Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review

By J. P. Meijaard¹, J. M. Papadopoulos², A. Ruina³ and A. L. Schwab⁴

¹School of MMME, The University of Nottingham, University Park, Nottingham NG7 2RD, UK (Jaap.Meijaard@nottingham.ac.uk)
²2802 West Carrera Court, Green Bay, WI 54311, USA (papadopoulos@alum.mit.edu)
³Theoretical and Applied Mechanics, and Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA (ruina@cornell.edu)
⁴Laboratory for Engineering Mechanics, Delft University of Technology, Mekelweg 2, NL-2628 CD Delft, The Netherlands (a.l.schwab@tudelft.nl)

We present canonical linearized equations of motion for a bicycle modelled as four rigid laterally-symmetric ideally-hinged parts: front and rear wheels and frames. The wheels are also axisymmetric and make knife-edge ideal rolling contact with the level ground. The mass distribution, lengths and angles are otherwise arbitrary. The equations are suitable for study of, for example, the self-stability of a bicycle. We derived these equations by hand in two different ways and then checked them against two general-purpose non-linear dynamic simulators in various ways. In the century-old literature we have found a few equations that fully agree with those here. This non-holonomic system has a seven-dimensional accessible configuration space and three velocity degrees of freedom parameterized by rates of frame lean, steer angle and rear-wheel rotation. The terms in the equations are constructed methodically for easy implementation. For two sets of benchmark parameters we accurately calculate the stability eigenvalues and the speeds at which the bicycle is self-stable. These provide a comparison case for checking alternative formulations of the equations of motion or alternative numerical solutions. The results here can also serve as a check for general-purpose dynamics programs.

Keywords: bicycle, dynamics, linear, stability, nonholonomic, benchmark.

1. Introduction

In 1818 Karl von Drais (Herlihy 2004) showed that a person riding forward on a contraption with two in-line wheels, a sitting scooter of sorts, could balance by steering the front wheel. Later, the velocipede of the 1860’s which had pedals directly driving the front wheel, like a child’s tricycle, could also be balanced by
active steering control. This “boneshaker” had equal-size wooden wheels and a vertical steering axis passing through the front wheel axle. By the 1890’s it was well known that essentially anyone could learn to balance a “safety bicycle”. The safety bicycle had pneumatic tires and a chain drive. More subtly, but more importantly for balance and control, the safety bicycle also had a tilted steer axis and fork offset (bent front fork) like a modern bicycle. French mathematician Emmanuel Carvallo (1899) and Cambridge undergraduate Francis Whipple (1899) then used rigid-body dynamics equations to show in theory what was surely known in practice, that some safety bicycles could, if moving in the right speed range, balance themselves. Today these same two basic features of bicycle balance are clear:

- A controlling rider can balance a forward-moving bicycle by turning the front wheel in the direction of an undesired lean. This moves the ground-contact points back under the rider, just like an inverted broom or stick can be balanced on an open hand by accelerating the support point in the direction of lean.
- Some uncontrolled bicycles can balance themselves. If a good bicycle is given a push (to about 6 m/s), it steadies itself and then progresses stably until its speed gets too low. The torques for the self-correcting steer motions can come from various geometric, inertial and gyroscopic features of the bike.

Beyond these two generalities, there is little that has been solidly established in the literature, perhaps because of the lack of need. Through trial and error bicycles had evolved by 1890 to be stable enough to survive to the present day with essentially no modification. Because bicycle design has been based on tinkering rather than...
Figure 2. **Configuration and dynamic variables.** The 7-dimensional accessible configuration space is parameterized here by the x and y coordinates of the rear contact P, measured relative to a global fixed coordinate system, and 5 Euler-like angles represented by a sequence of hinges (gimbals). The hinges are drawn as a pair of cans which rotate with respect to each other. For a positive rotation, the can with arrow rotates in the direction of the arrow relative to its mate as shown on the enlarged isolated can at the top left. For example, a clockwise (looking down) change of heading (yaw or steer) ψ of the rear frame B relative to the fixed x axis, a right turn, is positive. The lean ('roll' in aircraft terminology) to the right is ϕ. The rear wheel rotates with θ_R relative to the rear frame, with forward motion being negative. The steer angle is δ with right steer positive. The front wheel rotates with θ_F relative to the front frame. As pictured, ψ, ϕ and δ are all positive. The velocity degrees of freedom are parameterized by $\dot{\phi}, \dot{\delta}$ and $\dot{\theta_R}$. The sign convention used is the engineering vehicle dynamics standard (SAE 2001).

As mentioned, there has been little scrutiny of bicycle analyses. So it is perhaps not surprising that the literature contains some incorrect equations and flawed explanations of bicycle stability.

To better satisfy general curiosity about bicycle balance and perhaps contribute to the further evolution of bicycle design, we aim here to firmly establish some basic bicycle stability science. The core of the paper is a set of easy-to-use and thoroughly checked linearized dynamics equations (5.3 and Appendix A) for the motion of a somewhat canonical bicycle model. Future studies of bicycle stability, aimed for example at clarifying the two points above, can be based on these equations.

Many methods can be used to derive the equations using various choices of coordinates, each leading to vastly different looking governing equations. Even matching initial conditions between solution methods can be a challenge. However, stability eigenvalues and the speed-range of stability are independent of all of these differences. So, for example, a computer-based study of a bicycle based on any formula-
tion can be checked for correctness and accuracy by comparing with the benchmark stability results here.

The work here may also have more general use. The bicycle balance problem is close to that for skating and perhaps walking and running. Secondly, there is a dearth of non-trivial examples with precisely known solutions that can be used to check general purpose multi-body dynamics simulators (such as are used for machine, vehicle and robot design). This paper provides such a non-trivial benchmark system.

2. Brief literature review

Since their inception bicycles have attracted attention from more-or-less well known scientists of the day including thermodynamicist William Rankine, the mathematicians Carlo Bourlet, Paul Appell and Emmanuel Carvallo, the meteorologist Francis Whipple, the mathematical physicist Joseph Boussinesq, and the physicist Arnold Sommerfeld working with mathematician Felix Klein and engineer Fritz Noether (brother of Emmy). A later peak in the “single track vehicle” dynamics literature began in about 1970, perhaps because digital computers eased integration of the governing equations, because of the increased popularity of large motorcycles (and attendant accidents), and because of an ecology-related bicycle boom. This latter literature includes work by dynamicists such as Neimark, Fufaev, Breakwell and Kane. Starting in the mid-1970s the literature increasingly deviates from the rigid-body treatment that is our present focus.

Over the past 140 years scores of other people have studied bicycle dynamics, either for a dissertation, a hobby, or sometimes as part of a life’s work on vehicles. This sparse and varied research on the dynamics of bicycles modelled as linked rigid bodies was reviewed in Hand (1988). Supplementary Appendix I, summarized below, expands on Hand’s review. A more general but less critical review, which also includes models with compliance, is in Sharp (1985).

Many bicycle analyses are based on qualitative dynamics discussions that are too simple to catch the most interesting bicycle phenomenology, namely the ability of a moving bicycle to balance itself. The Physics Today paper by David Jones (1970) is the best-known of this lot. The paper by Maunsell (1946) is amongst the most careful and accurate. Such qualitative dynamics discussions can also be found in: Lallement (1866), Rankine (1869), Sharp (1896), Appell (1896), Wallace (1929), A.T. Jones (1942), Den Hartog (1948), Higbie (1974), Kirshner (1980), Le Hénaff (1987), Olsen & Papadopoulos (1988), Patterson (1993), Cox (1998), Wilson (2004), and Åström et al. (2005).

A second class of papers does use analysis to study the dynamics, but are still too restricted to capture self-stability. Some investigate only models with overly simple geometry and/or mass distribution that can never be self-stable. Others, even if using a bicycle model that is sufficiently general, use rules for the control of the steer and thus skip the equation for self-steer dynamics. Such restricted approaches are found in Bourlet (1899), Boussinesq (1899a,b), Routh (1899), Bouasse (1910), Bower (1915), Pearsall (1922), Loıcianskii & Lur’e (1934), Timoshenko & Young (1948), Haag (1955), Neimark & Fufaev (1967), Lowell & McKell (1982), Getz & Marsden (1995), Fajans (2000) and Åström et al. (2005).

Because the governing equations are complex and generally not reduced, and the models frequently differ with respect to modelling assumptions, parameterizations for the bicycle design or choices for the dynamic variables, most authors have not checked or built upon the work of others. Actually, most authors seem unaware of most of the previous research. Until Hand (1988), who found and checked many papers, only Weir (1972) and Eaton (1973) explicitly compared their equations with any others. Klein and Sommerfeld (1910) claim to have compared with Carvallo (1899) and Whipple (1899), and Van Zytveld (1975) compared with Breakwell (unpublished).

Of these dozens of dynamics equations seven independent derivations are at least as general as the model here, and also present linearized equations that seem perfectly correct: Döhring (1955), Weir (1972), Eaton (1973), Dikarev et al. (1981), Papadopoulos (1987), Hand (1988) and Mears (1988). Six others had minor and easily corrected errors or were just slightly less general: Carvallo (1899), Whipple (1899), Klein & Sommerfeld (1910), Sharp (1971) and Van Zytveld (1975). Neimark & Fufaev (1967) had more substantial but still correctable errors. Psiaki (1979) is likely to be correct but his equations were too complex for us to check in detail.

Other papers have missing terms, disagreed with the equations here otherways, or are too complex to verify in detail but are suspect for one reason or another. More papers continue to turn up which we have not yet checked in detail, e.g. Manning (1951), Kondo et al. (1963) and Ge (1966).

3. The Bicycle Model

Our bicycle, the Whipple bicycle, consists of four rigid bodies: a Rear wheel R, a rear frame B with the rider Body rigidly attached to it, a front frame H consisting of the Handlebar and fork assembly, and a Front wheel F (figure 1). Within the constraint of overall lateral (left-right) symmetry and circular symmetry of the wheels, the shape and mass distributions we use are fully general. For the wheels we assume knife-edge rolling contact (caveat: the symmetry we assume for mass distribution would allow, e.g., toroidal rolling contact). We neglect the motion of the rider relative to the frame, structural compliances and dampers, joint friction, tire compliance and tire “slip”.

The model delineation is not by selecting the most important aspects for describing real bicycle stability. For example, some aspects included here have very small effects, like the non-planarity of the inertia of the real wheel. Other neglected aspects may be paramount, e.g. the rider’s flexibility and control reflexes. For understanding basic features of active rider control the model is undoubtedly unnec-
J. P. Meijaard and others

essarily complete. Even for the study of uncontrolled stability, tire deformation and frame compliance are necessary for understanding wobble (shimmy). Rather, the model here includes all the sharply-defined rigid-body terms, while leaving out a plethora of terms that would require more subtle and less well-defined modeling.

Our bicycle design is fully characterized by 25 parameters described below. Table 1 lists the numerical values used for the numerical benchmark. The numerical values are mostly fairly realistic, but some values (e.g., wheel inertial thickness as represented by \(I_{R_{xx}} > I_{R_{yy}}/2 \)) are exaggerated to guarantee a significant role in the benchmark numerical studies.

The bicycle design parameters are defined in an upright reference configuration with both wheels on the level flat ground and with zero steer angle. The reference coordinate origin is at the rear wheel contact point \(P \). We use the slightly odd conventions of vehicle dynamics (SAE 2001) with positive \(x \) pointing towards the front contact point, positive \(z \) pointing down and the \(y \) axis pointing to the rider’s right.

The radii of the circular wheels are \(r_R \) and \(r_F \). The wheel masses are \(m_R \) and \(m_F \) with their centres of mass at the wheel centres. The moments of inertia of the rear and front wheels about their axes are \(I_{R_{yy}} \) and \(I_{F_{yy}} \). The moments of inertia of the wheels about any diameter in the \(xz \) plane are \(I_{R_{xx}} \) and \(I_{F_{xx}} \). The wheel mass distribution need not be planar, so any positive inertias are allowed with \(I_{R_{yy}} \leq 2I_{R_{xx}} \) and \(I_{F_{yy}} \leq 2I_{F_{xx}} \). All front wheel parameters can be different from those of the rear so, for example, it is possible to investigate separately the importance of angular momentum of the front and rear wheels.

Narrow high-pressure high-friction tire contact is modelled as non-slipping rolling contact between the ground and the knife-edge wheel perimeters. The frictionless wheel axles are orthogonal to the wheel symmetry planes and are located at the wheel centres.

In the reference configuration the front wheel ground contact \(Q \) is located at a distance \(w \) (the “wheel base”) in front of the rear wheel contact \(P \). The front wheel ground contact point trails a distance \(c \) behind the point where the steer axis intersects with the ground. Although \(c > 0 \) for most bicycles, the equations allow a ‘negative trail’ \((c < 0)\) with the wheel contact point in front of the steer axis.

The rear wheel \(R \) is connected to the rear frame assembly \(B \) (which includes the rider body) at the rear hub. The centre of mass of \(B \) is located at \((x_B, y_B = 0, z_B < 0)\). The moment of inertia of the rear frame about its centre of mass is represented by a 3 \(\times \) 3 moment of inertia matrix with components

\[
I_B = \begin{bmatrix}
I_{B_{xx}} & 0 & I_{B_{xz}} \\
0 & I_{B_{yy}} & 0 \\
I_{B_{xz}} & 0 & I_{B_{zz}}
\end{bmatrix}
\]

where all mass is symmetrically distributed relative to the \(xz \) plane, but not necessarily on the plane, so \(I_{B_{yy}} \leq I_{B_{xx}} + I_{B_{zz}} \).

The rear frame assembly \(B \) connects with the handlebar assembly \(H \) at the steer (“head”) axis which allows frictionless relative rotation. The steer axis tilt angle \(\lambda \) is measured back from the upwards vertical, positive when tipped back as on a conventional bicycle with \(-\pi/2 < \lambda < \pi/2\). The steer tilt is \(\pi/2 \) minus the conventional “head angle”; a bicycle with head angle of 72° has \(\lambda = 18° = \pi/10 \).
The combination of wheel base w, trail c and steer axis tilt angle λ implicitly locates the hinge connecting the frame B with the handlebar assembly H.

The centre of mass of the front frame assembly (fork and handlebar) H is at $(x_H, y_H = 0, z_H < 0)$ relative to the rear contact P. H has mass m_H and moment of inertia matrix about its centre of mass

$$I_H = \begin{bmatrix} I_{Hxx} & 0 & I_{Hxz} \\ 0 & I_{Hyy} & 0 \\ I_{Hxz} & 0 & I_{Hzz} \end{bmatrix}$$

(3.2)

where, as for the B frame, $I_{Hyy} \leq I_{Hxx} + I_{Hzz}$.

Two non-design parameters are the downwards gravitational acceleration g and the nominal forward speed v.

This model, or slight simplifications of it, is a common idealization of a bicycle (see supplementary Appendix 1). Motorcycle modelling is often based on an extension of this model using toroidal wheels, tire compliance, tire slip and frame compliance.

(a) How many parameters describe a bicycle?

The bicycle model here is defined completely by the 25 design parameters above (see table 1). This is not a minimal description for dynamic analysis, however. For example, the inertia properties of the rear frame B and the lateral inertial properties of the rear wheel R can be combined, reducing the number of parameters by 2. Similarly for the front frame, reducing the number of parameters to 21. The polar inertia of the front wheel can be replaced with a gyrostat constant which gives spin angular momentum in terms of forward velocity. This does not reduce the number of parameters in non-linear modelling. But in linear modelling the radius of the wheels is irrelevant for lean and steer geometry and their effect on angular momentum is embodied in the gyrostat constants. This reduces the number of parameters by 2 to 19. Finally, in the linearized equations of motion the polar (yy components) of the moments of inertia of the two frames are irrelevant, reducing the necessary number of design parameters to 17. In their most reduced form (below) the linearized equations of motion have 11 arbitrary independent matrix entries, each of which is a complex combination of the 17 parameters just described. Non-dimensionalization might reduce this to 8 free constants. That is, for example, the space of nondimensional root-locus plots is possibly only 8 dimensional. For the purposes of simpler comparison, we use the 25 design parameters above.

(b) How many degrees of freedom does a bicycle have?

Because this system has non-holonomic kinematic constraints, the concept of “degree of freedom” needs clarification. The holonomic (hinges and ground contact) and non-holonomic (non-slip rolling) constraints restrict this collection of 4 linked bodies in three-dimensional space as follows. Start with the 24 degrees of freedom of the 4 rigid bodies, each with 3 translational and 3 rotational degrees of freedom in physical space $(4 \times (3 + 3) = 24)$. Then subtract out 5 degrees of freedom for each of the three hinges and one more for each wheel touching the ground plane: $24 - 3 \times 5 - 2 = 7$. Thus, before we consider the non-slipping wheel-contact constraints, the accessible configuration space is 7-dimensional. The 4 non-holonomic
rolling constraints (two for each wheel–ground contact) do not further restrict this accessible configuration space: kinematically allowable parallel-parking-like moves can translate and steer the bicycle on the plane in arbitrary ways and also can rotate the wheels relative to the frame with no net change of overall bicycle position or orientation. Thus the accessible configuration space for this model is 7-dimensional.

