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Abstract

We consider passive dynamic walking machines of the kind originally studied by McGeer. For passive
walking on arbitrarily small slopes, we show that any existing gaits must be correspondingly slow. The
argument is �rst presented for nonsingular mass distributions, where it is shown that small slopes preclude
long steps and that small steps imply low speeds. The argument is then extended to singular walkers
(viewed as physically meaningful limiting cases of nonsingular walkers). A design for a di�erent passive
machine that might walk on 
at ground is discussed brie
y. The discussion in this paper lends insight
into biped walking theory and may help to inspire designs for eÆcient bipedal robots.

1 Introduction

Passive machines that walk on shallow slopes were �rst studied by McGeer (1990a, 1990b), inspired by the
pendulum models of a leg proposed by Mochon and McMahon (1980). These machines consist of hinged
rigid bodies that make collisional and rolling contact with a rigid sloped surface. Passive bipedal walking
machines can be straight-legged (with no knees) or kneed (with hinged knees).

In this paper, we will prove that for McGeer-like two-dimensional passive walking machines, if steady
walking motions exist at vanishingly small slopes, then they must be at vanishingly small speeds.

It might at �rst seem intuitively obvious that passive walking machines with intermittent plastic collisions
must dissipate nonzero energy while moving at nonzero speeds. Thus, �nite nonzero speeds while walking
down arbitrarily small slopes would intuitively seem impossible.

However, it is not a priori obvious that (say) a kneed walker could not possibly have special passive
gaits with gentle, non-dissipative foot placements. Controlled walkers can certainly have gaits with such
gentle foot placements (Blajer and Schiehlen (1992)). As argued by Winter (1987), gentle foot placements
during walking may also be a human strategy to minimize energy loss and body stress at heelstrike. It is
known that running machines with massless springs on the feet can have dissipation-free running motions
(McGeer (1992)). A system of two blocks connected vertically by a spring, where the lower block has perfectly
plastic collisions with the ground, can have special motions where it hops up and down inde�nitely without
losing any energy through collisions (Reddy and Pratap (1999)). There are models of brachiation (Bertram
et al. (1999)) that allow dissipation-free support transfer under reasonable idealizations.

So it seems worthwhile to prove that for McGeer-like machines, small slopes do imply slow speeds. This
result is of interest in the study of walking dynamics because it guides designs of highly eÆcient walking
machines that walk at very small slopes, and also provides basic limitations on the eÆciency of such walking
machines, as discussed in more detail in a companion paper (Garcia et al. (1999)).

�previous address: Dept. of Theoretical & Applied Mechanics, Cornell University, Ithaca, NY 14853
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Figure 1: McGeer's kneed walking machine.

2 Description of Passive Dynamic Walking

Readers familiar with McGeer's walking machines (e.g., McGeer (1990a, 1990b) and Garcia et al. (1999))
may skip this section.

A kneed walking machine is shown schematically in Figure 1 (top). It consists of a swing leg (not touching
the ground) and a stance leg (touching the ground), connected by a frictionless hinge at the hip. Each leg has
a rigid thigh and shank. The stance knee is locked. The swing knee is a frictionless hinge with a knee-stop
preventing hyperextension. The two legs have identical dimensions and mass distributions.

A steady walking motion or gait cycle is now described (for details see Garcia et al. (1999)).
At the start of the cycle, just after heelstrike, both legs are straight and touch the ground. Then the

trailing leg, or swing leg (Figure 1, bottom), lifts o� the ground and swings forward, and the swing knee

exes (3 link mode). The leading leg, or stance leg, maintains contact with the ground, remains straight, and
rolls forward. Kneestrike occurs when the swing leg straightens out; the swing knee locks instantaneously,
and the swing leg remains straight thereafter (2 link mode). At the end of the cycle, the swing foot has a
collision with the ground at heelstrike (instantaneous and plastic). At the instant of double-support (i.e.,
contact at both feet), a collisional impulse acts at the new contact point on the new stance foot, and the
legs exchange stance and swing roles. Then a new walking cycle begins.

Straight-legged walkers have no knees and so their walking cycle is the same as above except that the
swing leg never 
exes and there is no kneestrike. Dynamically-unimportant physical measures must be taken
to allow for swing-foot clearance in these cases (see Garcia et al. (1999) or McGeer (1990a)).

3 Assumptions

Since there are passive devices with nonsingular mass distributions and intermittent plastic collisions that can
nevertheless have special energy-conserving periodic motions (e.g., the two-block system mentioned above),
we need to restrict the class of systems we will consider.

Assumption 1 The machines under consideration follow the description of walking given above.

Our discussion does not apply to machines with other types of motions with intermittent contact, such as
(say) a machine with springs on the feet that might allow dissipation-free support transfer; or a machine
with two legs and a trunk (extra degree of freedom); or one that has springs at the knees that let it reach
heelstrike at a 
exed-knee con�guration without falling down; or one which rises into the air for a portion
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of the gait cycle, only to land gently some time later; or one with three or more legs that allow gentle,
dissipation-free transfer of support between legs, and so on.

