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II: Abstract 

The Modified Ergometer Project has been ongoing since 1991. The goal is to create an 

ergometer that accurately simulates the feel of rowing a boat. The specific goals for this 

year were to create a computer simulation of the current ergometer, and to improve its 

working condition. Many repairs were made and the dynamics of the machine were 

modeled and incorporated into a MATLAB program. The velocity profile created by the 

simulation differed significantly from that derived from laboratory data, which suggest 

inaccuracies in the simulation. Comparing mine to another computer simulation of 

rowing showed unrealistic modeling of the rower’s body motions is largely responsible 

for the errors. Varying simulation parameters showed that the moment of inertia of the 

flywheel and radius of the ergometer’s wheels had significant affect on the shape of the 

velocity curve, while the stiffness of the position return spring, surprisingly, had almost 

no affect. Future workers should develop a more accurate model of the rower’s body 

motions and try to transform the modified ergometer into a marketable product.  
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III: Introduction 

III.1:Background on rowing ergometers 

III.1.i: Stationary Ergometers 

Rowers often train on rowing machines or ergometers when access boats and water is not 

available. The standard rowing ergometer is produced by a company called Concept II. 

The major limitation of such products is that they are completely stationary. The rower 

must completely stop his body at each end of the stroke, quickly accelerating in the mid 

parts of the stroke. The rower goes through the basic rowing motions, but the velocity 

and acceleration of various body parts, and the forces in the handle at various points in 

the stroke are much different than that seen in a boat. Because of this difference, rowers 

who use an ergometer frequently may develop habits that generate power efficiently on 

an ergometer, but do these habits often do not translate to efficient rowing in a boat. The 

rower develops strength and fitness, but not rowing ability.   

III.1.ii: Dynamic Ergometers 

Several ergometers on the market that try to combat these problems. The two most 

popular dynamic ergometers are the RowPerfect by CARE and the Concept II slides. 

Information about these two products can be found on the web at www.Rowperfect.com 

and  www.concept2.com, respectively. In each, the ergometer is set on wheels, freeing it 

to slide back and forth with a certain range. The rower and ergometer oscillate back and 

forth around a stationary center of mass.  Because the erg is much lighter than the rower, 

it moves much more than the rower. The rower is able to move back and forth through 

the stroke in a more smooth and natural manner. The limitation of this type of ergometer 
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is that the center of mass of the system does not accelerate or decelerate as is seen in real 

rowing.  

III.1.ii: Modified ergometer Project at Cornell 

The modified ergometer project has been going on since 1991 with the overarching goal 

to build a rowing ergometer that better simulates the “feel” of rowing a boat. In this case, 

“feel” refers to the velocities, accelerations and forces experienced by rower in a boat. 

Previous researchers have focused mainly on matching velocites. Ideally the velocity 

profile of the ergometer would resemble that of a boat on the water, as seen below:  

 

 The 1991-1992 researches produced a prototype that they felt was a vast 

improvement over any rowing ergometers currently available. The original design was 

accomplished by mounting a standard Concept II rowing ergometer on wheels that are 

driven by the pulling of the handle, so that as the user pulled the handle, the ergometer 

accelerated as a boat would. Data showed that the ergometer had a velocity profile 

closely resembling that of a boat, but the machine had many mechanical shortcomings. 
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Students continued work in 1992 1993, 1999, seeking to refine the machine and make it 

more user friendly.  

 By 1999, the ergometer worked more consistently. Don Nelson, who worked on 

the project that year, advised that further work should be directed towards making the 

ergometer more reliable and usable. In 2002 two students began working with the goal of 

making the machine more “robust.” They fixed many mechanical problems, yet in the 

process, they altered several aspect of the project that was key to performance.  

