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Abstract

This paper addresses some performance limits of
the kneed and non-kneed passive-dynamic walking
machines discovered by McGeer [10, 11]. Energetic
inefficiency is measured by the slope γ needed to sus-
tain gait, with γ = 0 being perfectly efficient. We show
some necessary conditions on the walker mass distri-
bution to achieve perfectly efficient walking. From
our experience and study of a simpler model, only
two gaits exist; the longer-step gait is stable at small
enough slopes. Speed is regulated by energy dissipa-
tion. Dissipation can be dominated by a term propor-
tional to speed2 or a term proportional to speed4 from
normal foot collisions, depending on the gait, slope,
and walker design. For special mass distributions of
kneeless walkers, the long-step gaits are especially fast
at small slopes. A period doubling route to chaos is
numerically demonstrated for the kneed walker.

1 Introduction

This paper extends McGeer’s work on passive-
dynamic walking in the following ways that have not
been described in previous publications: 1) near-zero
slope walking is found for a class of kneeless and kneed
2-D walkers, 2) scaling laws are found for small slope
walking for more than just the simplest walker, and
3) period doubling and chaos is found for kneed walk-
ing. The results may help those trying to build effi-
cient robots, and to those trying to understand human
walking. Energetic efficiency and speed maximiza-
tion are obvious goals of both biological and artificial
locomotion and transportation systems. Since animals
and potentially-useful robot designs use legged walk-
ing motions it is interesting to consider the perfor-
mance limits of such machines. In this paper, we ad-
dress these questions in the context of two-dimensional
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Figure 1: (a) Our description of McGeer’s kneed walk-
ing model. Radii of gyration and masses of thigh and
shank are denoted by rt,mt, rs, and ms, respectively.
The circular-arc foot is centered at the +. εT is the
angle between the stance thigh and the line connecting
the hip to the foot center. A stop at each knee prevents
hyperextension. (b) Dynamic variable values θst, θth,
and θsh are measured from ground-normal to lines off-
set by εT from their respective segments. (c) A strobe
photo of our physical model walking with dimensional
parameters: lt = 0.35m, wt = 0m, mt = 2.345kg,
rt = 0.099m, ct = 0.091m, ls = 0.46m, ws = 0.025m,
ms = 1.013kg, rs = 0.197m, cs = 0.17m, R = 0.2m,
γ = 0.036rad, g = 9.81m/s2, εT = 0.097rad.

passive-dynamic walking machines. We also describe
some other newly found properties of these machines.

2 Passive Dynamic Walking Machines

Passive-dynamic walking machines that walk on
shallow slopes were first designed, simulated and built
by Tad McGeer [10, 11]. These machines consist of
hinged rigid bodies that make collisional and rolling
contact with a sloped, rigid ground surface. They
are powered by gravity and have no control. The 2-
D kneed walking machine we study here, essentially



       

θsh

θth

θst

Heelstrike 3 Link Mode 2 Link Mode Heelstrike

3 3.5 4 4.5 5 5.5
-0.5

0

0.5

time, [(lS  +lT )/g ]1/2

le
g 

an
gl

es
 (

ra
d)

Kneestrike

3 link mode 2 link mode
1 step

kneestrike

heelstrikeheelstrike
  θsh=θth

.2 m

Simulated single-leg strobe-shots 

 γ=0.036
(A little more than two steps)

Human data including trunk 
          ( Winter  1987) 

.2 m

Simulated Leg Angles as A Function of Time
(a little more than one step) 

thigh

stance
shank

Figure 2: Simulated gait cycle (as per McGeer) of the
walker in figure 1c. Angles of leg segments are shown
from just before a heelstrike to just after the next heel-
strike in a steady gait. The heavy line on the graph
corresponds to the motion of the heavy-line leg on the
small cartoon under the graph. At the start this is the
stance leg, but it becomes the swing leg just after the
first heelstrike, and again becomes the stance leg af-
ter the second heelstrike. The angular velocities of the
joint segments have discontinuities at kneestrike and
heelstrike, which appear as (barely visible) kinks in
the curves. The strobe-like animation from the same
simulation can be compared to measured human data
(with a smaller scale and a longer stride).

a copy of McGeer’s design, is shown schematically in
figure 1. It consists of a swing leg (not in contact with
the ground) and a stance leg (touching the ground),
connected by a frictionless hinge at the hip. The non-
kneed, or kneeless machines have the knee joint locked.

Figure 2 shows the simulated motion of such a ma-
chine.

The three features that make the McGeer-like mod-
els so intriguing for both robotics and the understand-
ing of animal gait are these:

1. Existence of gait. A mechanism that resem-
bles human legs in overall layout has an uncon-
trolled periodic motion that is rather anthropo-
morphic, as can be seen real models and simula-
tions, or comparing simulated strobe data with
human data (lower part of figure 2). Since

passive walkers seem to be somehow close to hu-
man walkers, there is reasonable hope of learn-
ing something about human walking by studying
these simpler passive models.