(i) Description of the 7-dimensional configuration space

This 7-dimensional configuration space can be parameterized as follows (see figure 2). The location of the rear-wheel contact with the ground is \((x_P, y_P)\) relative to a global fixed coordinate system with origin \(O\). The orientation of the rear frame with respect to the global reference frame \(O–xy\) is given by a sequence of angular rotations (Euler angles) depicted in figure 2 with fictitious hinges (represented as cans) in series, mounted at the rear hub: a yaw rotation, \(\psi\), about the \(z\)–axis, a lean rotation, \(\phi\), about the rotated \(x\)–axis, and a pitch rotation, \(\theta_B\), about the rotated \(y\)–axis. Note that the pitch \(\theta_B\) is not one of the 7 configuration variables because it is determined by a 3-D trigonometric relation that keeps the front wheel on the ground. The steering angle \(\delta\) is the rotation of the front handlebar frame with respect to the rear frame about the steering axis. A right turn of a forwards-moving bicycle has \(\delta > 0\). Finally, the rotation of the rear \(R\) and front \(F\) wheels with respect to their respective frames \(B\) and \(H\) are \(\theta_R\) and \(\theta_F\). In summary, the configuration space is parameterized here with \((x_P, y_P, \psi, \phi, \delta, \theta_R, \theta_F)\). Quantities such as wheel-centre coordinates and rear-frame pitch are all determined by these.

(ii) Velocity degrees of freedom

With motions akin to parallel parking, consistent with all of the hinge and rolling constraints (but not necessarily consistent with the equations of motion), it is possible to move from any point in this 7-dimensional space to any other point. However, the 4 non-holonomic rolling constraints reduce the 7-dimensional accessible configuration space to \(7 - 4 = 3\) velocity degrees of freedom.

This 3-dimensional kinematically-accessible velocity space can conveniently be parameterized by the lean rate \(\dot{\phi}\) of the rear frame, the steering rate \(\dot{\delta}\) and the rotation rate \(\dot{\theta}_R\) of the rear wheel \(R\) relative to the rear frame \(B\).

4. Basic features of the model, equations and solutions

(a) The system behaviour is unambiguous

The dynamics equations for this model follow from use of linear and angular momentum balance and the assumption that the kinematic constraint forces follow the rules of action and reaction and do no net work. These equations may be assembled into a set of ordinary differential equations, or differential-algebraic equations by various methods. One can assemble governing differential equations using the Newton–Euler rigid-body equations, using Lagrange equations with Lagrange multipliers for the in-ground-plane rolling-contact forces, or one can use methods based on the principle of virtual velocities (e.g., Kane’s method), etc. But the subject of mechanics is sufficiently well defined that we know that all standard methods will yield equivalent sets of governing differential equations. Therefore,
Table 1. Parameters for the benchmark bicycle depicted in figure 1 and described in the text. The values given are exact (no round-off). The inertia components and angles are such that the principal inertias (eigenvalues of the inertia matrix) are also exactly described with only a few digits. The tangents of the angles that the inertia eigenvectors make with the global reference are rational fractions. Note that moment-of-inertia matrix entries must satisfy the triangle inequalities that no one principal value is bigger than the sum of the other two and all principal values are positive.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value for benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel base</td>
<td>w</td>
<td>1.02 m</td>
</tr>
<tr>
<td>Trail</td>
<td>c</td>
<td>0.08 m</td>
</tr>
<tr>
<td>Steer axis tilt</td>
<td>λ</td>
<td>$\pi/10$ rad</td>
</tr>
<tr>
<td>((\pi/2) – head angle)</td>
<td></td>
<td>(90° – 72°)</td>
</tr>
<tr>
<td>Gravity</td>
<td>g</td>
<td>9.81 N/kg</td>
</tr>
<tr>
<td>Forward speed</td>
<td>v</td>
<td>various m/s, see tables 2–4</td>
</tr>
<tr>
<td>Rear wheel R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>r_R</td>
<td>0.3 m</td>
</tr>
<tr>
<td>Mass</td>
<td>m_R</td>
<td>2 kg</td>
</tr>
<tr>
<td>Mass moments of inertia</td>
<td>(I_{Rxx}, I_{Ryy})</td>
<td>(0.0603, 0.12) kgm2</td>
</tr>
<tr>
<td>Rear Body and frame assembly B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position centre of mass</td>
<td>(x_B, z_B)</td>
<td>(0.3, –0.9) m</td>
</tr>
<tr>
<td>Mass</td>
<td>m_B</td>
<td>85 kg</td>
</tr>
<tr>
<td>Mass moments of inertia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Handlebar and fork assembly H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position centre of mass</td>
<td>(x_H, z_H)</td>
<td>(0.9, –0.7) m</td>
</tr>
<tr>
<td>Mass</td>
<td>m_H</td>
<td>4 kg</td>
</tr>
<tr>
<td>Mass moments of inertia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front wheel F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>r_F</td>
<td>0.35 m</td>
</tr>
<tr>
<td>Mass</td>
<td>m_F</td>
<td>3 kg</td>
</tr>
<tr>
<td>Mass moments of inertia</td>
<td>(I_{Fxx}, I_{Fyy})</td>
<td>(0.1405, 0.28) kgm2</td>
</tr>
</tbody>
</table>

a given consistent-with-the-constraints initial state (positions and velocities of all points on the frames and wheels) will always yield the same subsequent motions of the bicycle parts. So, while the choice of variables and the recombination of governing equations leads to vast differences in the appearance of the governing equations, any difference between dynamics predictions can only be due to errors. Despite this unique specification, prior to this paper there is no established-as-sound set of agreed equations, or calculated motion, in the literature (see supplementary Appendix 1).

(b) The system is conservative but not Hamiltonian

The only friction forces in this model are the lateral and longitudinal forces at the ground-contact points. Because of the no-slip condition these friction forces are non-dissipative. The hinges and ground contact are all workless kinematic constraints. In uncontrolled bicycle motion the only external applied forces are the
conservative gravity forces on each part. That is, there are no dissipative forces and the system is energetically conservative; the sum of the gravitational and kinetic energies is a constant for any free motion. But the non-holonomic kinematic constraints preclude writing the governing equations in standard Hamiltonian form, so theorems of Hamiltonian mechanics do not apply. One result, surprising to some cultured in Hamiltonian systems, is that the bicycle equations can have asymptotic (exponential) stability (see figure 4) even with no dissipation. This apparent contradiction of the stability theorems for Hamiltonian systems is because the bicycle, while conservative, is, by virtue of the non-holonomic wheel contacts, not Hamiltonian. A similar system that is conservative but has asymptotic stability is the uncontrolled skateboard (Hubbard 1979) and more simple still is the Chaplygin Sleigh described in, e.g., Ruina, 1998.

(c) Symmetries in the solutions

Without any detailed calculations some features of the solutions may be inferred by symmetry.

Ignorable coordinates. Some of the configuration variables do not appear in any expression for the forces, moments, potential energies or kinetic energies of any of the parts (these are so-called cyclic or ignorable coordinates). In particular the location of the bicycle on the plane \((x_P, y_P)\), the heading of the bicycle \(\psi\), and the rotations \((\theta_R, \theta_F)\) of the two wheels relative to their respective frames do not show up in any of the dynamics equations for the velocity degrees of freedom. So one can write a reduced set of dynamics equations that do not include these ignorable coordinates. The full configuration as a function of time can be found afterwards by integration of the kinematic constraint equations, as will be discussed. Also, these ignorable coordinates cannot have asymptotic stability; a small perturbation of, say, the heading \(\psi\) will lead to a different ultimate heading.

Decoupling of lateral from speed dynamics. The lateral (left-right) symmetry of the bicycle-design along with the lateral symmetry of the equations implies that the straight-ahead unsteered and untipped \((\delta = 0, \phi = 0)\) rolling motions are necessarily solutions for any forward or backward speed \(v\). Moreover, relative to these symmetric solutions, the longitudinal and the lateral motion must be decoupled from each other to first order (linearly decoupled). By lateral symmetry a perturbation to the right must cause the same change in speed as a perturbation to the left, but by linearity the effects must be the negative of each other. Therefore there can be no first-order change in speed due to lean. Similarly, speed change cannot cause lean. So the linearized fore-aft equations of motion are entirely decoupled from the lateral equations of motion (see Appendix 4 for an expansion of this argument).

A fore-aft symmetric bike cannot be self stable. Because all of the equations of such frictionless kinematically constrained systems are time reversible, any bicycle motion is also a solution of the equations when moving backwards, with all particle trajectories being traced at identical speeds in the reverse direction. Thus a bicycle that is exponentially stable in balance when moving forwards at speed \(v > 0\) must be exponentially unstable when moving at \(-v\) (backwards at the same speed). And a fore-aft symmetric bicycle (having a vertical central steering axis and a handlebar assembly, front mass distribution and front wheel that mirrors that of the rear assembly) cannot be exponentially stable for any forward or backward motions. If a

Article in preparation for PRS series A
bicycle has exponentially decaying solutions in one direction it must have exponentially growing solutions in the opposite direction because of time reversal. By symmetry it must therefore also have exponentially growing solutions in the (supposedly stable) original direction.

\((d) \) The non-linear equations have no simple expression

In contrast with the linear equations we present below, there seems to be no reasonably compact expression of the full non-linear equations of motion for this model. The kinematic loop, from rear-wheel contact to front-wheel contact, determines the rear frame pitch through a quartic equation (Psiaki 1979), so there is no simple expression for rear frame pitch for large lean and the steer angle. Thus the writing of non-linear governing differential equations in a form that various researchers can check against alternative derivations is a challenge that is not addressed here, and might never be addressed. An algorithmic derivation of non-linear equations, suitable for numerical calculation and benchmark comparison is presented in (Basu-Mandal, Chatterjee and Papadopoulos, 2006) where no-hands circular motions and their stability are studied in detail.

5. Linearized equations of motion

Here we present a set of linearized differential equations for the bicycle model, slightly perturbed from upright straight-ahead motion, in a canonical form. To aid in organizing the equations we include applied roll and steer torques which are later set to zero for study of uncontrolled motion.

\((a) \) Derivation of governing equations

Mostly-correct derivations and presentations of the equations of motion for a relatively general bicycle model, although not finally expressed in the canonical form of equation (5.3), are found in Carvallo (1899), Whipple (1899), Klein & Sommerfeld (1910), Döhring (1953, 1955), Sharp (1971), Weir (1972), Eaton (1973) and Van Zytveld (1975). Dikarev et al. (1981) have a derivation of equation (5.3) based on correcting the errors in Neúmark and Fufaev (1967) as does Hand (1988) which just predates Mears (1988). Meijaard (2004) also has a derivation of the linearized equations (generated in preparation for this paper).

The derivations above are generally long and frequently lead to equations that are unwieldy or even inscrutable. A minimal derivation of the equations using angular momentum balance about various axes, based on Papadopoulos (1987), is given in Appendix B. Note that this derivation, as well as all of the verified equations from the literature, are not based on a systematic linearization of full non-linear differential equations. Thus far, systematic linearizations have not achieved analytical expressions for the linearized-equation coefficients in terms of the 25 bicycle parameters. However, part of the validation process here includes comparison with full non-linear simulations and also comparison with numerical values of the linearized-equation coefficients as determined by these same programs.
(b) Forcing terms

For numerical benchmark purposes, where eigenvalues are paramount, we neglect control forces or other forcing (except gravity which is always included). However, the forcing terms help to organize the equations. Moreover, forcing terms are needed for study of disturbances and control, so they are included in the equations of motion.

Consider an arbitrary distribution of forces F_i acting on bike points which are added to the gravity forces. Their net effect is to contribute to the forces of constraint (the ground reaction forces and the action-reaction pairs between the parts at the hinges) and to contribute to the accelerations $(\ddot{\phi}, \dot{\delta}, \dot{\theta}_R)$ associated with the three velocity degrees of freedom (lean, steer and forward motion).

Three generalized forces can be defined by writing the power of the applied forces associated with arbitrary perturbation of the velocities that are consistent with the hinge-assembly and ground-wheel contact constraints. The power necessarily factors into a sum of three terms

$$P = \sum F_i \cdot v_i = T_\phi \dot{\phi} + T_\delta \dot{\delta} + T_{\theta_R} \dot{\theta}_R$$

because the velocities v_i of all material points are necessarily linear combinations of the generalized velocities $(\dot{\phi}, \dot{\delta}, \dot{\theta}_R)$. The generalized forces $(T_\phi, T_\delta, T_{\theta_R})$ are thus each linear combinations of the components of the various applied forces F_i.

The generalized forces $(T_\phi, T_\delta, T_{\theta_R})$ are energetically conjugate to the generalized velocities. The generalized forces can be visualized by considering special loadings each of which contributes to only one generalized force when the bicycle is in the reference configuration. In this way of thinking

1. T_{θ_R} is the propulsive “force”, expressed as an equivalent moment on the rear wheel. In practice pedal torques or a forward push on the bicycle contribute to T_{θ_R} and not to T_ϕ and T_δ.

2. T_ϕ is the right lean torque, summed over all the forces on the bicycle, about the line between the wheel ground contacts. A sideways force on the rear frame located directly above the rear contact point contributes only to T_ϕ. A sideways wind gust, or a parent holding a beginning rider upright contributes mainly to T_ϕ.

3. T_δ is an action-reaction steering torque. A torque causing a clockwise (looking down) action to the handle bar assembly H along the steer axis and an equal and opposite reaction torque on the rear frame contributes only to T_δ. In simple modelling, T_δ would be the torque that a rider applies to the handlebars. Precise description of how general lateral forces contribute to T_δ depends on the projection implicit in equation (5.1). Some lateral forces make no contribution to T_δ, namely those acting at points on either frame which do not move when an at-rest bicycle is steered but not leaned. Lateral forces applied to the rear frame directly above the rear contact point make no contribution to T_δ. Nor do forces applied to the front frame if applied on the line connecting the front contact point with the point where the steer axis intersects the vertical line through the rear contact point. Lateral forces at ground level, but off the two lines just described, contribute only to T_δ. Lateral forces acting at the wheel contact points make no contribution to any of the generalized forces.
Just as for a pendulum, finite vertical forces (additional to gravity) change the coefficients in the linearized equations of motion but do not contribute to the forcing terms. Similarly, propulsive forces also change the coefficients but have no first order effect on the lateral forcing. Thus the equations presented here only apply for small (≪ mg) propulsive and small additional vertical forces.

\((c) \) The first linear equation: with no forcing forward speed is constant

The governing equations describe a linear perturbation of a constant-speed straight-ahead upright solution: \(\phi = 0, \delta = 0 \), and the constant forward speed is \(v = -\dot{\theta}_R r_R \). As explained above and in more detail in supplementary Appendix 4, lateral symmetry of the system, combined with the linearity in the equations precludes any first-order coupling between the forward motion and the lean and steer. Therefore the first linearized equation of motion is simply obtained from two-dimensional (xz-plane) mechanics as:

\[
\begin{bmatrix}
 r^2 m_T + I_{Ryy} + (r_R/r_F)^2 I_{Fyy}
\end{bmatrix} \ddot{\theta}_R = T_{\theta_R},
\]

where \(m_T \) is total bike mass (see Appendix A). That is, in cases with no propulsive force the nominal forward speed \(v = -r_R \dot{\theta}_R \) is constant (to first order).

\((d) \) Lean and steer equations

The linearized equations of motion for the two remaining degrees of freedom, the lean angle \(\phi \) and the steer angle \(\delta \), are two coupled second-order constant-coefficient ordinary differential equations. Any such set of equations can be linearly combined to get an equivalent set. We define the canonical form below by insisting that the right-hand sides of the two equations consist only of \(T_\phi \) and \(T_\delta \), respectively. The first equation is called the lean equation and the second is called the steer equation. That we have a mechanical system requires that the linear equations have the form \(M \ddot{q} + C \dot{q} + K q = f \). For the bicycle these equations can be written as (Papadopoulos 1987)

\[
M \ddot{q} + v C_1 \dot{q} + [g K_0 + v^2 K_2] q = f,
\]

where and the time-varying variables are \(q = \begin{bmatrix} \phi \\ \delta \end{bmatrix} \) and \(f = \begin{bmatrix} T_\phi \\ T_\delta \end{bmatrix} \).