 When I received the ergometer at the beginning of the 2003-2004 academic year, 

it had been altered in ways that seriously affected its “feel.”  Data collected showed that 

the ergometer did not model the velocity profile of a boat as well as it had in 1999, or 

even as well as it did in 1992. It seems that the researchers in 2002, and possibly others, 

poorly understood the system with which they were working. As a result, they 

“improved” it in ways that actually hurt the project as a whole.  

III.2: New Objectives  

III.2.i: Need 

Students researchers on this project would need a way to gain understanding and insight 

on the workings of the modified ergometer. That way they would fully understand the 

affect of any of their modifications. This would minimize the possibility of future 

students experiencing the frustration that I underwent this semester while trying to 

understand where previous workers had gone wrong.   

III.2.ii: Problem Statement: 

Previous researchers have not fully understood the ergometer (i.e. how each component 

affects the overall performance) and thus have altered the project in ways that they did 

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com


 6 

not fully understand. Additionally, previous researchers have left poor records, making it 

difficult to track the progress of the project over the years, learn from the improvements 

and mistake of other researchers, or continue iterating design improvements in a logical 

way. Students working on this project need a way that they can explore the different 

parameters of the machine and see the affect of various improvements without actually 

altering the machine itself.  

III.2.iii: Solution: 

Professor Ruina suggested that I create a computer simulation of the ergometer. The basic 

tasks of the simulation would be to and integrate the ergometer’s equations of motion and 

produce plots of position and velocity - as well as several other related parameters – that 

would illustrate how the ergometer is working. Additional objectives for the simulation 

that it is comprehensible to future students, allows easy variation of design parameters, 

and accurately models the dynamics of the ergometer 

This task could be accomplished through the following steps:  

(1) gaining a basic understanding of the ergometer through use and inspection 

(2) deriving the equations of motions for the ergometer 

(3) writing a MATLAB program that integrates these equations using an ODE 

solver and outputs vectors of position and velocity over time 

III.3: Overview of experiments 

III.3.i: Set up 

In order to become familiar with the project, I read the reports of previous researcher 

teams, as well as journals articles on the dynamics and kinematics of rowing. The 
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modified ergometer was then assembled and studied first hand. This led to the realization 

that the ergometer needed several repairs.  

III.3.ii: Repairs 

A new floating pulley for the ergometer and several other small components were 

produced. The bungees used to maintain tension on the ergometer handle were replaced 

with a stock chain-tension assembly from a Concept II ergometer. The bungee group 

connected to the drive wheels (which returns the erg to its original position after each 

stroke) was modified, effectively dividing the spring constant of the group by 2. 

Modifications to the ergometer were made continually throughout the semester in efforts 

to make the machine more reliable and accurate. 

III.3.iii: Modeling the Dynamics: 

The next step was to derive the equations of motion for the ergometer. Starting with a 

free-body diagram and Newton’s Second Law, I eventually arrived at the set of equations 

found in “Methods”. The equations describe the acceleration of the ergometer and the 

angular acceleration of the flywheel. They are dependent upon the motion of the rower at 

a given time.  

III.3.iv: MATLAB Simulation: 

These equations were incorporated into a MATLAB function that solves over a given 

time span, plots the results, and animates the resulting motions. I decided to use 

MATLAB for the computer simulation because I had the most familiarity with it and felt 

it would be the easiest to use. The rower’s body motions were determined using a 

MATLAB program written by a previous Cornell student. Spring constants, erg and body 

dimensions, and other inputs were measured in the laboratory. My equations of motion 
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were also incorporated into a more sophisticated rowing simulation developed by Dave 

Cabrera.  

III.3.v: Video Data: 

Video was taken of the ergometer at several times throughout the project. By stepping 

through the video frame-by-frame and recording the position of the ergometer and the 

position of the rower’s center of mass at each frame, I was able to generate position and 

velocity profiles for the ergometer and rower over the course of one stroke.  

III.3.vi: Investigating a possible alteration: 

Professor Ruina has suggested to several students that the floating pulley be replaced 

with an open differential to split the torque between the flywheel and the drive train. In 

order to investigate the effect of such a switch, I derived the equations of motion for such 

a system and incorporated them into the simulation as well.  

