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Abstract

This paper discusses the mechanics of a rigid rimless spoked wheel, or regular polygon, ‘rolling’ downhill.

By rolling, we mean motions in which the wheel pivots on one ‘support’ spoke until another spoke collides

with the ground, followed by transfer of support to that spoke, and so on. We carry out three-dimensional

numerical and analytical stability studies of steady motions of this system. At any fixed, large enough slope,

the system has a one-parameter family of stable steady rolling motions. We find analytic approximations for

the minimum required slope at a given heading for stable rolling in three dimensions, for the case of many

spokes and small slope. The rimless wheel shares some qualitative features with passive-dynamic walking

machines; it is a passive three dimensional system with intermittent impacts and periodic motions. In terms

of complexity it lies between one dimensional impact oscillators and three dimensional walking machines. In

contrast to a rolling disk on a flat surface which has steady rolling motions that are only neutrally stable

at best, the rimless wheel can have asymptotic stability. In the limit as the number of spokes n approaches

infinity, the behavior of the rimless wheel approaches that of a rolling disk in an averaged sense and becomes

neutrally stable. Also, in this averaged sense, the piecewise holonomic system (rimless wheel) approaches a

nonholonomic system (disk).



         

1 Introduction

We study the three dimensional motions of a spoked, rimless wheel ‘rolling’ down a slope under the action of

gravity (see Figure 1). A planar rimless wheel of mass m, with moment of inertia matrix IC about the center

of mass, and n evenly spaced identical spokes of length ` rolls down a slope of angle α. The orientation

variables are 3-1-2 Euler angles representing pitch(θ), heading(φ), and bank(ψ). For 2D motions of the wheel

at any fixed heading φ, the only non-constant variable is θ since the motion is then confined to a vertical

plane aligned with gravity (ψ a constant).

By rolling, we mean motions in which the wheel pivots on one ‘support’ spoke until another spoke collides

with the ground, followed by transfer of support to that spoke, and so on.
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Figure 1: (a) Parameters and (b) orientation variables of the 3D rimless wheel model.

1.1 Motivation

Our interest in the rimless wheel starts from an interest in the dynamics of human walking. Studies of the

dynamics of walking motions sometimes involve mechanical systems with the following characteristics: (a)

over certain periods, the systems have smooth motions that may be roughly described as unstable falling

(near a statically unstable configuration); (b) these smooth motions are interrupted by collisions, at which

velocities change quickly; and support might be transferred from one foot to another; and (c) after each

collision, another phase of smooth motion begins.

Steady walking corresponds to periodic motions of these dynamic systems. Such systems have been

studied with no actuation and control (McGeer, 1990, 1991 [15, 16, 17]; McMahon, 1984 [18]; Garcia, et.

al., 1997 [6]; Goswami, et. al., 1996 [7]) as well as with various amounts and types of power input and
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active control (see, e.g., Hemami and Chen, 1984 [11]; Furusho and Sano, 1990 [5]; Taga, 1991 [23]; Beletskii,

1990 [1]; Pandy and Berme, 1988 [19]; Hurmuzlu, 1993 [12, 13]; Yamaguchi, 1990 [25]; Zajac and Winters,

1990 [26]; Vukobratovic, et. al., 1990 [24]).

One goal of studies of gait is to understand stability. McGeer’s machines, and the walking toys that

inspired them (McGeer, 1989) [14], are passive and dynamically stable. We are not aware of studies of

systems that are simpler than McGeer’s, yet retain the essential features mentioned above. Besides wobbling

toys with low mass-centers and broad feet (McGeer, 1989) [14], passive dynamic walking machines that are

stable in three dimensions have not yet been discovered in theory, simulation or experiment.

Two dimensional motions of the rimless wheel were studied briefly by McGeer (note that in 2D motions,

the system has only one degree of freedom). Although three-dimensional motions of a rolling regular polygon

(the same as a rimless wheel) were studied by Goyal (1992) [8], three dimensional stability analyses of rolling

polygons have not been conducted before. We hope that a 3D stability analysis of the wheel will provide

some insight into possible stabilizing mechanisms which in turn might improve our understanding of the

dynamics of passive walking in 3D. Like McGeer’s walking machines, the rimless wheel has periodic motions

in two dimensions which are stable if restricted to two dimensions. Also, like walking machines, the rimless

wheel can fall down in 3D. The wheel is simpler to study than the walking machines for the following reasons:

(a) if the slope is large enough, periodic motions always exist within some interval of heading angle φ; (b)

if periodic motions exist, they are always stable if constrained to 2D; and (c) the motion is simpler because

the system consists of a single rigid body, unlike the walking machines, which are made of interconnected

rigid bodies.

Another reason why the rimless wheel is of interest is that its rolling motion resembles that of a disk,

especially so as the number of spokes becomes large. Steady rolling of a disk on a level surface is not

asymptotically stable; if slightly disturbed, the wheel wobbles forever (e.g., see Greenwood [9]). The sim-

ilarity of the rolling motions leads to the question of whether steady motions of the rimless wheel can be

asymptotically stable.

2 Description of the System

A wheel of net mass m with the rim removed, and with n evenly spaced identical spokes of length `, rolls

down a slope of angle α (see Figure 1). Assuming n-fold symmetry and that all mass is in the plane, the

moment of inertia matrix about the center of mass with the y-axis normal to the plane of the wheel is

IC =


D 0 0

0 2D 0

0 0 D

 , for some D > 0. (1)
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Unlike a wheel with a rim, since this device loses energy at collisions, it cannot roll steadily on a level surface.

Here, we only consider downhill rolling.

It is possible that appreciably elastic and/or sliding collisions will make the dynamics of the system more

complicated, and perhaps change its stability. We do not consider such cases here. Once a spoke contacts

the ground, we assume that it pivots about the contact point until the next spoke collides and we do not

allow slip and/or loss of contact between collisions.

