTION 3, BOUNDARY CONDITIONS:

% type number components

L T T T T
~N O Ok W N

fix 1 123 % fix all(1,2,3) translations node 1(ground)

fix 9 1234 Y fix all(1,2,3,4) rotations node 9(ground)

rlse 1 1 % release rotation(1l) hinge 1: yaw

rlse 3 1 % release rotation(1l) hinge 3: pitch

rlse 11 1 % release rotation(1l) hinge 11: front wheel rotation

rlse 13 123 % release all relative displacements(1,2,3) in pinbody 13
inpute 4 1 % rotation(1l) hinge 4 is prescribed motion for forward speed
line 2 1 % generate linearized eqns for rotation(l) hinge 2: lean
line 8 1 % generate linearized eqns for rotation(l) hinge 8: steering

% tie a a non-holonomic constraint to a configuration space coordinate

%type lmnt mode lmnt mode (lmnt means element number)

enhc 5 4 13 1 % wheel 5 4=long slip tied to pinbody 13 1=x-disp node 2

enhc 5 5 13 2 % wheel 5 5=lat slip tied to pinbody 13 2=y-disp node 2

enhc 12 4 1 1 7% wheel 12 4=long slip tied to hinge 1 1=yaw rear frame

enhc 12 5 11 1 % wheel 12 5=lat slip tied to hinge 11 1=front wheel rot

% SECTION 4, ADDITIONAL DATA: MASS, INERTIA, APPLIED FORCES, AND SIMULATION SETTINGS
% node mass:(m) or mass moment of inertia: (Ixx,Ixy,Ixz,Iyy,lyz,Izz)

mass 3 2.0 % mass rear wheel

mass 12 0.0603 0 O 0.12 0 0.0603 Y% inertia rear wheel

mass 4 85.0 % mass rear frame + rider

mass 13 9.2 0 2.4 11.0 0 2.8 % inertia rear frame + rider

mass 6 4.0 % mass front frame + handle bars
mass 14 0.05892 0 -0.00756 0.06 0 0.00708 % inertia front frame + handle bars
mass 7 3.0 % mass front wheel

mass 15 0.1405 0 O 0.28 0 0.1405 Y% inertia front wheel

% node applied force vector (gravity used g = 9.81)

force 3 00 19.62 ¥ gravity force rear wheel

force 4 0 0 833.85 7 gravity force rear frame + rider

force 6 00 39.24 ¥ gravity force front frame + handle bars

force 7 00 29.43 7 gravity force front wheel

% initial conditions

ed 4 1 -3.333333333 ¥ angular velocity in hinge 4(forward speed) set to -3.333333333
% simulation settings

epskin 1le-6 % set max constraint error for Newton-Raphson iteration
epsint 1le-5 % set max numerical integration error on coordinates
epsind 1le-5 % set max numerical integration error on speeds
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timestep 100 2.0 % set number of output timesteps and simulation time
hmax 0.01 % set max step size numerical integration

end % end of run

eof % end of file
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3. AutoSim model

The AutoSim input file used for the bicycle model is listed below. The generalized
coordinates and velocities are the same as those in the SPACAR model. Two mass-
less intermediate reference frames have been introduced: a yawing frame describing
the horizontal translation and yawing of the rear frame and a rolling frame describ-
ing the lean of the rear frame with respect to the yawing frame. These additional
frames allow a better control over the choice of the generalized coordinates by the
program. The holonomic constraint at the rear wheel is automatically satisfied. The
holonomic constraint at the front wheel and the four non-holonomic constraints are
explicitly defined in the input file. For more details on the syntax used see the
AutoSim documentation.

(a) AutoSim Input file

;353 This is the file fietsap2.lsp, with the benchmarkl model.

;3 Set up preliminaries:

(reset)

(si)

(add-gravity :direction [nz] :gees g)

(set-names g "Acceleration of gravity" )

(set-defaults g 9.81) ; this value is used in the benchmark.

;; The name of the model is set to the string "fiets".

(setsym *multibody-system-name* "fiets")

;5 Introduce a massless moving reference frame. This frame has x and y

;; translational degrees of freedoms and a yaw rotational degree of freedom.

( add-body yawframe :name "moving yawing reference frame"

:parent n :translate (x y) :body-rotation-axes z
:parent-rotation-axis z :reference-axis x :mass O
:inertia-matrix 0 )

;5 Introduce another massless moving reference frame. This frame has a rolling

;3 (rotational about a longitudinal axis) degree of freedom.

( add-body rollframe :name "moving rolling reference frame" :parent yawframe
:body-rotation-axes (x) :parent-rotation-axis x :reference-axis y :mass 0
rinertia-matrix 0 )

;3 Add the rear frame of the bicycle. The rear frame has a pitching (rotation

;; about the local lateral y-axis of the frame) degree of freedom.