III.4: Results 

As a result of repairs made this year, the ergometer now rows more smoothly and reliably 

than it did when I found it. Data taken from video of the ergometer reveals that it models 

the movements of a boat better than it did a year ago, but still does not perform as well as 

Nelson’s model did in 1999.  

 Output from the computer simulation was compared to the video data. This 

showed that the predicted motions of the ergometer match the actual motions to a certain 

extent, although there are still some discrepancies. Altering parameters such as spring 

constants and gear ratio’s in the simulation has illustrated how each parameter affects 

overall behavior. In the end, such manipulation provided valuable insight, but did not 

provide a clear explanation of which parameters could be changed to optimize the 
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performance of the machine. Comparing simulated results to for the differential drive 

mechanism to those with the floating pulley showed very little difference in performance. 
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IV: Methods 
 
IV.1: Ergometer Repairs 
 
IV.1.i: floating pulley 

Misalignments in the ergometer pulled the sprocket in the floating pulley to one side, 

causing the chain to rub against the housing of the floating pulley and occasionally jam. 

The pulley was connected to the drive train by a small hook that was unable to endure 

heavy loads and frequently sheared. I machined a new floating pulley wide enough to 

accommodate the chain, and machined washers to hold the sprocket in place without 

interfering with the chain. I then made a direct connection between floating pulley and 

drive chain, eliminating the connecting hook used before. 

IV.1.ii: chain tension bungees 

Previously, tension in the ergometer chain was maintained by a long bungee run through 

a series of pulleys. Excessive friction in the pulleys caused the system to bind up, making 

the chain go slack. I replaced the entire group of bungees with the stock chain-tension 

mechanism from a concept II ergometer.  

IV.1.iii position return spring  

A group of bungees inside the monorail was connected directly to the ergometers drive 

train. These bungees acted as a position return mechanism, simulating boat drag. I 

attached a pulley system to the position return spring and ran the chain through this 

pulley system. This decreased the amount that the spring extended throughout each 

stroke, so that it provided a more constant force.   
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IV.2 Dynamic Modeling 

IV.2.i Ergometer with floating pulley 

Entire System, FBD: 
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The rower and erg have mass MR and ME. The rowers center of mass is assumed to be 

concentrated midway between the butt and shoulder. D is the distance between the rowers 

feet (rooted to the erg) and CM. It is an independent variable, to be defined later. FD is a 

dependent variable, determined by the motion of the rower's body and various 

components of the erg.  

Entire System, Kinematics: 
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All pulleys and sprockets are assumed to be massless and frictionless, and all except the 

floating pulley are motionless with respect to the erg. The chain connecting the handle to 

the chain return spring is inextensible, which gives us the above constraint (2). 

Drive Train, Kinematics: 

  

2

2

XX
R

R
P

RX

XRP

E

D

G

DG

DDE

GG

==

=

=

==

qq

q

q

 

E

D

G X
R

R
P &&&& =    (3) 

 

The motion of the floating pulley is directly related to the motion of the ergometer. An 

inextensible chain connects the floating pulley to the drive gear, which is connected to 

the drive wheel by a rigid shaft. 

Drive Train, FBDs:  
 
An expression for the force in the chain (Fchain) is found by looking at free body diagrams 

of the floating pulley and the drive train. The floating pulley lacks mass or rotational 

inertia, thus of 2*Fchain is delivered to the drive gear. 
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The masses of the drive gear, drive wheel and connecting axel are also neglected.  
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Substituting equation (1) into this expression gives: 
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Flywheel/Sprocket, Kinematics, (Case I): 

There is a clutch between the chain sprocket and the flywheel. When engaged (Case I), 

the rotation of the (heavy) flywheel and (massless) chain sprocket are directly coupled. 