The perfectly plastic, instantaneous collision assumption is reasonable when the distance of rebound

or sliding is small compared to the distance between neighboring spoke tips, and the time of collisional

interaction is small compared to the time between collisions. The perfectly plastic assumption also reduces

nicely to the rolling disk as n→∞.

Configuration and State Spaces

We characterize the configuration of the wheel between collisions using 3-1-2 Euler angles as shown in

Figure 1. The heading angle is the rotation φ about the original z axis, the bank angle is the rotation ψ

about the new x axis, and the pitch angle is the rotation θ about the newest y axis.

Globally, the system has five generalized coordinates, like a rolling disk: two for contact position and

three for the three-dimensional orientation. Unlike the rolling disk, the contact point is stationary between

collisions and shifts discontinuously during collisions.

In our stability analysis, we do not keep track of the foot contact position over several foot collisions;

we just keep track of the orientation variables φ, ψ, and θ. We use equations of motion for a rimless

wheel pivoting on one spoke (holonomic system with three degrees of freedom), and use angular momentum-

balance-deduced jump conditions to map the state variables from just before a foot collision to just after.

Thus, in our analysis, the state space is six dimensional and q, the state vector, is defined to be

q = {φ, ψ, θ, φ̇, ψ̇, θ̇}T . (2)

3 Governing Equations

A cycle of the wheel is the motion from one spoke collision through the next. A schematic of one cycle, for

downhill rolling, is shown in Figure 2. The beginning and end of the cycle is determined by the pitch angle

θ. The pitch angle of the wheel between collisions is restricted to the interval [−π/n, π/n] by resetting the

pitch angle after each downhill collision to θ = −π/n.
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Figure 2: Schematic over one cycle of motion showing: (a) the state of the wheel just after collision i with

point A, (b) the state of the wheel between collisions, (c) the state of the wheel just before collision i+ 1 at

point B, (d) collision i+ 1 at point B, and (e) the state of the wheel just after collision i+ 1 at point B.

3.1 Equations of Motion between Collisions

Referring to Figure 2, angular momentum balance about the contact point of the spoke currently touching

the ground yields the following three non-dimensionalized equations for motion between collisions:

sα cθ cφ− sα sθ sψ sφ+ sθ cψ cα =
1
λ2

(cψ ψ̇φ̇+ sψ φ̈+ θ̈) +

(cθ cψ φ̇+ sθ ψ̇)(−sθ cψ φ̇+ cθ ψ̇)

0 =
[
sθ cψ θ̇ψ̇ − cθ sψ ψ̇φ̇+ cθ cψ φ̈+ cθ θ̇ψ̇ + sθ ψ̈+

(sψ φ̇+ θ̇)(−sθ cψ φ̇+ cθ ψ̇)
]

cψ sφ sα+ sψ cα = −1 + λ2

2λ2

[
cθ cψ φ̇− sθ sψ ψ̇φ̇+ sθ cψ φ̈+ sθ θ̇ψ̇ − cθ ψ̈+

(sψ φ̇+ θ̇)(cθ cψ φ̇+ sθ ψ̇)
]

(3)

where ‘s’and ‘c’ are used to denote ‘sin’ and ‘cos’, and λ2 ≡ 1
2J + 1

with the square of the radius of gyration

J ≡ D
m`2 (non-dimensionalized with respect to `). An overdot indicates differentiation with respect to non-

dimensional time τ ≡
√
g/`. These equations are simply those of an inverted rigid body pendulum. This

set of equations can be converted to a first order system of the form q̇ = g(q,p), where p is a vector of the

parameters, p = (λ2, α). We do not restate the equations in first order form for brevity. Henceforth, the

dependence on the parameters p will not be explicitly stated.

As a brief aside, the parameter α could be eliminated from the equations of motion by a change of variable

using angles measured with with respect to a fixed frame whose z-axis is aligned with gravity rather than
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the normal to the plane. By including α here in equation (3), we eliminate it from the collision transition

equations that we develop below.

3.2 Collision Transition Conditions

3.2.1 Collision Rule for Configuration Variables

Due to our choice of Euler angles, the heading and bank angles do not change through a collision. The pitch

angle is reset at each collision as support is transferred from one spoke to the next according to the following

mapping:

θ 7→ −θ or iθ+ = − iθ−. (4)

Thus, we can write 
φ+

ψ+

θ+

 = S


φ−

ψ−

θ−

 , where S =


1 0 0

0 1 0

0 0 −1

 . (5)

3.2.2 Collision Rule for Angular Rates

We model the collision as instantaneous. When a spoke collides with the ground, we assume that the trailing

spoke instantaneously loses contact with the ground so that only one spoke is in contact with the ground at

any time. We assume that no impulse is transmitted at the trailing spoke and that the collision of the new

spoke with the ground is perfectly plastic. Under these assumptions, the angular rates just before and after

a collision are related as follows:


φ̇+

ψ̇+

θ̇+

 = T


φ̇−

ψ̇−

θ̇−

 , where T =


1 + 2λ2

1+λ2 (cos 2π
n − 1) 0 0

− λ2

1+λ2 cosψ sin(2π
n ) 1 0

2λ2 1−λ2

1+λ2 sinψ sin2(πn ) 0 1 + λ2(cos
2π
n
− 1)︸ ︷︷ ︸

µ

 . (6)

The (3, 3) element of the matrix T appears again in the stability calculations. We call it µ ≡ 1+λ2(cos 2π
n −1).
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3.2.3 Total Collision Rule

Finally, we can merge the transition rules for the orientation variables and their rates into one map from the

state of the system just before a collision to just after:

φ+

ψ+

θ+

φ̇+

ψ̇+

θ̇+


= L



φ−

ψ−

θ−

φ̇−

ψ̇−

θ̇−


, where L =

 S 0

0 T

 . (7)

We can rewrite this collision law that maps the state of the wheel just before to just after a collision as

q+ = h(q−) =
[
L(q−)

]
q−, (8)

where the matrix [L(q−)] depends only on the orientation variables and not their rates.