Assumption 2 Each link in the machine has nonzero mass and nonzero central moment of inertia, i.e.,
nonsingular mass distribution.

Assumption 3 The foot radius R of the walking machines is strictly smaller than the leg length l, where
l is the distance from the hip to the farthest point on the foot (for kneed walkers, this distance is measured
when the leg is straightened).

McGeer (1989) also studied \silly wheels" with R = l, for which non-dissipative walking motions are possible
on perfectly 
at ground.

Note that for R = l, the system is geometrically singular in that the ground-contact points for the two
feet coincide, in the instant of double support (straightened legs, both touching ground), no matter what
the angle between the legs. Moreover, during the entire walking cycle, the swing foot slides along but never
lifts o� the ground.

If R > l, then the contact point of the trailing foot is ahead of the hip while the contact point of the
leading foot is behind the hip (we disallow this case as well).

Remark 1 If the walker has point-feet the following discussion still applies, with R = 0.

Assumption 4 The walking machine has no mechanism for energy dissipation except through the kneestrike
and heelstrike collisions.

Assumption 4 is adopted largely for convenience, since it seems unlikely that walking machines with
secondary dissipation mechanisms in addition to collisions can walk fast on small slopes if such walking is
not possible without these secondary dissipation mechanisms. However, attempting to prove this rigorously
would be long and tedious at best, since there are many di�erent reasonable energy dissipation mechanisms
(dry or viscous friction in the bearings, rolling resistance at the feet, air drag on the walker, . . . ).

Under Assumptions 1 through 4, we will prove in the next two sections that if passive walking motions
exist on arbitrarily small slopes, then such motions must be correspondingly slow as well.

4 Small Slope Precludes Long Steps

We now show that steady passive walking on in�nitesimally small slopes must necessarily occur with in-
�nitesimally small steps, if it occurs at all. We say, in short, small slope precludes long steps.

Proposition 1 For a straight-legged walker, small slope precludes long steps.

Proof: We argue by contradiction. Taking the limit of small slope, we assume that there is a walking cycle
on 
at ground with nonzero step length.

Any heelstrike collision with nonzero foot velocity must dissipate energy, precluding a walking motion.
Thus, heelstrike must occur with zero foot velocity. We now examine a small portion of the whole solution,
close to the instant of heelstrike.

With rolling contact at the old stance foot, the system has two degrees of freedom. As shown in Figure
2, we use the x and y coordinates of the point of impending contact on the foot, measured from the
corresponding point on the ground, as generalized coordinates that describe the system. Note that for
nonzero step length, the coordinate system is nonsingular.

Heelstrike occurs when x = y = 0. At that instant, we must have _x = _y = 0 also, by assumption of zero
foot velocity.

Using coordinates q = fx; ygT , we write equations of motion for the walker that will be valid in some
neighborhood of q = 0 (temporarily ignoring the new contact with the ground). The system is conservative
with time-invariant constraints. Its Lagrangian is therefore of the form

L =
1

2
_qTA(q) _q � V (q);
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Figure 2: Close to heelstrike at nonzero step length, the x and y coordinates of any point on the foot relative
to any reference point on the ground can be used as generalized coordinates to describe the con�guration
of the walker. Assuming a gait cycle exists, these two points are chosen to be the points of impending foot
contact.

where V (q) represents the potential energy of the system, andA(q) is a con�guration-dependent, symmetric,
positive de�nite matrix.

The equations of motion are
A(q)�q + f(q) + v:d:t: = 0; (1)

where f represents potential forces acting on the system, and v:d:t: stands for \velocity dependent terms,"
which only include terms that are of degree two in _x and _y (i.e., quadratic terms).

Since the system is autonomous, we let the instant of heelstrike occur at t = 0. At t = 0, we have q = 0

and _q = 0. Assuming no new contact with the ground, Eq. 1 continues to hold. If we de�ne q1(t) = q(�t),
then q1(t) satis�es the equations of motion, as well as the initial conditions. Therefore, as time moves
forward, the solution is q1(t) = q(�t) and the old swing foot lifts o� the ground.

Recall that a walking motion requires the old swing foot to stay in contact with the ground, while the
old stance foot lifts o�. By contradiction, a walking solution cannot exist (end of proof).

Corollary 1 For a kneed walker, small slope precludes long steps.

Proof: For kneed walkers, at some time prior to heelstrike, the system switches to two-link mode. The
walker will therefore retrace its path, by the previous time-symmetry argument, provided a locked-straight
knee does not suddenly begin 
exing. But the walker will not only retrace its path, but also retrace the
history of constraint forces and moments at the knee, because at each position, the constraint forces depend
on the con�guration (the same), external forces from gravity (the same), quadratic velocity terms (negative-
squared, and hence the same) and accelerations (the same). Therefore, positive knee-locking torques will
stay positive, and un
exed knees will not suddenly 
ex (end of proof).

