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We discuss the dynamics of a piecewise holonomic mechanical system: a discrete sister to the classical non-

holonomically constrained Chaplygin sleigh. A slotted rigid body moves in the plane subject to a sequence of

pegs intermittently placed and sliding freely along the slot; motions are smooth and holonomic except at instants

of peg insertion. We derive a return map and analyze stability of constant-speed straight-line motions: they are

asymptotically stable if the mass center is in front of the center of the slot, and unstable if it lies behind the slot;

if it lies between center and rear of the slot, stability depends subtly on slot length and radius of gyration. As slot

length vanishes, the system inherits the eigenvalues of the Chaplygin sleigh while remaining piecewise holonomic.

We compare the dynamics of both systems, and observe that the discrete skate exhibits a richer range of behaviors,

including coexistence of stable forward and backward motions.

1. Introduction

Although conservative nonholonomic systems lack dissipation, their constraints can permit these

systems to enjoy asymptotically stable steady motions in certain cases. In particular, kinematic

couplings due to nonholonomic constraints arise that can stabilize steady motions. A well-known

example, and the subject of this paper, is the Chaplygin sleigh (or skate), in which the constraint

couples heading angle rate and velocity, allowing exponentially stable motions in the plane.

A related class of piecewise holonomic mechanical systems with intermittent contacts that are

smooth and holonomic everywhere except at instants of transition are briey discussed in Ru-

ina [17]. Examples of such devices are the uncontrolled, unpowered walking machines pioneered

by Tad McGeer [11, 12, 13, 7, 6] which exhibit smooth inverted pendulum-like motions interrupted

by dissipative joint and foot collisions with the ground as they walk stably and somewhat human-like

down shallow slopes. The model described in this paper was moreover a motivating example for the

planar legged insect locomotion models of Schmitt and Holmes [19]. Piecewise holonomic systems such

as these passive-dynamic walkers can be thought of as nonholonomically constrained in their overall

motion in the following sense: the dimension of the con�guration space is greater than the instanta-

neous dimension of the velocity space [17]. Such nonconservative, piecewise holonomic systems can

also exhibit asymptotically stable behavior.

Mathematics Subject Classi�cation
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Fig. 1. a) The Chaplygin sleigh and b) the sleigh's discrete holonomic sister system. A sequence of pegs �xed

to the plane slide frictionlessly in the slot at P . (Schematic from Ruina [17].)

The question of whether the stability of such systems is due solely to dissipation, solely to non-

holonomy, or to both was examined in Ruina [17] by studying a simple 2D example of a smooth

(conservative) nonholonomic system, the Chaplygin sleigh (Neimark and Fufaev [14]), and comparing

it to a discrete (dissipative) sister system in the limit as dissipation tends to zero while its piecewise

holonomic nature is maintained. The governing equations of the discrete system were found to reduce

to those of the smooth system, to �rst order in a characteristic length; thus, since the eigenvalues

for the smooth skate indicate exponential stability, those of the discrete system must do likewise.

Eigenvalues for the discrete system were not however calculated by Ruina [17], so direct stability

comparisons could not be made.

In Sections 3{4 of this paper we further study the discrete skate, comparing its behavior to

that of the smooth Chaplygin sleigh, the governing equations of which are reviewed in Section 2. In

the limit as the characteristic length goes to zero, the discrete system remains piecewise holonomic

while dissipation tends to zero; thus, asymptotic stability of the discrete system cannot be due to

dissipation, and depends only on the nonholonomic nature of its discrete holonomy [17]. (The elastic-

legged models of [19] are likewise discretely holonomic; although these models are controlled, the

energy of control may be made arbitrarily small.) The dynamics of the discrete skate is remarkably

rich, and we believe that this explicitly soluble example will further the analysis and understanding

of more complex piecewise holonomic problems.

2. The Chaplygin Sleigh: Smooth Skate Model

We summarize the analysis of the Chaplygin sleigh (see Figure 1(a)). A body has mass m with

center of mass G about which its polar moment of inertia is I. At point C, a distance ` from G, a

frictionless skate constrains the direction of motion, so that the velocity of C is vC = vê� and the

force acting on the body at C is F ên. Velocity may be positive or negative; i. e., the skate can reverse

direction. The angle � speci�es orientation in the inertial plane. Including rotation, the absolute

velocity of the mass center G is vG = vê� + ` _�ên.

The sleigh is nonholonomic in the following sense: three coordinates are needed to specify orien-

tation and position on the plane, yet its velocity space is de�ned by only two variables, velocity of the

contact point along the skate direction and angular speed. Although its con�guration space is three

dimensional, the skate has only two degrees of freedom at any instant.
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2.1. Governing Equations, Steady Solutions, and Stability

We derive the governing equations via linear and angular momentum balance. Subsequently, we

will discuss its behavior in terms of energy and angular momentum in order to make comparisons to

the discrete skate. But, to calculate the angular momentum of the skate as a function of arc length

with respect to a point on the ground coincident at each instant with a point on the skate blade, we

must solve its di�erential equations of motion. In addition, to �nd where on its path the skate may

change direction, we will need the velocity of point C as function of position.

Linear momentum balance and angular momentum balance about C 0, the non-accelerating point

in an inertial reference frame instantaneously coincident with point C on the sleigh, yield the following

system of nondimensionalized equations governing the evolution of V , the speed of point C, and 
 = _�,

the angular rate of the body:

_S = V ; _V = L
2 ; _� = 
 ; _
 = � L

L2 + 1
V 
 ; (2.1)

where

L = `
� ; S = s

� ; V = v
v0

; 
 = !
v0
� ; ! = d�

dt
; (_) =

d( )

d�
; � =

tv0
� ; (2.2)

and v0 is the initial speed of point C. The nondimensional arc length, S, along the path of the skate

contact point C is taken to be positive for forward and backward motions. Length measures have

been scaled with respect to the radius of gyration

� �
r

I
m : (2.3)

The nondimensionalization in Equation (2.2) prompts the following observation. The smooth and

discrete skates belong to a class of particle and rigid body systems that may interact with any combina-

tion of holonomic or nonholonomic constraints, friction (possibly anisotropic) proportional to normal

force, collisions with output velocity homogeneous of degree one in input velocity, and drag forces pro-

portional to velocity squared but without other forces acting on them (such as those due to gravity,

springs, pre-stresses, linear viscosity). Such systems are special in that they enjoy velocity scaling;

e. g., double the velocity as a function of position and the resulting solution is still legitimate [18].