The terms in the constant coefficient matrices \(M, C_1, K_0 \) and \(K_2 \) are defined in terms of the design parameters in Appendix A. Briefly, \(M \) is a symmetric mass matrix which gives the kinetic energy of the bicycle system at zero forward speed by \(\dot{q}^T / 2 M \dot{q} \). The damping-like (there is no real damping) matrix \(C = v C_1 \) is linear in the forward speed \(v \) and captures gyroscopic torques due to steer and lean rate, as well as effects of lateral acceleration of the front contact due to steer rate. The stiffness matrix \(K \) is the sum of two parts: a velocity-independent symmetric part \(g K_0 \) proportional to the gravitational acceleration, which can be used to calculate changes in potential energy with \(\dot{q}^T [g K_0] q / 2 \), and a part \(v^2 K_2 \) which is quadratic in the forward speed and is due to gyroscopic and centrifugal effects.

In Appendix A the coefficients in the governing equations (5.3) are expressed analytically in terms of the 25 design parameters. Equation (5.3) above is the core of this paper.
6. Benchmark model and solutions

The same form of governing equations can be found by various means even with, perhaps, the constant coefficients being derived numerically. Further, motion of a bicycle model can be found without ever explicitly writing the governing equations, with more direct numerical methods. To facilitate comparisons to results from these less explicit approaches we have defined a specific benchmark bicycle with values given to all parameters in table 1. The parameter values were chosen to minimize the possibility of fortuitous cancellation that could occur if used in an incorrect model. On the other hand we wanted numbers that could be easily described precisely. In the benchmark bicycle the two wheels are different in all properties and no two angles, masses or distances match.

(a) Coefficients of the linearized equations of motion

Substitution of the values of the design parameters for the benchmark bicycle from table 1 in the expressions from Appendix A results in the following values for the entries in the matrices in the equations of motion 5.3:

\[M = \begin{bmatrix} 80.8172 & 2.31941332208709 \\ 2.31941332208709 & 0.29784188199686 \end{bmatrix}, \]

\[K_0 = \begin{bmatrix} -80.95 & -2.59951685249872 \\ -2.59951685249872 & -0.80329488458618 \end{bmatrix}, \]

\[K_2 = \begin{bmatrix} 0 & 76.59734589573222 \\ 0 & 2.65431523794604 \end{bmatrix}, \text{ and} \]

\[C_1 = \begin{bmatrix} 0 & 33.86641391492494 \\ -0.85035641456978 & 1.68540397397560 \end{bmatrix}. \]

The coefficients are given with 14 decimal places above and elsewhere in this paper as a benchmark. Many-digit agreement between results obtained by other means and this benchmark provides near certainty that there is also an underlying mathematical agreement, even if that agreement is not apparent analytically.

(b) Linearized stability, eigenvalues for comparison

A useful property of linearized equations is that the stability eigenvalues are independent of coordinate choice and even independent of the form of the equations. Any non-singular change of variables yields equations with the same linearized stability eigenvalues. Thus stability eigenvalues serve well as convenient benchmark results permitting comparison between different approaches.

The stability eigenvalues are calculated by assuming an exponential solution of the form \(q = q_0 \exp(\lambda t) \) for the homogeneous equations \((f = 0) \) in equations (5.3). This leads to the characteristic polynomial,

\[\det(M\lambda^2 + vC_1\lambda + gK_0 + v^2K_2) = 0, \]

which is quartic in \(\lambda \). After substitution of the expressions from Appendix A, the coefficients in this quartic polynomial become complicated expressions of the 25
Figure 3. Eigenvalues λ from the linearized stability analysis for the benchmark bicycle from figure 1 and table 1 where the solid lines correspond to the real part of the eigenvalues and the dashed line corresponds to the imaginary part of the eigenvalues, in the forward speed range of $0 \leq v \leq 10$ m/s. The speed range for the asymptotic stability of the benchmark bicycle is $v_w < v < v_c$. The zero crossings of the real part of the eigenvalues are for the weave motion at the weave speed $v_w \approx 4.292$ m/s and for the capsize motion at capsize speed $v_c \approx 6.024$ m/s, and there is a double real root at $v_d \approx 0.684$ m/s. For accurate eigenvalues and transition speeds see tables 2, 3, and 4.

This fourth order system has four distinct eigenmodes except at special parameter values leading to multiple roots. A complex (oscillatory) eigenvalue pair is associated with a pair of complex eigenmodes. At high enough speeds, the two modes most significant for stability are traditionally called the capsize mode and weave mode. The capsize mode corresponds to a real eigenvalue with eigenvector dominated by lean: when unstable, a capsizing bicycle leans progressively into a tightening spiral with steer proportional to lean as it falls over. The weave mode is an oscillatory motion in which the bicycle steers sinuously about the headed direction with a slight phase lag relative to leaning. The third eigenvalue is large, real and negative. It corresponds to the castering mode which is dominated by steer in which the front ground contact follows a tractrix-like trajectory, like the straightening of a swivel wheel.

At very low speeds, typically $0 < v < 0.5$ m/s, there are two pairs of real eigen-
Table 2. Some characteristic values for the forward speed v and the eigenvalues λ from the linearized stability analysis for the benchmark bicycle from figure 1 and table 1 in the forward speed range of $0 \leq v \leq 10 \text{ m/s}$, with weave speed v_w, capsize speed v_c, and the speed with a double root v_d. Fourteen digit results are presented for benchmark comparisons.

<table>
<thead>
<tr>
<th>v [m/s]</th>
<th>λ_{d1} = $\pm 3.131 643 247 906 56$</th>
<th>λ_{d2} = $5.530 943 717 653 93$</th>
<th>λ_d = $3.782 904 051 293 20$</th>
<th>λ_w = $0 \pm 3.435 033 848 661 44$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v = 0$</td>
<td>0</td>
<td>0</td>
<td>$\pm 3.079 108 186 032 06$</td>
<td>$\pm 4.464 867 713 788 23$</td>
</tr>
<tr>
<td>$v = 0$</td>
<td>0</td>
<td>0</td>
<td>$\pm 3.216 754 022 524 85$</td>
<td>$\pm 6.963 773 515 317 91$</td>
</tr>
<tr>
<td>$v_d = 0.684 283 078 892 46$</td>
<td>$\pm 3.526 961 709 900 70$</td>
<td>$\pm 4.213 756 442 583 62$</td>
<td>$\pm 6.283 845 854 41 2$</td>
<td>$\pm 7.216 018 404 372 87$</td>
</tr>
<tr>
<td>$v_w = 4.292 382 536 341 11$</td>
<td>$\pm 1.706 756 056 630 75$</td>
<td>$\pm 4.133 253 315 211 25$</td>
<td>$\pm 0.413 253 315 211 25$</td>
<td>$\pm 0.775 341 882 195 85$</td>
</tr>
<tr>
<td>$v_w = 0.024 262 015 388 37$</td>
<td>$\pm 0.526 444 865 841 42$</td>
<td>$\pm 2.138 756 442 583 62$</td>
<td>$\pm 2.138 756 442 583 62$</td>
<td>$\pm 2.691 838 351 801 97$</td>
</tr>
<tr>
<td>$v_c = 0.024 262 015 388 37$</td>
<td>$\pm 1.526 444 865 841 42$</td>
<td>$\pm 2.138 756 442 583 62$</td>
<td>$\pm 2.138 756 442 583 62$</td>
<td>$\pm 3.216 754 022 524 85$</td>
</tr>
<tr>
<td>$v_c = 0.024 262 015 388 37$</td>
<td>$\pm 1.076 756 056 630 75$</td>
<td>$\pm 0.413 253 315 211 25$</td>
<td>$\pm 0.413 253 315 211 25$</td>
<td>$\pm 3.216 754 022 524 85$</td>
</tr>
<tr>
<td>$v_c = 0.024 262 015 388 37$</td>
<td>$\pm 1.526 444 865 841 42$</td>
<td>$\pm 2.138 756 442 583 62$</td>
<td>$\pm 2.138 756 442 583 62$</td>
<td>$\pm 3.216 754 022 524 85$</td>
</tr>
<tr>
<td>$v_c = 0.024 262 015 388 37$</td>
<td>$\pm 1.076 756 056 630 75$</td>
<td>$\pm 0.413 253 315 211 25$</td>
<td>$\pm 0.413 253 315 211 25$</td>
<td>$\pm 3.216 754 022 524 85$</td>
</tr>
<tr>
<td>$v_c = 0.024 262 015 388 37$</td>
<td>$\pm 1.526 444 865 841 42$</td>
<td>$\pm 2.138 756 442 583 62$</td>
<td>$\pm 2.138 756 442 583 62$</td>
<td>$\pm 3.216 754 022 524 85$</td>
</tr>
<tr>
<td>$v_c = 0.024 262 015 388 37$</td>
<td>$\pm 1.076 756 056 630 75$</td>
<td>$\pm 0.413 253 315 211 25$</td>
<td>$\pm 0.413 253 315 211 25$</td>
<td>$\pm 3.216 754 022 524 85$</td>
</tr>
</tbody>
</table>

Table 3. Complex eigenvalues λ_{weave} from the linearized stability analysis for the oscillatory weave motion for the benchmark bicycle from figure 1 and table 1 in the forward speed range of $0 \leq v \leq 10 \text{ m/s}$.

<table>
<thead>
<tr>
<th>v [m/s]</th>
<th>Re(λ_{weave})</th>
<th>Im(λ_{weave})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.807 740 275 199 30</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.680 662 965 906 75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.315 824 473 843 25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.079 108 186 032 06</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.464 867 713 788 23</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.876 730 605 987 09</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.195 259 133 298 05</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.460 379 713 969 31</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9.693 773 515 317 91</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10.906 811 394 762 87</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

values. Each pair consists of a positive and a negative eigenvalue and corresponds to an inverted-pendulum-like motion of the bicycle. The positive root in each pair corresponds to falling, whereas the negative root corresponds to the time reversal of this falling. For the smaller pair lean and steer have the same sign during the fall, whereas for the larger pair lean and steer have opposite signs. When speed is increased to $v_d \approx 0.684 \text{ m/s}$ two real eigenvalues become identical and form a complex conjugate pair; this is where the oscillatory weave motion emerges. At first this motion is unstable but at $v_w \approx 4.292 \text{ m/s}$, the weave speed, these eigenvalues cross the real axis in a Hopf bifurcation and the weave motion becomes stable up to infinite speed. At high speeds the frequency of the weave motion is approximately proportional to the forward speed, meaning that the wavelength of the oscillation approaches a constant. Meanwhile the capsize motion, which was stable for low speed, crosses the real axis in a pitchfork bifurcation at $v_c \approx 6.024 \text{ m/s}$, the capsize speed, and the motion becomes mildly unstable. With further increase in speed, the unstable capsize eigenvalue attains its maximum value, followed by a decrease towards zero from above. The speed range for which the uncontrolled bicycle shows asymptotically stable behaviour, with all eigenvalues having negative real part, is $v_w < v < v_c$. For comparison by future researchers, all four eigenvalues are presented with 14 decimal places at equidistant forward speeds in table 3 and table 4.
Table 4. Real eigenvalues λ from the linearized stability analysis for the capsize motion and the castering motion for the benchmark bicycle from figure 1 and table 1 in the forward speed range of $0 \leq v \leq 10$ m/s.

7. Validation of the linearized equations of motion

The linearized equations of motion here, equation (5.3) with the coefficients as presented in Appendix A, have been derived by pencil and paper in two ways (Papadopoulos 1987, Meijaard 2004), and agree exactly with some of the past literature, see §2, in particular: Döring (1955), Weir (1972) and Hand (1988). We have also checked equation coefficients via the linearization capability of two general non-linear dynamics simulation programs. The first, SPACAR, is a numeric multibody dynamics program and the second, AutoSim, is symbolic software for multibody dynamic analysis. Since a term-by-term algebraic comparison was not possible in these programs, the validation was performed by comparing the numerical entries in the coefficient matrices of the linearized equations of motion for the specific benchmark bicycle. Finally, the transient motions after a small perturbation were predicted by the linearized equations at one forward speed and compared with the motions predicted by the non-linear simulations.

(a) Equations of motion derived with the numeric program SPACAR

SPACAR is a program system for dynamic simulation of multibody systems, based on a finite element approach. The first version by Van der Werff (1977) was based on principles laid out by Besseling (1964). SPACAR has been further developed since then (Jonker (1988, 1990), Meijaard (1991), Schwab (2002) and Schwab & Meijaard (2003)). The SPACAR program handles systems of rigid and flexible bodies connected by various joints in both open and closed kinematic loops, and where parts may have rolling contact. SPACAR generates numerically, and solves, full non-linear dynamics equations using minimal coordinates (constraints are eliminated). SPACAR can also find the numeric coefficients for the linearized equations of motion based on a systematic analytic linearization of the non-linear equations. Used for the simulations here are the rigid body, point mass, hinge and rolling-wheel contact features of the program (Schwab & Meijaard 1999, 2003).

As determined by SPACAR, the entries in the matrices of the linearized equations of motion (5.3) agree to 14 digits with the values presented in §6a. More details about the SPACAR implementation are in supplementary Appendix 2.
(b) Equations of motion derived with the symbolic program AutoSim

We also derived the non-linear governing equations using the multibody dynamics program AutoSim (Sayers 1991a, 1991b). AutoSim is a Lisp (Steele 1990) program mostly based on Kane’s (1968) approach. It consists of function definitions and data structures allowing the generation of symbolic equations of motion of rigid-body systems. AutoSim is mainly for systems of objects connected with prismatic and revolute joints arranged with the topology of a tree (no loops).

AutoSim generates equations in the form

\[\dot{q} = S(q, t)u, \]
\[\dot{u} = [M(q, t)]^{-1}Q(q, u, t). \]

(7.1)

Here, \(q \) are the generalized coordinates, \(u \) are the generalized velocities, \(S \) is the kinematic matrix that relates the rates of the generalized coordinates to the generalized speeds, \(M \) is the system mass matrix, and \(Q \) contains all force terms and velocity dependent inertia terms.

Additional constraints are added for closed kinematic loops, special joints and non-holonomic constraints. For example, the closed loop holonomic constraint for both bicycle wheels touching the ground cannot be solved simply in symbolic form for the dependent coordinates (requires the solution of a quartic polynomial). An iterative numerical solution for this constraint was used, destroying the purely symbolic nature of the equations.

Strictly speaking, standard AutoSim linearization is not applicable for our system due to the kinematic closed loop of the wheel ground contact. Fortunately, with the laterally symmetric bicycle here the dependent coordinate (the pitch angle) remains zero to first order, for which special case the linearization works. The final AutoSim-based linearization output consists of a MatLab script file that numerically calculates the matrices of the linearized equations.

The entries in the matrices of the linearized equations of motion (5.3) as determined by the program AutoSim agree to 14 digits with the values presented in §6 a. More details about the AutoSim verification are in supplementary Appendix 3.

8. Energy conservation and asymptotic stability

When an uncontrolled bicycle is within its stable speed range, roll and steer perturbations die away in a seemingly damped fashion. However, the system conserves energy. As the forward speed is affected only to second order, linearized equations do not capture this. Therefore a non-linear dynamic analysis with SPACAR was performed on the benchmark bicycle model to demonstrate the leakage of the energy from lateral perturbations into forward speed. The initial conditions at \(t = 0 \) are the upright reference position \((\phi, \delta, \theta_R) = (0, 0, 0) \) at a forward speed of \(v = 4.6 \) m/s, which is within the stable speed range of the linearized analysis, and an initial angular roll velocity of \(\dot{\phi} = 0.5 \) rad/s. In the full non-linear equations the final upright forward speed is augmented from the initial speed by an amount determined by the energy in the lateral perturbation. In this case the speedup was about 0.022 m/s.

Figure 4 shows the expected small increase of the forward speed \(v \) while the lateral motions die out. The same figure also shows that the period for the roll and the steer motion is approximately \(T_0 = 1.60 \) s, which compares well with the
Figure 4. Non-linear dynamic response of the benchmark bicycle from figure 1 and table 1, with the angular roll velocity \(\dot{\phi}\), the angular steering velocity \(\dot{\delta}\), and the forward speed \(v = -\dot{\theta}_R R\) for the initial conditions: \((\phi, \delta, \theta_R)_0 = (0, 0, 0)\) and \((\dot{\phi}, \dot{\delta}, v)_0 = (0.5 \text{ rad/s}, 0, 4.6 \text{ m/s})\) for a time period of 5 seconds.

1.622 s from the linearized stability analysis. The lack of agreement in the second decimal place is from finite-amplitude effects, not numerical accuracy issues. When the initial lateral velocity is decreased by a factor of 10 the measured period of motion already settles down to 1.622 s. The steering motion \(\dot{\delta}\) has a small phase lag relative to the roll motion \(\dot{\phi}\) visible in the solution in figure 4.

9. Conclusions, discussion and future work

This paper only narrowly addresses the question “How does an uncontrolled bicycle stay up?” by firming up the over a century old discovery that self-stability is explicable with a sufficiently complex rigid body dynamics model.