4 Poincaré Section, Return Map, and Fixed Points

To study this system, we use a Poincaré section. Ignoring the absolute position of the wheel on the plane,

the rimless wheel has a six-dimensional phase space with coordinates (φ, ψ, θ, φ̇, ψ̇, θ̇). Instead of taking a

Poincaré section at fixed intervals of time, a natural place to sample this space is at the points of discontinuity,

the collisions, where we know the pitch angle of the wheel to be θ =
π

n
. The map we use, say f , takes the

state of the wheel from just after one collision to just after the next collision.

This mapping approach has also been used in other work involving discontinuous vector fields such as

studies of: hopping robots (Bühler and Koditschek, 1990 [3]); bouncing balls (Guckenheimer and Holmes,

1983 [10]); elasto-plastic oscillators (Pratap, et. al., 1992 [20]); impact oscillators (Shaw and Holmes,

1983 [21], Shaw and Rand, 1989 [22]); and walking (McGeer, 1991 [17], Hurmuzlu, 1993 [12, 13]). 1

Note that the Poincaré section is taken at the same θ for every collision; thus, we assume that the surface

of the slope is not curved or bumpy so that the wheel must rotate through the same angle θ =
2π
n

between

collisions; thus, the Poincaré section is taken at the same θ for every collision.

The state of the system after each collision is a point on the Poincaré section. The map from one point

to the next can be written as q 7→ f(q) or

i+1q+ = f(iq+), (9)

1A general discussion of the dynamics of systems with impacts can be found in Brogliato, 1996 [2].
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where we call f the return map (or Poincaré map) and iq+ is the state vector of the system at the start of

a cycle, just after the ith collision.

The map f may be looked upon as a composition of two maps, f = h◦d; here, d governs the motion from

just after collision i to just before collision i + 1, obtained by integrating the equations of motion between

collisions, and h governs support transfer, from just before to just after collision i+ 1.

For periodic or steady motion, we must find fixed points of the return map, q∗ = f(q∗).

5 Stability of Periodic Motions

In this paper we consider a system that, with fixed system parameters, (m, n, `, J), exhibits a one-parameter

family of periodic motions corresponding to rolling down the slope at different headings. On a Poincaré

section, periodic motions appear as fixed points; thus a 1 parameter family of periodic motions appears as

a curve on the Poincaré section.

If Σ is the Poincaré section, the return map is a function of q ∈ Σ, given by qn+1 = f(qn). For any

trajectory of the system, given an initial intersection with the Poincaré section, q0, the return map generates

a sequence of iterates, q1,q2,q3, · · ·. Any q for which f(q∗) = q∗ is a fixed point on the Poincaré section.

Definitions: We use the following definitions of stability. Let q∗ ∈ Σ be a fixed point. The fixed point

q∗ is stable if, for any ε > 0, there exists δ > 0 such that whenever |q0 − q∗| < δ, |qn − q∗| < ε for all

positive n. The fixed point q∗ is asymptotically stable if, in particular, there exists δ > 0 such that whenever

|q0 − q∗| < δ, |qn − q∗| < ε for all positive n and lim
n→∞

qn = q̄∗ exists. Note that we do not insist that

q̄∗ = q∗, only that |q̄∗−q∗| < ε, and therefore our use of the term asymptotic stability is less restrictive than

usual. Clearly, if q̄∗ exists, it must be a fixed point. Thus, we call a periodic motion asymptotically stable

if, when slightly disturbed from this motion, the system asymptotically approaches some nearby periodic

motion. This is the strongest type of stability possible when there is a family of periodic motions, since the

perturbed point q0 could just as well be a perturbation of q̄∗ as a perturbation of q∗.

Calculations: In stability calculations, we first compute a fixed point of interest, say q∗ ∈ Σ. Then we

select some perturbed point q0 which lies close to q∗. Numerically or analytically, we find the next iterate

q1 = f(q0). To a linear approximation, q1 = q∗+ J(q0−q∗), where J is the Jacobian of the map, evaluated

at q∗. If the eigenvalues of the Jacobian are all smaller than one in magnitude, then the fixed point is

asymptotically stable in the traditional sense. Since we have a one-parameter family of fixed points, one

eigenvalue will always be exactly equal to one. If all the other eigenvalues are smaller than one in magnitude,

then the fixed point is asymptotically stable in the weak sense described above.

For the system we consider in this paper, the Poincaré section is five dimensional (the phase space is six

dimensional). Thus, the Jacobian is a 5× 5 matrix which can be numerically computed by five calculations
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using independent perturbations q0 − q∗ for each case. Naturally, the perturbed point q0 must lie on

the Poincaré section in each case. In our calculations, we chose to do six (dimension of the phase space)

calculations, where the perturbed point q0 need not lie on the Poincaré section in each case, resulting in a

6 × 6 Jacobian matrix. Note: Our six dimensional calculation yields a Jacobian with six eigenvalues; one

eigenvalue is exactly zero, and reflects the fact that the initially perturbed point might lie off the Poincaré

section, but the next iterate q1 will lie exactly on the Poincaré section. The remaining five eigenvalues of

our 6× 6 Jacobian matrix are identical to the eigenvalues of the 5× 5 Jacobian obtained by selecting initial

perturbations only on the Poincaré section. Since our system has a one-parameter family of fixed points,

one eigenvalue is exactly equal to one. Thus, there remain four eigenvalues to be examined.

6 Motion Restricted to 2D: Some Results

A detailed analysis of all possible 2D motions of the rimless wheel may be found in Coleman (1997) [4]. A

simple analysis is described in McGeer (1990) [15]. Here, we consider only the motions near steady downhill

rolling motions.

