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Prediction of stable walking for a toy that cannot stand
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Previous experimentfM. J. Coleman and A. Ruina, Phys. Rev. Le80, 3658 (1998] showed that a
gravity-powered toy with no control and that has no statically stable near-standing configurations can walk
stably. We show here that a simple rigid-body statically unstable mathematical model based loosely on the
physical toy can predict stable limit-cycle walking motions. These calculations add to the repertoire of rigid-
body mechanism behaviors as well as further implicating passive dynamics as a possible contributor to stability
of animal motions.
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INTRODUCTION spacé. Nonholonomic systems can have asymptotic stabil-
ity, even when conservative, and nonholonomicity from in-
For walking and other activities, people and animalstermittent foot contact might also contribute to stabilidy5].
move in complex, yet stable ways. One view is that such Which properties are needed for asymptotic dynamic sta-
coordination is the action of neuromuscular control con-bility of such a statically unstable system was left unan-
strained by, among other things, the laws of classical meswered by[2]. Possible key factors include friction of the
chanics. However, one might ask how much of animal coorhinge, play in the hinge joint, elastic or inelastic deformation
dination might be understood in purely mechanical terms©f the structure, compliance at the foot contact, and sliding
Likewise, how much versatility of motion is possible with and twisting friction at the foot contact. Could a rigid-body
simple mechanical devices? This paper concerns one exaodel without these effects explain the stable motion?
ample that sheds a little light on these two general questions.
McGeer's (e.g., Ref.[1]) success with straight legged,
two dimensional uncontrolled and gravity-powered walking
mechanisms highlights the possibility of pure mechanics The simulation model ifi2] consists of two rigid bodies
generating coordination. McGeer found steady walking soluconnected by a frictionless hing€ig. 1). The feet are tor-
tions (periodic gait or limit-cycle motionsthat were expo- oidal with principal radiir, andr,. The ground allows no
nentially stable(asymptotically returned to the periodic mo- relative motion of contacting points, no torques at the foot
tion after small disturbances from that motjoin his two-  contact, no bouncgestitutione=0), and no tension force at
dimensional theory, only fore-aft stability, and not lateralthe foot contact(nonsticky flooy. The lengths, center of
balance, is in question. In his physical implementations sidemass location, the moment of inertia components, and the
to-side balance is enforced by duplicate side-by-side legground slope are adjustable. After nondimensionalizing with
(four legs total. These machines cannot stand fully upright, massm, lengthl, and time\/l/g there are 13 free parameters.
but can stand with splayed legs, possibly contributing to their The working Tinkerto§ was based on mildly unstable

dynamic stability. _ simulations[2] of a simplified model with point contact {
Extending McGeer's ideas, Coleman and Ruj@a de-

scribed an easily reproducib[8] two legged gadget built
from Tinkertoy$ that cannot stand at all, even with both feet
on the ground, splayed or not, yet seefsléghtly) dynami-
cally stable while walking. But where the stability of Mc-
Geer's machines was first predicted with rigid-body model-
ing, the stability of the Tinkertdy device was not. As noted
in [2], this system is essentially dissipatitfeom collisions
and possibly from ground friction and internal dissipation
and nonholonomig¢the dimension of the accessible configu-
ration space is larger than the dimension of the velocity
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Earlier, McGeel[ 6] studied the same model, allowimg 0 @ PN e

>0 andw>0 but assuming that the principal moments of —Siance angle] :

inertia aligned with the hip hinge and leg. He found only ] ng‘v
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unstable solutions where, also, the swing foot passed belov -0.4+ ; e

ground. Kud 7] studied a similar model, but disallowed steer
(¢) and also only found unstable passive gaits. Dankowicz g 4/ ()
et al. [8] found stable solutions for a related kneed compu- , | swing foot height
tational model. That model has wide feet so, like the 2D |
models, it can stand stably with splayed legs. The semi-3D
computational model of Wisset al. [9] can also stand with

splayed legs. 017 © :
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Our study was of the system ifFig. 1) [2] described 015 05 1 15 3 2.5

above, but with hip spacing and disc feet 0, w#0, r, ¥, non-dimensional time
=0). FIG. 2. A gait cycle(two steps$. In the first half, the stance leg