5 Small Steps on Small Slopes Imply Small Speeds

As shown above, for walking on a small slope 
, the step length must be also small. We now show that if
the step length is small, the overall walking speed must be small also.

Proposition 2 A straight-legged walker, walking on an in�nitesimal slope with in�nitesimal steps, cannot
walk at a �nite (nonzero) speed.

Proof: Let the slope be 0 < 
 � 1, and the step length be 0 < " � 1. By Proposition 1 we know that
"! 0 as 
 ! 0.

4



We argue by contradiction. If the average forward walking speed is O(1), then the time period of each
step must be O(").

The gravitational potential energy dissipated per walking step is weight � step length � slope which is
O("
)� 1.

H

C1
γ

ε

C2

old stance leg

new stance leg

Figure 3: Impending heelstrike. The step length " and slope 
 are exaggerated; knees, if present, are locked
straight and not shown. The old contact point is C2, and the new contact point (where an impulse acts) is
C1.

See Figure 3. The new contact point at heelstrike is labeled C1, and the old contact point on the old
stance leg is labeled C2. The slope 
 and the step length " are shown exaggerated, but understood to be
in�nitesimal.

Since the energy dissipated in foot collisions cannot exceed the in�nitesimal gravitational potential energy
available, the pre-heelstrike velocity of C1 must be o(1) or in�nitesimal. Consequently, the heelstrike-induced
velocity changes of all points on the walker must be in�nitesimal as well.

The pre-heelstrike velocity of C2 is zero, so its post-heelstrike velocity is in�nitesimal. However, its average
forward speed, by assumption, is O(1). So at some instant during the walking cycle, its velocity must be
O(1). Thus, a velocity change of O(1) needs to occur over an O(") time interval, requiring an unbounded
acceleration during the smooth phase of the motion (i.e., without collisions). This cannot occur for a �nite-
dimensional passive system with �nite nonzero inertia moving at bounded speeds, giving a contradiction
(end of proof).

Readers familiar with the rimless wheel of McGeer (1990a) and Coleman et al. (1997) will observe that
in that case, a wheel with many spokes can move at O(1) speeds on a small slope because, although the
time interval between successive spoke collisions is small, the time interval between lifting of one spoke o�
the ground and the next collision of that same spoke is not small, but O(1).

Proposition 3 A kneed walker, walking on an in�nitesimal slope with in�nitesimal steps, cannot walk at a
�nite (nonzero) speed.

Proof: The proof for the kneed walker case also rests on showing that �nite (nonzero) speeds require
unbounded accelerations. The one di�erence here is that for kneed walkers there are, in fact, unbounded
accelerations during kneestrike. So, in addition to the arguments for the preceding case, we need to also
check that kneestrike-induced velocity changes are in�nitesimal.

As before, assume that the walker walks at an O(1) speed.
See again Figure 3, now taken to depict a kneed walker in the straight-leg con�guration at heelstrike.

The points C1 and C2 are de�ned as before.
As argued for Proposition 2, due to the small potential energy budget, the velocity of the heelstrike-contact

point C1 at the instant prior to heelstrike must be in�nitesimal; and heelstrike-induced instantaneous velocity
changes of all points on the walker must be in�nitesimal as well.

Now consider the old stance leg. The pre-heelstrike angular velocities of the stance thigh and stance shank
are identical. Due to heelstrike, the di�erence induced between them is in�nitesimal. Since accelerations
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are bounded and the step period is in�nitesimal, the change in this di�erence before kneestrike is also
in�nitesimal. Therefore the kneestrike collision impulses are in�nitesimal; and the velocity changes caused
by kneestrike are in�nitesimal as well.

Now we can use the arguments used for Proposition 2. The post- heelstrike velocity of C2 is in�nitesimal;
kneestrike induced changes in it are in�nitesimal; the overall time period is in�nitesimal; so its average
forward speed cannot be O(1) without unbounded accelerations (end of proof).

We have thus shown that for McGeer-like walking machines with nonsingular mass distributions, small
slopes imply small speeds. We now turn our attention to singular mass distributions.

6 Singular Walkers

6.1 Motivation

In Garcia et al. (1998), a straight-legged machine was considered with legs whose mass distribution was
taken to be equivalent to a �nite, nonzero mass at the hip, and an in�nitesimal point mass at the foot.
Thus, the radius of gyration of each leg was in�nitesimal when compared to the leg length, i.e., the walker
was singular in some sense. That walker violates Assumption 2 of this paper. The study of that walker was,
nevertheless, useful for two reasons. First, it substantially simpli�ed the dynamics. Second, it predicted
scaling rules for walking which are apparently obeyed by even nonsingular walkers over intermediate slopes
(see Garcia et al. (1999)).