From the viewpoint of non-canonical Hamiltonian systems, the Chaplygin sleigh can be seen as a

special case of a generalised Toda lattice [2].

The state vector is q = fS; V; �;
gT . There is a two-parameter family of steady solutions:

q
� = fV ��; V �; ��; 0gT , corresponding to straight-line motions. In energy-momentum space, these are

H�

=C = (1 + L2) 
2 = 0 and E� = 1
2
(V�)2 : (2.4)

Linearizing the governing equations at q� yields the eigenvalues �1�3 = 0 and �4 = � LV �

1 + L2
. The

�rst three correspond to a family of solutions parameterized by the velocity V � and heading ��; �4
indicates asymptotic stability for L > 0. However, for L < 0, the skate is unstable. Stability depends

on whether the mass center lies in front of or behind the contact point, and its degree, on how far in

either direction.

Equations (2.1) can be solved in closed form for V , �, and 
 as functions of arc length S and their

initial values (see Appendix A). Trajectories for arbitrary initial conditions in energy{momentum{arc

length phase space are curves with angular momentum exponentially growing (L < 0) or decaying

(L > 0) as functions of arc length, and lying in constant energy planes (see, for example, Figure 4

below).
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3. The Discrete Skate Model

Following Ruina [17], we de�ne a piecewise-holonomic sister system to the smooth skate: Fi-

gure 1(b). The slotted body slides frictionlessly over a sequence of pegs inserted in and retracted from

the plane. Motion begins with a peg at one end of the slot, which slides along the peg until it reaches

the other end, when an \external agent" instantaneously retracts it without collision and inserts a

new pin at the the starting end, where a collision with the slot's side may occur. If velocity changes

sign between collisions, the peg is retracted when it returns to the starting end and the new peg is

instead inserted at the other end. This insertion/retraction protocol is identical for forward and for

backward motions.

Two mechanical realizations for the external agency are proposed in Ruina [17]:

1. A frictionless chain on a loop on the body has bumps on its bottom at regular intervals; one

bump touches the ground at a time acting as a no-bounce, no-slip contact point without torsional

resistance. The rest of the mechanism is supported by frictionless contacts. At the instant one

bump leaves the plane, another drops down.

2. A massless, rigid, rimless wheel of large radius is attached to a body-�xed horizontal axle. A

supporting structure attached to the axle and making frictionless contact with the ground keeps

the wheel perpendicular to the plane. The rigid spokes make no-bounce, no-slip collisions without

torsional resistance thus acting as a sequence of \ball-and-socket joints." The large radius

simpli�es the mechanism by decoupling vertical from in-plane dynamics, but is not essential.

Such self-contained devices for peg retraction/insertion permit the discrete skate to be entirely pas-

sively stable, in appropriate parameter ranges, without requiring active control over peg placement.

As for the smooth skate, the mass center velocity is vG = vê�+ ` _�ên, the peg/body force is F ên,

and orientation is given by the rotation angle �. The slot of length � aligned with ê� slides without

friction, guided by a peg �xed at point iP . Each time a new peg appears at the front of the slot nearer

to G, a new point i+1P is associated with that location, leaving a trail of points on the plane as the

body progresses. The velocity v along the slot, may again be positive or negative.

The distance between G and the front of the slot is `0, which may be negative; i. e., the mass

center may lie before, within or behind the slot. The distance from the peg to the front of the slot

is d(t) and the peg's distance to point G is `(t) = `0 + d(t). For forward motions, sliding starts when

`(t) = `0. When the peg reaches the end of the slot, ` = `0 + �, it loses contact without an impulse,

and the newly-inserted peg may make a collision at the front of the slot. If the skate reverses direction

between collisions, the peg starts and ends at `(t) = `0. Thereafter, the skate goes backwards and

the peg starts at `(t) = `0 + � and �nishes at `(t) = `0, and so on. In general, the skate can change

direction any number of times.

This system is piecewise holonomic between peg insertion/retractions; the dimensions of con�gu-

ration space (d(t); �(t)) and of velocity space (v(t); _�(t)) are both two. It can however be viewed as

nonholonomically constrained in overall motion: four coordinates are required to specify its position

in the plane at any instant (d(t) and �(t) plus peg position), while the dimension of the velocity space

remains two.

As for the smooth skate, we derive governing equations via linear and angular momentum balance.

We do this primarily to �nd where along its path the skate may change direction. Then, since energy

and angular momentum are conserved between peg collisions, it is more natural and convenient to

write the return map that describes the dynamics in terms of those quantities. The equations for

evolution of V , the velocity of the skate along the slot, and 
, the angular rate of the body, between

collisions, may be written in nondimensional form as:

_D = V ; _V = (L0 +D)
2 ; _� = 
 ; _
 = � 2(L0 +D)

1 + (L0 +D)2
V 
 ; (3.1)
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where we have nondimensionalized as for the smooth skate, with � =

q
I
m :

L0 =
`0
� ; D = d

� ; V = v
v0

; 
 = !
v0
� ; ! = d�

dt
; � =

tv0
� ; and (_) =

d( )

d�
: (3.2)

We also de�ne a nondimensional slot length, � = �
� . The state vector is q = fD;V; �;
gT . Equa-

tions (3.1) hold between each peg insertion and removal; they may be integrated in closed form: see

Appendix B.1 for details. Moreover, as for the smooth skate, angular momentum about the peg and

energy are conserved between collisions:

E(D) = 1
2

h
V 2 +

�
1 + (L0 +D)2

�

2
i
= E0 = const ; (3.3)

H=P (D) =
h
1 + (L0 +D)2

i

 = H0

=P = const : (3.4)

3.1. Poincar�e Map, Fixed Points and Stability

To study the behavior of this discrete system, we use a Poincar�e section �. We sample the phase

space at collisions when the distance of the peg along the slot is d = 0 for forward motions and d = �

for backward motion, and de�ne a map f on � that takes the system's state just after a collision to

just after the next.

This approach has also been used in other work involving the dynamics of systems with discon-

tinuous vector �elds, including: hopping robots (B�uhler and Koditschek, 1990 [3]); bouncing balls

(Guckenheimer and Holmes, 1983 [8]); elasto-plastic oscillators (Pratap, et. al., 1992 [15, 16]); impact

oscillators (Shaw and Holmes, 1983 [20], Shaw and Rand, 1989 [21]); balance wheels and pendula in

clocks (Andronov, et al. [1]); and walking (McGeer, 1991 [13], Hurmuzlu, 1993 [10, 9], Coleman and

Ruina, 1998 [5, 6], Garcia, et al., 1998 [7]).