Therefore: 
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Flywheel, FBD, (Case I): 

Moments are provided by the chain and by air drag. FX and FY are reaction forces from 

the erg frame. Fchain was defined in equation (4); Fk1 is from the chain return spring, and 

is assumed constant.  
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Combining (5), (6) and (7) gives the following expression for T&& : 
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Equation (2) then becomes: 
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This equation can be solved explicitly in terms for EX&& , giving our first equation of 

interest. By substituting equation (4) into equation (7) we get an independent expression 

for  Fq&& . Both are presented below, in the summary. 

Sprocket, FBD, (Case II): 

When the clutch between flywheel and chain sprocket is not engaged, analysis is more 

simple. The massless chain sprocket rotates freely of the flywheel. A moment diagram of 

the sprocket shows that Fchain = Fk1.  
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Flywheel, FBD, (Case II): 
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Summary:  

CASE I: 
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CASE II: 
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NOTE: Case I and case II are defined by the clutch between sprocket and flywheel. The 

clutch disengages if the tension in the chain drops to zero. The clutch re-engages when 

the sprocket accelerates to the speed of the flywheel, and begins to accelerate the 

flywheel again, creating tension in the chain.  
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IV.2.ii Ergometer with differential: 

Equations of motion were also studied for an ergometer with an open differential in the 

drive mechanism. For the derivation, I used an external position return spring  

Overview: 

      

As above there are two “cases” and they are determined in the same way. I present the 

derivation only  for case I because the equations of motion for case II are nearly identical 

to those presented above.  The derivation for case I was also largely the same, and so the 

following derivation is not as thoroughly presented.  
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Differential, Kinematics: 
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The rotation of the differential housing is directly linked to the motion of the handle, 

which gives equation (2a). Using the assumption that an open differential splits the torque 

equally gives equation (3a). Then assuming that power is conserved, we can relate torque 

to angular velocity to get (4a). 
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Drive Train, Kinematics: 
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Rigid coupling between the drive gear and wheels give us the first two constraints (5a).  

From the inextensible chain, we get the next equation (6a). Putting these two equations 

together and taking the derivative gives (7a). 

Drive Train, Force and Moment Diagram: 

Torque from the differential (TL) produces tension in the rigid chain connected to the 

drive train (Fchain). This tension produces a torque on the axle (Taxle), which is transferred 

to the ground in the drive force (FD). Combining these conditions gives equation 8a. 
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Flywheel, FBD: 
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Equating expressions (1a), and (8a) gives 
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rearranging and differentiating (4a) gives  
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We can arrive at an explicit expression for the ergometer acceleration by substituting 

plugging (2a) into (11a), substituting (11a) into (10a) and solving for Ex&& . This yields the 

following system:  
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IV.3: MATLAB simulation 
 
IV.3.i: Setup 
 
After deriving these equation, the next step was to create a series of MATLAB functions 

to simulate the ergometer’s motions. In the equations above, Ex&&  is a function of Ex  and 

Ex& ; Fq&&  is a function of Fq& .  Therefore, I could use one of MATLAB’s ODE solvers to 

integrate the equations of motion. The state variable is defined:   

[ ]FFEE xxx qq && ,,,=  

   [ ]FFEE xxx qq &&&&&&& ,,,=    

Ex&&  and Fq&&  also depend on motions of the rower’s body segments ( HHD &&&&& ,, ). 

 I used a separate program called joint.m to model the rower.  Joint.m was written 

by Tim Cardahana in 1993 as part of computer simulation of boat rowing. Given the 

current time, period of the stroke, and body parameters, joint.m calculates the position, 

velocity and acceleration of a given body segment. The diagram bellows shows the 

relations between body segments. 