Rather, this paper presents reliable equations for a well-delineated model for studying controlled and uncontrolled stability of a bicycle more deeply.

We have presented reliable equations of motion, equation 5.3 with Appendix A, for a fairly general rigid-body bicycle model and compared them to the century-old literature. Alternatively, they can be used as a check for others who derive their own equations by comparison with: a) the analytic form of the coefficients in equation (5.3), or b) the numerical value of the coefficients in equation (5.3) using either the general benchmark bicycle parameters of table 1, or the simpler set in the Supplementary Appendices, or c) the tabulated stability eigenvalues, or d) the speed range of self-stability for the benchmark parameters.

In a future paper we will use the equations presented here to address various features of bicycle self-stability and how these depend, or do not depend, on the bicycle design parameters. For example, we will dispel some bicycle mythology about the need for mechanical trail or gyroscopic wheels for bicycle self-stability.

Acknowledgements

Thanks to Andrew Dressel for improvements to JBike6, the Matlab program for eigenvalue calculations. Technical and editorial comments from Karl Åström, Anindya Chatterjee, Neil Getz, Anders Lennartsson, David Limebeer, Mark Psiaki, Keith Seffen and Alexandro Saccon have improved the paper. Documentaliste Claudine Pouret at the French Academy of Sciences helped untangle some of the early history. JPM was supported by the Engi-
neering and Physical Sciences research Council (EPSRC) of the U.K. AR and JMP were supported by an NSF presidential Young Investigator Award and AR further partially supported by NSF biomechanics and robotics grants.

Appendices

These main appendices include
A) definitions of the coefficients used in the equations of motion, and
B) a brief derivation of the governing equations.

Additional supplementary appendices not included with the main paper include
1) a detailed review of the history of bicycle dynamics studies,
2) a detailed description of the SPACAR validation,
3) a detailed description of the AutoSim validation,
4) Detailed explanation of the decoupling of lateral from forward motion, and
5) a reduced benchmark for use by those with simpler models.

Appendix A. Coefficients of the linearized equations

Here we define the coefficients in equation (5.3). These coefficients and various intermediate variables are expressed in terms of the 25 design parameters (as well as v and g) in table 1 and figure 1. Some intermediate terms defined here are also used in the derivation of the equations of motion in Appendix B.

We use the subscript R for the rear wheel, B for the rear frame incorporating the rider Body, H for the front frame including the Handlebar, F for the front wheel, T for the Total system, and A for the front Assembly which is the front frame plus the front wheel.

Of the quantities defined in A1–A19, only 12 are used explicitly in the matrix entries of the equations of motion A20–A27. A2 is used only in A19 and B2. A6 is used only in A7. A8–A13 are used in A14–A16, A19, and B3.

The total mass and the corresponding centre of mass location (with respect to the rear contact point P) are

$$m_T = m_R + m_B + m_H + m_F,$$

(A1)

$$x_T = (x_B m_B + x_H m_H + w m_F)/m_T,$$

(A2)

$$z_T = (-r_R m_R + z_B m_B + z_H m_H - r_F m_F)/m_T.$$

(A3)

For the system as a whole, the relevant mass moments and products of inertia with respect to the rear contact point P along the global axes are

$$I_{Txx} = I_{Rxx} + I_{Bxx} + I_{Hxx} + I_{Fxx} + m_R r_R^2 + m_B z_B^2 + m_H z_H^2 + m_F r_F^2,$$

(A4)

$$I_{Txz} = I_{Bxz} + I_{Hxz} - m_B x_B z_B - m_H x_H z_H + m_F w_F.$$

(A5)

The dependent moments of inertia for the axisymmetric rear wheel and front wheel are

$$I_{Rzz} = I_{Rxx}, \quad I_{Fzz} = I_{Fxx}.$$

(A6)

Then the moment of inertia for the whole bike along the z-axis is

$$I_{Tzz} = I_{Rzz} + I_{Bzz} + I_{Hzz} + I_{Fzz} + m_B x_B^2 + m_H x_H^2 + m_F w_F^2.$$

(A7)
The same properties are similarly defined for the front assembly A (the front frame combined with the front wheel):

\[m_A = m_H + m_F, \quad x_A = (x_H m_H + w m_F)/m_A, \quad z_A = (z_H m_H - r_F m_F)/m_A. \quad (A8) \]

The relevant mass moments and products of inertia for the front assembly with respect to the centre of mass of the front assembly along the global axes are

\[I_{Ax} = I_{Hx} + I_{Fx} + m_H(z_H - z_A)^2 + m_F(r_F + z_A)^2, \quad (A10) \]
\[I_{Az} = I_{Hz} - m_H(x_H - x_A)(z_H - z_A) + m_F(w - x_A)(r_F + z_A), \quad (A11) \]
\[I_{Azz} = I_{Hzz} + I_{Fzz} + m_H(x_H - x_A)^2 + m_F(w - x_A)^2. \quad (A12) \]

Let \(\lambda = (\sin \lambda, 0, \cos \lambda)^T \) be a unit vector pointing down along the steer axis where \(\lambda \) is the angle in the \(xz \)-plane between the downward steering axis and the \(+z \) direction. The centre of mass of the front assembly is ahead of the steering axis by perpendicular distance

\[u_A = (x_A - w - c) \cos \lambda - z_A \sin \lambda. \quad (A13) \]

For the front assembly three special inertia components are needed: the moment of inertia about the steer axis and the products of inertia relative to crossed, skew axes, taken about the points where they intersect. The latter give the torque about one axis due to angular acceleration about the other. For example, the \(\lambda x \) component is taken about the point where the steer axis crosses the ground. It includes a part from \(I_A \) operating on unit vectors along the steer axis and along \(x \) and also a parallel axis term based on the distance of \(m_A \) from each of those axes.

\[I_{Axx} = m_A u_A^2 + I_{Ax} \sin^2 \lambda + 2 I_{Ax} \sin \lambda \cos \lambda + I_{Azz} \cos^2 \lambda, \quad (A14) \]
\[I_{Ayx} = -m_A u_A z_A + I_{Ax} \sin \lambda + I_{Ax} \cos \lambda, \quad (A15) \]
\[I_{Ayz} = m_A u_A x_A + I_{Ax} \sin \lambda + I_{Azz} \cos \lambda. \quad (A16) \]

The ratio of the mechanical trail (i.e., the perpendicular distance that the front wheel contact point is horizontally behind the steering axis) to the wheel base is

\[\mu = (c/w) \cos \lambda. \quad (A17) \]

The rear and front wheel angular momenta along the \(y \)-axis, divided by the forward speed, together with their sum form the gyrostatic coefficients, are

\[S_R = I_{Ryy}/r_R, \quad S_F = I_{Fyy}/r_F, \quad S_T = S_R + S_F. \quad (A18) \]

We define a frequently appearing static moment term as

\[S_A = m_A u_A + \mu m_T x_T. \quad (A19) \]

The entries in the linearized equations of motion can now be formed. The mass moments of inertia are

\[M_{\phi \phi} = I_{Txx}, \quad M_{\phi \delta} = I_{Axx} + \mu I_{Tzz}, \]
\[M_{\delta \phi} = M_{\phi \delta}, \quad M_{\delta \delta} = I_{A\lambda \lambda} + 2 \mu I_{A\lambda z} + \mu^2 I_{Tzz}. \quad (A20) \]
which are elements of the symmetric mass matrix
\[
M = \begin{bmatrix}
M_{\phi\phi} & M_{\phi\delta} \\
M_{\phi\delta} & M_{\delta\delta}
\end{bmatrix}.
\] (A 21)

The gravity-dependent stiffness terms (to be multiplied by \(g\)) are
\[
\begin{align*}
K_{0\phi\phi} &= m_T z_T, \\
K_{0\phi\delta} &= -S_A, \\
K_{0\delta\phi} &= K_{0\phi\delta}, \\
K_{0\delta\delta} &= -S_A \sin \lambda,
\end{align*}
\] (A 22)

which form the stiffness matrix \(K_0\) as
\[
K_0 = \begin{bmatrix}
K_{0\phi\phi} & K_{0\phi\delta} \\
K_{0\delta\phi} & K_{0\delta\delta}
\end{bmatrix}.
\] (A 23)

The velocity-dependent stiffness terms (to be multiplied by \(v^2\)) are
\[
\begin{align*}
K_{2\phi\phi} &= 0, \\
K_{2\phi\delta} &= ((S_T - m_T z_T) / w) \cos \lambda, \\
K_{2\delta\phi} &= 0, \\
K_{2\delta\delta} &= ((S_A + S_F \sin \lambda) / w) \cos \lambda,
\end{align*}
\] (A 24)

which form the stiffness matrix \(K_2\) as
\[
K_2 = \begin{bmatrix}
K_{2\phi\phi} & K_{2\phi\delta} \\
K_{2\delta\phi} & K_{2\delta\delta}
\end{bmatrix}.
\] (A 25)

In the equations we use \(K = gK_0 + v^2K_2\). Finally the “damping” terms are
\[
\begin{align*}
C_{1\phi\phi} &= 0, \\
C_{1\phi\delta} &= \mu S_T + S_F \cos \lambda + (I_{Tzz} / w) \cos \lambda - \mu m_T z_T, \\
C_{1\delta\phi} &= -(-\mu S_T + S_F \cos \lambda), \\
C_{1\delta\delta} &= (I_{AAz} / w) \cos \lambda + \mu (S_A + (I_{Tzz} / w) \cos \lambda),
\end{align*}
\] (A 26)

which form the matrix \(C_1\) as
\[
C_1 = \begin{bmatrix}
C_{1\phi\phi} & C_{1\phi\delta} \\
C_{1\delta\phi} & C_{1\delta\delta}
\end{bmatrix} \quad \text{where we use} \quad C = vC_1.
\] (A 27)

Appendix B. Derivation of the linearized equations of motion

The following brief derivation of the linearized equations of motion is based on Papadopoulos (1987). A longer derivation using Lagrange methods and based on a correction of Neˇımark and Fufaev (1967) is in Hand (1988). These derivations involve \textit{ad hoc} linearization as opposed to linearization of full nonlinear equations. To date, no-one has linearized the full implicit non-linear equations (implicit because there is no reasonably simple closed form expression for the closed kinematic chain) into an explicit analytical form either by hand or computer algebra. However, we note again that these linear equations are now well supported by various comparisons described in the text.

For a bicycle freely rolling forward on a plane, slightly perturbed from upright straight ahead motion, we wish to find the linear equations of motion governing the two lateral degrees of freedom: rightward lean \(\phi\) of the rear frame, and rightward...
steer δ of the handlebars. The linearized equation of motion for forward motion is trivial and has already been given in equation (5.2).

We take the bicycle to be near to and approximately parallel to the global x-axis. The bicycle’s position and configuration, with respect to lateral linearized dynamics, are defined by the variables y_P, ψ, ϕ and δ. In this derivation we assume not only ϕ and δ but also $y_P/v \approx \psi$ small, such that only first order consequences of the configuration variables need be kept.

Forces of importance to lateral linearized dynamics include: gravity at each body’s mass centre, positive in z; vertical ground reaction force at the front wheel: $-m_T g x_T / w$; horizontal ground reaction force F_{Fy} at the front wheel, approximately in the y direction; a roll moment $T_{B\phi}$ applied to the rear frame and tending to roll the bicycle to the right; a steer torque $T_{H\delta}$, applied positively to the handlebars so as to urge them rightward, and also applied negatively to the rear frame.

Initially we replace the non-holonomic rolling constraints with to-be-determined horizontal forces at the front and rear contacts that are perpendicular to the wheel headings. We apply angular momentum balance to various subsystems about some axis u. On the left side of each equation is the rate of change of angular momentum about the given axis:

$$\sum_{i \in \{\text{bodies}\}} \left[\mathbf{r}_i \times \mathbf{a}_i m_i + \mathbf{I}_i \dot{\mathbf{\omega}}_i + \mathbf{\omega}_i \times (\mathbf{I}_i \mathbf{\omega}_i) \right] \cdot \mathbf{u}$$

where the positions of the bodies’ centres of mass \mathbf{r}_i are relative to a point on the axis and the bodies’ angular velocities and accelerations $\mathbf{\omega}_i, \dot{\mathbf{\omega}}_i$ and \mathbf{a}_i are expressed in terms of the time-derivatives of the lean and steer. The right side of each equation is the torque of the applied loads and gravity forces about the given axis.

Roll angular momentum balance for the whole bicycle about a fixed axis in the ground plane that is instantaneously aligned with the line where the frame plane intersects the ground (this axis does not generally go through the front ground contact point) gives:

$$-m_T y_P z_T + I_{Txx} \ddot{\phi} + I_{Tzz} \ddot{\psi} + I_{Axx} \ddot{\delta} + \dot{\psi} v S_T + \dot{\delta} v S_F \cos \lambda = T_{B\phi} - g m_T z_T \dot{\phi} + g S_A \dot{\delta}. \quad (B1)$$

In addition to the applied $T_{B\phi}$ the right-hand side has a lean moment from gravitational forces due to lateral lean-induced sideways displacement of the bicycle parts, and a term due to lateral displacement of front-contact vertical ground reaction relative to the axis.

Next, yaw angular momentum balance for the whole bicycle about a fixed vertical axis that instantaneously passes through the rear wheel contact gives

$$m_T y_P x_T + I_{Txx} \ddot{\phi} + I_{Tzz} \ddot{\psi} + I_{Axx} \ddot{\delta} - \dot{\phi} v S_T - \dot{\delta} v S_F \sin \lambda = w F_{Fy}. \quad (B2)$$

The only yaw torque arises from the yet-to-be-eliminated lateral ground force at the front contact.

Lastly, steer angular momentum balance for the front assembly about a fixed axis that is instantaneously aligned with the steering axis gives

$$m_A y_P u_A + I_{Axx} \ddot{\phi} + I_{Axx} \ddot{\psi} + I_{Axx} \ddot{\delta} + v S_F (- \dot{\phi} \cos \lambda + \dot{\psi} \sin \lambda) = T_{H\delta} - c F_{Fy} \cos \lambda + g (\dot{\phi} + \delta \sin \lambda) S_A. \quad (B3)$$
In addition to the applied steering torque $T_{H\delta}$ there are torques from both vertical (gravity reactions) and lateral (yet to be determined from constraints) forces at the front contact, and from downwards gravity forces on the front assembly.

The final steps are to combine equations (B 2) and (B 3) in order to eliminate the unknown front-wheel lateral reaction force F_{Fy}, leaving two equations; and then to use the rolling constraints to eliminate ψ and y_P and their time derivatives, leaving just two unknown variables.

Each rolling-contact lateral constraint is expressed as a rate of change of lateral position due to velocity and heading. For the rear,

$$\dot{y}_P = v\psi.$$ \hspace{1cm} (B 4)

Equivalently for the front, where $y_Q = y_P + w\psi - c\delta \cos \lambda$, and the heading angle is augmented by steer angle:

$$\frac{d(y_P + w\psi - c\delta \cos \lambda)}{dt} = v(\psi + \delta \cos \lambda).$$ \hspace{1cm} (B 5)

We subtract (B 4) from (B 5) to get an expression for $\dot{\psi}$ in terms of δ and $\dot{\delta}$,

$$\dot{\psi} = \frac{(v\delta + c\dot{\delta})}{w} \cos \lambda.$$ \hspace{1cm} (B 6)

We differentiate (B 6) to get an expression for $\ddot{\psi}$,

$$\ddot{\psi} = \frac{(v\dot{\delta} + c\ddot{\delta})}{w} \cos \lambda.$$ \hspace{1cm} (B 7)

Finally we differentiate (B 4) and substitute (B 6) to get an expression for \ddot{y}_P,

$$\ddot{y}_P = \frac{(v^2\delta + vc\dot{\delta})}{w} \cos \lambda.$$ \hspace{1cm} (B 8)

Substituting (B 6), (B 7), (B 8) into (B 1), we get an expression in ϕ, $\ddot{\phi}$ and δ, $\dot{\delta}$ and $\ddot{\delta}$, with a right-hand side equal to $T_{B\phi}$. This is called the lean equation. Eliminating F_{Fy} from (B 2) and (B 3), then again substituting (B 6), (B 7), (B 8), we will have another expression in ϕ and δ and their derivatives, where the right-hand side is $T_{H\delta}$ (the steer torque). This is called the steer equation. These two equations are presented in matrix form in (5.3).

Note that from general dynamics principles we know that the forcing terms can be defined by virtual power. Thus we may assume that the torques used in this angular momentum equations may be replaced with those defined by the virtual power equation (5.1). Thus where this derivation uses the torques $T_{B\phi}$ and $T_{H\delta}$ we may assume that the generalized forces T_ϕ and T_δ actually apply.