Although singular walkers are mathematical ideas impossible to realize in practice, studying their motions
on small slopes is useful for a third reason. We would like to understand the fundamental mechanical
limitations on the eÆciency of walking machines. A reasonable way to study the eÆciency of horizontal
locomotion is to quantify ineÆciency using one of several measures which are all roughly equivalent to the
smallness of the minimum slope required to sustain the motion (see Garcia et al. (1999)). As such, qualitative
features of walking motions on small slopes are of interest. For nonsingular McGeer-like machines, we have
shown that small slopes imply small speeds. Now at a suÆciently small but �xed slope, is it possible to
make the mass distribution \more and more singular" to obtain faster and faster walking? If the answer is
yes, then one key to designing highly-eÆcient walking machines is to simply try and design the walkers to be
as close to singular as possible. On the other hand, if the answer is no, then we conclude that such a route
to high eÆciency does not exist; and the design of highly eÆcient machines must be based on other ideas.

With this motivation, we now address the question of whether small slopes imply small speeds even for
singular walkers. We �rst need to identify a useful class of singular walkers. This process is unfortunately
somewhat long; we do not know of a way to shorten the argument. Once the class of singular walkers is
identi�ed, the rest of the proof is straightforward, and similar in spirit to the proof for nonsingular walkers.

6.2 Physically Meaningful Singular Walkers

We will abandon Assumption 2, and introduce in its place some other assumptions.
In studying a singular walker, we de�ne its dynamics as a physically meaningful limiting case of some

nonsingular, dynamically determinate, behavior. The singular limit should not involve wild behavior like
in�nite accelerations during non-collisional motions; or in�nite velocity changes at some points on the walker
due to collision-induced �nite changes at other locations. We refer to this subclass of singular walkers as
being physically meaningful. For instance, the \simplest walker" of Garcia et al. (1998) is the \minimal
biped" of Alexander (1995) made physically meaningful by the addition of in�nitesimal point masses at the
feet.

Example 1 Some possible leg mass distributions are shown in Figure 4. (a) shows a straight-legged walker,
not physically meaningful because the moment of inertia about the center of mass is exactly zero, and so the
equations of motion are indeterminate. (b), (c) and (d) depict some limiting cases as Æ ! 0; of these three,
only (c) is physically meaningful. For (b) and (d), the frequencies of oscillation (and hence, accelerations)
when suspended from the hip are not bounded as Æ ! 0.

We write down the foregoing ideas as explicit assumptions.
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Figure 4: Some examples of mass distributions: (a) and (b) straight-legged walkers, (c) and (d) kneed walkers
with point feet. The hip is marked H in each case. The straight lines represent massless links; the heavy
dots represent point masses.

Assumption 5 Singular walkers are limiting cases of dynamically deterministic, nonsingular walkers.

Assumption 6 For a singular walker with bounded initial conditions on velocities, under smooth (non-
collisional motions), the accelerations remain �nite.

Assumption 7 Let �v be an in�nitesimal, instantaneous change in the velocity of an arbitrary point C on
a singular walker, caused by an impulse at C. Then the resulting velocity changes at all other points on the
walker are in�nitesimal as well.

Note that Assumption 7 is not quite independent of Assumption 6. For example, let Assumption 7 be
violated, so that we can impart an in�nitesimal change in the velocity of some point of the walker to obtain a
�nite (nonzero) change in the velocity of some other point. Then, passing to the limit, imparting no velocity
change to the �rst point still causes a sudden, nonzero change in the velocity of the second point. This can
only occur if the second point can have an in�nite acceleration even in the absence of collisions, showing that
violation of Assumption 7 implies violation of Assumption 6 as well. However, to avoid the complications of
rigorously examining the various distinguished limits implicit in the previous informal argument, we explicitly
adopt both Assumptions 6 and 7. In the same spirit, we adopt another assumption about the collisions of
the walker.

Assumption 8 Let a kneed walker's swing thigh and swing shank have in�nitesimally di�erent angular
velocities at the instant preceding kneestrike. Then kneestrike-induced velocity changes at all points on the
walker are in�nitesimal as well.

Finally, we adopt an assumption that seems reasonable, and is further motivated later in the paper
(Remark 6) after some preliminaries have been established.

Assumption 9 Let a kneed walker be placed upright on 
at ground, with both legs straight, with feet touching
the ground with any �nite step length, and at rest. From these initial conditions, no walking solution exists.
The walker either keeps standing, or falls down.

Under Assumptions 1 through 9 but not including Assumption 2, we now set out to prove that small
slopes imply small speeds. In the rest of this section, we use some general results of two-dimensional rigid
body dynamics to identify the class of singular walkers allowed by our assumptions.

6.3 The Contact Inertia Matrix M For Collision Calculations

Consider a linkage consisting of several rigid objects connected by ideal, frictionless hinges (Figure 5). The
point C on the linkage collides with a rigid, immovable 
oor. A collision impulse vector P acts at C. Let the
pre-collision velocity vector of C be vi, and the post-collision velocity be vf .
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Figure 5: A free-
oating linkage collides with a rigid immovable object (
oor).