 

D and H are then defined as 

follows: 
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IV.3.ii: RunErg.m 

I created a governing program called “RunErg” to set up the simulation and solve the 

equations of motion over a set period of time. This program defines needed parameters, 

initializes variables, calls the ODE solver, stores results, generates plots and animates the 

motion of rower and ergometer. Joint.m is called both within the ODE solver, and also in 

a loop that calls joint.m at each time and stores the position of each body segment as well 

as other dependent variables RunErg.m calculates, stores, and plots the following 

quantities:  

-shoulder/torso length (ybs),   -armlength (ysh)   

-seat length(ybf)   -position of the rower’s CM relative to the erg (D),   

-hand position (yfh),    -chain velocity,  

-erg position (xE),    -erg velocity ( Ex& ),  

-flywheel sprocket velocity,   flywheel angular velocity( Fq& ),  

 

IV.3.iii: RootRunErg.m 

On seeing the results of RunErg.m, Dave Cabrera advised that I create a second program 

that would allow me to get a better look at the motions of ergometer over a single stroke. 

This led to the production of RootRunErg.m. This program solves the equations of 

motion for the ergometer over a period of one stroke. A “while” loop in the program 

causes the simulation to run over again with modified initial conditions until it finds the 

initial conditions that produce steady, periodic motion, which defined by a stroke for 

which the position and velocity of the ergometer are the same at the beginning and end of 
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the stroke. Finding steady state motion was then essentially a 2-D root finding problem, 

the function of interest being:  
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IV.4 Video Data Collection 

I recorded a video of myself rowing on the ergometer to use for position and velocity 

data. I generated a position profile by stepping through the video frame by frame. Using 

MATLAB, I fit an 11th order curve to the data and derived a velocity curve for the data.  

IV.5: Collaboration with Dave Cabrera: 

I met with Dave Cabrera, a graduate student who has developed an excellent computer 

simulation of on-the-water rowing. He was able to incorporate the equations of motion 

that I derived for the modified ergometer into the framework of his simulation in a 

program called Rowing.m, and we were able to compare results from the two.   

IV.6 Ergometer with differential 

I set up Dave’s simulation to solve the equations of motion for the ergometer with 

differential, in order to see what affect this would have on ergometer performance.  
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V. Results 
V.1: Ergometer Repairs 
 
V.1.i: Floating Pulley  
 
Picture 1: old pulley showing ruts from chain rub       

        
Picture 2: with the hook connector 

 
Picture 3: New Floating Pulley 

 
Picture 4: showing direct connection to chain 
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V.1.ii: Chain-tension Bungees 
 

      
Picture 5: previous bungee assembly            Picture 6: replaced by stock CII assembley          
 
V.1.iii: Position Return Spring 
 

       
Picture 7: schematic of previous setup Picture 8: schematic showing modification 
 
 
 
 
V.2: Computer Simulation 
Printouts of RunErg.m, RootRunErg.m, and subprograms joint.m, RowErg_D.m, 
RowErg_R.m, and Animate.m can be found in the appendix. Dave Cabrera’s simulation 
for the ergometer can be accessed online at http://www.tam.cornell.edu/~dcabrera/drew/ 
Figures and plots are below. 
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Figure 1: Produced by running RunErg.m over a period of 7 strokes (14 seconds). The 
top two plots track the lengths of body segments as defined by Joint.m; the next tracks 
the velocity of the ergometer chain - defined by both the motion of the rower and the 
ergometer - and the velocity of the chain sprocket - determined by multiplying the 

flywheel angular velocity, Fq& , by the sprocket diameter, RF. The bottom three plots show 

the angular velocity of the flywheel and the position and velocity of the ergometer. 
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Figure 2: Behavior of the ergometer and rower over the course of one stroke after steady, 
periodic motion has been reached. Produced by RootRunErg.m after 5 iterations with a 
tolerance of 10e-4.
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Figure 3: Position and velocity curves obtained from video data.
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Figure 4: Velocity profiles from RootRunErg.m and video data 
 

 
Figure 5: Overlay of the velocity profile from laboratory data onto the velocity curve of a 
boat recorded by John Ferris.  
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Figure 6: Affect of varying parameters on the steady state velocity profile. Produced by 
RootrunErg.m 
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Figure 7 overlays the velocity curves generated by RootRunErg.m and Rowing.m.  
 