Since ψ and y_P do not appear in the final equation, there is no need for the bicycle to be aligned with the global coordinate system used in figure 2. Thus x, y and ψ can be arbitrarily large and the bicycle can be at any position on the plane at any heading. This situation is somewhat analogous to, say, the classical elastica where the lateral displacements and angles used in the strain calculation are small yet the lateral displacements and angles of the elastica overall can be arbitrarily large.

For simulation and visualization purpose we can calculate the ignorable coordinates x_P, y_P and ψ by integration. The first order differential equations for the yaw angle ψ is (B 6). Then the rear contact point is described by

$$\dot{x}_P = v \cos \psi, \quad \dot{y}_P = v \sin \psi.$$ \hspace{1cm} (B 9)
Note the difference in \(\dot{y}_P \) from the small angle approximation used in equation B.4 for the equations-of-motion derivation.

For those interested in constraint forces and tire modelling intermediate results may be used. For example equation (B.2) can be used to find the horizontal lateral force at the front contact. Lateral linear momentum balance can be added to find the horizontal lateral force at the rear contact.

References

Article in preparation for PRS series A

Ge, Zheng-Ming 1966 Kinematical and Dynamic Studies of a Bicycle, Publishing House of Shanghai Chiao Tung University.

(available at http://ruina.tam.cornell.edu/research/)

Jones, A. T. 1942 Physics and Bicycles, American Journal of Physics, 10(6), pp. 332-333.

Manning, J. R. 1951 The dynamical stability of bicycles, Report RN/1605/JRM, Department of Scientific and Industrial Research, Road Research Laboratory, Crowthorne, Berkshire, UK.

Article in preparation for PRS series A

Meijaard, J. P. 2004 Derivation of the linearized equations for an uncontrolled bicycle. Internal report University of Nottingham, UK.

Patterson, B. 1993 Chronicles of the Lords of the Chainring.

Ruina, A. 1998 Reports on Mathematical Physics, V. 42, No 1/2, P. 91-100.

SAE (Society of Automotive Engineers) 2001 Vehicle dynamics Terminology–SAE J670e.

Article in preparation for PRS series A

Sharp, A. 1896 *Bicycles and tricycles; an elementary treatise on their design and construction*, London: Longmans Green.

Article in preparation for PRS series A
Supplementary Appendices
associated but not printed with the paper

Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review

by

J. P. Meijaard, J. M. Papadopoulos, A. Ruina and A. L. Schwab

Introduction

Appendices in the main body of the paper (not included below) are

A) Definitions of the coefficients used in the equations of motion, and

B) A brief derivation of the governing equations.

These supplementary appendices (below) include:

1. A detailed history of bicycle dynamics studies with an expanded bibliography

2. An explanation of the verification of the linearized equations with the aid of the numerical dynamics package SPACAR.

3. An explanation of the verification of the linearized equations using the symbolic algebra package AutoSim.

4. An detailed explanation of how lateral symmetry implies that for unforced forward motion \(\dot{v} = 0 \) is one of the linearized equations of motion.

5. A reduced benchmark for use by those who have a less general bicycle simulation and want to use the results here for validation.
1. History of bicycle steer and dynamics studies.

“Even now, after we’ve been building them for 100 years, it’s very difficult to understand just why a bicycle works - it’s even difficult to formulate it as a mathematical problem.” — Freeman Dyson interviewed by Stewart Brand in Wired News, February 1998.

This appendix builds on Hand (1988) and is the source of the brief literature review in the main body of the paper. We divide the literature on bicycle dynamics in three categories:

a) Attempts to explain stability and self-stability without using equations of motion.

b) Dynamical analyses of simplified models, and/or simplified dynamical analyses. Models using the simplest steering geometry are incapable of self-stability, so controlled steering is essential to maintain balance. Because velocipedes (primitive bicycles with vertical steer axis, no trail, and front-assembly mass symmetry) also were not self-stable, it is natural that many of the early mathematical analyses, in the 1890s, incorporated a controlled-steering assumption.

c) Equations of motion describing a model with enough generality to predict hands-free self-stability. These more complex analyses also began in the 1890s and were based on the modern safety bicycle, with its tilted steer axis and front-fork offset.

In the latter two sections, we have been most attentive to models that are similar to ours. But the literature also includes nonlinear analyses, and models with additional features such as upper-body lean of the rider, toroidal tires, tire slip behavior, structural compliances, etc. We have covered some of these only briefly, and others not at all.

The historical discussion below is in chronological order within each of the three categories above. Within category c, we have concentrated on papers that present linear equations. The nonlinear literature is further reviewed in Basu-Mandal, Chatterjee & Papadopoulos (2006).

(a) Discussions of balance and stability without equations of motion

The self-stability of a bicycle involve complex dynamic phenomena that seem to us to be beyond precise description without appeal to correct governing equations. Thus it is not surprising that equations-free discussions of self-stability below tend to be somewhat vague or incomplete. In contrast, basic features of balance by means of controlled steering are accessible without detailed equations, and are reasonably described in some of these papers.

1866 Lallement’s velocipede-improvement U.S. Patent, which is on the addition of front-wheel pedals (as opposed to pushing the feet on the ground), includes a concise explanation of balancing by steering: “If the carriage is inclined to lean to the right, turn the wheel [to the right], which throws the carriage over to the left...”. Within five years, the U. S. patent literature begins to show pictures of bicycles further improved with trail and an inclined steering axis (though without specifically identifying these as improvements).

Article in preparation for PRS series A
1869 W. J. Macquorn Rankine, engineer and thermodynamics theorist, presents semi-quantitative observations on lean and steer of a velocipede. This seems to be the first description of ‘countersteering’ — briefly turning to the left to generate the rightward lean necessary for a steady rightward turn. Rankine discusses steer only by means of rider control and seems to have been unaware of the possibility of self-stability.

1896 Archibald Sharp, an engineering lecturer at what was to become Imperial College, publishes his book covering nearly all technical aspects of bicycle theory and practice. (Sharp later authored the classic 1910 11th edition Britannica entry on bicycles.) In calculating the handlebar torque required to maintain a steady turn, Sharp’s equation 6 is wrong, first by the typographical error of a sign change in the second parentheses, and second by neglecting the centrifugal force on the mass centre of the front assembly. He also neglects precessional torque on the front wheel. However, he explicitly recognizes the mechanical trail and implicitly recognizes the quantity we call S_A.

Sharp developed his equation to investigate no-hands riding, but fails to recognize the possibility of self-stability.

Sharp concludes, correctly in part (see Jones 1970 below), that the no-hands rider probably exercises control of steering through upper-body lean causing frame lean, leading to gyroscopic precession of the front wheel. A rider can thus control this precession and make corrective turns much like he or she would with direct handle-bar torques.

1896 Appell, in his dynamics textbook, summarizes Bourlet’s analysis (see category b below) of balancing and steering a velocipede. Surprisingly, this master of the differential equations governing dynamics includes none in his discussion of bicycles.

The later 1890’s are a period when numerous mathematical analyses (covered below) are initiated. Appell mentions a few both in later editions of his textbook (1899 through 1952), and in a monograph (1899) on the nonholonomic mechanics of rolling bodies.

1920 Grammel provides some discussion of gyroscopic moments in bicycling, but provides no equations of motion.

1929 Wallace’s long technical paper on motorcycle design contains thoughtful qualitative discussions on the likely handling characteristics of various motorcycle designs (pp. 177–184). He examines steer torque, including the contribution of toroidal tires and gyroscopic torques. Wallace’s analysis of non-linear geometric effects (pp. 185–212) erroneously assumes no pitch of the rear frame due to steering.

1970 David E. H. Jones’ Physics Today article (re-printed in 2006) is perhaps the single best-known paper on bicycle stability. With simple experiments Jones showed that, for the bicycles he tried, both front-wheel spin momentum and positive mechanical trail were needed for self-stability. Jones also observed that a rider can easily balance almost any bicycle that was not self-stable by turning the handlebars appropriately. But when riding no-hands, Jones
had difficulty stabilizing a bicycle whose front-wheel gyroscopic terms were cancelled by an added, counter-spinning wheel. And he was unable to master no-hands balance of a bicycle with negative trail. Jones’ experimental observations indicate correct trends, but do not represent precise boundaries on what is or can be stable or controlled.

On the theoretical side Jones wanted to counter the widely-quoted simple gyroscopic explanations of no-hands bicycle controllability (presented for example in Sharp (1896)), and no-hands bicycle stability (presented for example in Sommerfeld and Klein (1910)). His experiments with a variety of bicycles pointed to mechanical trail as another important factor in bicycle stability.

Jones did no dynamical modelling, and focused only on trail’s effect on steer torque as a function of lean. His thought was that the “static” torque would define the steering tendency for a leaned bicycle, and thereby explain self-stability. In effect Jones explored only the gravitational-potential part of one entry in the stiffness matrix, while ignoring the velocity-dependent centrifugal and gyroscopic terms. His approach and theoretical conclusions concerning mechanical trail are thus erroneous. Unfortunately a variety of subsequent investigators have built on Jones’ weakly-founded potential-energy treatment.

1942-98 Various other qualitative discussions, none making use of already published governing dynamics equations, were authored by Arthur Jones (1942), Den Hartog (1948), Higbie (1974), Kirshner (1980), Le Hénaff (1987), and Cox (1998). A paper by Maunsell (1946) seems to be the best of this lot. These papers, somewhat like Jones (1970), generally describe one or another term in the dynamics equations (e.g., centripetal forces or gyroscopic terms), often correctly, but then incorrectly make general statements about bicycle stability which, to be accurate, would require a more complete dynamic description. None of these papers makes a reasonable statement about the conditions necessary for self-stability.

1988 Olsen & Papadopoulos’ qualitative article discusses aspects of dynamic modelling based on the full correct uncontrolled bicycle equations in Papadopoulos (1987). Supplementary material for that article is available on the internet.

2004 Wilson’s Bicycling Science includes a chapter by Papadopoulos which qualitatively discusses bicycle stability.

We also mention several influential works of recent vintage dedicated to the issues of handling: Patterson (1993), who had no interest in intrinsic stability, developed a series of dynamically based design rules, aimed at improving controllability by the rider. Foale’s book (1984) comprehensively explores factors affecting motorcycle handling. Cossalter (1999) presented an entire book with relatively qualitative explanations of his decades of quantitative modeling work.

(b) Simplified dynamic analyses that are incapable of explaining self-stability

Simplified dynamic models have appeared from the mid 1890s to the present day. In these papers one or more of the following specializations is central:
i) **Simplified geometry and/or mass distribution.** In these models some collection of the following assumptions are made:

- inertia axes of rear frame are vertical/horizontal
- inertia axes of front frame are vertical/horizontal or aligned with steer axis
- no spin angular momentum of wheels
- point masses for the frames and/or wheels
- massless wheels
- massless front assembly
- vertical steer axis
- zero trail
- vanishing wheel radii

Such simplified models are most often incapable of self-stability.

ii) **Steer angle fully controlled by the rider; no steer dynamics.** In these models balance is effected entirely as a result of rider-controlled steering angle, and the steer angle δ has no uncontrolled dynamics. (There is no need, therefore, to derive the relatively less intuitive equation for steer dynamics.) Appropriately controlled steer angle is indeed the only way to stabilize many simplified bikes. Controlled-steer treatments cannot illuminate a bicycle’s self stability because, in the small-angle regime, a bicycle with locked steering has no self stability. Most studies of controlled stability reasonably use mechanically simplified models like described above.

iii) **Mathematically simplified models.** To make the mathematics more tractable, or to illuminate controlling factors, some authors eliminate terms from the equations. Only rarely is this done consistently from a mechanics point of view, or based on solid comparisons of magnitudes. A risk of such mathematical, as opposed to mechanical, simplifications is that the resulting equations may not describe any particular physical model, so that theorems or intuitions based on mechanics may not apply.

A common geometric issue. Many of these simplified-dynamics analyses include some non-linear terms (e.g., $\sin \phi$ instead of ϕ). However, all purportedly nonlinear simplified-bike treatments of which we are aware, starting with Bourlet (1894), do not actually write correct non-linear equations for any simplified model of a bicycle. That is because in these treatments wheel base, trail, frame pitch, path curvature and other such quantities are treated as being independent of the lean angle for any given non-zero steer angle. That these quantities actually all vary with lean angle for an ideal bicycle is demonstrated by considering a small leftward steer angle. As the lean angle goes to -90 degrees, with the bicycle almost lying on its left side, the front contact point moves forward around the front wheel approximately by 90 degrees, while the rear contact point moves backward around the rear wheel the same amount. This alters the wheel base length, the angle between ground traces of the two wheels, and the trail. Depending on the frame geometry, it also places
the front contact well outside the rear frame’s symmetry plane, and introduces
substantial pitch of the rear frame about the rear axle, relative to the ground trace
of the rear wheel. Even the simplest bicycle (with vertical steering axis, zero trail,
and vanishing front-wheel radius) is subject to at least an alteration of the front-
wheel track direction, due to the lean of a steered wheel. In particular, the angle
\(\psi \) that the front wheel track makes with the line connecting rear and front wheel
contacts should obey \(\cos \phi \tan \psi = \tan \delta \) rather than the commonly used \(\psi = \delta \)
(where \(\delta \) is steer and \(\phi \) is lean).

In some cases the authors may be making conscious approximations for modest
lean angles, in some cases they are making mathematical models that are not
intended to literally describe any simplification of a bicycle, and in some cases
there are errors. The resulting equations are sometimes correct descriptions of an
inverted pendulum mounted on a controlled tricycle. Such might be considered a
simple model of a bicycle, but it does not follow from mechanical simplification of
any model of a machine made from two narrow wheels.

1894-1899 Mathematician Carlo Bourlet devotes several papers and both editions
of his encyclopedic bicycle treatise to the lateral balance of a steer-controlled
velocipede (vertical steer axis and no trail). All inertias have vertical principal
axes, and spin angular momentum of the wheels is included. The treatment is
largely nonlinear, but has the front-contact position issues described above.
When linearized, his final roll equation (Eqn 29 bis) lacks the gyroscopic
moment from steer rate, but is otherwise correct.

Bourlet considers steering moves that can eliminate a lean, or follow a path. His
final and most technical paper on bicycle dynamics (1899) is awarded the
Prix Fourneyron. Bourlet claims to have outlined the practical design factors
leading to self-stability in another book dedicated to the design of bicycles,
but he does not address them analytically.

The PRIX FOURNEYRON prize is offered biannually by the French Académie
des Sciences. In 1897, the Fourneyron mechanics challenge was “Give the theory
of movement and discuss more particularly the conditions of stability of
velocipedic devices” and was later amplified to include “whether in a straight
line or a curve, on a flat plane or a slope.” Boussinesq and Léauté were on
the prize committee, and Appell was interested in the entries. Bourlet, Sharp
and Carvallo submitted entries, as did others whose names are unfamiliar to
us. Bourlet won first place, Carvallo shared second with Jacob (whose work
we do not know), and Sharp received honorable mention.

Both Bourlet and Carvallo published their entries, and Appell prominently
cited these and other papers in more than one book. Shortly after the prize
was awarded, Boussinesq published his own thorough analysis, and Léauté
also published a note.

It seems that the dynamical analysis of bicycles is a French innovation. Bourlet
(1894) may have started this, then the Prix produced a singular peak of bicycle
research activity.

1899 Physicist Joseph Boussinesq wrote two papers (and four prior ‘notes’) on
velocipede balance and control, very similar in approach and content to prior
work by Bourlet (but slightly anticipating Bourlet’s most sophisticated dynamical modelling). Boussinesq neglects gyroscopic contributions expressed as E/R for each wheel, which Bourlet remarks correctly is a minor effect for roll dynamics. Boussinesq also notes that the system’s center of mass can usually be displaced sideways by upper-body lean relative to the frame (This is the means by which an inverted double pendulum can be balanced by actuation of the connecting hinge). Self-stability was not addressed.

The simplest point-mass bicycle model should probably be credited to Boussinesq.

1899 G.R.R. Routh (son of renowned dynamicist E.J. Routh) considers steering strategies for roll stability and path following of a slightly more general model of a velocipede than was considered by Bourlet (1899) and Boussinesq (1899).

1910 Bouasse, in his dynamics textbook, reviews some geometric relations from Bourlet (1899), and presents the model and analysis of Boussinesq (1899).

1915 Bower investigates the stability of an uncontrolled velocipede via linearized equations that are incorrect, presumably due to their ad hoc derivations. However, the central result, that such a bicycle has no self-stability, happens to be correct. Comparable incorrect treatments are also presented in Pearseall (1922, citing Bower), Lowell & McKell (1982, citing Pearseall), and Fajans (2000, citing Lowell & McKell). Typically, one or several terms are missing from each equation of motion. Authors sometimes write of ‘approximating’ by intentional neglect of supposedly small contributions. Unfortunately, one can always find cases where the neglected terms or approximations are significant in effect.