Using standard rigid body dynamics (e.g., Smith (1991)), it can be shown that the change in the velocity
of C, i.e., the vector vf �vi, is linearly related to the impulse vector P by a symmetric, positive semide�nite
tensor M, i.e., the collisional interaction can be described by an equation of the form

P =M � (vf � vi) : (2)

The case of singular M is viewed as a limiting case of nonsingular M, as some inertial properties of some
components in the linkage are treated as \in�nitesimal". M depends on the masses of the links, their
moments of inertia, positions of pivot points, and the instantaneous con�guration of the linkage. Assuming
that a coordinate system (along normal and tangential directions at the contact surface) has been chosen
and that we are considering two-dimensional systems, the tensor M is represented by a 2 � 2 matrix of
components, which (with some abuse of notation) we also call M, the contact inertia matrix.

The kinetic energy loss in a perfectly plastic (no-slip, no-bounce) collision, with vf = 0, is given by

Energy loss =
1

2
vi �M � vi : (3)

Also, for such a plastic collision, we have the impulse

P = �M � vi : (4)

De�nition 1 For our purposes, the mass distribution of a walking machine at the heelstrike con�guration
is singular if M for the foot collision calculation is singular. Else, the mass distribution is nonsingular.

6.4 Point Mass Representations of an Arbitrary Rigid Body

Remark 2 The next two propositions are trivially known facts from rigid body mechanics. We include them
as numbered \propositions" merely to facilitate later reference to them.

Proposition 4 In two dimensions with a spatially uniform body force �eld (such as constant gravity), any
single rigid body with total mass M , center of mass a distance r > 0 from an arbitrarily chosen reference
point R, and moment of inertia J > 0 about its center of mass, is dynamically equivalent to a pair of rigidly-
connected point masses, one of which, say m, is at R and the other (M �m) is a distance s from R, where
m and s are to be chosen appropriately.

Proof: Observe that the total mass is the same, m+(M�m) =M ; center of mass position and the moment
of inertia will also be the same if m and s satisfy the simultaneous equations:

Mr = (M �m)s; and J +Mr2 = (M �m)s2; (5)

where point R, the center of mass, and the mass M �m are collinear. Equation 5 may be solved to obtain

m =
J

J +Mr2
M; and s =

Mr2 + J

Mr2
r ; (6)
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Figure 6: Two possible locations for two-point-mass representations of a single planar rigid body.

which concludes the proof.
To emphasize the arbitrariness with which the locations of the point masses may be chosen, consider

Figure 6. A rigid body, with total mass M and moment of inertia J about center of mass O, may be
represented using two appropriate point masses at points A and C, where the masses at A and C as well as
the distance OC are determined by M , J and the location of point A. The same body may, if desired, also
be represented using two other point masses, at (say) B and D, with the masses at B and D as well as the
distance OD being determined by M , J and the location of point B.

Thus for 2-D straight-leg walking machines, treating each leg as having two point masses, one (say) at
the hip and one at some other, arbitrary point, involves no loss of generality in that it covers all except the
special case where the center of mass of the leg is exactly at the hip. In such cases, we can use a three point
mass description as follows.

Proposition 5 In two dimensions with a spatially uniform body force �eld (such as constant gravity), any
single rigid body with total mass M , center of mass at a point R, and moment of inertia J > 0 about its
center of mass, is dynamically equivalent to three rigidly-connected collinear point masses, one of which, say
M � 2m, is at R and the other two (m each) are placed symmetrically about R at a distance s, where s can
be any distance greater than or equal to the radius of gyration k =

p
J=M , and m depends on the choice of

s.

Proof: By inspection, the total mass as well as the center of mass are the same in both cases. Choosing

m =
Mk2

2s2

ensures both that the moment of inertia is the same, and that M � 2m � 0 (end of proof).

Remark 3 If J in Proposition 5 is non-in�nitesimal (i.e., k is non- in�nitesimal), then we can pick s to
be k. In that case, m =M=2 and no point mass is needed at R.

Remark 4 If J in Proposition 5 is in�nitesimal (i.e., k is in�nitesimal), then we can pick s (for walking
machines, say) to be the leg length. In that case, m is in�nitesimal as well, and essentially all the mass is
at R.

6.5 Test For Singular M

M linearly relates any force F at the contact point C (Figure 5) to the resulting acceleration of point C, aC,
provided all bounded external forces and torques, all internal forces and torques except those arising from
workless constraints, as well as centripetal terms (or \!2 terms") are neglected:

F =M � aC : (7)

In other words, if we imagine the system starts from rest (no !2 terms), ignore springs (if any) at joints,
and ignore all external forces except F, then M linearly relates the instantaneous acceleration of point C to
the force F.
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Proposition 6 Consider a linkage (e.g., Figure 5) at rest. Let the mass distribution of each link be given by
two or more rigidly connected point masses (possibly in�nitesimal) at distinct locations. Then M is singular
if and only if it is possible to move the point C without moving any of the non-in�nitesimal point masses.

Proof: If the point C can move without setting any nonzero mass in motion, then C can be accelerated
with zero force, since the only resistance to motion is inertial (no friction, springs, gravity, etc.). By Eq. 7,
M must be singular. Conversely, if moving C means moving some mass, then the force needed is nonzero,
so M is nonsingular (end of proof).