 
Figure 8: Results of Dave’s Simulation (Rowing.m) using Eq’s for floating pulley and 
differential.   
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Figure 9: velocity profiles of the ergometer generated by the two simulations and that 
derived from laboratory data. The solid blue line in each plot is the ergometer velocity, 
the dashed, red line is the velocity of the rower’s center of mass, relative to the 
ergometer. 
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VI.Discussion 

VI.1 Ergometer repairs 

VI.1.i: Floating Pulley 

As expected, the new floating pulley is a vast improvement. The increased width prevents 

the housing from interfering with the chain and the direct connection to the chain is more 

durable and easier to align. Since redesigning the floating pulley, I have not had problems 

with the chain catching, or the attachment breaking, as frequently occurred before.  

VI.1.ii: Chain tension bungees 

The new chain tension mechanism is also am improvement. The mechanism works 

consistently and provides an appropriate amount of tension on the handle. Because the 

mechanism is fully enclosed, there is not a concern about the dirt accumulating in the 

components. The long, metal monorail does not fit very well where it is currently placed. 

Modifications could be made so that it fits snugly in place, if this could be done without 

exposing or altering the mechanism. Although the metal bar may look precariously 

placed, it actually stays in place better than the previous bungee assembly. In all, it is 

much more “robust” than the former system. As an added benefit, it makes use of 

standard Concept II parts instead of requiring custom machining.   

VI.1.iii: Position return spring: 

The addition of the pulley to the bungees had the effect of making them more compliant. 

As a result the ergometer displaces farther from its initial resting position in order to 

reach equilibrium. However, the change in bungee length within one stroke is only half of 

what it was before. The bungees then provide a smaller range of forces, more closely 
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approximating a constant force. Yet, rowing on the ergometer I was unable to feel a 

significant difference in the ergometers behavior after this modification. 

VI.2: Equations of motion 

The equations of motion I derived appear to be dynamically correct and accurate for the 

system. I have revised them many times, and all the main equations have been checked 

over by both Professor Ruina and Dave Cabrera. One limitation on the model is that it 

does not include friction on the ergometer wheels. Initially, I was confident that friction 

could be neglected with little or no consequence on the final result. The lack of friction in 

the simulation may cause it to predict a larger magnitude for the ergometer’s oscillations 

than actually occurs, but it should not affect the nature of oscillations. 

VI.3 Computer Simulation 

IV.3.i: Utility and general performance of programs 

RunErg.m is useful for tracking the transient behavior of the erg. It allows the user to 

observe overall behavior and shows the interactions of various parameters. 

RootRunErg.m allows the user to get a much better look at the ergometer’s specific 

behavior. The user can easily observe the affect of individual parameters on the steady 

state behavior. Thus it could potentially be very useful to future researchers. Rowing.m 

could be of similar utility to future researchers, although it makes use of more 

subprograms and is generally more complex, which could make it daunting to beginners. 

VI.3.ii: Accuracy  

VI.3.ii.a: Transient Behavior 

The plots of erg position and velocity generated by RunErg.m show a region of transient, 

decaying oscillations. After about 5 strokes (10 seconds) both plots show, steady, 
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repeating oscillations. At this point there is still a small-amplitude, large-period 

oscillation present in the ergometer's motions, which I expect will gradually die out. The 

ergometer chain, sprocket, and flywheel behave as expected. The three parameters show 

coupled motion during the drive portion of the stroke, and during the recovery, the speed 

of the sprocket and flywheel should slowly decay.  

VI.3.iii.b: Steady State Behavior 

The primary method of judging the accuracy of the simulation is by comparing the steady 

state velocity profiles. The curve generated by RootRunErg.m should match the curve 

derived from the video data and, ideally, both curves would the match that of a boat on 

the water.  