1934 Ločianskii & Lur’e, in their textbook, study an uncontrolled velocipede which is cited by Letov (1959), Neimark & Fufaev (1967), and revisited in Lobas (1978). We have not seen this work.

1948 Timoshenko & Young’s well-known dynamics text presents the ”Boussinesq” bicycle analysis of Bouasse (1910).

1955 Haag independently derives bicycle equations of motion in his book, but simplifies by inconsistently ignoring various terms involving trail, spin momentum, front assembly mass, cross terms in the potential energy, etc. The resulting incorrect differential equations of a simplified bicycle model lead him to conclude incorrectly that bicycle self-stability is never possible.

1959 Letov gives the correct linearized roll equation for a ”Boussinesq” bicycle, attributing it to Loitsianskii and Lur’e. (Gyroscopic torques on the steering due to roll rate are incorporated in the dynamics of the steer controller, with reference to Grammel.)

1967 Neimark & Fufaev, in their classic text on non-holonomic dynamics, consider a point-mass uncontrolled velocipede (separately from their detailed bicycle model discussed in category c below). They finally neglect wheel spin momentum (yielding a ”Boussinesq” bicycle), so they can compare to the roll
equation of Loičianskii & Lur’e (1934). They mistakenly omit the mass from
the second term in equation 2.65 (English edition p. 354), leaving a dimen-
sionally incorrect quantity ν to propagate through to equations 2.67 and 2.68.
However the form of their terms is correct. They find self-stability only for
finite viscous friction in the steer column.

1995 Getz & Marsden consider the possibility of following an arbitrary path with-
out falling over, when not only the steering but also forward speed may be
controlled. Their simplified nonlinear “Boussinesq” model incorporates no
wheel radius nor wheel inertias. Like some others before them (e.g. Bourlet
1894) this paper makes geometric assumptions that are equivalent to mod-
eelling a bicycle as an inverted pendulum mounted on a tricycle (see subsection
above on a “geometric issue”).

2005 One small part of the paper by Åström (control-system specialist), Klein &
Lennartsson treats a simplified bicycle model. Other aspects of this paper are
discussed in section (c) below.

The simplified model in Åström et al. is aimed at basic explanation of bicycle
control and self-stability. We comment here only on the sections relevant to
“Self-Stabilization” and not on the interesting content concerning control.

The reductions leading to the simple model come in two stages, mechanical
and then mathematical. First Åström et al. assume that the wheels have no
spin momentum and are thus essentially skates. They also assume that the
front assembly has no mass or inertia. However both non-zero head angle and
non-zero trail are allowed and both point-mass and general-inertia rear-frame
mass distributions are considered. Åström et al. then add further mathemat-
ical simplifications by neglecting noon-zero trail contributions except in the
static (non-derivative) terms. This eliminates the steer acceleration term in
equation 14 therein (roll dynamics), and alters the steer rate term. In equation
9 (steer dynamics), where all torques arise only through trail), this eliminates
the terms involving steer rate, steer acceleration, and roll acceleration.

Their reduced 2nd order unforced (zero torque) steer equation implies that
steer angle is proportional to lean angle. The resulting system is thus stabi-
lized in the same way a skateboard is self-stable. In a skateboard mechanical
coupling in the front “truck” enforces steer when there is lean, see Hubbard
(1979) and pages 6 and 17 in Papadopoulos (1987). That bicycle lean and
steer coupling might approximately reduce to the much simpler skateboard
coupling is certainly an attractive idea.

However, the governing stability equation in Åström et al. , equation 15 ap-
ppears to show the emergence of self-stability at high-enough speeds for quite
arbitrary bicycle parameters. Examination of the full fourth order equations
of motion for their simplified bicycle (without their additional mathemati-
cal simplifications) seems to show that stability is only obtained for special
parameters. For example, the point-mass version is never stable. An extended-
mass version can be stable, but only with a rather special mass distribution,
as discussed in Papadopoulos (1987), on page 6 and figure 3 therein. Even in
those cases where there is self-stability it is not clear that the having steer
proportional to lean is an appropriate simplification. So there is some doubt about Aström et al.'s reduction of even a simple class of bicycle models to 2nd order skateboard-like equations.

2006 Limebeer and Sharp present a massless wheel, point-mass bicycle model within a major review work on stability modeling. (Their equations for a full bicycle model are mentioned in section (c) below.) The nonlinear roll equation neglects the motion of contact points relative to the rear frame, and the difference between steer angle and heading angle. To be correct they would have to adopt the assumptions of Getz (1995): zero-radius wheels, and using the heading angle rather than steer angle as a variable. Their linearized roll equation for the "Boussinesq" bicycle is correct.

(c) Equations of motion for a general bicycle

Here we discuss literature on linear equations of motion for general bicycle models with uncontrolled steering similar to the model in this paper. Papers in which e.g. toroidal wheels, tire-slip models, frame or rider elastic deformation, rider steering inputs or rider-controlled torso lean were difficult to remove from the analysis are generally not discussed. Nonlinear treatments are not discussed systematically.

1897-1900 Carvallo was already an accomplished applied mathematician and mechanician when he shared second prize in the Prix Fourneyron (see discussion of Bourlet in section (b) above), for a 186-page monograph on the dynamics of uncontrolled monocycles (single wheels surrounding a rider) and bicycles. As far as we know, this is the first genuine analysis of bicycle self-stability.

Although Carvallo’s bicycle is slightly specialized by neglecting the mass and moments of inertia of the front frame (in comparison to those of the front wheel), his equations for his model are correct. Carvallo identified the four standard eigenmodes, and presented equations for the upper (capsize) and lower (weave) limiting velocities for hands-free stability. Carvallo mentions the use of Grassman’s geometric calculus, and innovative stability calculations similar to Routh-Hurwitz. According to Carvallo, bicycle constructors of his time recommended that the steer axis be designed to pass under the front axle, half way between axle and ground, a feature approximately maintained to the present day.

1899 Whipple, apparently unaware of Carvallo, undertakes the second substantive analysis of the self-stability of a bicycle. Whipple was a Cambridge University undergraduate at the time, and was a Second Wrangler in the Tripos mathematics exam. He later had a long career in mathematical meteorology. Whipple’s parameters are fully general and his model is equivalent to the model presented here. His paper was awarded Honorable Mention for the prestigious Smith’s Prize. Whipple first undertook the difficult task of a fully nonlinear analysis, which was flawed by an incorrect expression of the front-wheel ground-contact vertical constraint. However, when linearized this error is irrelevant, and Whipple’s linearized equations are correct, except for a few typographical errors. Whipple’s results include scaling rules, the dynamic modes (nowadays known as weave and capsize), rider control inputs via torso
lean, etc. Whipple also recognized that the exponential decay of lean and steer perturbations is not inconsistent with energy conservation. He cites Bourlet.

Whipple had the same editor as Routh, so it’s a little surprising that neither cited the other.

Whipple and Carvallo laid solid foundations for future work. But despite Carvallo being cited in two books by Appell, and both authors being cited by Sommerfeld & Klein (1910), and mentioned both in the 11th edition Encyclopedia Britannica (Gyroscope article), and in Grammel’s 1920 Gyroscope textbook, their achievements languished for decades. The only path by which they seemingly influenced posterity is via Noether (writing in Sommerfeld & Klein, next in this list) who seems influenced by Carvallo. Noether’s analysis was elaborated on by Dörhring (1953), and in turn was expanded further by Singh & Goel (1971), see below.

1910 Klein & Sommerfeld’s 4th volume on gyroscopes appears with an extensive chapter on bicycles written by Fritz Noether (brother of mathematician Emmy). These governing equations for a slightly simplified bicycle model (like Carvallo’s), derived by techniques used for other gyroscopic systems, are equivalent to those in Carvallo (1900) and fully correct. While Noether claims to have compared his equations with Whipple as well as Carvallo, he erroneously states that Whipple used a Lagrangian derivation, and acknowledges neither Whipple’s more general model nor his typographical errors. Noether’s discussion of gyroscopic contributions is particularly illuminating.

The analysis of bicycles or motorcycles subsequently fell into a lull. Apart from Dörhring (1953), we are not aware of any publication in the open literature of correct equations of motion until 1970. The most likely candidates, which we have not been able to check, are papers or presentations by Kondo in Japan, 1948-1964, including a report on bicycle stability research at the meeting of JSME in November, 1948, unpublished (no preprints). Another possibility is the work of Ge (1966) in Taiwan.

1951 Manning, in a proprietary technical report of the British Road Research Laboratory, appears to provide correct nonlinear configuration geometry, and possibly correct linearised equations of motion for a general model. (However, we have not yet checked these.) Manning acknowledges Carvallo’s work but did not compare equations in detail.

1953-1955 Dörhring, University of Technology Braunschweig, Germany, writes a PhD thesis on the stability of a straight ahead running motorcycle. He builds on the model by Noether (Klein & Sommerfeld, 1910) to make the mass distributions fully general. Dörhring’s equations agree with ours in detail. They are the first perfectly correct equations of a general model presented in the open literature (Whipple had small errors, Carvallo and Klein were slightly less general). Dörhring also did experiments on a motor-scooter and two different motorcycles (1954) in an attempt to validate his results. Dörhring’s paper was translated into English by CALSPAN but is not published.

1963-1964 University of Wisconsin dissertations by Collins (1963) and Singh (1964) were both too hard to follow in enough detail to evaluate. Their multi-page
equations employed chained parameter definitions. Collins relied on Wallace’s (1929) incorrect nonlinear geometry, but this should not affect the correctness of his linearization. Although we were not able to compare Collins’s equations in every detail, we noted a missing term and Psiaki (1979) found computational disagreement. Singh’s subsequent conference and journal publications were based on Doehring’s (1953) correct equations, rather than his own.

1967 Ne˘ımark & Fufaev, in their authoritative book on non-holonomic dynamics, present an exceptionally clear and thorough derivation of the equations of motion for a general bicycle (we read only the 1972 English translation). Unfortunately, their treatment has several typographical errors, and also a fatal flaw in the potential energy: equation 2.30 ignores downward pitch of the frame due to steering. This flaw was later corrected by Dikarev, Dikareva & Fufaev (1981) and independently by Hand (1988).

The year 1970 marks a sudden jump in the quality and quantity of single-track vehicle research, perhaps because of the advent of digital computers and compact instrumentation, increased popularity of large motorcycles (and attendant accidents), and a surge in bicycle popularity. Most authors were eager to incorporate tire models which simplifies the equation formulation by avoiding having to implement geometric constraints. But tire models add empirical parameters and complicate the resulting equations and their interpretation.

1970-8 CALSPAN. One major concentration of single-track research was at CALSPAN (then the Cornell Aeronautical Laboratory), funded by the U.S. government, Schwinn Bicycles and Harley Davidson. CLASPAN generated about 20 bicycle reports and papers. The CALSPAN program included hand calculations (involving linearized equations and algebraic performance indices for a somewhat simplified model), nonlinear computer models (including high-order rider control inputs), and a comprehensive experimental program (including tire measurements and comparisons to real-world performance).

Two of these reports are singled out below.

1970 Rice & Roland, in a CALSPAN report sponsored by the National Commission on Product Safety, included an appendix on nonlinear equations (except linearized for small steer angles), where compliant, side-slipping tires avoid the need to apply lateral or vertical contact constraints. Rider lean relative to the frame is included. Thus the governing system includes all six velocities of a rigid body, plus the two extra degrees of freedom (steer and rider lean). The tabulated 8×8 first order system is forbiddingly complex, and terms such as
wheel vertical force require a host of subsidiary equations to be defined. This report seems to contain the first use of the term ‘mechanical trail’ to describe the moment arm of the lateral front-contact forces about the steer axis.

1971 Roland & Massing, commissioned by the Schwinn bicycle company, write a CALSPAN report on the modelling and experimental validation of an uncontrolled bicycle. The mix of modelling, measuring, and testing is unusually thorough. After correcting an expression for tire slip, then linearizing and imposing constraints their equations agree with the equations here.

1971 Robin Sharp considers a model with tire slip, and front-assembly inertia tensor aligned with the steering axis. His partly-nonlinear model treats rear-frame pitch as zero, with a constant force acting upward on the front wheel. When he linearizes and takes the limit of infinite lateral tire stiffness, he introduces minor algebraic and typographical errors (see Hand 1988). This, Sharp’s first of many bicycle and motorcycle dynamics papers, has had a lasting influence. It includes his original naming of the two major rigid-body eigenmodes as ‘weave’ and ‘capsize’.

1971 Singh & Goel use Döhring’s (1955) correct equations.

1972 Roland & Lynch, commissioned by the Schwinn bicycle company, write a CALSPAN report on a rider control model for path tracking, bicycle tire testing, experimental tests to determine the effect of design parameters on the stability and manoeuvrability of the bicycle, and the development of computer graphics for display purposes. For the bicycle model the equations from Roland & Massing (1971) are used.

1972 Weir’s PhD thesis explicitly compares his correct equations with the previous slightly incorrect and slightly specialized results of Sharp (1971). He appears to be the first to perform such a check.

1973 Eaton presents governing equations without derivation. He explains that he reconciled his own derivation with (corrected) Sharp (1971) and Weir (1972), although using his own notation and somewhat embellishing the tire models.

1973 Roland reports, in the open literature, basically the same equations as in Roland & Massing (1971). Apparently, few if any typos were corrected and some further typos were introduced.

1974 Rice at CALSPAN uses simplified linearized analysis to develop steady-state and transient performance indices. He investigates the stiffness matrix (with rider lean included, statically equivalent to a lean moment), which requires only point-mass bicycle parameters. A lot of the complication depends on tire parameters. As in Carvallo (1900) and Whipple (1899), formulae are given for capsize speed and for the low speed at which turning leaves the rear frame perfectly upright (when the displacement of the front contact and front c.m. perfectly balance the roll moment of centrifugal force).

1975 Van Zytveld’s M.Sc. thesis on a robot bicycle controller develops equations that are correct except for some of the terms involving ‘rider lean’. According
to Van Zytveld, his advisor, David Breakwell, had developed independent
equations of motion, without a rider-robot, that matched his when simplified
to remove rider lean (see also Breakwell 1982).

1975 Singh & Goel elaborate the standard ‘general’ model to allow deviations from
left-right symmetry and incorporate more sophisticated tire models, leading
to a very high order system of governing equations. The derivation appears
to follow Sharp (1971) but we have not checked the results in detail.

1976 Rice writes a CALSPAN report on simplified dynamic stability analysis. He
assumes all inertia tensors to have a vertical principal axis. This report exp-
licitly identifies the frequently-occurring combination of terms which we call
S_A.

1978 Weir & Zellner present Weir’s equations but introduce a sign error in the
mistaken belief they are making a correction, and commit several typograph-
ical errors (see Hand 1988). Weir’s thesis (1972), not this paper, should be
used for correct equations.

1978 Lobas (in translation misspelled into Gobas) extends the treatment by Ne˘ımark
& Fufaev (1967) to add forward acceleration. When we set acceleration to
zero, it appears that the static lean contribution to Lobas’s steer equation is
in error.

1979 Psiaki writes a dense Princeton undergraduate honors thesis on bicycle dy-
namics. Starting from a fully nonlinear analysis based on Lagrange equations
with non-holonomic constraints, he developed linearized equations for both
his upright configuration and his hands-free turns. The equations of motion
were too dense for us to check, but his numerical results match ours to plotting
accuracy.

The early 1980s essentially mark an end to the development of sound equations
for the geometrically and inertially general bicycle. Equations from Sharp, Weir
or Eaton are widely recited as valid, even though explicit comparisons are hard
to find. Subsequent high-quality work tends to focus on elaborations necessary for
modelling tire and frame deformations.

1985 Sharp presents a very comprehensive review of extended motorcycle dynam-
ics equations, with an emphasis on capturing weave motions that seemingly
depend on tire and frame compliance. He has some errors in his description of
which, but for minor errors, is correct.

1987 Papadopoulos focused on achieving a compact notation and simple deriva-
tion of the equations of motion, using Hand’s (1988) results as a check. The
equations in the present paper are based on this essentially unpublished work.

1988 Hand’s Cornell MSc thesis compares a variety of publications and settles on
a compact, transparent notation. He shows that several approaches (Döhring
1955, Ne˘ımark & Fufaev 1967, Sharp 1971, and Weir 1972) all led to the same
governing equations when errors were corrected. Hand’s derivation, based on
correcting Neĭmark & Fufaev 1967, is said (Psiaki - personal communication) to have some missing terms in the Lagrangian that drop out in the linearization. Psiaki (personal communication) also verified Hand’s linear equations.

1990 Franke, Suhr & F. Rieß derive non-linear equations of a bicycle, with neglect of some dynamic terms. This paper was the topic of an entertaining lead editorial in Nature by John Maddox (1990). We did not check the derivation in detail. The authors did not find agreement between integration of their differential equations for small angles and the integration of the Papadopoulos (1987) equations (private communication). However, recently Lutz and Aderhold (private communication) applied our benchmark bicycle parameters to an updated form of the Franke, Suhr & Rieß non-linear model and obtained agreement of eigenvalues in an approximately upright configuration, within plotting accuracy.