Corollary 2 If, in Figure 5, the last link (i.e., the link with the point C) has a mass distribution equivalent
to two nonzero point masses separated by a nonzero distance, then M is nonsingular.

Proof: Point C cannot be moved without moving at least one of the two nonzero point masses (end of
proof).

2(M-m)

m

m

H

R

S

Contact
Point C

Figure 7: A straight-legged walker with the mass distribution of each leg expressed as an equivalent pair of
point masses, with one point mass at the hip. The total mass of each leg is M .

Example 2 Consider Figure 7. If m = 0, then the point C can be moved by rotating the leg about H, and
M is singular. If R and S do not coincide and m > 0, then M is nonsingular.

Corollary 3 Consider one straightened leg of a walking machine. Let the center of mass of the leg be exactly
at the hip. If the central moment of inertia J of the leg as a single rigid body is non-in�nitesimal, then M

for the corresponding walker is nonsingular; while if J is in�nitesimal, then M is singular.

Proof: If J is non-in�nitesimal, see Remark 3 and Corollary 2. If J is in�nitesimal, see Remark 4 and
Proposition 6 (the leg can be rotated about the hip, without moving any non-in�nitesimal mass). Note that
these arguments apply to both straight-legged and kneed walkers at the heelstrike con�guration, because for
kneed walkers the new stance leg remains locked and behaves like a single rigid body (end of proof).

6.6 Singular Mass Distributions For Walkers

Proposition 7 A straight-legged walker with nonzero step length has singular mass distribution if and only
if all its mass is concentrated at the hip H.

Proof: If the center of mass of the leg is exactly at the hip, see Corollary 3 and Remark 4. Otherwise,
express the mass distribution of each leg as a point mass at the hip and another point mass at some other
location. See Example 2. For nonzero step length, points R and S do not coincide (end of proof).

Remark 5 A point mass on one two-dimensional link, located exactly on a hinge, can be \transferred" to
another link hinged about the same point, with no change in the dynamics.

(The contributions of the point mass to the system's Lagrangian are independent of which link it is attributed
to.)
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Proposition 8 A kneed walker with nonzero step length has singular mass distribution if and only if all its
mass is concentrated at the hip H when the legs are straightened.

Proof: Note that the new stance leg remains straight before and after heelstrike, so we treat it as a single
rigid body.

If the center of mass of the leg is exactly at the hip, see Corollary 3 and Remark 4.
Otherwise, examine the instantaneous mass distribution for the straight-leg con�guration just prior to

heelstrike (see Figure 7). There are now 3 cases to consider.

Case 1 (all mass at hip): If m is in�nitesimal, then C can be moved without moving H, and so the walker
is singular.

Case 2 (some, but not all, mass at hip): If both m and M �m are nonzero then, since the new stance leg
is treated as rigid, the walker is nonsingular by Corollary 2.

Case 3 (no mass at hip): If M �m is in�nitesimal, it remains to prove that the walker is nonsingular. We
examine this case below.

For straight-legged walkers, case 3 is nonsingular. For kneed walkers, we must account for the 
exing of
the old stance knee (the new swing knee) as a result of the collision.

Figure 8 shows just the trailing leg of the walker, along with the position of the knee, K. To emphasize
that the knee need not lie on the line connecting the hip with the center of the foot's circle, the \actual"
geometry is shown with heavy black lines, while the underlying gray shows the sketch from Figure 7.

m   + m
th sh

knee, K
small point mass
   for thigh

small point mass
   for shank

hip, H

R

Figure 8: Trailing leg of a kneed walker with negligible equivalent hip-mass when in the straight-leg con�g-
uration. The �gure is drawn to show the position of the knee.

We express the mass distribution of the shank using two equivalent point masses, but this time with one
point mass msh at point R of Figure 7, and another point mass at some other suitable point (which need
not be the hip). Similarly, we express the mass distribution of the thigh using two equivalent point masses,
with a point mass mth at point R and another point mass at some other suitable point.

By assumption (for case 3) the moment of inertia about point R of the leg, in the straight-leg con�guration,
is in�nitesimal. Thus the \other" point masses, mentioned above, are in�nitesimal. The exact positions of
these two new point masses for the shank and thigh are irrelevant, and not computed here.

We now proceed with the examination of case 3, which has three subcases.

Subcase 3.1: If the thigh-mass mth is �nite (nonzero), then the shank mass is irrelevant. The geometry of
Example 2 shows that M is nonsingular.

Subcase 3.2: If the thigh-mass mth is zero or in�nitesimal, but the point R coincides with the knee K, then
by Remark 5 we attribute the shank-mass msh to the thigh, and obtain subcase 3.1. Thus, M is nonsingular
again.

Subcase 3.3: If the thigh mass mth is zero or in�nitesimal, and the point R does not coincide with the knee
K, then point K can have in�nite accelerations. This case violates our assumptions about being physically
meaningful, and is excluded.

