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Prediction of stable walking for a toy that cannot stand

Michael J. Coleman,1,* Mariano Garcia,1,† Katja Mombaur,2,‡ and Andy Ruina1,§
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Previous experiments@M. J. Coleman and A. Ruina, Phys. Rev. Lett.80, 3658 ~1998!# showed that a
gravity-powered toy with no control and that has no statically stable near-standing configurations can walk
stably. We show here that a simple rigid-body statically unstable mathematical model based loosely on the
physical toy can predict stable limit-cycle walking motions. These calculations add to the repertoire of rigid-
body mechanism behaviors as well as further implicating passive dynamics as a possible contributor to stability
of animal motions.

DOI: 10.1103/PhysRevE.64.022901 PACS number~s!: 87.19.St, 45.05.1x, 45.40.Ln, 87.19.La
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INTRODUCTION

For walking and other activities, people and anim
move in complex, yet stable ways. One view is that su
coordination is the action of neuromuscular control co
strained by, among other things, the laws of classical m
chanics. However, one might ask how much of animal co
dination might be understood in purely mechanical term
Likewise, how much versatility of motion is possible wit
simple mechanical devices? This paper concerns one
ample that sheds a little light on these two general questi

McGeer’s ~e.g., Ref. @1#! success with straight legged
two dimensional uncontrolled and gravity-powered walki
mechanisms highlights the possibility of pure mechan
generating coordination. McGeer found steady walking so
tions ~periodic gait or limit-cycle motions! that were expo-
nentially stable~asymptotically returned to the periodic mo
tion after small disturbances from that motion!. In his two-
dimensional theory, only fore-aft stability, and not late
balance, is in question. In his physical implementations s
to-side balance is enforced by duplicate side-by-side l
~four legs total!. These machines cannot stand fully uprig
but can stand with splayed legs, possibly contributing to th
dynamic stability.

Extending McGeer’s ideas, Coleman and Ruina@2# de-
scribed an easily reproducible@3# two legged gadget buil
from Tinkertoys® that cannot stand at all, even with both fe
on the ground, splayed or not, yet seems~slightly! dynami-
cally stable while walking. But where the stability of Mc
Geer’s machines was first predicted with rigid-body mod
ing, the stability of the Tinkertoy® device was not. As noted
in @2#, this system is essentially dissipative~from collisions
and possibly from ground friction and internal dissipatio!
and nonholonomic~the dimension of the accessible config
ration space is larger than the dimension of the veloc
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space!. Nonholonomic systems can have asymptotic sta
ity, even when conservative, and nonholonomicity from
termittent foot contact might also contribute to stability@4,5#.

Which properties are needed for asymptotic dynamic s
bility of such a statically unstable system was left una
swered by@2#. Possible key factors include friction of th
hinge, play in the hinge joint, elastic or inelastic deformati
of the structure, compliance at the foot contact, and slid
and twisting friction at the foot contact. Could a rigid-bod
model without these effects explain the stable motion?

PREVIOUS RESEARCH

The simulation model in@2# consists of two rigid bodies
connected by a frictionless hinge~Fig. 1!. The feet are tor-
oidal with principal radiir 1 and r 2. The ground allows no
relative motion of contacting points, no torques at the fo
contact, no bounce~restitutione50), and no tension force a
the foot contact~nonsticky floor!. The lengths, center o
mass location, the moment of inertia components, and
ground slope are adjustable. After nondimensionalizing w
massm, lengthl, and timeAl /g there are 13 free parameter

The working Tinkertoy® was based on mildly unstabl
simulations@2# of a simplified model with point contact (r 1

o-
s:

FIG. 1. The 3D rigid-body model. The parameters and st
variables are described in@2#.
©2001 The American Physical Society01-1
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5r250) and narrow hips (w50).
Earlier, McGeer@6# studied the same model, allowingr 1

.0 andw.0 but assuming that the principal moments
inertia aligned with the hip hinge and leg. He found on
unstable solutions where, also, the swing foot passed be
ground. Kuo@7# studied a similar model, but disallowed ste
(f) and also only found unstable passive gaits. Dankow
et al. @8# found stable solutions for a related kneed comp
tational model. That model has wide feet so, like the
models, it can stand stably with splayed legs. The semi
computational model of Wisseet al. @9# can also stand with
splayed legs.