( add-body rear :name "rear frame" :parent rollframe
:joint-coordinates (0 O "-Rrw") :body-rotation-axes y
:parent-rotation-axis y :reference-axis z :cm-coordinates (bb O "Rrw-hh")
:mass Mr :inertia-matrix ((Irxx O Irxz) (0 Iryy 0) (Irxz O Irzz)) )

( set-names
Rrw "Rear wheel radius"
bb "Longitudinal distance to the c.o.m. of the rear frame"
hh "Height of the centre of mass of the rear frame"

Mr "Mass of the rear frame"

Irxx "Longitudinal moment of inertia of the rear frame"
Irxz "Minus product of inertia of the rear frame"

Iryy "Transversal moment of inertia of the rear frame"
Irzz "Vertical moment of inertia of the rear frame" )

( set-defaults Rrw 0.30 bb 0.3 hh 0.9
Mr 85.0 Irxx 9.2 Irxz 2.4 Iryy 11.0 Irzz 2.8 )
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;; Add the rear wheel of the vehicle. This body rotates

;; about the y axis of its physical parent, the rear frame.

( add-body rw :name "rear wheel" :parent rear :body-rotation-axes y
:parent-rotation-axis y :reference-axis z :joint-coordinates (0 0 0)
:mass Mrw :inertia-matrix (irwx irwy irwx) )

( set-names
Mrw "mass of the rear wheel"
irwx "rear wheel in-plane moment of inertia"
irwy "rear wheel axial moment of inertia" )

(set-defaults Mrw 2.0 irwx 0.0603 irwy 0.12)

;3 Now we proceed with the front frame.

;; Define the steering and reference axes of the front frame.

;; Add in the front frame: define some points.

( add-point head :name "steering head point B" :body n
:coordinates (xcohead O zcohead) )

( add-point frontcmpoint :name "c.o.m. of the front frame" :body n
:coordinates (xfcm O zfcm) )

( set-names
epsilon "steering head angle"
xcohead "x coordinate of the steering head point B"
zcohead "z coordinate of the steering head point B"
xfcm "x coordinate of the c.o.m. of the front frame"
zfcm "z coordinate of the c.o.m. of the front frame" )

( set-defaults epsilon 0.314159265358979316
xcohead 1.10 zcohead 0.0 xfcm 0.90 zfcm -0.70 )

( add-body front :name "front frame" :parent rear :body-rotation-axes z
:parent-rotation-axis "sin(epsilon)*[rearx]+cos(epsilon)*[rearz]"
:reference-axis "cos(epsilon)*[rearx]-sin(epsilon)*[rearz]"
:joint-coordinates head :cm-coordinates frontcmpoint :mass Mf
rinertia-matrix ((Ifxx O Ifxz) (0 Ifyy 0) (Ifxz O Ifzz))
:inertia-matrix-coordinate-system n )

( set-names
Mf "Mass of the front frame assembly"

Ifxx "Longitudinal moment of inertia of the front frame"
Ifxz "Minus product of inertia of the front frame"

Ifyy "Transversal moment of inertia of the front frame"
Ifzz "Vertical moment of inertia of the front frame" )

( set-defaults Mf 4.0
Ifxx 0.05892 Ifxz -0.00756 Ifyy 0.06 Ifzz 0.00708 )

;3 Add in the front wheel:

( add-point fw_centre :name "Front wheel centre point" :body n
:coordinates (11 O "-Rfw") )

( add-body fw :name "front wheel" :parent front :body-rotation-axes y
:parent-rotation-axis y :reference-axis "[nz]"

:joint-coordinates fw_centre :mass Mfw :inertia-matrix (ifwx ifwy ifwx) )

( set-names
11 "Wheel base"

Rfw "Radius of the front wheel"

Mfw "Mass of the front wheel"

ifwx "In-plane moment of inertia of the front wheel"

ifwy "Axial moment of inertia of the front wheel" )
(set-defaults 11 1.02 Rfw 0.35 Mfw 3.0 ifwx 0.1405 ifwy 0.28)
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;; The system is complete, except for the contact constraints at the wheels.

;3 The holonomic constraint at the rear wheel is automatically satisfied.

;3 The rear wheel slip is zero.

( add-speed-constraint "dot(vel(yawframeO), [yawframex])+Rrw*(ru(rear)+ru(rw))"
:u "tu(yawframe,1)" )

(add-speed-constraint "dot(vel(yawframeO), [yawframey])" :u "tu(yawframe,2)")

;3 For the front wheel we have a holonomic constraint for the contact and two

;3 non-holonomic slip constraints. The slip velocities are defined now.