2. Efficiency. These machines can walk down shal-
low slopes. McGeer numerically found walking
motions for slopes as low as about 0.005 radians
and we will show here predictions of arbitrarily
small slopes. Passive-dynamic based designs us-
ing other-than-gravity power schemes, e.g.,. toe-
off, could have similarly high efficiencies. As ar-
gued clearly in, e.g.,[2], both evolutionary pres-
sure and individual motivation push for high effi-
ciency in animal locomotion.

3. Stability of gait. For certain parameter combi-
nations, McGeer found stable limit cycle motion
for both 2-D straight-legged and kneed walkers as
[9] and [5] later repeated for some 2-D straight-
legged walkers and we have repeated for kneed
walkers (this work), and [3] found experimentally
with a 3-D device. These stable motions indicate
the possible role of passive-dynamics in stabiliz-
ing things which one might think need controlled
stabilization.

It seems likely that the primary cost of locomotion
is in the mechanical energy, and not the neural activ-
ity of control. It is thus natural to imagine that in
evolution and learning of walking, a primary goal in
perfecting walking motions would be energy-efficiency
more than simplicity of control strategies. Such effi-
ciency might even be achieved at the expense of passive
stability, in contrast to item 3 above. Unstable limit
cycle motions of mechanical systems can in principle
be stabilized with 0+ energetic cost as has been ad-
dressed for a three-dimensional walking model by [4].
The tradeoffs, or lack thereof, between efficiency and
stability for such systems are far from understood in
these non-holonomic systems [12].

Method of analysis. The method used follows
McGeer and is described in detail in, e.g., [5]. We
find the Poincaré map for the change of the state of
the walker in one step (starting just after heelstrike)
by solving the Newton-Euler differential equations and
collisional jump conditions numerically. Fixed points
of this map are period 1 walking motions. We find
both stable and unstable fixed points by numerical
root finding. We evaluate the linearized stability of
these gaits by numerically differentiating the Poincaré
map. For general straight legged walkers the map of
the fourth order system is three-dimensional (two for
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Figure 3: Calculated locus of solutions showing fixed
points of stance angle as a function of slope for our
physical kneed walking model (solid line) and for the
same model but with the knees locked (dashed line).
Each point on this graph is one periodic solution. The
thick portion of the solid line denotes stable solutions
for the kneed walker.

some special cases). For the superficially 6th-order
kneed walker the map is also only three-dimensional
because the knee angle is not independent at heelstrike
and because part of the swing-phase motion is only
4th order (Thus one of McGeer’s numerically calcu-
lated eigenvalues near zero is actually zero). A plot
of segment angles during a typical kneed gait cycle is
shown in figure 2. For a straight-legged walker, the
3-link mode is absent, and θsh ≡ θth.

By assuming motions as described above, some of
the periodic solutions we find might violate various
physically-relevant inequality conditions [11]. We al-
low some of these violations since they could be cir-
cumvented by zero-energy-cost control action [6]. Al-
lowed violations include scuffing of the swing foot (i.e.,.
passing slightly underground when the two legs are
parallel), unlocking torques at the stance knee, and
hyperextension of the newly swinging leg.

3 Gaits of Generic Kneed and
Straight-Leg Walkers

The number of gaits and their stability. Al-
though the root finding involved in finding a gait cy-
cle involves the solution of n equations in n unkowns
(where n is the dimension of the return map) there is
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Figure 4: Period doubling route to chaos in stable
kneed walking motions. The parameters are those of
the zero-slope capable walker labeled (C) in figure 6.

no a priori guarantee that any gait cycles will exist for
a given passive-dynamic walking machine (i.e., a given
set of masses, lengths, etc.), on a given slope γ. In
practice, all searches with all designs have found either
0, 1, or 2 anthropomorphic solutions for given machine
parameters and slope. Other non-anthropomorphic so-
lutions may exist but are discounted. In these non-
anthropomorphic solutions the leg swings forward and
backward more than once, or the swing leg makes full
revolutions.

Effect of varying slope. Figure 3 shows stance an-
gle θst at the start of a gait cycle while slope is var-
ied, for a given mass distribution, with and without
knees. For both kneed and kneeless walkers there are
slope γ regimes where there are either 0,1, or 2 solu-
tions. Along the kneed curve, kneestrike occurs later
and later in the step, until at one end of the locus
of solutions (point 1), heelstrike and kneestrike occur
simultaneously. At the other end of the locus of solu-
tions the walker has just enough initial kinetic energy
for the stance leg to make it past the vertical position.
This is the slowest gait for these walkers. Neither of
these walkers can walk at arbitrarily small slopes.