The Poincar�e return map takes the form:

i+1
q
+ = f(iq+) or i

q
+

fz }| {
p�! i+1

q
� h�! i+1

q
+: (3.5)

Here the pre-superscript i denotes collision number, and instants directly before and after collision i

are denoted by post-superscripts (�) and (+); thus i
q
+ denotes the state following collision i. f is a

composition of two maps: f = h � p, where p, obtained by integrating the equations of motion (3.1),

describes the motion following collision i to just before collision i+ 1, and h governs the jump in the

state vector incurred at collision i+ 1.

To compute f , we must therefore augment solutions of (3.1) by a collision rule. Since there

are no forces along the slot, the collision impulse acts only in the ên direction at the new point

P . Let iP denote the pre-collision peg location and i+1P the post-collision peg location. Then,

neglecting any non-impulsive reactions, angular momentum is conserved about i+1P , yielding the

following nondimensionalized jump conditions for peg position, velocity along the slot, angle, and

angular rate (depending on whether velocity prior to collision is positive or negative):

i+1D+ = �� i+1D� ;
i+1V + = i+1V � ;
i+1�+ = i+1�� ;

i+1
+ =
1 + L0(L0 +�)

1 + (L0 + (�� i+1D�))2
i+1
� ;

(3.6)
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where i+1D� = � for i+1V � > 0 and i+1D� = 0 for i+1V � < 0. In terms of energy and angular

momentum, the collision rule implies:

i+1D+ = �� i+1D� ;

i+1E+ = i+1E� � 1
2

�2�
1 + (L0 +

i+1D�)2
�2 �

1 + (L0 + (�� i+1D�)2
� �i+1H�

=P

�2
;

i+1�+ = i+1�� ;

i+1H+
=P

=
1 + L0(L0 +�)

1 + (L0 +
i+1D�)2

i+1H�

=P
;

(3.7)

with state vector q = fD;E; �;H=P gT . Energy and angular momentum conservation between collisions

are stated as, respectively, i+1E� = iE+ and i+1H�

P = iH+
P . Composing (3.7) with explicit solutions

of (3.1) given in Appendix B.1 (B.1{B.2), we obtain the return map, which is given in (B.3) and (B.4) of

Appendix B.2 for cases in which velocity reversals respectively do not and do occur between collisions.

3.1.1. Periodic Motions

For periodic motions of the discrete skate, we must �nd n-periodic points of the return map,

q
� = f

n(q�). Periodic motions require no energy loss at collisions since there are no energy storage or

input mechanisms ( e. g., springs or gravity) in the system to replenish energy losses.

For H�

=P = 0, we get period-1 motions: constant-speed straight-line solutions (E� = 1
2
(V �)2 =

E0 � const) where, as for the smooth skate, the energy is entirely translational.

For zero moment of inertia (� = 0) and a point mass located behind the front of the slot along the

fore-aft axis of symmetry, period-2 motions can exist for any E� 6= 0 and H�

=P
6= 0. This case of zero

moment of inertia is non-physical in the sense that we consider the motions of a massless structure.

Nevertheless, we include it for curiosity's sake: see Appendix B.3 and Figure 10.

In addition to the �xed points of the return map, an equilibrium solution exists without collisions

if the mass center lies within the slot (�� < L0 < 0): the skate can spin about the peg with constant

angular rate when mass center and peg coincide. This solution has _Veq = 0, Veq = 0, and 
eq = const,

implying that Deq = �L0. For Deq = �L0 and V (Deq) = 0, Equation (B.1) and Equations (3.3){(3.4)

give that the post-collision energy/momentum ratio necessary to achieve this spinning solution is

2 iE+

(iH+
=P
)2

= 1 : (3.8)

3.1.2. Stability of Periodic Motions

We carry out a linearized stability analysis. Stability of the �xed point q� is determined by

the eigenvalues �j of the Jacobian of the return map evaluated at q�: J � Df(q�). Fixed points

are asymptotically stable if all j�j j < 1. Due to conserved quantities and rotation and translation

invariance, some of the eigenvalues are necessarily unity in our case. We consequently adopt the

de�nition of stability used by Coleman, et al. [4]:

The �xed point q� 2 � is stable if, for any � > 0; there exists � > 0 such that whenever

jq0 � q
�j < �, jqn � q

�j < � for all positive n. It is asymptotically stable if there exists

� > 0 such that whenever jq0 � q
�j < �, jqn � q

�j < � for all positive n and lim
n!1

qn = y

exists. Note that we do not insist that y = q
�, only that jy � q

�j < �; therefore, our use

of the term asymptotic stability is less restrictive than usual. Clearly, if y exists, it must

be a �xed point. Thus, we call a periodic motion asymptotically stable if, when slightly
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Fig. 2. (a) The analytically computed eigenvalue �4 of the Jacobian evaluated at the limit cycle �xed point for

V � > 0 is shown for
L0
�

from -4 to 2 and for several values of

�
1
�

�2

between 0 and 1. (b) The dependence of

stability on � and L0 for V � > 0 and V � < 0. The gray region indicates stability for V � > 0 and the hashed
region for V � < 0; steady motions are unstable for parameters outside those regions. Note the region in which
both the V � > 0 and V � < 0 solutions are simultaneously stable.

disturbed from it, the state asymptotically converges to some `nearby' periodic motion.

This is the strongest type of stability possible when there is a family of periodic motions,

since the perturbed point q0 could just as well be a perturbation of y as of q�.

Stability of Constant-Speed Straight-Line (Period-1) Motions

Since we have a two-parameter family of period-1 �xed points, two eigenvalues will always be

exactly equal to one. If all other eigenvalues are smaller than one in magnitude, then the �xed point

is asymptotically stable in the weak sense described above. We �nd the Jacobian by linearising f

of (B.3) at the period-1 �xed points q� = f0; E�; ��; 0gT :

J � Df(q�) =

0
BBBBBBB@

0 0 0 0

0 1 0 0

0
@f3

@E
1

@f3

@H=P

0 0 0
1 + L0(L0 +�)

1 + (L0 + (�� D+))2

1
CCCCCCCA
; (3.9)

where D+ = 0 for V � > 0 and D+ = � for V � < 0. Although we do not have an explicit expression

for the � component f3, we can still �nd all eigenvalues. The characteristic equation yields:

�1 = 0 ; �2;3 = 1 ;

�4 =
1 + L0(L0 +�)

1 + (L0 +�)2
for V � > 0 ; �4 =

1 + L0(L0 +�)

1 + L2
0

for V � < 0 :
(3.10)

These have the following interpretations: (1) �1 = 0 reects the fact that the initially perturbed

point q0 might lie o� the Poincar�e section �, but the next iterate q1 lies exactly on �; (2) �2;3 = 1

since our system has a two-parameter family of �xed points; and (3) j�4j determines stability type.