If the rimless wheel completes a downhill cycle, the kinetic energy of the wheel at the end-of-cycle, just

before collision i+ 1, is greater than the kinetic energy at the start-of-cycle, just after collision i, due to the

downhill slope (K.E.−i+1 > K.E.+i ). The kinetic energy of the wheel drops instantaneously at impact. For

downhill motions, only three outcomes are possible when (a) the slope is big enough and (b) the wheel has

enough initial kinetic energy make it past the vertical position in its cycle of motion to the next downhill

collision. These possibilities are:

1. Periodic motion occurs; this happens if the energy lost in collision is exactly balanced by the kinetic

energy gained in falling. In this case, the state variables are equal to those at the start of the previous

cycle. The wheel is in periodic or limit cycle motion that repeats indefinitely.

2. The wheel slows down towards a periodic motion, which may be shown to be unique; this happens if

more energy is lost in collision than gained in moving downhill.

3. The wheel speeds up towards the periodic motion; this happens if more energy is gained in moving

downhill than lost in collision.

In Coleman (1997) [4], it is shown that condition (a) is satisfied if the effective slope angle γ > γc where γc

satisfies

1− cos
π

n
cos γc −

1 + µ2

1− µ2
sin

π

n
sin γc = 0, (10)
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and that condition (b) is satisfied if the the pitch rate just after a collision iθ̇+ > θ̇c where θ̇c is given by

θ̇c =
√

2λ2(1− cos(γ − π

n
)). (11)

Based on the observations above, key aspects of the 2D motions that are relevant to steady rolling motions

in 3D are stated below:

1. For large enough slopes, γ > γc, unique steady 2D rolling motions always exist.

2. The steady 2D motions (restricted to 2D) are asymptotically stable. The eigenvalue of the linearization

of the map about the fixed point is µ2 < 1.

7 3D Motions

The solutions found in 2D will satisfy the 3D equations of motion; i.e., all 2D solutions are also 3D solutions.

There is a family of 2D periodic motions restricted to different vertical planes; i.e., the wheel may roll

downhill at different heading angles φ∗. We call these steady 3D motions planar (or 2D) limit cycles. A

planar limit cycle is illustrated schematically in Figure 3. Corresponding to each fixed point is a trajectory in

fixed coordinate
system

direction of
progression

downslope
θ∗(τ)

φ∗

α
γ

x y

z
limit cycle plane 
of progression

gψ∗

Figure 3: The schematic here depicts the planar limit cycle motion, for the 3D wheel, showing how the plane

of the wheel at heading φ∗ is aligned with the force acting on the wheel due to gravity.

phase space in between collisions. With a slight abuse of notation, we also use an asterisk ’*’ to denote this

trajectory q∗(τ), which we call the 2D limit cycle trajectory (see Figure 6 in the appendix); we distinguish

it from the fixed point q∗ by showing it as a function of the non-dimensional time τ . The fixed point q∗
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and its associated 2D limit cycle trajectories between collisions are summarized in Table 1. For motions

Limit Cycle φ∗(τ) = φ∗ φ̇∗(τ) = 0 ψ∗(τ) = ψ∗ ψ̇∗(τ) = 0 θ∗(τ) θ̇∗(τ)

Trajectory (in time)

Fixed Point φ∗ φ̇∗ = 0 ψ∗ ≡ ψ∗(φ∗, γ) ψ̇∗ = 0 θ∗ = −π
n

θ̇∗ ≡ θ̇∗(γ, n, λ2)

of f (on Σ)

Table 1: The planar limit cycle in three dimensions. The limit cycle time histories φ∗(τ), φ̇∗(τ), ψ∗(τ), and

ψ̇∗(τ) are constant over a cycle and equal to the corresponding fixed point values at the start-of-cycle. The

limit cycle pitch angle θ∗(τ) and rate θ̇∗(τ) are not constant.

of the wheel restricted to two dimensions,the plane of the wheel is parallel to the line of action of the net

gravity force acting on the wheel. In terms of the 3D variables, this gives the bank angle ψ∗ of the wheel as

a function of the slope angle α and the heading angle φ∗

ψ∗ ≡ ψ(φ∗, α) = tan−1(− sinφ∗ tanα). (12)

The effective slope γ at a particular heading is given by

γ ≡ γ(φ∗) = sin−1(sinα cosφ∗). (13)

The heading angle φ∗ may be looked upon as a free parameter that determines a one-parameter family of

steady rolling motions. Finally, the limit cycle pitch rate, as sampled on the Poincaré section, and the limit

cycle period τ∗ are, respectively,

θ̇∗ ≡ θ̇∗(γ, n, λ2) =

√
4µ2λ2 sin π

n sin γ
1− µ2

and (14)

τ∗ ≡ τ∗(γ, n, λ2) =
∫ π

n

−πn

dθ√
(θ̇∗)2 + 2λ2(cos(πn )− cos θ)

. (15)

both of which can be found using a simple 2D energy analysis. As the number of spokes n gets large, various

planar limit cycle quantities (the limit cycle pitch rate θ̇∗, the limit cycle time between collisions τ∗, the

critical effective slope angle γc, and the collision parameter µ) scale with n as follows:

θ̇∗ '
√
n sin γ
π

, τ∗ ' 2(πn )
3
2

√
sin γ

, γc '
λ2π3

n3
, and µ ' 1− 4

λ2π2

n2
. (16)

Here, γc is the minimum required slope for steady rolling motions to exist. The limit cycle pitch angle, equal

to half the angle between the spokes, is θ∗ = −π/n which obviously scales as θ∗ ∼ O(1/n).
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For our 3D analytical stability study, we take the slope angle α to be inversely proportional to the number

of spokes, α =
ᾱ

n
, which implies for any heading φ that

γ =
γ̄

n
+O(

1
n3

)À γc ∼ O(
1
n3

) (17)

where γ̄ ∼ O(1) is a constant. For such slopes, the limit cycle period scales as τ∗ ∼ O(1/n) and the limit

cycle pitch rate tends to a constant θ̇∗ '
√
γ̄/π. As n → ∞, we obtain a disk on a flat surface rolling at

constant speed proportional to
√
γ̄.