METHODS

Our study was of the system in~Fig. 1! @2# described
above, but with hip spacing and disc feet (r 1Þ0, wÞ0, r 2
50).

The overall approach is to characterize the solution of
rigid-body dynamics equations as a function~map! that takes
the state of the system just after one step as input and g
the state just after the next step as output. A fixed poin
this map defines a limit cycle. Stability is evaluated by t
eigenvalues of the matrix describing the linearization of t
map. If all eigenvalues are less than 1 in modulus the p
odic motion is exponentially stable. The map, its fixed poi
and the linearization are all found from numerical solutio
of the equations of classical rigid-body dynamics.

The numerical searches were aimed at generating st
motion and not at accurately modeling either the exist
physical toy or humans. We used the toy’s approximate
rameters to seed the optimizations. Special purpose opt
control software~see Appendix! was used to reduce the mo
unstable eigenvalue while maintaining periodicity of the ga
positive foot clearance, and static instability. The result
solution was checked and improved with an independ
method and checked again with another independent sim
tion.

RESULTS

The model of Fig. 1 has asymptotically stable limit-cyc
motions~Fig. 2!, with the foot of the swing leg clearing th
ground, with I XX50.1982, I YY50.0186, I ZZ50.1802, I XY
50.0071, I XZ520.0023, I YZ50.0573, a50.0702, Xcm
50, Ycm50.6969, andZcm50.3137, W50.3624, andR1
50.1236 and R250. Capital letters indicate non
dimensional variables. Tensor componentsI MN and mass po-
sitions are in local left-leg coordinates with origin at th
vertically standing contact. Note the static instability (Zcm
.R1). The largest eigenvalue modulus of the single-s
map Jacobian is 0.839 156 0, safely below 1.

DISCUSSION

We are claiming a qualitative theoretical mechanics
sult. That is, a system described with the classic equation
rigid-body mechanics has an exponentially stable limit-cy
solution in the neighborhood of a statically unstable confi
02290
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ration, but with no fast spinning parts. Although we have n
attempted a mathematical proof, we have attempted to do
numerics with enough checks and tests to state the re
with confidence~see Appendix below!.

This solution can be interpreted as bipedal walking,
though not especially anthropomorphic. The base solutio
exactly repetitive, step after step. That the largest eigenv
is less than 1 in magnitude, means that, if the mechan
were slightly disrupted from this periodic motion it woul
asymptotically approach this motion again, over a numbe
steps.

Simple numerical probes show, as exponential stabi
demands, a small but noninfinitesimal basin of attraction.
have not investigated the shape or size of this domain
detail; we do not know exactly what set of motions even
ally settle into the periodic motion and thus cannot precis
describe what disturbances knock the walker down. Ho
ever, the success of the physical model@2# suggests that the
stability is robust enough to be physically relevant.

We do not claim to have an accurate model of the toy
@2#. Rather we have a simple model that explains the to
qualitative behavior. Accurate quantitative prediction of t
toy’s motions may well depend on physical effects that
not in our simple model~various frictions and deformations!.
Yet unknown is whether the parameters presented here c
be used as a basis for a better working physical device. M
generally, we also do not know if more humanlike stab
passive-dynamic designs can be made that are also stati
unstable.