This latter we call the stability eigenvalue.
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Period-1 Stability Criteria

The expressions for �4 in Equation (3.10) determine stability criteria in terms of L0 and �. We

consider both V � > 0 and V � < 0. (In fact the system has a \reection symmetry" about the mass

center: taking L0 to �(L0+�) and V to �V , so we could restrict to V � > 0 without loss of generality.)

Constant-speed V � > 0 straight-line motions are asymptotically stable for:

L0

�
> �1 and

�
1
�

�2

> �1
2

�
1 + 2

L0

�

��
1 +

L0

�

�
> 0 : (3.11)

Constant-speed V � < 0 straight-line motions are asymptotically stable for:

L0

�
< 0 and

�
1

�

�2

> �1

2

L0

�

�
1 + 2

L0

�

�
> 0 : (3.12)

Figure 2(a) shows the dependence of �4 on the ratios of mass center location to slot length (
L0
�
) and of

radius of gyration to slot length (
�

�
= 1

�
); to avoid clutter in the plot, we only show the V � > 0 case.

Figure 2(b) shows stability regions in parameter space for both V � > 0 and V � < 0. Note that, if the

mass center lies within the slot (�� < L0 < 0), open sets of parameters exist for which (3.11{3.12)

are both satis�ed and forward and backward motions are simultaneously asymptotically stable.

For the special case of zero moment of inertia (� = 0), as
L0
�

! �1 from left or right, �4

approaches 1 or �1, respectively, and the eigenvalues indicate that period-1 motions are asymptot-

ically stable for
L0

�
> �1

2
. But, we have the more restrictive condition that the existence of period-1

motions requires L0 > 0 (so that the skate does not change direction between collisions). Here is an

example of a system with no dissipation but exponential stability: at each collision, a gain in energy

of translation along the slot is exactly balanced by a loss in energy of rotation about the peg, yet

angular momentum eventually decreases to zero!

Period-2 Stability for � = I = 0

The period-2 motions are always just neutrally stable; i. e., the eigenvalues of J2 evaluated at

the �xed point are (�1 = 0, �2;3;4 = 1).

Stability of the Spinning Solution

Linearising the system of governing equations (3.1), we �nd that the spinning solution qeq =

f�L0; 0; �0 +
eq�;
eqgT is always of unstable saddle type, having eigenvalues 0 and �
eq.

3.1.3. Basins of Attraction

For I 6= 0 almost all initial conditions are attracted to straight-line constant-speed motions: 
 = 0

with either (1) V � > 0 or (2) V � < 0. For any slot length, �, and center-of-mass position, L0, and

given any initial energy/angular momentum ratio
�

2 0E+

(0H+

=P )
2

�
, Equations (B.5{B.8) in Appendix B.2.1

allow explicit computation of (1) velocity reversal positions in the slot and the sequence(s) of collision

numbers after which reversals occur, and (2) the collision number after which no further reversals

occur and the skate has settled down to travel in one direction or the other. We have not calculated

a general expression for that sequence here though it can be done in principle; it is straightforward

for given parameters and initial conditions. In particular, Equation (B.5) allows one to specify the
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Fig. 3. Basins of attraction where V � > 0 and V � < 0 are simultaneously stable, for the special case
L0
�

= �1
2
.

Here, L0 = �
1
2
, � = 1, and iH+

=P = 1 (i
+ = 4
5
). The alternating open intervals attracted to either positive

or negative solutions are shown on the horizontal axis: gray for V � > 0 and black for V � < 0. Vertical dashed

lines indicate initial conditions attracted to spinning states. Only iV + > 0 is shown, since the plot is symmetric

about iV + = 0. No reversals or spinning solutions occur for 2 i+1E+

(i+1H+

=P )
2
> 1 (iV + > 1=

p
5, here).

energy/angular momentum ratio range that must be entered for a velocity reversal to be possible.

Thus, for L0 > 0, reversals can only occur if

1

1 + (L0 +�)2
<

2 iE+

(iH+
=P
)2

<
1

1 + L2
0

; (3.13)

and for L0 < ��:

1

1 + L2
0

<
2 iE+

(iH+
=P
)2

<
1

1 + (L0 +�)2
: (3.14)

However, the energy equation (3.3) supplies lower bounds for
�

20E+

(0H+

=P )
2

�
consistent with real velocities:

2 iE+

(iH+
=P
)2

>
1

1 + L2
0

for iV + > 0; 2 iE+

(iH+
=P
)2

>
1

1 + (L0 +�)2
for iV + < 0 ; (3.15)

from this we conclude, for example, that if L0 > 0 and V > 0 initially, no velocity reversal occurs.

If L0 > 0 and V < 0 initially, angular momentum increases on each collision and a single velocity
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reversal occurs after the n'th collision drops
�

2 nE+

(nH+

=P )
2

�
into the range (3.13). Following this V remains

positive and angular momentum decays to zero. Examples appear in Figures 4 and 5 below (the latter

is actually for L0 < �� < 0 and V > 0 initially, but the symmetry noted in Section 3.1.2 implies that

the behavior is similar if L0 > 0 and V < 0 initially). For �� < L0 < 0 and V > 0 or V < 0, more

complex behavior may occur, involving multiple reversals, and Equation (B.6) must be used with care,

since it applies only to cases in which, after
�

2 nE+

(nH+

=P
)2

�
drops into the appropriate range, there is only

one possible reversal point Dc 2 (0;�). See Appendix B.2.1.

The two straight-line solutions V � > 0 and V � < 0 may be simultaneously stable, as noted in

Section 3.1.2; the case shown in Figure 7 below provides an example. Given parameters for which

both (3.11) and (3.12) hold, the basins of attraction for the two solutions are as follows:

1. For 2 iE+

(iH+

=P )
2
> 1, no reversals occur and all initial states with iV + > 0 are attracted to solutions

V � > 0 and, likewise, all iV + < 0 are attracted to solutions V � < 0.