8 3D Stability of the 2D Limit Cycle

For a rimless wheel restricted to planar motions, asymptotically stable fixed points exist if the effective slope

is big enough. The limit cycle pitch rate θ̇∗ is a function of the number of spokes, the radius of gyration of

the wheel, and the effective slope angle. We determine the three-dimensional stability of this planar limit

cycle whose 2D characteristics we already know in closed form from a nonlinear analysis of the rimless wheel

restricted to two dimensions, as summarized in the previous section (for details, see Coleman (1997) [4]).

In this paper, we focus on the three-dimensional stability of the planar limit cycle. Though the 3D rimless

wheel may have other periodic motions other than 2D limit cycles, such as zig-zagging or looping motions,

we did not look for these solutions or investigate their stability.

Unlike the 2D case, we cannot find explicitly the 3D return map, its non-planar fixed points, or the

stability of fixed points. Instead, we approximate the Jacobian of the map at the planar fixed point both

numerically and analytically. In the analytical approach, the approximation is based on a perturbation

expansion for a wheel with many spokes and small slopes. (See Appendix for details.)

8.1 Numerical Approximation

Figure 4 shows the state of the rimless wheel disturbed slightly from a planar limit cycle over many collisions.

For the parameter values used, the steady rolling motion is stable. The disturbance eventually decays and

the rimless wheel enters into a new planar limit cycle at a slightly different heading (and corresponding bank

angle) across the slope. The six numerically evaluated eigenvalues2 for the case in Figure 4 are: σ0 = 0,

σ1 = 1 (see discussion in Section 5), σ2 = 0.9011, σ3,4 = 0.9108±0.3839i = 0.9884 e±0.3989i, and σ5 = 0.9613.

We will compare these numerical results for this case to asymptotic estimates in a later section. Since |σ| ≤ 1,

and only one eigenvalue is exactly equal to one, the planar limit cycle motion is asymptotically stable.
2The equations were integrated and the Jacobian evaluated numerically, using MATLAB. The numerically computed Jaco-

bian J is not reproduced here due to limitations of space.
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Figure 4: State of the rimless wheel plotted versus τ for 350 collisions after it is perturbed from its limit

cycle with a disturbance in the bank angle ∆ψ0 = 0.001. For this simulation, 2J = 0.5 (or λ2 =
2
3

), n = 16,

α = 2/n, and φ∗0 = π/10. Note that θ and θ̇ are plotted over only about 17 collisions since their variation

with τ is at too high a frequency to be usefully displayed over 350 collisions. The discontinuities in the

graphs of angular rates are due to the collisions while the discontinuities in the graph of θ(τ) are due to

resetting θ from
π

n
to −π

n
at collisions.

Given the initial perturbed state of the wheel from its limit cycle, we can predict approximately the

subsequent motion of the wheel, using J. We can do this as follows. To the linear approximation, the small

initial perturbation to the fixed point of the return map propagates over k collisions as

∆qk = Jk ·∆q0 (18)

where ∆q0 is the perturbation to the fixed point q∗0.

The new limit cycle of the wheel after many collisions is given by

q∗ = q∗0 + lim
k→∞

Jk∆q0. (19)

In this numerical example,

q∗0 = {φ∗ = 0.3142, ψ∗ = −0.0378, θ∗ = −0.1963, φ̇∗ = 0, ψ̇∗ = 0, θ̇∗ = 0.7496}T

and ∆q0 = {∆φ0 = 0,∆ψ0 = 0.001,∆θ0 = 0,∆φ̇0 = 0,∆ψ̇ = 0,∆θ̇ = 0}T . Therefore, we estimate the state

vector after 350 collisions to be

q∗0 + J350∆q0 = {0.2872, −0.0356, −0.1963, 0.0000, 0.0000, 0.7529}T . (20)

In comparison, we obtained the state vector from numerical integration as

q∗ = {0.2875, −0.0356, −0.1963, 0.0000, 0.0000, 0.7527}T (21)
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after 350 collisions, rather close agreement as expected.

Also, note that, for the new limit cycle, the numerically calculated heading and bank angles are in the

proper relationship and the numerically calculated limit cycle pitch rate is correct for the effective slope at

the final heading:

ψ∗ = tan−1(− sinφ∗ tanα) = −0.0356 and θ̇∗ =

√
4µ2λ2 sin π

n sin γ
1− µ2

= 0.7527

where γ is defined by equation (13).

More qualitatively, we note that the eigenvalues of largest magnitude less than 1 are σ3,4, whose magnitude

is about 0.99. These eigenvalues cause the slow, oscillatory decay in the disturbance. Note that the period

of oscillation 2π/0.3989 is about 16, and so there are about 22 oscillations over 350 collisions. After, say,

80 collisions, we have (σ2)80 < 0.0003, (σ5)80 < 0.05, and |σ3,4|80 ≈ 0.39. Therefore, the decay in the

disturbance after about five oscillations (80 collisions) is almost solely governed by σ3,4, and the decay per

oscillation (per 16 collisions) thereafter is roughly given by |σ3,4|16 ≈ 0.83, which agrees with Figure 4.

The good agreement between the linearized dynamics (equation (20)) and the numerical solution (equa-

tion (21), Figure 4) are an indication that the numerical calculations are sound and the asymptotic stability

conclusion is correct.

8.2 Analytical Approximation

In order to analytically determine the 3D stability of the steady rolling motion, we use a perturbation method

with ζ = 1/n as a small parameter. A numerical study of the eigenvalues of the Jacobian of the map for large

n shows that two eigenvalues are approximately of the form 1 + kζ2 for some constant k, so the Jacobian

needs to be found at least up to O(ζ2).