(setsym singammafw "dot([fwyl, [nz])")

(setsym cosgammafw "sqrt(l-@singammafw**2)")

(setsym fw_rad "([nz] - [fwy]*@singammafw)/@cosgammafw")

(setsym slipfw_long "dot(vel(fwO)+Rfwxcross(rot(fw),@fw_rad), [nx])")

;5 No longitudinal slip on front wheel;

;; eliminate rotational velocity about the axis

(add-speed-constraint "@slipfw_long" :u "ru(fw)")

;; normal constraint; eliminate the pitch angle

(setsym slipfw_n "dot(vel(fwO)+Rfwxcross(rot(fw),@fw_rad), [nz])")

(add-speed-constraint "@slipfw_n" :u "ru(rear)")

(add-position-constraint "dot(pos(fw0), [nz])+Rfw*Qcosgammafw" :q "rq(rear)")

;; No lateral slip on front wheel; eliminate yaw rate of the yawing frame

(setsym slipfw_lat "dot(vel(fw0)+Rfw*cross(rot(fw),0fw_rad), [nyl)")

(add-speed-constraint "@slipfw_lat" :u "ru(yawframe)")

(dynamics)

(linear)
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4. The first linear equation: v =0

Here we present in more detail why symmetry decouples lean and steer from forward
motion in the linearized equations. As explained in §4 ¢, some configuration variables
do not show up in the equations of motion and so are not of central interest. These
include position (zp,yp) on the plane, the yaw 1, and the net wheel rotations
fr and Op. Of interest is the evolution of the right lean ¢, the right steer ¢, and
backwards rear wheel rotation rate 6. For conceptual and notational convenience
define forward speed as v = — RrOg and use v instead of 6 in the discussion below.
First we establish the forward motion governing equation when there is no applied
thrust.

First, without writing explicit non-linear equations, we know they have this
in-plane exact reference solution:

v(t) =v", ¢(t)=0 and 6(t)=0 (B1)

where v* is an arbitrary constant.

The linearized equations are for small perturbations about this reference solu-
tion. For notational simplicity we take the lean and steer perturbations as merely ¢
and § recognizing that we are only discussing infinitesimal values of these variables.
For the forward motion take the perturbation to be .

For the argument below we only depend on the linearity of the equations, and
not their detailed form. Take an arbitrary set of initial conditions to be (g, ¢g, do)-
At some definite time later, say tg; = 1s for definiteness, the values of the speed
lean and steer at tq must be given by

Ud o
ba | =A | ¢o (B2)
0d do
A’UU A’U¢ A'U5
for any possible combination of 79, ¢, and §g. The matrix A = | Agy App Ags
Aso  Asg  Ass

depends on which definite time ¢4 is chosen. Because the bicycle rolls on a flat hori-
zontal isotropic plane and there is no time-dependent forcing, the coefficient matrix
A is dependent on the time interval ¢4 but independent of the starting time.

Now consider an initial condition 1 where only the lean is disturbed: o | =

0
1 | where we think of 1 as a small perturbation. This results in a perturbation a
0

0} Ave

d
time tq later of | @} | = | Ass | where the right side is the middle column of A.
5k Asg
a2 0
Now consider the opposite perturbation 2 with 2 | = | —1 | which results in
52 0
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o2 — Ay
a perturbation a time ¢4 later of | ¢3 | = | —Ags | where the right side is the
52 —Asg

negative of the middle column of A; for a linear system negating the input negates
the output.

Now we invoke lateral symmetry. If knocking a bicycle to the left causes it to
speed up, knocking it to the right must cause it to speed up equally. So v3 = v} =
Avqb = —Av¢ = Av¢ =0.

Now we can similarly apply a rightwards perturbation to just the steer. On
the one hand linearity requires a negative steer has to have the negative effect on
forward speed. On the other hand, lateral symmetry requires that a rightwards
steer perturbation have an equal effect as a leftwards perturbation. Thus, by the
same reasoning as for lean we get A,5 = 0.

Next, consider perturbations to just the forward speed ©. By symmetry these
can cause neither a left nor right lean or steer. So Ag, = Asy = 0. Thus symmetry
reduces the matrix A to having zeros off the diagonal in both the first row and the
first column.

Finally, we know the steady upright solution is an exact non-linear solution for
any v*. Assuming that the full non-linear equations have unique solutions for any
given initial conditions, a perturbation in v* just leads to a new constant speed
solution at the perturbed v*. Thus, 94 = 09 and A,, = 1.