2. For 0 < 2 iE+

(iH+

=P )
2
< 1, initial states iV + of both signs can be attracted to either V � > 0 or

V � < 0. For each iV +, the initial states fall into an alternating in�nite sequence of open

intervals in energy/momentum ratio: after one or more reversals, initial states in a given interval

are attracted to, say, V � > 0 solutions, those in the adjacent intervals are attracted to V � < 0,

etc. The boundaries of the intervals correspond to solutions that, after one or more collisions

and reversals, are attracted to the unstable spinning equilibrium; that is, each initial state in the

sequence eventually maps to one in which 2 iE+

(iH+

=P
)2
� 1, after which no further collisions occur,

the mass center converges to the peg, and the skate spins inde�nitely about it. As 2 iE+

(iH+

=P )
2
! 0,

the width of these intervals decreases. We have not calculated the sequence in general although

it can be done from Equations (B.3) and (B.4) for given parameters and initial conditions (the

di�culty, as above, is that multiple reversals may occur).

We illustrate this in Figure 3 for the symmetric case of mass center at midpoint of the slot�
L0
�

= �1
2

�
, for which calculations simplify and the sequence of energy/momentum ratios leading

to spinning can easily be found via a return map for energy/angular momentum ratio, derived from

(B.3{B.4). Details are given in Section B.2.2. Similar results hold for di�erent initial angular velocities.

Two Dissipative Systems with Analogous Behavior

The dynamical behavior of the discrete skate is analogous to two other dissipative systems [18]:

(I) the classical driven pendulum with damping proportional to speed and constant applied torque [1]

and (II) a rigid rimless spoked wheel con�ned to rolling up- or downhill in a vertical plane where

energy is dissipated due to the spokes making perfectly plastic collisions with the ground [4, 5].

Depending on parameters, both these systems can possess distinct, coexisting, asymptotically stable

states whose basins of attraction are separated by the (generalised) stable manifolds of unstable

saddle-type solutions.

For the pendulum, the parameter is the torque/damping ratio and a saddle separatrix divides

the basins of an `overturning' solution (in which the work done by torque per revolution is balanced

by damping), and a stable rest state. For the wheel (�xing inertia and spoke number), the parameter

is the slope on which it rolls, and states leading to the wheel balancing on one spoke separate those
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leading to downhill rolling with constant angular rate at each collision (gravity supplying the energy

lost in collisions), from those leading to rocking back and forth on two spokes and eventually coming

to rest on them after an in�nite number of collisions in �nite time.

4. Comparing Smooth and Discrete Skates

To compare the stability of the discrete to the smooth skate, we examine: (1) their stability

eigenvalues in the limit as the slot length goes to zero and (2) the stability and instability modes

available to each. First, we show typical phase space trajectories in arc length, energy, angular

momentum coordinates for both systems in Figure 4 (centers of mass in front of the contact point

and slot) and Figure 5 (centers of mass behind the contact point and slot). In both cases, the skates

start with positive initial velocity V0 > 0. In Figure 5, both skates reverse direction as their angular

momenta pass through maxima.

4.1. Stability Eigenvalues

To compare the stability of the smooth and discrete systems, we expand the natural log of the

discrete stability eigenvalue (�4) in a Taylor series, divide the result by the characteristic time ��

between collisions in steady motion, and take the limit � ! 0 (in nondimensional terms, �� = �
V �

).

We obtain:

�4 =
V �

�
log

 
1 + L0(L0 +�)

1 + (L0 +�)2

!
= V �

2
4� L0

1 + L2
0

+ 1
2

L2
0 � 2�

1 + L2
0

�2�� 1
3

L0

�
L2
0 � 2

�
�
1 + L2

0

�3 �2 +O(�3)

3
5 :

(4.1)

As �! 0, �4 ! � L0V
�

1 + L20
, in agreement with �4 as calculated for the smooth skate in Section 2.1. This

con�rms the �nding of Ruina [17] that the discrete skate inherits the asymptotic stability eigenvalues

of the smooth skate even as dissipation goes to zero.

4.2. Stability and Instability Modes

While only one stability and one instability mode are available to the smooth skate, two stability

and two instability modes are possible for the discrete skate. The discrete skate has a stability and

instability mode like those of the smooth skate plus an additional stable and unstable mode. We show

numerically generated plots of each mode in Figures 6{9. They may be summarized as follows:

� Stability:

1. For L > 0 in the smooth skate (center of mass in front of the skate contact) and for
L0

�
> �1

2
in the discrete skate (center of mass in front of the center of the slot), a small

angular velocity disturbance decays exponentially to zero and each system heads smoothly

o� in a slightly di�erent heading (on the order of the disturbance) at a speed higher by a

tiny amount (several orders of magnitude smaller than the disturbance.) See Figure 6.

2. For �1 <
L0

�
< �1

2
and

�
1
�

�2

> �1
2

�
1 + 2

L0

�

��
1 +

L0

�

�
> 0 in the discrete skate

(mass center between the center and tail end of the slot), the system \wobbles" with

exponentially decaying oscillations as it approaches a slightly di�erent heading and slightly

lower speed. This motion is not available to the smooth skate. See Figure 7.
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Fig. 4. For the smooth skate, the center of mass is in front of the skate contact point (L = 1) and for the

discrete skate, in front of the slot (L0 = 1). The slot length is � = 1
3
. The plot shows very similar trajectories

for the smooth and discrete skates even for a relatively large ratio of slot length to center of mass position.

Energy is normalized with respect to the \�nal" energy, Ef (see Appendix B), so that all smooth skates start

and end with unit energy and all discrete skates end with unit energy. Since energy is conserved globally for the

smooth skate, its orbits lie on a constant energy plane. Both the smooth and discrete skates are given the same

initial angular momentum and start with positive initial velocity V0 > 0. The projections of the discrete skate

trajectory are shown in white on each coordinate plane. The discrete skate trajectory is shown for 20 collisions.

The discontinuities in the graphs of angular rates are due to the collisions. Note that angular momentum and

energy are conserved between collisions for the discrete skate.