Our approach is based on the following observations: (a) we cannot find an analytical approximation of

the full 3D return map; (b) we can find an analytical approximation to the steady rolling or periodic motion

as a power series in ζ, up to arbitrary orders; (c) we can solve the first order (or linearized) variational

equations for motions close to the limit cycle, also up to arbitrary orders in ζ; and, (d) using (b) and (c),

we can find the Jacobian of the return map at the fixed point up to arbitrary orders in ζ.

8.2.1 Asymptotic Expansion

We define

ζ ≡ 1
n

(22)

and note that ζ is small but finite and, hence, much larger than the variations used in the stability calcu-

lations. A detailed description of the perturbation analysis of this problem (carried out using the symbolic

computation package MAPLE) may be found in Coleman (1997) [4]. We summarize the analysis below.
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We rescale the non-dimensional time τ , pitch angle θ, and slope angle as follows:

τ = ζT

θ(τ) = ζΘ(T )

α = ζᾱ. (23)

Using these new scalings, we write the variational equations for small perturbations using

φ(T ) ≈ φ∗ + εφ̂(T ),

ψ(T ) ≈ ψ∗ + εψ̂(T ), and

Θ(T ) ≈ Θ∗(T ) + εΘ̂(T ), (24)

where

ψ∗ ≡ ψ∗(φ∗, ᾱ) = tan−1(− sinφ∗ tan(ζᾱ)) (25)

and

ε¿ ζ. (26)

We need to find the motions of the system up to strictly first order in ε. The motions can be found in terms

of a power series in ζ. We expand Θ∗(T ) as

Θ∗(T ) = Θ∗(T, ζ) ≈ Θ0(T ) + ζΘ1(T ) + · · ·+ ζmΘm(T ) + · · · . (27)

Setting ε = 0 in the newly scaled equations of motion, we get an approximate solution for limit cycle

pitch angle Θ∗(T ) and limit cycle period T ∗ accurate up to and including O(ζ3) terms

Θ∗(T ) =

(√
γ̄

π
T − π

)
+

[
1
6
λ2

√
γ̄

π
T 3

+
1
2
λ2(γ̄ − π)T 2 +

1
12

(√
γ̄π3(1− 18λ2)−

√
γ̄5

√
π cos2 φ∗

)
T

]
ζ2 +O(ζ4) (28)

T ∗ = 2

√
π3

γ̄
+

(
2
3

√
π9

γ̄3
+

1
6

√
π7

γ̄
(6λ2 − 1) +

1
6

√
(πγ̄)3

cos2 φ∗

)
ζ2 +O(ζ4) (29)

where (see equation (17))

γ̄ ≡ ᾱ cosφ∗. (30)

Recall that the equations of motion for the system are of the form q̇ = g(q). The variational equations have

time-varying coefficients which involve Θ∗(T ) above,

˙̂q(T ) ' Dg(q∗(T ))q̂(T ). (31)
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8.2.2 Eigenvalues of the Approximate Jacobian

Constructing the approximation to the Jacobian evaluated at the fixed point of the return map as described

in the appendix, we get the approximation to the eigenvalues σ of the Jacobian as

σ0 = 0

σ1 = 1 +O(ζ3) (in fact, this eigenvalue is exactly 1)

σ2 ≈ 1− (4π2λ2)ζ2 ≈ µ2 < 1

σ3,4 ≈ 1± β0ζ + β1ζ
2

σ5 ≈ 1− β2ζ
2 (32)

where

β0 = 2π
√

2

√
πλ2 − 2γ̄
γ̄(1 + λ2)

,

β1 =
2(−γ̄2λ4 + 2π2λ4 − 8πλ2γ̄ + γ̄2λ2 + 8γ̄2)π2

γ̄(πλ2 − 2γ̄)(1 + λ2)
, and

β2 =
4(πλ2 − λ2γ̄ − γ̄)π2λ2

(πλ2 − 2γ̄)(1 + λ2)
.

The numerical and asymptotic estimates of the eigenvalues are compared in Figure 5 and show the conver-

gence to near-perfect agreement as the number of spokes gets large. Note that the approximation is based on

the assumption of large n and the expressions for β1 and β2 show that accurate estimates are not expected

for πλ2 − 2γ̄ close to zero. For the particular case presented in sub-section 8.1, we compare the numerical

and asymptotic estimates of the eigenvalues from equations (32) in Table 2 below. In addition, we compare

σ0 σ1 σ2 σ3,4 σ5

Numerical 0 1 0.9011 0.9884 e±0.3989i 0.9613

Asymptotic 0 1 0.8972 0.9930 e±0.4232i 0.9612

Table 2: Comparison of the numerical and perturbation estimates of the limit cycle eigenvalues for the case

presented in Section 8.1 where 2J = 0.5, n = 16, α = 2/n, and φ∗0 = π/10. Better agreement is found for

larger n (see Figure 5).

the numerical and asymptotic estimates of the non-dimensional limit cycle period from equation (29); the

numerically computed value is τ∗ = 0.5155 and the asymptotic estimate is τ∗ = ζT ∗ = 0.5203.

8.2.3 Stability Criteria

The eigenvalues of the Jacobian of the map have the following interpretations:
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Figure 5: The modulus of the eigenvalues |σ| of the Jacobian evaluated at the fixed point of the return map

are shown for different n, with α = 2/n, and the arbitrarily chosen values λ2 = 2/3, and φ∗0 = π/10. The

zero eigenvalue is not shown.

• σ0 = 0; and σ1 = 1 for reasons discussed in Section 5;

• σ2 ≈ 1−(4λ2π2)ζ2 < 1 comes from the 2D motion; In fact, σ2 is exactly µ2, where µ ≡ 1+λ2(cos 2π
n −1);

and

• |σ3,4| < 1 and |σ5| < 1 determine necessary and sufficient conditions for asymptotic stability.