4 Chaos In A Kneed Walker

Like the simplest walker of [5], and the walkers of
[13] and [9], kneed walkers can also exhibit period dou-
bling and chaotic gait, as shown in figure 4.



        

5 Measures Of Performance

Since moving sideways in a gravitational field is
workless (neglecting air friction), a rational dimension-
less measure of work efficiency is somewhat problem-
atic for locomotion on level ground. A natural measure
of inefficiency, however, is the specific cost of transport
η, (energy used)/(weight × distance travelled). It, as
well as a few other reasonable measures of transport
cost, reduces to the slope γ for small-slope passive-
dynamic walking [6].

6 Walking At Near-Zero Slopes

Passive-dynamic walking at near-zero slopes has
previously been demonstrated for the simplest
walker [5]. Here we seek more general 2-D kneed and
kneeless designs capable of zero-slope walking. Math-
ematical justifications for some of the arguments here
can be found in [6].

Necessary Conditions on Mass-Distribution For
Near-Zero-Slope Walking. Necessary conditions
on the mass distribution for near-zero slope walkers
are found as follows:

1. If walking motions do occur at very small slopes,
these motions will be very slow [6]. The walker
must be close to static equilibrium at all times.
In the limit of zero slope, the walker configuration
must approach a static equilibrium configuration.
Thus the foot contact point must be where the
foot-normal is directed towards the body center
of mass.

2. At heelstrike both legs are straight and simulta-
neously touch the ground. As the slope (hence,
step length) goes to zero, the spacing between the
legs at this instant also goes to zero. In the limit-
ing case, the foot contact point is seen to be that
point on the foot which is farthest from the hip.
Thus the normal to the foot contact point must
pass through the hip.

3. From (1) and (2) the line from the hip through the
body center of mass must intersect the foot curve
normally at the nominal contact point at zero-
slope walking. For circular feet this is equivalent
to the collinearity of the center of mass of the
whole body, the hip, and the foot center (see figure
5).

4. For the swing leg to be in static equilibrium in 3-
link mode and to have zero knee-locking torque,
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Figure 5: Necessary conditions for near-zero
slope walking. The separations between the hips
and the mass centers shown here are larger than those
typical for our simulations. The necessary condition
for elimination of first-order scuffing from knee flex is
not shown.

the center of mass of the shank must lie directly
under the knee, in the straight-leg configuration
(see figure 5).

These necessary conditions on the mass distribution
do not guarantee that near-zero slope walking solu-
tions exist. In simulations we have found these con-
ditions lead to zero-slope walking designs if the body
center of mass is close to the hip. These conditions
are reminiscent of the “straight” joints suggested by
Alexander [1] as a means of achieving efficiency.

The Simplest Walking Model. Alexander’s mini-
mal biped [1] has a point-mass at the hip but no mass in
the legs. Hence the minimal biped can be (and needs
to be) supplemented with further stride length condi-
tions. To make the minimal biped leg swing most sim-
ply deterministic, the simplest walker adds vanishing
point-mass feet. The simplest walker is the minimal
biped with miniscule feet. The simplest walker is also
the limiting case of the 2-D McGeer straight leg walk-
ers with no knees, a finite point-mass at the hip, and
a vanishing point-mass at the point feet. The results
presented here are generalizations of the results found
for the simplest walker by Garcia et al. in [5].

The simplicity of the “simplest” walker is that: the
non-dimensional form of the simplest walker has as its
only free parameter the slope γ; the stance leg dy-
namics are decoupled from the swing leg motions; the
Poincaré map is only two-dimensional and; the mo-
tion was only studied in a regime where most of the
governing equations were linear.

By a mixture of analytic and numerical means the
simplest walker was found to have two gaits at all



       

small-enough slopes. Of these, the long-step gait is
stable at small slopes (γ < 0.015), while the short-step
gait is unstable at all slopes. The simplest walker was
found to have near-zero slope walking with speed pro-
portional to the cube root of the slope. It was found
to have a period doubling route to chaos. This period
doubling and chaos were discovered independently and
reproduced (respectively) by [7, 9] in studies of a less
extreme point foot model. For both gait cycles of
the simplest walker the stance angle θst or step-length
is proportional to γ1/3 at small slopes, while the step
periods tend to (different) nonzero constants. This im-
plies a walking power consumption proportional to the
fourth power of speed for small speeds, for both gaits.
That is, power ∝ (speed)4. This power scaling can be
derived from Alexander’s [2, 1] minimal biped results
by assuming speed is proportional to step length (as
it is for both small-slope gaits of the simplest walker).