2004 Meijaard in preparing for this publication, makes an independent derivation of the linearized equations of motion that agrees with the equations here.

2004 Schwab, Meijaard & Papadopoulos write a draft of the present paper and present it at a conference.

2005 Åström, Klein & Lennartsson present a wide-ranging paper, part of which is discussed in section (b) above. Another section of the paper describes decades of Jones-like experiments on bicycle stability as well as the development wide-wheeled bicycles for training of disabled children. Another discussion in the paper builds on Schwab (2004) and Papadopoulos (1987) and presented some parameter studies based on them.

Most importantly here, Åström presents Lennartsson’s [1999] simulations from a general purpose rigid-body dynamics code. In addition to some non-linear dynamics observations, they show agreement with the benchmark equations in Schwab (2004), although not with enough precision to assure correctness. Subsequently Lennartsson (private communication) made a high-precision comparison for the current benchmark parameters, and found agreement to at least 12 decimal places.

In summary, substantially correct and general linearized rigid-body bicycle equations of motion were initially provided by Whipple (1899) (typographical errors), Carvallo (1900) (slightly simplified model), and Noether (Klein & Sommerfeld 1910) (also slightly simplified). The first ‘perfect’ and general equations were provided by Döhring (1955). After 1970, most analyses included tire models. Sharp (1971) presented equations with just a slight error and slight specialization. Weir (1972) presented the second ‘perfect’ and general set. Eaton (1973), Van Zytveld (1975), probably Psiaki (1979), Papadopoulos (1987), Hand (1988) and Mears (1988) also presented accurate results for the model we use here.
Supplementary bibliography

This bibliography is a superset of the bibliography in the main paper. It includes all of the main paper references and several dozen more. We have chosen this redundant approach because length limitations prevented a longer reference list in the main paper, but we wanted serious researchers to be able to use a single list, this one.

References

Anonymous, 1973 Suggested tasks for continuing research in bicycle dynamics, (internal) Calspan Corp., September
Anonymous, 1975a Discussion of continued bicycle simulation studies Task 1, Calspan Technical Note, June 6

Pages 280-285 of the posthumous 6th edition (1953) are nearly identical, though including well-known 19th century references that were probably added in the second edition: http://math-doc.ujf-grenoble.fr/LiNuM/TM/Gallica/S029090.html

Bourlet, C. 1894 Traité des bicyles et bicyclettes suivi d’une application à la construction des vélocodromes, Paris: Gauthier-Villars.

This paper was originally summarised in Comptes Rendus des Séances de L'Académie des Sciences Juillet - Decembre 1898 Volume 127 Pages 843-848, 28 November 28: “Relation qui existe, dans la bicyclette roulant sur un sol horizontal, entre le mouvement de progression et le mouvement d’inclinaison” Pages 895-899, December 5 : “Aperçu sur la thorie de la bicyclette: quilibre du cavalier”. Available at http://ruina.tam.cornell.edu/research/

This paper was originally summarised in *Comptes Rendus des Séances de L’Académie des Sciences* Janvier - Juin 1899, Volume 128 Pages 766–781, March 27 : “De l’effet produit, sur le mouvement d’inclinaison d’une bicyclette en marche, par les déplacements latéraux que s’imprime le cavalier” Pages 859-862, April 4 : “Calcul, dans une hypothèse simple, du déplacement latéral que doit s’imprimer le cavalier, sur une bicyclette en marche, pour porter le centre de gravité du système à une petite distance horizontale voulue de la base de la bicyclette” http://ruina.tam.cornell.edu/research/

Davis, J. A. & Cassidy, R. J. 1974 The Effect of Frame Properties on Bicycling Efficiency, Calspan Report ZN-5431-V-2, Task Order No. 6 (Schwinn)

Davis, J. A. 1975 Bicycle tire testing - effects of inflation pressure & low coefficient surfaces, Calspan Report ZN-5431-V-3, Task Order No. 5 (prepared for Schwinn Bicycle Co.) May

(available at http://ruina.tam.cornell.edu/research/)

Article in preparation for PRS series A
Ge, Zheng-Ming 1966 Kinematical and Dynamic Studies of a Bicycle, Publishing House of Shanghai Chiao Tung University.

1984 Guo, Y. The equations of bicycling motion (Chinese); Journal of Beijing Institute of Light Industry, v2, n1, April, pp97-104.

(available at http://ruina.tam.cornell.edu/research/)

Jones, A. T. 1942 Physics and Bicycles, American Journal of Physics, 10(6), pp. 332-333.

Article in preparation for PRS series A

Lynch, James P. & Roland, R. D. 1972 Computer Animation of a Bicycle Simulation, Fall Joint Computer Conference (clipping from journal or magazine).

Manning, J. R. 1951 The dynamical stability of bicycles, Report RN/1605/JRM, Department of Scientific and Industrial Research, Road Research Laboratory, Crowthorne, Berkshire, UK.

Meijaard, J. P. 2004 Derivation of the linearized equations for an uncontrolled bicycle. Internal report University of Nottingham, UK.

Patterson, B. 1993 *The Lords of the Chainring*, published by Patterson, 3058 Lancaster Dr., Santa Maria, California, U.S.A.

Article in preparation for PRS series A

Rice, R. S. 1974a, A Note on Design Criteria for Bicycle Stability in terms of Front End Geometry, Calspan internal memo.

Rice, R. S. 1974b Comparison of bicycle designs using stability index values, Letter to Schwinn Bicycle Co. from Calspan Corp., March 19

Rice, R.S. 1974c Bicycle dynamics simplified steady state response characteristics and stability indices, Calspan Report ZN-5431-V-1, Task Order No. 2, (prepared for Schwinn Bicycle Co.) June

Rice, R.S., Davis, J. A. & Kunkel, D. T. 1975 Accident avoidance capabilities of motorcycles, Calspan Report No. ZN-5571-V-1 and V-2, July

Rice, R. S. 1978 Rider skill influences on motorcycle maneuvering. SAE paper 780312, SAE-SP 428

Roland, R. D. & Kunkel, D. T. 1973 Motorcycle dynamics, the effects of design on high speed weave, Calspan Report ZN-5259-K-1 (prepared for Harley-Davidson Motor Company), May

Roland, R. D. & Davis, J. A. 1974 (internal) Progress report research in bicycle dynamics, May 9

Sharp, A. 1896 *Bicycles and tricycles; an elementary treatise on their design and construction*, London: Longmans Green.

Article in preparation for PRS series A

(Article in preparation for PRS series A)
2. SPACAR model

The SPACAR model for the benchmark bicycle is sketched in figure 5 and the input file for the SPACAR program describing this model is presented in §2a.

Because the SPACAR program is based on finite-element methods (FEM), the input file shows an FEM structure. SPACAR is designed to minimize the information needed in the input file. The SPACAR input file is roughly divided into four parts: element declaration and connectivity, nodal data, boundary conditions, and some additional data like masses, inertias, applied forces and simulation settings.

In the first section of input in §2a the elements are declared, they are given a type, a unique element number followed by a list of node numbers and an initial rotation axis. These element statements implicitly define the associated nodes. The nodes are either translational or rotational. A hinge element allows large relative rotation between two rotational nodes. A wheel element allows rolling contact at the contact point node. A pinbody element generates a node within a rigid body by which another finite element can be connected. Within this finite element approach a rigid body can be defined in two ways: either as a deformable element with all deformation modes set to zero or as a body with one three-degree-of-freedom translational node and one three-degree-of-freedom rotational node.

In the second section of the input file the nodes, which are placed at the centre of mass of the rigid bodies, are given their reference-configuration coordinates. Translational nodes have three coordinates \((x, y, z)\) in a global reference frame whereas rotational nodes are parameterized by four Euler parameters. These parameters are set to \((1, 0, 0, 0)\), the unit transformation, in the reference configuration.

The approach in establishing a bicycle model is to consider it in a reference configuration: upright, orientated along the x-axis, and with the rear contact at the origin. This configuration is used to define nodal positions and rigid body orientations. Relative to this reference configuration it is easy to set an initial lean or steer angle and set the rates as initial conditions. To do a simulation from an arbitrary configuration, however, you have to drive it there by specifying a path from the initial configuration to the desired initial state.

Any consistent set of units may be used. Here SI units are used.

In the third section the boundary conditions are set, the implicit definition is that all nodes are free and all elements are rigid. A node’s position or orientation in space can be fixed by the fix command; otherwise it is free to move in space. An element can be allowed to “deform” e.g. a hinge element is allowed to rotate, by the rise command. A non-zero prescribed “deformation” mode is specified by inpute, e.g. the forward motion of the bicycle in this example. For generating linearized equations of motion the line command identifies a degree of freedom to be used. The enchc command ties a nonholonomic constraint to a configuration space coordinate so as to identify those configuration coordinates for which the time derivative is not a velocity degree of freedom.

In the last section mass and inertia are added to the nodes, one value for translational nodes and six values for rotational nodes (the terms in the upper triangle portion of the inertia matrix in the initial configuration). Finally applied (constant) forces are added and some initial conditions and simulation settings are made.

When the program is run, for each output time step, all system variables (coordinates, deformations, speeds, accelerations, nodal forces, element forces, etc.) are
written to standard files which later can be read by other software for plotting or analysis. At every time step the numeric values of the coefficients of the SPACAR systematic linearization are also written to standard files.

Figure 5. Sketch of the bicycle model for SPACAR input together with node numbers (straight arrows for translations 1\ldots8, curved arrows for rotations 9\ldots15) and element numbers encircled.

(a) SPACAR Input file

The sketch of this model is shown in figure 5.

\% SPACAR input file for bicycle benchmark I
\% SECTION 1, ELEMENT DECLARATION AND CONNECTIVITY:
\% type number nodes rotation axis vector
hinge 1 9 10 0 0 1 % yaw angle rear frame between node 9(ground) and 10
hinge 2 10 11 1 0 0 % lean angle rear frame between node 10 and 11
hinge 3 11 13 0 1 0 % pitch angle rear frame between node 11 and 13(frame)
hinge 4 13 12 0 1 0 % rear wheel rotation between 13(frame) and 12(wheel)
wheel 5 3 12 2 0 1 0 % rear wheel, cm nodes 3, 12, contact pnt 2
pinbody 6 4 13 3 % node 3(rear hub) in rigid body nodes 4, 13(frame)
pinbody 7 4 13 5 % node 5(head) in rigid body nodes 4, 13(frame)
hinge 8 13 14 0.32491969623291 0 1.0 % steering angle between 13 and 14
pinbody 9 5 14 6 % node 6(cm fork) in rigid body 5, 14(front frame)
pinbody 10 5 14 7 % node 7(front hub) in rigid body 5, 14(front frame)
hinge 11 14 15 0 1 0 % front wheel rotation between 14 and 15(wheel)
wheel 12 7 15 8 0 1 0 % front wheel, cm nodes 7, 15, contact pnt 8
pinbody 13 1 9 2 % node 2(rear contact pnt) in rigid body nodes 1, 9
\% SECTION 2, NODAL DATA:
\% node initial coordinates, all rotational nodes are initialized:(1,0,0,0)
x 1 0 0 0 % fixed origin
x 2 0 0 0 % rear contact point
x 3 0 0 -0.3 % rear hub
x 4 0.3 0 -0.9 % cm rear frame + rigid rider

Article in preparation for PRS series A
% SECTION 3, BOUNDARY CONDITIONS:
% type number components
fix 1 1 2 3 % fix all(1,2,3) translations node 1(ground)
fix 9 1 2 3 4 % fix all(1,2,3,4) rotations node 9(ground)
rlse 1 1 % release rotation(1) hinge 1: yaw
rlse 3 1 % release rotation(1) hinge 3: pitch
rlse 11 1 % release rotation(1) hinge 11: front wheel rotation
rlse 13 1 2 3 % release all relative displacements(1,2,3) in pinbody 13
inpute 4 1 % rotation(1) hinge 4 is prescribed motion for forward speed
line 2 1 % generate linearized eqns for rotation(1) hinge 2: lean
line 8 1 % generate linearized eqns for rotation(1) hinge 8: steering
% tie a a non-holonomic constraint to a configuration space coordinate
%type lmnt node lmnt node (lmnt means element number)
enhc 5 4 13 1 % wheel 5 4=long slip tied to pinbody 13 1=x-disp node 2
enhc 5 5 13 2 % wheel 5 5=lat slip tied to pinbody 13 2=y-disp node 2
enhc 12 4 1 1 % wheel 12 4=long slip tied to hinge 1 1=yaw rear frame
enhc 12 5 11 1 % wheel 12 5=lat slip tied to hinge 11 1=front wheel rot
% SECTION 4, ADDITIONAL DATA: MASS, INERTIA, APPLIED FORCES, AND SIMULATION SETTINGS
% node mass:(m) or mass moment of inertia:(lxx,lxy,lxz,lyy,lyz,lzz)
mass 3 2.0 % mass rear wheel
mass 12 0.0603 0 0 0.12 0 0.0603 % inertia rear wheel
mass 4 85.0 % mass rear frame + rider
mass 13 9.2 0 2.4 11.0 0 2.8 % inertia rear frame + rider
mass 6 4.0 % mass front frame + handle bars
mass 14 0.06892 0 -0.00756 0.06 0 0.00708 % inertia front frame + handle bars
mass 7 3.0 % mass front wheel
mass 15 0.1405 0 0.28 0 0.1405 % inertia front wheel
% node applied force vector (gravity used g = 9.81)
force 3 0 0 19.62 % gravity force rear wheel
force 4 0 0 833.85 % gravity force rear frame + rider
force 6 0 0 39.24 % gravity force front frame + handle bars
force 7 0 0 29.43 % gravity force front wheel
% initial conditions
ed 4 1 -3.333333333 % angular velocity in hinge 4(forward speed) set to -3.333333333
% simulation settings
epskin 1e-6 % set max constraint error for Newton-Raphson iteration
epsint 1e-5 % set max numerical integration error on coordinates
epsind 1e-5 % set max numerical integration error on speeds	imestep 100 2.0 % set number of output timesteps and simulation time
hmax 0.01 % set max step size numerical integration
end % end of run
eof % end of file
3. AutoSim model

The AutoSim input file used for the bicycle model is listed below. The generalized coordinates and velocities are the same as those in the SPACAR model. Two massless intermediate reference frames have been introduced: a yawing frame describing the horizontal translation and yawing of the rear frame and a rolling frame describing the lean of the rear frame with respect to the yawing frame. These additional frames allow a better control over the choice of the generalized coordinates by the program. The holonomic constraint at the rear wheel is automatically satisfied. The holonomic constraint at the front wheel and the four non-holonomic constraints are explicitly defined in the input file. For more details on the syntax used see the AutoSim documentation.

(a) AutoSim Input file

;;; This is the file fietsap2.lsp, with the benchmark1 model.
;; Set up preliminaries:
(reset)
(si)
(add-gravity :direction [nz] :gees g)
(set-names g "Acceleration of gravity")
(set-defaults g 9.81) ; this value is used in the benchmark.
;; The name of the model is set to the string "fiets".
(set-sym *multibody-system-name* "fiets")
;; Introduce a massless moving reference frame. This frame has x and y
;; translational degrees of freedoms and a yaw rotational degree of freedom.
(add-body yawframe :name "moving yawing reference frame"
 :parent n :translate (x y) :body-rotation-axes z
 :parent-rotation-axis z :reference-axis x :mass 0
 :inertia-matrix 0)
;; Introduce another massless moving reference frame. This frame has a rolling
;; (rotational about a longitudinal axis) degree of freedom.
(add-body rollframe :name "moving rolling reference frame" :parent yawframe
 :body-rotation-axes (x) :parent-rotation-axis x :reference-axis y :mass 0
 :inertia-matrix 0)
;; Add the rear frame of the bicycle. The rear frame has a pitching (rotation
;; about the local lateral y-axis of the frame) degree of freedom.
(add-body rear :name "rear frame" :parent rollframe
 :joint-coordinates (0 0 "-Rrw") :body-rotation-axes y
 :parent-rotation-axis y :reference-axis z :cm-coordinates (bb 0 "Rrw-hh")
 :mass Mr :inertia-matrix ((Irxx 0 Irxz) (0 Iryy 0) (Irxx 0 Irzz)))
(set-names
Rrw "Rear wheel radius"
bb "Longitudinal distance to the c.o.m. of the rear frame"
hh "Height of the centre of mass of the rear frame"
Mr "Mass of the rear frame"
Irxx "Longitudinal moment of inertia of the rear frame"
Irxz "Minus product of inertia of the rear frame"
Iryy "Transversal moment of inertia of the rear frame"
Irzz "Vertical moment of inertia of the rear frame"
)set-defaults Rrw 0.30 bb 0.3 hh 0.9
Mr 85.0 Irxx 9.2 Irxz 2.4 Iryy 11.0 Irzz 2.8)
;; Add the rear wheel of the vehicle. This body rotates
;; about the y axis of its physical parent, the rear frame.
(add-body rw :name "rear wheel" :parent rear :body-rotation-axes y
 :parent-rotation-axis y :reference-axis z :joint-coordinates (0 0 0)
 :mass Mrw :inertia-matrix (irwx irwy irwx))

(set-names
 Mrw "mass of the rear wheel"
 irwx "rear wheel in-plane moment of inertia"
 irwy "rear wheel axial moment of inertia"
)
(set-defaults Mrw 2.0 irwx 0.0603 irwy 0.12)

;; Now we proceed with the front frame.