CONCLUSIONS

The dynamic stability of a statically unstable walkin
mechanism can be predicted with a model consisting of
rigid bodies connected by an ideal hinge and making in
mittent ideal no-slip, no-bounce point contact with th

FIG. 2. A gait cycle~two steps!. In the first half, the stance leg
is the left leg.~a! The swing leg angle is here measured from t
slope normal@usw* (t)1ust* (t)2p#; ~b! positive swing-foot clear-
ance between collisions;~c! the motion has more steer~yaw! than
lean ~bank!.
1-2
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ground. We have shown that there is no need to appea
hinge-friction, hinge-play, distributed or contact deformati
~elastic or inelastic!, or contact frictional slip in order to
qualitatively predict the interesting behavior demonstra
by the physical model in Ref.@2#.

The results further highlight the versatility of simple pa
sive strategies for stabilization of coordination. The calcu
tion also slightly expands the range of known rigid-bo
phenomenology.

For videos and reprints about the Tinkertoy® and related
machines, see www.tam.cornell.edu/;ruina/hplab/pdw.html.
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APPENDIX: NUMERICAL ANALYSIS

We carried out the numerical analysis in three differe
ways.

The first stable solution~with usmaxu50.897) with foot
clearance was found using the approach developed
Mombauret al. @10# on the basis of the optimal control cod
MUSCOD by Bock et al. @11# and Leineweber@12#. In the
language of the discipline,MUSCOD has been written for gen
eral multiphase optimal control problems and is based o
multiple shooting state discretization. Multiple shootin
splits up the original boundary value problem into a num
of initial value problems enforcing continuity conditions
the transitions from one interval to the next. At all multip
shooting pointsMUSCOD allows the user to impose a numb
of equality and inequality constraints on the parameters
the dynamic variables being varied in the optimization. F
the Tinkertoy® model described here, this permitted us
ensure periodicity, foot clearance during the step, and to k
all state variables and parameters within reasonable ran
Sensitivities of the integration end values on each inter
both to variations in initial values and to variations in mod
parameters, are efficiently computed by means of inte
numerical differentiation~IND!. The basic principle of IND
is to use identical, but adaptive and error-controlled discr
d
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zation schemes for integration and derivative generation.
use with actuated and passive gait problems, with impl
state-dependent phase switching points and discontinuitie
the state variables, the originalMUSCOD has been combined
with an object oriented modeling library that deals with the
situations in a uniform and complete way. Also added
MUSCOD were stability analysis modules that compute t
linearized Poincare´ map of a periodic solution and their e
genvalues, assembling information from all multiple sho
ing intervals and taking care of the above mentioned impl
switching point dependencies. Stable solutions for
Tinkertoy® model were found by varying model paramete
and bounds based on coarse grid sensitivity informat
gathered during the previous optimal control problem so
tions.

Second, we reproduced and improved the solution ab
by fourth order Runge-Kutta integration of the governi
ordinary differential equations in Matlab®, finding the colli-
sion time accurately using Henon’s method~changing the
independent variable near the collision time!. The impact
transition is a matrix multiplication. The fixed points of th
resulting return map were found by numerical root findin
The fixed point map Jacobian was found by a central diff
ence perturbation of the initial state. The eigenvalue w
reduced from 0.897 to 0.839 using a simulated annea
optimization of the maximum eigenvalue modulus. For th
MATLAB solution we did extensive convergence tests on b
the integration step size and the central difference step s
These tests indicate a combined roundoff and truncation
ror of about61027 in the largest eigenvalue modulus for th
parameters given. This maximum eigenvalue estimate dif
from that generated byMUSCOD with these parameters by 2
31023.

Finally, the equations of motion were derived indepe
dently and simulated again independently inMATLAB giving
agreement to theMATLAB solution above 1026 for the largest
eigenvalue modulus.

For reference, the state of the system just after co
sion of the left foot is, for the parameters give
q* 5@f,c,ust ,usw ,ḟ,ċ,u̇st ,u̇sw#5@0.098 68, 20.009 25,
20.160 16, 3.435 83,20.132 21, 20.019 91, 0.471 24,
20.392 56] with step periodt* 51.007 11 where ~ ˙ !
5d~ !/dt with t the dimensionless time.
o.
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