For asymptotic stability of steady planar rolling in 3D (for a wheel of many spokes on a small slope α and

effective slope γ ' O(ζ)), from equations (32) we may conclude the following.

1. If β0 is real, then one of σ3,4 is greater than 1 by an amount O(ζ). On the other hand, if β0 is imaginary,

then the magnitudes of of σ3,4 as well as σ5 are 1 + O(ζ2) (|σ3,4| ≈ 1 +
1
2

(2β1 + |β0|2)ζ2). Therefore,

for stability to O(ζ) we require πλ2 − 2γ̄ < 0, or

γ̄ > πλ2/2. (33)

2. For stability to O(ζ2) we require both (i) β2 > 0 and (ii) 2β1 + |β0|2 < 0. Condition (i) is satisfied

if γ̄ > πλ2/(1 + λ2). Note that in this case even equation (33) above is automatically satisfied since

λ2 = 1/(2J + 1) < 1. Finally, given γ̄ > πλ2/(1 + λ2), condition (ii) is automatically satisfied.

Therefore, condition (i) is both necessary and sufficient to ensure stability, to O(ζ2).
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So, the asymptotic analysis estimates the condition for asymptotic stability of the planar limit cycle to be

γ̄ > πλ2/(1 + λ2). (34)

Since θ̇∗, the limit cycle pitch rate or rolling speed, is known in terms of γ = ζγ̄, the stability results may

be expressed in terms of this pitch rate (to lowest order). In terms of limit cycle pitch rate, the two stability

criteria (33) and (34) reduce to

(θ̇∗)2 >
λ2

2
, and (35)

(θ̇∗)2 >
λ2

1 + λ2
(36)

where, for 0 < λ2 < 1, criterion (36) is more stringent than (35) but (35) turns out to be important as

discussed below.

8.2.4 Comparison to a Rolling Disk

The criterion on the forward speed for neutral stability of a uniform disk with polar moment of inertia 2J

rolling in a vertical plane is (θ̇∗)2 > λ2/2, where λ2 = 1/(2J + 1) (see e.g., Greenwood, 1965 [9]). This

criterion is the same as the O(ζ) stability criterion (35) above, i.e., β0 being imaginary. That the rolling disk

criterion and criterion (35) should agree may be seen as follows. If equation (35) is not met for the rimless

wheel, i.e., (θ̇∗)2 < λ2/2 or β0 is real, then one eigenvalue takes the form

|σ| = 1 + aζ, for some real a > 0. (37)

If equation 35 is met, but equation 36 is not necessarily met, then the eigenvalues take the form

|σ| = 1 + bζ2, for some real b, positive or negative. (38)

As n→∞, the rimless wheel approaches a rolling disk rolling with a constant speed on a level surface; the

speed is decided by γ̄. In order to compare the rimless wheel and the disk, we examine the propagation of

small disturbances not through one spoke collision but rather through one revolution of the wheel at some

constant limit cycle pitch rate; i.e., we look at the magnitude of σni as n→∞. We have,

lim
ζ→0

(1 + aζ)
1
ζ = ea and lim

ζ→0

(
1 + bζ2

) 1
ζ = 1. (39)

Thus, it is seen that the O(ζ2) stability criterion, equation (36) above, becomes irrelevant in the limit as

n→∞ and the associated eigenvalue goes to 1 (from above or below). On the other hand, the O(ζ) stability

criterion, equation (35), predicts instability if β0 is real, and neutral stability if β0 is imaginary in the limit

as n → ∞, just like the rolling disk. Therefore, equation (35) governs the stability of the rimless wheel, as

n→∞, and agrees with the stability calculations for a rolling disk.
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8.3 Aside: Existence of Other Limit Cycles

In the case of 3D motions, if we vary the slope as a parameter for fixed n, then for some slope the eigenvalue

σ5 will be exactly 1. At that particular slope, the eigenvalue 1 has multiplicity two. Therefore, one might

expect that at that slope two limit cycles merge.

We do not believe that there are such limit cycles. Our reasoning is as follows. (a) As n gets large,

the dynamic behavior of the rimless wheel approaches that of a disk on a flat plane (in a suitably averaged

sense). Small deviations from pure rolling, for a disk, are limited to small, periodic wobbles. These wobbles

occur over a time scale of O(1). For the rimless wheel, this means such wobbles occur over O(n) collisions,

which is consistent with the imaginary parts of σ3,4 being O(1/n). Such ‘long-period’ motions will not be

fixed points of the single-spoke-collision return map we consider. Intuitively, we do not foresee any other

types of fixed points of the return map except the one-parameter family of steady rolling motions we have

considered. (b) Note that fixed points are solutions to the equation f(x) = x, or g(x) := f(x) − x = 0.

The Jacobian of the function g(x) differs from that of f(x) by the identity, and a double eigenvalue of 1

for f corresponds to a double-zero eigenvalue for g. However, for another solution branch in addition to the

known one-parameter family to appear at that point, the rank of Dg, the Jacobian of g, should be 4 (2 less

than 6). Based on some numerical checks using the singular value decomposition, we believe that (at least

typically) the rank of Dg is 5 (1 less than 6). In other words, the double eigenvalue has algebraic multiplicity

2 but geometric multiplicity 1. This means that the already known one-parameter family of steady rolling

solutions (i.e., limit cycles) is all there is.

9 Conclusions and Future Work

In this paper, we have presented an analysis of a 3D dynamic system with intermittent impacts, that

shares some qualitative features with passive dynamic walking machines. A viable computer-algebra based

analytical technique for stability studies of systems with intermittent impacts was demonstrated for this

moderately complicated system. In another work, this same approach has been successfully used to study

the stability of a simple walking machine in 2D (Garcia, et. al., 1996[6]).

A question of general interest to us is the cause of balance stability of ‘passive-dynamic’ walking ma-

chines. Two known mechanisms for asymptotic stability of passive mechanical systems are dissipation and

nonholonomic constraints although dissipation can also be destabilizing.