 In actuality, the shape of the steady state velocity curve generated by 

RootRunErg.m deviates significantly from the data. There is a difference in both the 

magnitude and the shape of the velocity curves.  The data shows a small, negative 

velocity at the catch, which decreases through the early part of the stroke, then grows to a 

small positive value where it stays relatively constant until late in the stroke when it 

drops again. The simulated velocity starts at a larger, more-negative value, and increases 

sharply early in the stroke. There is no initial dip as seen in the data. It then rises to a 

significantly higher positive value and falls through the later half of the stroke. 

 The fact that the curves do not match is a cause for concern. Lack of friction in 

the model may account for the larger magnitude of oscillations. The shape  of the velocity 

curve is a function of two things: (1)the ergometer dimensions, i.e. mass, gear ratios and 

spring constants and (2) the motion of the simulated rower. Flaws or inaccuracies in 

either one of these elements could be the cause of the errant shape of the velocity curve. 
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 To add to this concern, the velocity curve of the ergometer does not match that of 

a boat. The ergometer's velocity rises too quickly early in the stroke and then plateaus, 

where as a boat’s velocity increases slowly, peaking out late in the stroke. Also, the 

magnitude of the ergometer’s oscillations are too small. This implies that some aspects of 

the ergometer need to be modified to produce better performance. 

 In order to examine the affect of each ergometer dimension on the overall 

performance, I altered many of the parameters in the simulation. Initially, I felt that 

varying the stiffness of the position return spring (K2) would be the most significant 

parameter since several previous students have focused on refining this part of the 

ergometer. Yet, changing this parameter in the simulation produced almost no difference 

in the steady state velocity. The most significant parameters seemed to be the flywheel 

moment of inertia (IF) and the radius of the erg wheels (RD). Reducing IF by a factor of 10 

produced a velocity curve that looked much more like that of a boat. Increasing RD by a 

factor of 2 had similar consequences.  

 I would like to conclude that erroneous values for these parameters are causing 

problems with the simulation, but I am quite confident in the accuracy of these two 

parameters. I obtained a value for IF from a published paper by Charles Atkinsopht, and 

RD was simply measured in lab. Thus I feel that shape of the velocity curve was most 

negatively impacted by the way that I modeled the motion of the rower in my simulation. 

This is mentioned further in the next section. 

VI.3.iii: Comparison of Simulations 

The two simulated velocity curves have similar magnitudes. Both predict a minimum 

velocity of about -1.5m/s and a maximum of about 1m/s, while the actual velocity curve 
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has much smaller magnitude. This supports my thought that lack of friction in the 

equations of motion causes a difference in magnitude.  

 The velocity curves produced by the two simulations have greatly different 

shapes, and both simulated curves deviate significantly from the actual ergometer 

motions. RootRunErg.m predicts too rapid a rise in velocity at the beginning of the 

stroke. Rowing.m predicts a pronounced drop in velocity immediately after the catch, 

followed by a slow increase, then a final jump late in the stroke. Unfortunately, the 

ergometer’s actual behavior lies somewhere in between.  

  I was surprised to see such a significant difference between the velocity curves 

produced by the two simulations, since both programs use the same equations of motion.  

The only major difference in the simulations lies in the way each one defines the rower’s 

body motions. Figure 5 shows that there is noticeable variation in the motions of the 

rower’s CM between the two simulations, and the video data also shows that the actual 

movement lies somewhere in between. In light of this, it seems that the small differences 

in the body motions between simulations and data have a great impact on the resulting 

velocity profiles.     