Thus, we have shown that if the mass in the straight leg con�guration is concentrated at the hip, then
the mass distribution is singular; and if the mass in the straight-leg con�guration is not all concentrated at
the hip, then the mass distribution is nonsingular. This concludes the proof of Proposition 8.
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Corollary 4 For a walker at heelstrike with nonzero step length, rank(M)� 1.

Proof: If M is singular, there is nonzero mass at the hip. In accelerating C towards the hip, nonzero force
is needed. By Eq. 7, M is not the zero matrix (end of proof).

Corollary 5 For a singular walker at heelstrike with nonzero step length, the eigenvector ofM corresponding
to the nonzero eigenvalue is directed from heelstrike-contact point C towards hip H, i.e., line CH; and the
eigenvector corresponding to the zero eigenvalue is perpendicular to line CH.

Proof: All the mass of the old swing leg is at the hip. Accelerating C in a direction perpendicular to
CH requires no force, showing that it is an eigenvector direction corresponding to a zero eigenvalue. M is
symmetric and has rank one, so the zero eigenvalue has multiplicity one, and the zero-eigenvalue eigenvector
is unique. Since M is symmetric, the eigenvectors are orthogonal and so the other eigenvector is along CH
(end of proof).

7 Small Slope Implies Low Speed for Singular Walkers

Using the results of the previous section, we now discuss singular walkers walking on small slopes.

7.1 Small Slope Precludes Long Steps

Proposition 9 For a singular walker (straight-legged or kneed), small slope precludes long steps.

Proof: As before, to obtain a contradiction, we assume that as the slope goes to zero, a walking motion
exists whose step length does not go to zero. We then examine the limiting case of zero slope. There are
two cases to consider.

Case 1: Let the velocity of the hip H at the instant preceding heelstrike be nonzero. Then, since the step
length is nonzero, this velocity has a component along HC, i.e., towards the heelstrike contact point. This
means that the contact point has a pre-collision velocity with a nonzero component along the nonsingular
eigenvector, and some energy must be dissipated by Eq. 3 (a contradiction).

Case 2: Let the velocity of the hip H at the instant preceding heelstrike be exactly zero. Then it is clear that
the foot collision involves no impulse and no energy dissipation. However, in this case the walker comes to
a dead stop as a result of heelstrike, and either remains stationary thereafter, or falls down (by Assumption
9; see also Remark 6 below). Thus, walking does not continue (a contradiction).

Remark 6 A kneed walker will stand on 
at ground in \double support" equilibrium on two straightened
legs only if there is no 
exing torque at either knee. Else, a knee will buckle. For a singular kneed walker
standing in this way, the ground contact forces must be directed straight to the hip since the legs have no
weight anywhere else. A simple sketch then shows that if the front knee does not buckle then the rear knee
does not buckle either. So, either no knee buckles; or the front knee buckles, in which case it seems reasonable
that the walker should fall down.

Remark 6, though not a theorem, provides some a posteriori justi�cation for Assumption 9.

7.2 Small Steps Imply Low Speeds

The following arguments are essentially identical to the ones used for nonsingular walkers, so they are kept
brief.

Proposition 10 A straight-legged singular walker, walking on an in�nitesimal slope with in�nitesimal steps,
cannot walk at a �nite (nonzero) speed.
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Proof: Arguing by contradiction, we assume that a walking motion exists with an average O(1) forward
velocity, on an in�nitesimal slope with in�nitesimal step length.

At small slope with small steps, the energy dissipated per step must (as for nonsingular walkers) be
in�nitesimal. This implies that the impulse magnitude is in�nitesimal. It follows that the change in the
velocity of the hip (where the mass is concentrated) is in�nitesimal. The velocity changes experienced by the
trailing leg (old stance leg) are caused by the instantaneous velocity change of the hip. Thus, velocity changes
on the trailing leg are in�nitesimal. It follows that just after heelstrike, the old contact point on the old
stance leg has an in�nitesimal velocity. As is the case for nonsingular walkers, to maintain an O(1) average
forward velocity, unbounded accelerations are required during the swing phase, leading to a contradiction
(end of proof).

Proposition 11 A kneed singular walker, walking on an in�nitesimal slope with in�nitesimal steps, cannot
walk at a �nite (nonzero) speed.

Proof: Again, arguing by contradiction, we assume that a walking motion exists with an average O(1)
forward velocity, on an in�nitesimal slope with in�nitesimal step length.

Given the in�nitesimal potential energy budget, the heelstrike impulse must be in�nitesimal. The re-
sulting change in the hip velocity (where at least the mass of the new stance leg, which remains straight,
is concentrated) must be in�nitesimal. The consequent velocity changes on the new swing leg (i.e., the old
stance leg) must be in�nitesimal. The relative angular velocity induced between the new swing thigh and
shank must be in�nitesimal. The change in this relative velocity over the in�nitesimal time interval till
kneestrike must be in�nitesimal. Therefore kneestrike occurs with an in�nitesimal relative velocity. Finally,
the velocity changes caused by the kneestrike collision are therefore all in�nitesimal as well.