Dissipation: We note that the rimless wheel can be stable when constrained to two dimensions on

slopes of O(1/n3), essentially due to the energy dissipation in collisions. However, the 3D system, with more

degrees of freedom, is only stable on slopes of O(1/n). Hence, energy dissipation alone is not sufficient for

stability in 3D.
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Nonholonomic Constraints: For the rimless wheel, the natural system to compare with is a rolling

disk, a classic conservative nonholonomic system. The rolling disk, due to its symmetry with respect to

motion reversal, is not asymptotically stable but only neutrally stable. The intermittent collisions are

somehow crucial to the asymptotic stability that the rimless wheel has but that the rolling disk does not

have. Thus, we do not yet know of a simple heuristic way to explain the asymptotic balance stability of the

system studied here.
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Appendix

Analytical Approximation to the Jacobian of map f evaluated at fixed point q∗

Stability of periodic motions can be investigated by linearizing the return map about the fixed point q∗ and

studying the evolution of small disturbances from the fixed point. The linearization of f near q∗ is given by

q∗ + ∆f = f(q∗ + ∆q) ' f(q∗) +Df(q∗)∆q (40)

where Df(q∗) is the Jacobian matrix, J, called the linearization of the map f at the fixed point q∗. Since

q∗ = f(q∗), we obtain

∆i+1q+ = ∆f ' J∆iq+. (41)

An asymptotic approximation to the Jacobian of the return map can be obtained as follows. Recall that we

have the differential equation of motion between collisions

q̇ = g(q), (42)

subject to the initial condition q(0) = iq+.

We also have the collision transition rule (see equation 8)

iq+ = h(iq−) = L(iq−) iq−. (43)
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We define a collision detection function ‘r’ such that a collision occurs when r(q−) = 0. In our system, the

collision detection function is

r(q−) = θ − π

n
. (44)

Assume a fixed point q∗ of the system exists with corresponding limit cycle trajectory q∗(τ). The pre-

collision state vector is i+1q− = q∗(τ∗), where τ∗ is the limit cycle time between collisions. So, the collision

detection and transition rules give

r(q∗(τ∗)) = 0 and h(q∗(τ∗)) = q∗. (45)

For a particular system, we need to find the limit cycle trajectory q∗(τ) and the time τ∗ between collisions

in the limit cycle. See Figure 6 for a schematic illustration of the limit cycle time history.

We wish to study the evolution of a perturbation from the fixed point, just after collision i, ∆q = εq̂,

where ε is small. Henceforth, we shall use a ‘hat’ ( ˆ ) to denote perturbations to limit cycle quantities. So,

just after a collision, say the ith, the perturbed state of the wheel is

iq+ = q∗0 + εq̂0 = q∗0 + ε(iq̂+). (46)

The solution to the differential equation between collisions with this perturbed initial condition is some

q(τ) = q∗(τ) + εq̂(τ). (47)

As a result of perturbing the fixed point, the limit cycle time between collisions is also perturbed,

τf = τ∗ + ∆τ = τ∗ + ετ̂ . (48)

See Figure 6 for a schematic illustration of the perturbed limit cycle time history. We substitute the perturbed

quantities into the governing equation of motion, the collision detection function, and the collision transition

rule. We then expand and truncate the resulting expressions to first order in epsilon. We obtain:

1. an expression governing the evolution of a perturbation to the limit cycle from just after a collision to

just before the next, (a linear non-autonomous system)

˙̂q(τ) ' Dg(q∗(τ))q̂(τ), (49)

2. an expression for the perturbation to the time between collisions τ̂ ,

τ̂ ' −Dr(q
∗(τ∗))q̂∗(τ∗)

Dr(q∗(τ∗))q̇∗(τ∗)
, and (50)

3. an expression for the evolution of the perturbation to the limit cycle, through one cycle

i+1q̂+ ' Dh(q∗(τ∗))
[
I− q̇∗(τ∗) ·Dr(q∗(τ∗))

Dr(q∗(τ∗)) · q̇∗(τ∗)

]
q̂(τ∗). (51)
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τ∗ τ∗+∆τ

i-1q+ = q*

q*

i q+ = q*+ i(∆q)+

q*(τ)

just after collision i-1 just after collision i 

just after collision i+1

q*(τ)+∆q(τ)

τ

i(∆q)+

phase space

i+1q+ = q*+ i+1(∆q)+

Figure 6: Schematic showing the unperturbed and perturbed fixed point, limit cycle trajectory, and limit

cycle period.

Putting these expressions together, we obtain an analytical approximation to the linear map governing the

evolution of perturbations from collision to collision as a product of three special matrices

i+1q̂+ ' BDE︸ ︷︷ ︸
A

iq̂+ (52)

where

B ≡ Dh(q∗(τ∗)) and D ≡ I− q̇∗(τ∗) ·Dr(q∗(τ∗))
Dr(q∗(τ∗)) · q̇∗(τ∗) . (53)

The matrix E can be obtained by integrating equation 49 with arbitrary initial condition iq̂+ forward up to

time τ∗,

q̂(τ∗) ' E iq̂+. (54)

The three matrices comprising the approximation to the Jacobian, A = BDE, have the following inter-

pretations. Matrix B is the linearization of the collision transition map at the fixed point of interest. Matrix

E maps the disturbances or perturbations to the limit cycle from just after one collision to just before the

next, not accounting for any small changes in the time of collision. Matrix D introduces the necessary

correction due to the fact that the time of collision is, in fact, slightly altered due to the disturbances.

In order to obtain this approximate Jacobian, we need to find the limit cycle trajectory q∗(τ) and the

limit cycle time between collisions τ∗. As we do not have explicit solutions for these quantities, we use

approximate methods to obtain them (a perturbation expansion in ζ, in this case).
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