Altogether this means that the linearized equations giving the perturbed values
of the state at time t; in terms of the initial perturbation are necessarily of the

1 0 0
form of equation B2 with A having the form A = | 0 Ay Ags | . This form
0 Asp Ass

must hold for any t4 thus perturbations in lean ¢ and steer § never have influence
on the forward speed v and vise versa, perturbations in speed have no influence on
lean and steer. Similarly, lean and steer rates (gb, 5) are also decoupled from forward
motion. Further, because 94 = 9¢ for all time, ¢ is a constant so

b =0. (B3)

Similar arguments show that forward forcing does not cause lean or steer and
that lateral forcing does not cause changes in speed (to first order). Thus a bicycle
which is forced to go at exactly constant speed in a full non-linear analysis has the
same linearized lean and steer governing equations as for the bicycle that is free in
forward motion. Such is confirmed by SPACAR numerical analysis where

1. For small deviations from upright constant energy and constant speed give
the same solutions (to about 4 digits) and

2. Both constant speed and constant energy give the same values for the nu-
merical coefficients in the linearized equations and which are the same as the
values presented in the body of the paper here for our ad hoc linearization (to
about 14 digits). This comparison was also performed by Lennartsson (2006,
personal communication 2006).
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5. A simplified benchmark model

In a second benchmark various simplifications are made to permit comparison with
less complete models. The design parameters are according to table 1 but with
the following changes. Both wheels are planar, I, = 2I,,, and identical with:
MR = Mgr = 3 kg, TR =Tfp = 0.35 m, and (IR;E;E, IRUU) = (Ime, IFyy) = (014, 028)
kgm?2. The mass of the rear frame and body assembly B is mp = 85 kg located at
(B, zB) = (0.3, —0.9) m, whereas the mass moment of inertia is zero, Iz = 0. The
front frame H has neither mass, my = 0, nor inertia moments, Iy = 0.

Substitution of these values of design parameters for the simplified benchmark
bicycle in the expressions from Appendix A results in the following values for the
entries in the mass matrix from (A 20),

M — 69.865 1.868 727 853 976 56
N 1.868 727 853976 56  0.239 079 88756138 |’

the entries in the constant stiffness matrix from (A 22) which are to be multiplied
by gravity g,

Ko — —78.6 —2.226 580 876 684 00
o~ —2.226 580 876 68400 —0.688 05133024563 |’

the coeflicients of the stiffness matrix from (A 24) which are to be multiplied by the
square of the forward speed v2,
Ko — 0, 74.77914961457971

2710, 230658 62033871 |’

and finally the coefficients of the “damping” matrix from (A 26) which are to be
multiplied by the forward speed v,

C — 0 ,  29.140 558 140 953 37

L7 —0.880193481 74767,  1.150 360 143808 13 |-

To facilitate comparison with equations or results derived using different meth-
ods, eigenvalues are presented. These eigenvalues in the forward speed range show
the same structure as those from the full benchmark bicycle, see figure 3, but with
slightly different values. The precise eigenvalues for the simplified bicycle bench-
mark at some forward speeds are presented in table 3 and table 4. These results
may differ from the fifteenth digit on due to the finite precision of the floating point
arithmetic used. Even a reordering of term in the calculation of the intermediate
expressions can have this effect.
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A,

Re()\wcavc )

Im()\wcavc )

@ooﬂc:cnu;oow»aoée

10

[1/s]

3.915 605 159 008 03
3.145 971 626 952 20
2.096 627 566 535 66
0.910 809 011 944 21
0.198 648 678 113 17
—0.245 683 866 155 55
—0.589 203 483 851 70
—0.883 875 624 871 00
—1.150 515 263 118 26
—1.399 313 952 184 76

[1/s]

0.676 636 216 381 60
1.947 971 866 614 21
3.144 568 094 683 27
4.881 202 124 548 49
6.936 393 452 637 19
8.903 125 360 683 31
10.790 930 464 293 57
12.628 966 109 587 14
14.434 482 871 116 77
16.217 648 368 548 84

Table 3. Complex eigenvalues Awpeave from the linearized stability analysis for the oscilla-
tory weave motion for the simplified benchmark bicycle from §5 in the forward speed range

of 0 <wv <10 m/s.

A,

)\capsizc

[1/s]

)\castcring

[1/s]

@ooﬂc:mu;ww»aoée

10

—3.321 334 354 955 67
—3.339 571 399 042 72
—3.122 857 194 829 05
—2.196 003 785 406 69
—0.787 290 747 535 25
—0.161 936 233 356 19
0.039 380 255 445 46
0.114 168 685 341 41
0.143 031 193 913 90
0.152 632 341 109 21
0.153 494 106 064 82

—5.695 461 613 073 60
—6.577 674 865 894 17
—7.341 157 952 916 98
—8.255 359 188 427 08
—9.378 471 064 036 38
—10.665 540 857 474 20
—12.064 228 204 659 15
—13.538 013 346 083 71
—15.063 567 519 538 39
—16.625 925 337 159 89
—18.215 225 670 903 33

Table 4. Real eigenvalues A from the linearized stability analysis for the capsize motion
and the castering motion for the simplified benchmark bicycle from §5 in the forward speed
range of 0 <wv <10 m/s.

Article in preparation for PRS series A