An interesting feature of the long-period gait is
that, in the limit γ → 0, has a time-reversal symmetry.
The configuration with both legs vertical is passed.
Defining t = 0 for this configuration, θ(−t) = −θ(t)
for both legs. Equivalently, a movie of this walker
shown backwards looks like a movie of the walker walk-
ing forwards in the opposite direction. A consequence
of this symmetry is that the long period gait has no
component of foot velocity tangent to the surface at
heelstrike.

This symmetry is approximately observed even for
the somewhat generic kneed walker of figure 2 (after
averaging the shank and thigh motions, the shape of
the curves is nearly preserved by 180 degree rotation
of the graph).

Not quite the simplest walker. For the simplest
walker, with negligible mass, the only kinetic energy
lost is that of the hip. When the feet have finite mass,
however, they also lose energy at heelstrike. If the
striking foot hits the ground with no tangential ve-
locity, its loss still scales as step length to the fourth
power. If, however, the foot collision has a grazing
component, then the energy lost scales as the step-
length squared.

The point-foot walker still has two solutions at small
slopes, even with non-negligible foot mass. To first
order in the slope, the long-step solution has time-
reversal symmetry, no tangential foot collisions, and
step length proportional to the cube root of the slope.
The short-step solution has some tangential compo-
nent in foot collisions. Because this involves a finite
mass colliding at a speed proportional to step length,
the γ → 0 motion has step length proportional to
slope. Thus for the long-step gait power ∝ (speed)4.
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Figure 6: Low slope step-lengths of some zero-slope
capable walkers vs slope γ. There are two gaits cycles
at each slope, for each walker considered. Both step
lengths for the simplest walker are proportional to γ1/3

for small γ. The short-step gaits of the other walkers
have step lengths proportional to γ for small γ. The
long-step gaits for the other walkers have step lengths
that are much longer than for the short-step gaits, ap-
proximately approaching γ1/3 for larger γ. For a point-
foot, kneeless walker with non-negligible foot mass, the
step length of the long-step gait proportional to γ1/3

for small γ.

For the short-step gait, power ∝ (speed)2, at least at
small speeds.

Scaling rule for more general straight-legged
walkers. Near zero-slope the time period of steps
for zero-slope capable walkers is asymptotically con-
stant as γ → 0. At steady walking the energy lost
in collisions is balanced by the gravitational potential
energy. The collision loss per step is proportional to
the speed of the colliding foot contact point squared.
The gravitational energy available is proportional to
the product of step length and slope.

Taking account both the effects of the mass distri-
bution on collisions and the kinematics of these walkers
it is found that the dissipation per step is dominated
by either Aθ∗2 tangential foot collision term or a Bθ∗4

normal foot collision term. This latter term is anal-
ogous to the point-mass collisional loss term for the
point-mass-at-hub rimless wheel (or minimal biped)
model of Alexander, but is derived for more general
mass distributions of this 2 link mechanism [6]. Equat-
ing this loss with the gravitational energy available
gives

Aθ∗2 = γθ∗ or Bθ∗4 = γθ∗. (1)



     

For zero-slope capable straight leg walkers, there is
no tangential component of foot velocity at heelstrike
for the long-period time-symmetric gait. Such walking
motions follow the scaling rules found for the simplest
walker [5]. Step length goes up with the cube root
of slope. Power for walking increases with the fourth
power of speed.

If the tangential foot velocity term is non-zero, the
walkers have step length proportional to slope and the
power for walking scales with the speed squared, at
least as γ → 0

Extension of scaling rule to kneed walkers.
Kneed walkers dissipate kinetic energy in collisions
at both heelstrike and at kneestrike. For heelstrike,
the energy loss calculations described above still hold:
the pre-collision velocities are determined from the
straight-leg or 2 link configuration. The knee collision
loss, for zero-slope walkers, scales with speed2 and thus
dominates at small enough slopes. However, the colli-
sional loss of knee-strike is very small. In figure 6 it is
only at the far left of the graph that the dominance of
the knee-strike losses show as a switch from step length
proportional to γ1/3 to step length proportional to γ.

7 Conclusions

We have investigated the design of straight-legged
and kneed passive-dynamic walkers that will walk at
arbitrarily small slopes. At high speeds the power re-
quired for walking scales as v4. At low speeds the
scaling can be either with v2 or v4. On the one hand
this shows how bad this kind of walking is when it is
fast. On the other hand the v4 scaling rule implies
very small energy demand at low speeds. The essence
of the scaling follows from the energy balance between
collision losses and gravitational potential energy [5],
rather like for the rimless wheel described in [10, 2, 1].
Perhaps one reason people in fact walk with higher fre-
quencies at higher speeds, rather than to use a strictly
pendulum-like fixed-period swinging motion, is to de-
feat the collisional losses which depend so strongly on
step length.
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