. The overall approach |s_to charactenzg the solution of thgy he |eft leg.(a) The swing leg angle is here measured from the
rigid-body dynamics equations as a funct(omag that takes _ slope normal 6%,(7)+ 6%(7)— x]; (b) positive swing-foot clear-
the state of the system just after one step as input and give§ce between collisiongg) the motion has more steéyaw) than
the state just after the next step as output. A fixed point ofean (bank.
this map defines a limit cycle. Stability is evaluated by the
eigenvalues of the matrix describing the linearization of thisration, but with no fast spinning parts. Although we have not
map. If all eigenvalues are less than 1 in modulus the periattempted a mathematical proof, we have attempted to do our
odic motion is exponentially stable. The map, its fixed pointshymerics with enough checks and tests to state the result
and the linearization are all found from numerical solutionsyith confidence(see Appendix beloy
of the equations of classical rigid-body dynamics. This solution can be interpreted as bipedal walking, al-
The numerical searches were aimed at generating stablough not especially anthropomorphic. The base solution is
motion and not at accurately modeling either the existenkyactly repetitive, step after step. That the largest eigenvalue
physical toy or humans. We used the toy’s approximate pas |ess than 1 in magnitude, means that, if the mechanism
rameters to seed the optimizations. Special purpose optimglere slightly disrupted from this periodic motion it would
control softwargsee Appendixwas used to reduce the most asymptotically approach this motion again, over a number of
unstable eigenvalue while maintaining periodicity of the gait,steps.
positive foot clearance, and static instability. The resulting Simple numerical probes show, as exponential stability
solution was checked and improved with an independen§iemands, a small but noninfinitesimal basin of attraction. We
method and checked again with another independent simulgrave not investigated the shape or size of this domain in
tion. detail; we do not know exactly what set of motions eventu-
ally settle into the periodic motion and thus cannot precisely
RESULTS describe what disturbances knock the walker down. How-
ever, the success of the physical mofd8lsuggests that the
The model of Fig. 1 has asymptotically stable limit-cycle stability is robust enough to be physically relevant.
motions(Fig. 2), with the foot of the swing leg clearing the e do not claim to have an accurate model of the toy in
ground, withlyx=0.1982,1yy=0.0186,1;,=0.1802,1xy  [2]. Rather we have a simple model that explains the toy’s
=0.0071, Ixz=-0.0023, 1y;=0.0573, «=0.0702, X;,  qualitative behavior. Accurate quantitative prediction of the
=0, Y¢n=0.6969, andZ.,=0.3137, W=0.3624, andR;  toy’s motions may well depend on physical effects that are
=0.1236 and R,=0. Capital letters indicate non- notin our simple modelvarious frictions and deformations
dimensional variables. Tensor compondmpfg and mass po-  Yet unknown is whether the parameters presented here could
sitions are in local left-leg coordinates with origin at the be used as a basis for a better working physical device. More
vertically standing contact. Note the static instabili&. generally, we also do not know if more humanlike stable
>R;). The largest eigenvalue modulus of the single-stepassive-dynamic designs can be made that are also statically
map Jacobian is 0.839 156 0, safely below 1. unstable.

DISCUSSION CONCLUSIONS

We are claiming a qualitative theoretical mechanics re- The dynamic stability of a statically unstable walking
sult. That is, a system described with the classic equations ghechanism can be predicted with a model consisting of two
rigid-body mechanics has an exponentially stable limit-cyclerigid bodies connected by an ideal hinge and making inter-
solution in the neighborhood of a statically unstable configumittent ideal no-slip, no-bounce point contact with the
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ground. We have shown that there is no need to appeal twation schemes for integration and derivative generation. For
hinge-friction, hinge-play, distributed or contact deformationuse with actuated and passive gait problems, with implicit
(elastic or inelasti; or contact frictional slip in order to state-dependent phase switching points and discontinuities in
qualitatively predict the interesting behavior demonstratedhe state variables, the originmscop has been combined
by the physical model in Ref2]. with an object oriented modeling library that deals with these
The results further highlight the versatility of simple pas- situations in a uniform and complete way. Also added to
sive strategies for stabilization of coordination. The calculauscobp were stability analysis modules that compute the
tion also slightly expands the range of known rigid-body|inearized Poincarenap of a periodic solution and their ei-
phenomenology. genvalues, assembling information from all multiple shoot-
For videos and reprints about the Tinkeftognd related  ing intervals and taking care of the above mentioned implicit
machines, see www.tam.cornell.edwiina’hplab/pdw.html.  switching point dependencies. Stable solutions for the
Tinkertoy® model were found by varying model parameters
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sion time accurately using Henon’s methéhanging the
APPENDIX: NUMERICAL ANALYSIS independent variable near the collision tim&he impact
We carried out the numerical analysis in three differentiransition is a matrix multiplication. The fixed points of the
ways. result_ing return map were _found by numerical root find_ing.
The first stable solutiorwith |oya, =0.897) with foot The fixed point map Jacob_la_n was found by a central differ-
clearance was found using the approach developed b§"Ce perturbation of the initial state. The eigenvalue was
Mombauret al.[10] on the basis of the optimal control code feduced from 0.897 to 0.839 using a simulated annealing
MuscoD by Bock et al. [11] and Leinewebef12]. In the  ©OPtimization of the maximum eigenvalue modulus. For this
language of the disciplinejuscop has been written for gen- MATLAB solution we did extensive convergence tests on both
eral multiphase optimal control problems and is based on 1€ integration step size and the central difference step size.
multiple shooting state discretization. Multiple shooting ' N€S€ tests mdgafce a combined roundoff and truncation er-
splits up the original boundary value problem into a numbef©r f @bout=10""in the largest eigenvalue modulus for the
of initial value problems enforcing continuity conditions at Parameters given. This maximum eigenvalue estimate differs
the transitions from one interval to the next. At all multiple fromitshat generated byuscop with these parameters by 2
shooting pointsvuscob allows the user to impose a number x< 10 ) ) ) )
of equality and inequality constraints on the parameters and Finally, the equations of motion were derived indepen-
the dynamic variables being varied in the optimization. Fordently and simulated again mdependentl;gwmnAB giving
the Tinkerto)’ model described here, this permitted us toa_greement to th®IATLAB solution above 10° for the largest
ensure periodicity, foot clearance during the step, and to keeplgenvalue modulus. _ _
all state variables and parameters within reasonable ranges. FOr reference, the state of the system just after colli-
Sensitivities of the integration end values on each intervalSion of the left foot is, for the parameters given,
both to variations in initial values and to variations in modelq* =[ ¢, ¥, 05, Oy, b, ¥, 05, 05, ]=[0.098 68, —0.009 25,
parameters, are efficiently computed by means of internat-0.16016, 3.43583,—0.13221, —0.01991, 0.471 24,
numerical differentiatio(IND). The basic principle of IND —0.39256] with step periodr* =1.00711 where( )
is to use identical, but adaptive and error-controlled discreti=d( )/dr with 7 the dimensionless time.
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