� Instability:

1. For L < 0 in the smooth skate (center of mass behind the skate contact point) and for
L0

�
< �1 in the discrete skate (center of mass behind the tail end of slot), a small positive

angular velocity disturbance at �rst grows exponentially. But, as the heading approaches

near 90�, the smooth skate suddenly reverses direction (change of sign in velocity along the

slot), continues to rotate (asymptotically approaching a �nal heading near 180� while the

velocity along the slot asymptotically approaches near to the negative of its initial value and

angular speed decays exponentially to zero. Like an unstable caster wheel, the smooth skate

follows a cusp-like path on the plane, eventually reversing velocity and heading backwards

close to its initial direction. See Figure 8.

For the discrete skate, again, a small positive angular velocity disturbance at �rst grows

exponentially. However, it suddenly reverses direction along the slot in its motion but at

some positive angle that depends on �. The closer the slot length is to zero, the more the

discrete skate behaves like the smooth skate.

The �nal steady motions for the smooth or discrete skate, though not near the initial states,

are again stable straight line motions.
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Fig. 5. For the smooth skate, the center of mass is behind the skate contact point (L = �1) and for the discrete

skate, behind its slot (L0 = �1). The slot length is � = 1
3
. Again the plot shows similar trajectories for the

smooth and discrete skates, even for a relatively large ratio of slot length to position of center of mass. Both the

smooth and discrete skates are given the same initial angular momentum and start with positive initial velocity

V0 > 0. The projections of the discrete skate trajectory are shown on each coordinate plane. The discrete skate

trajectory is shown for 22 collisions.

2. For �1 <
L0

�
< �1

2
and

�
1
�

�2

< �1
2

�
1 + 2

L0

�

��
1 +

L0

�

�
(center of mass between

the center and tail end of the slot), the skate at �rst wobbles with exponentially growing

oscillations about its initial direction, suddenly reverses direction at some positive or neg-

ative angle, and then asymptotically wobbles to some �nal positive or negative angle. The

transitional and �nal angles are highly sensitive to the parameters. In addition, the skate

speeds and slows between each collision: a \lurching" type of motion. See Figure 9. This

type of behavior is not available to the smooth skate.

Finally, Figure 10 illustrates the neutrally stable period-2 motions obtained for � = I = 0, as

noted at the end of Section 3.1.2.

5. Conclusions

In this paper, we have extended the analysis of the discrete Chaplygin sleigh or skate presented in

Ruina [17]. We have developed explicit Poincar�e mappings describing motions of the system in terms

of energy and angular momentum, and used these to calculate the discrete skate's linear stability

eigenvalue and hence provide explicit stability boundaries in parameter space. We show that the

stability eigenvalue approaches that of the smooth skate in the limit as the slot length goes to zero.

Furthermore, the discrete skate has somewhat broader stability ranges than its smooth sister, in terms

of mass center position, and it exhibits a greater variety of behaviors, including growing and decaying
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Fig. 6. For the smooth skate, the center of mass is in front of the skate contact point (L = 1) and for the

discrete skate, in front of its slot (L0 = 1). The slot length is � = 1
3
. In this and subsequent �gures, the solid

lines are for the discrete skate and the dashed lines are for the smooth skate; also, H=C is the angular momentum

about the smooth skate contact point and H=P is the angular momentum about a peg for the discrete skate.

The plots show similar stable trajectories for the smooth and discrete skates. In this and subsequent �gures, (a)

shows the paths of the smooth skate contact point and the front of the discrete skate slot. The discrete skate

plots are shown for 20 collisions. The discontinuities in the plots for the discrete skate are due to the collisions.

Note that in (e) and (f) of this and subsequent �gures, energy and angular momentum are conserved between

collisions.

oscillations in angular momentum and velocity, orbits with multiple reversals, and coexistence of stable

straight-line motions in both forward and reverse directions.
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Fig. 7. The center of mass is between the rear end and center of the slot

�
L0
�

= �2
3

�
and

�
1
�

�2

=

�
�

�

�2

=

0:08. The plots show stable behavior for the discrete skate not available to the smooth skate { the system

\wobbles" with exponentially decaying oscillations as it approaches a slightly di�erent heading and slightly

lower speed. In Figure (a) and subsequent �gures, the peg locations are marked with plus (\+") signs. The

plots are shown for 15 collisions.

A. Smooth Skate Closed Form Solutions

To �nd closed form solutions for state variables as a function of arc length S, we must take into

account that, when the skate goes unstable for L < 0, the velocity of point C changes sign at a

particular point along the skate path. Sc is the arc length at the change in sign of velocity for L < 0:

Sc = S0 � 1 + L2

2L
ln

 
1 +

V 2
0


2
0(1 + L2)

!
: (A.1)

So, for S > Sc, V < 0. The closed form solutions may now be written:

V (S) = K

vuutV 2
0 +
2

0 (1 + L2))

 
1� e

�K
2L

1+L2
(S�S0)

!
;

�(S) = �0 +K

p
1 + L2

L

2
64sin�1

0
B@ 1q

V 2
0


2
0(1+L

2)
+ 1

1
CA� sin�1

0
B@e

�K
L

1+L2
(S�S0)q

V
2
0


2
0
(1+L2)

+ 1

1
CA
3
75 ; and


(S) = 
0 e
�K

L

1+L2
(S�S0)

;

(A.2)
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Fig. 8. For the smooth skate, the center of mass is behind the skate contact point (L = �
p
2) and for the

discrete skate, behind the tail end of its slot (L0 = �
p
2). The slot length is � =

p
2
2
. The plots show similar

initially unstable orbits for the smooth and discrete skates. The discrete skate plots are shown for 18 collisions.

where for V0 > 0, K is de�ned as

K =

�
1 S > S0 and L > 0 or S < Sc and L < 0 ;

�1 S > Sc and L < 0 :
: (A.3)

Energy{Momentum Formulation

Recasting the problem in terms of energy and momentum as functions of arc length S, the state

of the system can be characterized by the nondimensional quantities:

E(S) = 1
2

�
V 2(S) + (1 + L2)
2(S)

�
= E0 = const ;

�(S) = �0 +K

p
1 + L2

L

2
666664sin

�1

0
@ 1q

2
E0(1 + L2)

(H0

=C)
2

1
A� sin�1

0
BBBBB@
e
�K

L

1+L2
(S�S0)s

2
E0(1 + L2)

(H0

=C)
2

1
CCCCCA

3
777775 ; and

H=C(S) = (1 + L2)
(S) = H0
=C e

�K
L

1+L2
(S�S0)

:

(A.4)
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Fig. 9. The center of mass is between the rear end and center of the slot

�
L0
�

= �0:55

�
and

�
1
�

�2

=

�
�

�

�2

=

0:001. The plots show unstable behavior for the discrete skate not available to the smooth skate | the system

\wobbles" with exponentially increasing oscillations until it reverses direction, eventually approaching some

�nal angle and a speed along the slot nearly equal to its initial value. The plots are shown for 25 collisions.