;; Define the steering and reference axes of the front frame.

;; Add in the front frame: define some points.
(add-point head :name "steering head point B" :body n
 :coordinates (xcohead 0 zcohead))

(add-point frontcmpoint :name "c.o.m. of the front frame" :body n
 :coordinates (xfcm 0 zfcm))

(set-names
 epsilon "steering head angle"
 xcohead "x coordinate of the steering head point B"
 zcohead "z coordinate of the steering head point B"
 xfcm "x coordinate of the c.o.m. of the front frame"
 zfcm "z coordinate of the c.o.m. of the front frame"
)
(set-defaults epsilon 0.314159265358979316
 xcohead 1.10 zcohead 0.0 xfcm 0.90 zfcm -0.70)

(add-body front :name "front frame" :parent rear :body-rotation-axes z
 :parent-rotation-axis "\sin(\epsilon)*[rearx]+\cos(\epsilon)*[rearz]"
 :reference-axis "\cos(\epsilon)*[rearx]-\sin(\epsilon)*[rearz]"
 :joint-coordinates head :cm-coordinates frontcmpoint :mass Mf
 :inertia-matrix ((Ifxx 0 Ifxz) (0 Ifyy 0) (Ifxz 0 Ifzz))
 :inertia-matrix-coordinate-system n)

(set-names
 Mf "Mass of the front frame assembly"
 Ifxx "Longitudinal moment of inertia of the front frame"
 Ifxz "Minus product of inertia of the front frame"
 Ifyy "Transversal moment of inertia of the front frame"
 Ifzz "Vertical moment of inertia of the front frame"
)
(set-defaults Mf 4.0
 Ifxx 0.05892 Ifxz -0.00756 Ifyy 0.06 Ifzz 0.00708)

;; Add in the front wheel:
(add-point fw_centre :name "Front wheel centre point" :body n
 :coordinates (ll 0 "-Rfw"))

(add-body fw :name "front wheel" :parent front :body-rotation-axes y
 :parent-rotation-axis y :reference-axis "[nz]"
 :joint-coordinates fw_centre :mass Mfw :inertia-matrix (ifwx ifwy ifwx))

(set-names
 ll "Wheel base"
 Rfw "Radius of the front wheel"
 Mfw "Mass of the front wheel"
 ifwx "In-plane moment of inertia of the front wheel"
 ifwy "Axial moment of inertia of the front wheel"
)
(set-defaults ll 1.02 Rfw 0.35 Mfw 3.0 ifwx 0.1405 ifwy 0.28)
Bicycle dynamics benchmark

;; The system is complete, except for the contact constraints at the wheels.
;; The holonomic constraint at the rear wheel is automatically satisfied.
;; The rear wheel slip is zero.
(add-speed-constraint "dot(vel(yawframe0), [yawframex]) + Rw*(ru(rear) + ru(rw))" :u "tu(yawframe, 1)"
(add-speed-constraint "dot(vel(yawframe0), [yawframey])" :u "tu(yawframe, 2)"
;; For the front wheel we have a holonomic constraint for the contact and two
;; non-holonomic slip constraints. The slip velocities are defined now.
(setsym singammafw "dot([fwy],[nz])")
(setsym cosgammafw "sqrt(1-singammafw**2)"
(setsym fw_rad "([nz] - [fwy]*singammafw)/cosgammafw")
(setsym slipfw_long "dot(vel(fw0)+Rfw*cross(rot(fw), @fw_rad), [nx])")
;; No longitudinal slip on front wheel;
;; eliminate rotational velocity about the axis
(add-speed-constraint "@slipfw_long" :u "ru(fw)"
;; normal constraint; eliminate the pitch angle
(setsym slipfw_n "dot(vel(fw0)+Rfw*cross(rot(fw), @fw_rad), [nz])")
(add-speed-constraint "@slipfw_n" :u "ru(rear)"
(add-position-constraint "dot(pos(fw0), [nz]) + Rfw*cosgammafw" :q "rq(rear)"
;; No lateral slip on front wheel; eliminate yaw rate of the yawing frame
(setsym slipfw_lat "dot(vel(fw0)+Rfw*cross(rot(fw), @fw_rad), [ny])")
(add-speed-constraint "@slipfw_lat" :u "ru(yawframe)"
(dynamics)
(linear)
4. The first linear equation: $\dot{v} = 0$

Here we present in more detail why symmetry decouples lean and steer from forward motion in the linearized equations. As explained in §4c, some configuration variables do not show up in the equations of motion and so are not of central interest. These include position (x_P, y_P) on the plane, the yaw ψ, and the net wheel rotations θ_R and θ_F. Of interest is the evolution of the right lean ϕ, the right steer δ, and backwards rear wheel rotation rate $\dot{\theta}_R$. For conceptual and notational convenience define forward speed as $v \equiv -R_R \dot{\theta}_R$ and use v instead of $\dot{\theta}_R$ in the discussion below.

First we establish the forward motion governing equation when there is no applied thrust.

First, without writing explicit non-linear equations, we know they have this in-plane exact reference solution:

$$v(t) = v^*, \quad \phi(t) = 0 \quad \text{and} \quad \delta(t) = 0 \quad (B\ 1)$$

where v^* is an arbitrary constant.

The linearized equations are for small perturbations about this reference solution. For notational simplicity we take the lean and steer perturbations as merely ϕ and δ recognizing that we are only discussing infinitesimal values of these variables. For the forward motion take the perturbation to be \dot{v}.

For the argument below we only depend on the linearity of the equations, and not their detailed form. Take an arbitrary set of initial conditions to be $(\dot{v}_0, \phi_0, \delta_0)$. At some definite time later, say $t_d = 1\ s$ for definiteness, the values of the speed lean and steer at t_d must be given by

$$\begin{bmatrix} \dot{v}_d \\ \phi_d \\ \delta_d \end{bmatrix} = A \begin{bmatrix} \dot{v}_0 \\ \phi_0 \\ \delta_0 \end{bmatrix} \quad (B\ 2)$$

for any possible combination of $\dot{v}_0, \phi_0, \delta_0$. The matrix $A = \begin{bmatrix} A_{vv} & A_{v\phi} & A_{v\delta} \\ A_{\phi v} & A_{\phi\phi} & A_{\phi\delta} \\ A_{\delta v} & A_{\delta\phi} & A_{\delta\delta} \end{bmatrix}$ depends on which definite time t_d is chosen. Because the bicycle rolls on a flat horizontal isotropic plane and there is no time-dependent forcing, the coefficient matrix A is dependent on the time interval t_d but independent of the starting time.

Now consider an initial condition 1 where only the lean is disturbed: $\begin{bmatrix} \dot{v}_0 \\ \phi_0 \\ \delta_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ where we think of 1 as a small perturbation. This results in a perturbation a time t_d later of

$$\begin{bmatrix} \dot{\phi}^1_d \\ \delta^1_d \end{bmatrix} = \begin{bmatrix} A_{v\phi} \\ A_{\phi\phi} \end{bmatrix}$$

where the right side is the middle column of A.

Now consider the opposite perturbation 2 with $\begin{bmatrix} \dot{\phi}^2_d \\ \delta^2_d \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ which results in...
a perturbation a time \(t_d \) later of
\[
\begin{bmatrix}
\hat{v}_d^2 \\
\phi_d' \\
\delta_d'
\end{bmatrix}
= \begin{bmatrix}
-A_{v\phi} \\
-A_{\phi\phi} \\
-A_{\delta\phi}
\end{bmatrix}
\] where the right side is the negative of the middle column of \(A \); for a linear system negating the input negates the output.

Now we invoke lateral symmetry. If knocking a bicycle to the left causes it to speed up, knocking it to the right must cause it to speed up equally. So \(v_d^2 = v_d^1 \Rightarrow A_{v\phi} = -A_{v\phi} \Rightarrow A_{v\phi} = 0 \).

Now we can similarly apply a rightwards perturbation to just the steer. On the one hand linearity requires a negative steer has to have the negative effect on forward speed. On the other hand, lateral symmetry requires that a rightwards steer perturbation have an equal effect as a leftwards perturbation. Thus, by the same reasoning as for lean we get \(A_{v\delta} = 0 \).

Next, consider perturbations to just the forward speed \(\hat{v} \). By symmetry these can cause neither a left nor right lean or steer. So \(A_{\phi\delta} = A_{\delta\phi} = 0 \). Thus symmetry reduces the matrix \(A \) to having zeros off the diagonal in both the first row and the first column.

Finally, we know the steady upright solution is an exact non-linear solution for any \(v^* \). Assuming that the full non-linear equations have unique solutions for any given initial conditions, a perturbation in \(v^* \) just leads to a new constant speed solution at the perturbed \(v^* \). Thus, \(\hat{v}_d = \hat{v}_0 \) and \(A_{vv} = 1 \).

Altogether this means that the linearized equations giving the perturbed values of the state at time \(t_d \) in terms of the initial perturbation are necessarily of the form of equation B.2 with \(A \) having the form
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & A_{\phi\phi} & A_{\phi\delta} \\
0 & A_{\delta\phi} & A_{\delta\delta}
\end{bmatrix}
\]. This form must hold for any \(t_d \) thus perturbations in lean \(\phi \) and steer \(\delta \) never have influence on the forward speed \(v \) and vise versa, perturbations in speed have no influence on lean and steer. Similarly, lean and steer rates (\(\dot{\phi}, \dot{\delta} \)) are also decoupled from forward motion. Further, because \(\hat{v}_d = \hat{v}_0 \) for all time, \(\hat{v} \) is a constant so
\[
\dot{\hat{v}} = 0.
\]

Similar arguments show that forward forcing does not cause lean or steer and that lateral forcing does not cause changes in speed (to first order). Thus a bicycle which is forced to go at exactly constant speed in a full non-linear analysis has the same linearized lean and steer governing equations as for the bicycle that is free in forward motion. Such is confirmed by SPACAR numerical analysis where

1. For small deviations from upright constant energy and constant speed give the same solutions (to about 4 digits) and

2. Both constant speed and constant energy give the same values for the numerical coefficients in the linearized equations and which are the same as the values presented in the body of the paper here for our ad hoc linearization (to about 14 digits). This comparison was also performed by Lennartsson (2006, personal communication 2006).
5. A simplified benchmark model

In a second benchmark various simplifications are made to permit comparison with less complete models. The design parameters are according to table 1 but with the following changes. Both wheels are planar, $I_{yy} = 2I_{xx}$, and identical with: $m_R = m_F = 3 \text{ kg}$, $r_R = r_F = 0.35 \text{ m}$, and $(I_{Rxx}, I_{Ryy}) = (I_{Fxx}, I_{Fyy}) = (0.14, 0.28) \text{ kgm}^2$. The mass of the rear frame and body assembly B is $m_B = 85 \text{ kg}$ located at $(x_B, z_B) = (0.3, -0.9) \text{ m}$, whereas the mass moment of inertia is zero, $I_B = 0$. The front frame H has neither mass, $m_H = 0$, nor inertia moments, $I_H = 0$.

Substitution of these values of design parameters for the simplified benchmark bicycle in the expressions from Appendix A results in the following values for the entries in the mass matrix from (A 20),

$$
M = \begin{bmatrix}
69.865 & 1.86872785397656 \\
1.86872785397656 & 0.23907988756138
\end{bmatrix},
$$

the entries in the constant stiffness matrix from (A 22) which are to be multiplied by gravity g,

$$
K_0 = \begin{bmatrix}
-78.6 & -2.22658087668400 \\
-2.22658087668400 & -0.68805133024563
\end{bmatrix},
$$

the coefficients of the stiffness matrix from (A 24) which are to be multiplied by the square of the forward speed v^2,

$$
K_2 = \begin{bmatrix}
0, & 74.77914961457971 \\
0, & 2.30658662033871
\end{bmatrix},
$$

and finally the coefficients of the “damping” matrix from (A 26) which are to be multiplied by the forward speed v,

$$
C_1 = \begin{bmatrix}
0, & 29.14055814095337 \\
-0.88019348174767, & 1.15036014380813
\end{bmatrix}.
$$

To facilitate comparison with equations or results derived using different methods, eigenvalues are presented. These eigenvalues in the forward speed range show the same structure as those from the full benchmark bicycle, see figure 3, but with slightly different values. The precise eigenvalues for the simplified bicycle benchmark at some forward speeds are presented in table 5 and table 6. These results may differ from the fifteenth digit on due to the finite precision of the floating point arithmetic used. Even a reordering of term in the calculation of the intermediate expressions can have this effect.
Table 5. Complex eigenvalues λ_{weave} from the linearized stability analysis for the oscillatory weave motion for the simplified benchmark bicycle from §5 in the forward speed range of $0 \leq v \leq 10$ m/s.

<table>
<thead>
<tr>
<th>v [m/s]</th>
<th>$\text{Re}(\lambda_{\text{weave}})$ [1/s]</th>
<th>$\text{Im}(\lambda_{\text{weave}})$ [1/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.676 636 216 381 60</td>
</tr>
<tr>
<td>1</td>
<td>3.915 605 159 008 03</td>
<td>1.947 971 866 614 21</td>
</tr>
<tr>
<td>2</td>
<td>3.145 971 626 952 20</td>
<td>3.144 568 094 683 27</td>
</tr>
<tr>
<td>3</td>
<td>2.096 627 566 535 66</td>
<td>4.881 202 124 548 49</td>
</tr>
<tr>
<td>4</td>
<td>0.910 809 011 944 21</td>
<td>6.936 393 452 637 19</td>
</tr>
<tr>
<td>5</td>
<td>0.198 648 678 113 17</td>
<td>8.903 125 360 683 31</td>
</tr>
<tr>
<td>6</td>
<td>-0.245 683 866 155 55</td>
<td>10.790 930 464 293 57</td>
</tr>
<tr>
<td>7</td>
<td>-0.589 203 483 851 70</td>
<td>12.628 966 109 587 14</td>
</tr>
<tr>
<td>8</td>
<td>-0.883 875 624 871 00</td>
<td>14.434 482 871 116 77</td>
</tr>
<tr>
<td>9</td>
<td>-1.150 515 263 118 26</td>
<td>16.217 648 368 548 84</td>
</tr>
<tr>
<td>10</td>
<td>-1.399 313 952 184 76</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Real eigenvalues λ from the linearized stability analysis for the capsize motion and the castering motion for the simplified benchmark bicycle from §5 in the forward speed range of $0 \leq v \leq 10$ m/s.

<table>
<thead>
<tr>
<th>v [m/s]</th>
<th>λ_{capsize} [1/s]</th>
<th>$\lambda_{\text{castering}}$ [1/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3.321 334 354 955 67</td>
<td>-5.695 461 613 073 60</td>
</tr>
<tr>
<td>1</td>
<td>-3.339 571 399 042 72</td>
<td>-6.577 674 865 894 17</td>
</tr>
<tr>
<td>2</td>
<td>-3.122 857 194 829 05</td>
<td>-7.341 157 952 916 98</td>
</tr>
<tr>
<td>3</td>
<td>-2.196 003 785 406 69</td>
<td>-8.255 359 188 427 08</td>
</tr>
<tr>
<td>4</td>
<td>-0.787 290 747 535 25</td>
<td>-9.378 471 064 036 38</td>
</tr>
<tr>
<td>5</td>
<td>-0.161 936 233 356 19</td>
<td>-10.665 540 857 474 20</td>
</tr>
<tr>
<td>6</td>
<td>0.039 380 255 445 46</td>
<td>-12.064 228 204 659 15</td>
</tr>
<tr>
<td>7</td>
<td>0.114 168 685 341 41</td>
<td>-13.538 013 346 083 71</td>
</tr>
<tr>
<td>8</td>
<td>0.143 031 193 913 90</td>
<td>-15.063 567 519 538 39</td>
</tr>
<tr>
<td>9</td>
<td>0.152 632 341 109 21</td>
<td>-16.625 925 337 159 89</td>
</tr>
<tr>
<td>10</td>
<td>0.153 494 106 064 82</td>
<td>-18.215 225 670 903 33</td>
</tr>
</tbody>
</table>