Now we have the situation of Proposition 3. The post- heelstrike velocity of the old contact point (i.e.,
on the old stance leg) is in�nitesimal; kneestrike induced changes in it are in�nitesimal; the overall time
period is in�nitesimal; so its average forward speed cannot be O(1) without unbounded accelerations (end
of proof).

8 Discussion

We have shown that, under reasonable assumptions, passive walking machines that follow McGeer's basic
design cannot walk on in�nitesimal slopes at other than in�nitesimal speeds. We have also shown that
somehow making the walkers closer to singular will not lead to dramatically more eÆcient walking (i.e. the
conclusions are the same for physically-meaningful singular walkers as they are for nonsingular walkers).

Of course, a given walker may not have walking motions on arbitrarily small slopes in the �rst place. The
main utility of this paper is that it guides the design of walking machines that do walk on near-zero slopes.
This issue is discussed in detail in a companion paper (Garcia et al. (1999)), where scaling rules for small
slope walking are obtained. Those rules shed light on the fundamental mechanical limits on the eÆciency of
McGeer-like walking machines.

Perhaps this paper might guide the design of other passive walkers that can, in fact, walk on 
at ground at
nonzero speed. Like the two-mass hopper (Reddy and Pratap (1999)), machines that do not follow McGeer's
basic design might have special energy- conserving gaits at nonzero speeds on perfectly 
at ground.

Let us brie
y consider how a passive machine might walk without energy dissipation in spite of per-
fectly plastic foot collisions (ignoring other dissipative e�ects such as friction). For simplicity, we consider
nonsingular and straight-legged walkers. Proposition 1 applies to all two-degree-of-freedom conservative
time-invariant holonomic systems where the contacting point has two independent velocity components. In
contrast, the two-mass hopper (Reddy and Pratap (1999)) does not �t the conditions of Proposition 1, be-
cause its contact point has one velocity component, while the system as a whole has two degrees of freedom.
At the instant of gentle contact between the lower block and the ground, the upper block has a nonzero
velocity. Thus, the forward-evolving solution of the system equations does not just retrace its path.

By Proposition 1, for a walker in two dimensions and with two straight legs, if a gentle foot collision
is to occur without the foot lifting o� the ground again, a necessary condition is that the system have a
third degree of freedom with nonzero velocity at the instant of contact, in order to break the time-reversal
symmetry in initial conditions. For walking machines, a reasonable choice is a spring-mounted trunk that
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hinge, with torsion spring

Figure 9: A walking machine that might walk passively on 
at ground without collisional dissipation.

pivots around the hip, as shown schematically in Figure 9. The exact design, analysis and simulation of
this system have not yet been carried out. We imagine that the hip will be stabilized in the near-vertical
position using torsion springs; that there will be an extended period of double support (both feet touching
the ground); and that at the instant of the gentle heelstrike, the trunk will necessarily have a nonzero angular
velocity. As is the case for the two-mass hopper, we expect that linearized stability analysis of any walking
motions will show neutral stability at best. Physically, we see that a passive machine on 
at ground cannot
gain energy under any circumstances. If a steady walking motion is slightly disturbed so that the net system
energy decreases by a small amount, that lost energy cannot be recovered. Therefore, the system cannot
return to the original walking motion (ruling out asymptotic stability). In actual construction of such a
machine, an active controller will probably be used to stabilize the passive gait (such control requires little
energy,in comparison to, say, actively controlled non-passive trajectories as in Blajer and Schiehlen (1992)).

Finally, for human walking, we speculate that one possible strategy to reduce impact losses and impulsive
loads might be to use muscles and the trunk to approximately mimic a spring-mounted, third degree of
freedom. As noted in a companion paper (Garcia et al. (1999)), the impact-dominated energy losses for
McGeer's trunk-less walkers seem a little high when compared to human walking power consumption. Further
theoretical study of machines of the type shown in Figure 9, along with comparisons with human data, are
needed before this question can be answered.

9 Conclusions

For anthropomorphic walking machines without extra links, for which McGeer's machines provide a good
model, collisional losses are inescapable and small slopes imply low speeds (equivalently, low power implies
low speeds). The observation that small slopes imply small speeds leads to restrictions on the mass distri-
butions on McGeer-like walkers that do walk on near zero slopes, as discussed in a companion paper (Garcia
et al. (1999)).

For more anthropomorphic machines that can have additional degrees of freedom with signi�cant energy
storage (such as a trunk mounted on a spring), it may be possible to avoid collision losses through passive
means. Thus, it may be possible to design passive-dynamics-based walking robots where the most signi�cant
energy losses are not in collisions, but in the hopefully smaller dissipation through various non-ideal elements
like springs and hinges.

Together with a companion paper (Garcia et al. (1999)), the results and discussion in this paper provide
some insights into mechanisms and strategies which biped robots and animals might use in order to lessen
the e�ects of collisions and thus improve their walking eÆciency.
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