The state vector is now q = fS;E; �;H=CgT . Equilibrium straight-line solutions are

H�

=C = 0 and E� = 1
2
(V �)2; (A.5)

where the energy is all in translation. In terms of energy and momentum, the change in sign of the

velocity of the contact point occurs at:

Sc = S0 � 1 + L2

2L
ln

 
2
E0(1 + L2)

(H0
=C
)2

!
: (A.6)

B. Discrete Skate Formulation

We summarize here solution of the governing equations of motion, derivation of the return map

and calculation of �xed points and their stability.

REGULAR AND CHAOTIC DYNAMICS V. 4, é 2, 1999 17



� M. J. COLEMAN, P.HOLMES

�������
��	
��
�������
�������
���� !"
#$%&'()

Fig. 10. A point mass is located between the rear end and center of the slot

�
L0
�

= �2
3

�
and the moment of

inertia of the skate is zero (� = 0). The plots show period-2 behavior for the discrete skate not available to the

smooth skate. Note in (a) that the center of mass travels along a straight line; its position is shown just after

each collision. Note in (e) that no energy is lost at collisions.

B.1. Solution of Equations of Motion between Collisions

Closed form solutions of (3.1) for V and 
 can be found as functions of D (the position of the

peg along the slot) between collisions:

[V (D)]2 = V 2
0 +

(D �D0)(2L0 +D +D0)(1 + (L0 +D0)
2)

1 + (L0 +D)2

2
0 and


(D) = 
0
1 + (L0 +D0)

2

1 + (L0 +D)2
;

(B.1)

the latter is just conservation of angular momentum about the peg. Using this, conservation of energy,

and observing from the governing equations (3.1) that d�
dD

= 

V
, the angle � between collisions can be

expressed as an elliptic integral

�(D) = �0 +

DZ
D0

dD0vuut 1 + (L0 +D0)2

1 + (L0 +D0)
2

"�
V0

0

�2
1 + (L0 +D0)2

1 + (L0 +D0)
2
+ (D0 �D0)(2L0 +D0 +D0)

# ; (B.2)

where the prime (0) indicates a dummy integration variable.
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B.2. Return map

The return map is derived by composition of the collision rule (3.7) in terms of energy and

angular momentum, with the solutions (B.1-B.2) of the governing equations between collisions, and

using conservation of energy and angular momentum about the peg between collisions. There are two

cases: (1) the sign of velocity along the slot just after a collision is the same as its sign just before

the next collisions and (2) the velocity along the slot changes sign in between collisions.

1. sgn[(i+1V �)(iV +)] = 1

i+1D+ =i D+ ;

i+1E+ = iE+ + iC+
1

�
iH+

=P

�2
;

i+1�+ = i�+ ;

+

�� iD+Z
iD+

dD0vuut(1 + (L0 +D0)2)

"
2
iE+

�
1 + (L0 +D0)2

�
(iH+

=P )
2

� 1

# � i�+ + f3(
iE+;iH+

=P
) ;

i+1H+
=P

= iC+
2

iH+
=P

;

iC+
1 = �1

2
�2�

1 + (L0 + (�� iD+))2
�2
[1 + (L0 +

iD+)2]
; and

iC+
2 =

1 + L0(L0 +�)

1 + (L0 + (�� iD+))2
:

(B.3)

2. sgn[(i+1V �)(iV +)] = �1
i+1D+ = �� iD+ ;

i+1E+ = iE+ + iC+
1

�
iH+

=P

�2
;

i+1�+ = i�+ + 2

DcZ
iD+

dD0vuut(1 + (L0 +D0)2)

"
2
iE+

�
1 + (L0 +D0)2

�
(iH+

=P )
2

� 1

# ;

i+1H+
=P

= iC+
2

iH+
=P

;

iC+
1 = �1

2
�2�

1 + (L0 +
iD+)2

�2
[1 + (L0 + (�� iD+))2]

; and

iC+
2 =

1 + L0(L0 +�)

1 + (L0 +
iD+)2

:

(B.4)

Here iD+ = 0 for iV + > 0 and iD+ = � for iV + < 0. Note the changes in iC+
1 and iC+

2 between

cases (1){(2).
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B.2.1. Velocity Reversals

The point(s)Dc along the slot where V (Dc) = 0 and the skate reverses direction between collisions

may be found from the conservation laws (3.3{3.4) as the relevant solution(s) Dc 2 (0;�) of:

Dc = �L0 �

vuuut
2
4(iH+

=P
)2

2 iE+
� 1

3
5: (B.5)

Clearly, for L0 > 0 (resp. L0 < ��), only the positive (resp. negative) solutions are relevant, but both

solutions may lie within the slot for �� < L0 < 0. However, relevant solutions occur only when the

\energy/angular momentum" ratio

 
2 iE+

(iH+

=P )
2

!
falls into an appropriate range. Given the ratio at step

i, one can compute the number of additional iterates necessary for this to occur from the conservation

laws and the mapping rule (B.3), by seeking a sign change in the quantity V (D), thus obtaining:

n =

66666666664

log

2
41 + (1� (iC+

2 )
2)

iC+
3

 
2 iE+

(iH+
=P
)2

�
1 + (L0 +

iD+)2
�
� 1

!3
5

log
�
(iC+

2 )
2
�

77777777775
; (B.6)

where

iC+
3 =

sgn[iV +]�(2L0 +�)

1 + (L0 + (�� iD+))2
: (B.7)

(The \bxc" notation has the usual meaning of the greatest integer less than or equal to a number x.)

Note that Equation (B.6) applies only in cases in which there is at most a single turning point

Dc 2 (0;�): i. e., to all L0 > 0 and L0 < ��, but only to some subcases of �� < L0 < 0.

Speci�cally, if

min

(
1

1 + L2
0

;
1

1 + (L0 +�)2

)
<

2 iE+

(iH+
=P
)2

< 1 ; (B.8)

then (B.5) has two relevant solutions, reversals can occur for both iV + > 0 and iV + < 0, and (B.6)

does not predict n. One can compute the number of steps needed to achieve (B.8) from given initial

data, but we have not been able to �nd a \simple" expression analogous to (B.6).

B.2.2. Energy Analysis

Let iE+ be the energy of the skate after which no more reversals can occur. Then, its total energy

n collisions after the i'th is given by the geometric series:

i+nE+ = iE+ + iC+
1 (

iH+
=P
)2

nX
j=0

(iC+
2 )

2j

= iE+ + iC+
1

1� (iC+
2 )

2n

1� (iC+
2 )

2
(iH+

=P
)2 (summing the series for �nite n):

(B.9)
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We �nd the �nal energy in terms of that after the ith collision as n!1 to be:

Ef =
iE+ + lim

n!1

iC+
1

1� (iC+
2 )

2n

1� (iC+
2 )

2
(iH+

=P
)2

= iE+ +
iC+

1

1� (iC+
2 )

2
(iH+

=P
)2 ;

(B.10)

where convergence requires that jiC+
2 j < 1 or

� L0

�
+ 2

L0

�

�
1�

iD+

�

�
+

�
1�

iD+

�

�2

> 0 and

�
1
�

�2

>� L0

�

�
L0

�
+ 1

2
+

�
1�

iD+

�

��
� 1

2

�
1�

iD+

�

�2

> 0 :

(B.11)

These conditions are exactly those for asymptotic stability of period-1 �xed points (Equation(3.11)).

We use Equation (B.10) to generate Figures 4{5.

We can rewrite Equation (B.10) in terms of initial and �nal velocities and angular rate to get, for

Vf > 0:

V 2
f = (iV +)2 + (1 + L2

0)

"
1� �

(L0 +�) (2 + (L0 +�)(2L0 +�))

#
(i
+)2 : (B.12)

A similar expression can be obtained for Vf < 0.

Interestingly, for the special \symmetric" case of mass center located at the center of the slot

(
L0
�

= �1
2
), Equation (B.12) shows that the velocity along the slot after many collisions returns

to its initial value, Vf = V0 (the skate has no sense of whether it is going forwards or backwards).

Also, for this case the sequence of energy/momentum ratios leading to the unstable spin state can

easily be found via a return map for energy/angular momentum ratio, derived from (B.3{B.4), cf.

Equation (B.9). From this we �nd a monotone decreasing sequence of energy/momentum ratios for

which the nth element of the sequence arrives at the state necessary to approach the spinning solution

(following n collisions). This sequence may be rewritten in terms of velocity along the slot and angular

rate as

(nV +)2

(n
+)2
= (1 + L2

0)
2

 
C2n
2 � 2C1

1� C2n
2

1� C2
2

!
� (1 + L2

0); n = 0; 1; 2; 3; : : : (B.13)

(we may drop the pre- and post-superscripts from C1 and C2 since for the symmetric case
L0
�

= �1
2

their values coincide for V > 0 and V < 0). Using the fact (above) that V � = � iV +, Equation (B.13)

leads to the plot of basins of attraction for V � > 0 and V � < 0 shown in Figure 3.

B.3. Fixed Points

The return map (Equation(B.3)) shows that periodic motions with lossless collisions require that

iC+
1 (H

�

=P )
2 = 0 : (B.14)

This condition is satis�ed if: (1) H�

=P
= 0 or (2) iC+

1 = 0.
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1. For H�

=P = 0, we get period-1 motions: constant-speed straight-line solutions (E� = 1
2
(V �)2 =

E0 � constant) where, as for the smooth skate, the energy is all in translation. The inter

collision duration is �� = �
V �

= �p
2E�

. For �xed system parameters (L0, �) there is a two-

dimensional family of period-1 motions parameterized by speed V � and heading ��.

2. For iC+
1 = 0, either (a) � = 0 (slot length is zero) or (b) � ! 0 (radius of gyration goes to

zero). Case (a) is the smooth skate. In case (b), the skate becomes a massless structure with a

point mass located along its fore-aft axis of symmetry.

Special Limiting Case (lim� ! 0): For � = 0, taking angular momentum balance about

the mass center shows that no net moment can act on the skate structure. Since the constraint

force (F ên) is the only force acting on the skate, a vanishing applied moment requires that F = 0.

Then, linear momentum balance implies that the acceleration of the center of mass is zero; hence, the

mass center must travel in a straight line at constant velocity in the direction of the initial velocity

vector throughout the skate's motion, which is therefore completely determined by geometry.

For ease of analysis, we �rst �nd the simpli�ed return map for angular momentum with zero

moment of inertia:

i+1H+
=P

= iC+
2

iH+
=P

; (B.15)

where now

iC+
2 =

L0(L0 + 1)

(L0 + (1� iD+))2
; (B.16)

and, since � = 0, we have nondimensionalized with respect to the slot length �:

L0 =
`0
�
; D = d

�
; V = v

v0
; 
 = !

v0
� ; � =

tv0
�

; and (_) =
d( )

d�
; (B.17)

so the nondimensional slot length is � = �
�
= 1. We can get period-1 solutions for iC+

2 = 1, which

holds only for the trivial case � = 0. Thus, the only period-1 solutions in this case are again the

constant-speed straight-line motions or H�

=P
= 0.

When � = 0 and given arbitrary initial conditions, the velocity along the slot will change sign once

after each collision for L0 < 0; i. e., according to Equation (B.6), n = 0. That the skate center-of-mass

must travel in a straight line in the direction of the initial velocity vector corroborates this fact; if

the center-of-mass is behind the slot and must travel in a straight line, the skate will \ip" around

the current peg and reverse direction with respect to it. This periodic ip-op in the sign of velocity

along the slot raises the question of whether period-2 solutions exist.

Over two collisions, we have
i+2H+

=P
= i+1C+

2
iC+

2
iH+

=P
. Period-2 solutions require i+1C+

2
iC+

2 = 1 and the ip-op in velocity

along the slot after each collision (L0 < 0,
L0

�
6= �1). (For

L0

�
= �1 and given arbitrary initial

conditions, the skate stops translating after one collision and spins in�nitely fast about a peg.) For

� = 0, using (B.16) with iD+ = 0, i+1D+ = � = 1 (or vice versa), we �nd

iC+
2 =

L0

L0 + 1
=
�
i+1C+

2

��1
; thus neutrally stable period-2 solutions exist, as shown in Figure 10.

No other periodic solutions exist. For � small but nonzero, however, numerical studies show that

quasi-periodic motions exist closely resembling those in Figure 10; after many collisions and looping

motions, the skate eventually settles into a straight-line motion.
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