VI.3.iv: Results for ergometer with Differential 

Putting the equations of motion for the ergometer with differential into Rowing.m 

produced a slightly smoother velocity profile. The velocity dips slightly less at the 

beginning of the strokes and increases slightly less near the end of the stroke, but the 

motion is largely the same. Initially I would have expected a more significant difference, 

since  several previous students have suggested that the floating pulley be replaced with a 

differential.  
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VI.4.iv: Suggestions for Future Work 

· Further refinements of the rowers body motions are needed, since the way these 

motions are defined seems to have a great impact on the motion of the ergometer. 

In analyzing my simulation, my biggest regret has been that I settled on Joint.m to 

model the rower motions. I would suggest that anyone who wants to use this 

program first create a program to defines the motion of the rower based on data of 

themselves rowing on the erg.   

· Including friction in the simulation of the erg may help to correct the amplitude of 

the velocity curve generated by the simulation. Conversely, finding ways to 

eliminate friction from the ergometer may be more beneficial, since, the 

ergometer currently oscillates less than a it should to accurately simulate a boat.  

· The ergometer works consistently, despite its shortcomings. The next big step for 

this project is to make the ergometer into a practical product. The concept has 

been refined and reworked enough. It needs to be put to use.  
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VII: Conclusion 

Three major parts of the ergometer were repaired: floating pulley, the chain tension 

bungee system and the position return spring. Only minor changes were made to each 

one, but overall, the ergometer now works much more smoothly and reliably. The 

equations of motion were derived for the ergometer. By analyzing the dynamics and 

kinematics of the ergometer, I was able to derive a system of equations that could be 

entered into a MATLAB ODE solver. These equations are an adequate model, but 

neglect friction.  

 Two programs, Runerg.m and RootRunErg.m were developed to simulate the 

motions of the ergometer. RunErg shows the transient behavior, providing an more 

general view, while RooRunErg provides a closer look at the steady state motion of the 

ergometer. By changing the values of several parameters in the simulations, I was able to 

gain a much more thorough understanding of the ergometer and how each part affects the 

whole.  

 The accuracy of my simulation was assessed by comparing the steady state 

velocity curve generated by RootRunErg.m to a curve derived from video data of the 

ergometer. This revealed flaws in the simulation. Both the shape and magnitude of the 

predicted velocity curve were off. I attribute this to the lack of friction in the simulation 

and unrealistic modeling of the rower’s body motions for the simulation.   

 Dave Cabrera integrated my equations of motion into Rowing.m, a program he 

has developed to simulate on the water rowing. The results of his simulation varied from 

the data and from the results of my simulation. I believe this is largely due to difference 
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in the modeling of the rower’s body motions. Incorporating the equations of motion for 

the ergometer with an open differential produced largely the same results. 

 Overall, the simulations are useful and usable. Flaws still exist, but they do not 

completely tarnish the results. Future students should benefit from using the simulations. 

Similarly, the ergometer itself is flawed but functional. Because of the repairs I made this 

year, the ergometer works much better than it did a year ago. However, the velocity 

profile of the ergometer does not match that of a boat as well as it did in 1999 or even 

1992. This means that the ergometer was actually a better simulator of rowing 12 years 

ago.  

 Anyone who takes up this project in the future should study the reports left by 

previous researchers, ask Professor Ruina a lot of questions, and try to really get a sense 

of what has already been done on this project, what has not, and what they can feasibly 

do. Try to contact people who have worked on the project in the past and ask them for 

help, ask Andy more questions, and work on the project with another person. Most 

importantly, future students should make sure that they understand the workings of the 

ergometer very well before they modify the system.  

 Future work should be directed towards making this project a product, something 

that can be produced and sold to rowers and coaches who could make use of it. 

Redesigning the ergometer so that it is more like a modification  to a standard Concept II 

ergometer, instead of an entirely new product, would be a huge step. 
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X: Appendices 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%RunErg.m 
%performs simulation, using event detection to switch between two ode 
solvers 
%RowErg_D solve eqs of motion on the drive, RowErg_R, for the recovery 
 
%each integration period is stopped by 'event detection' (ED), when  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
clear 
clf 
clc 
 
 
 
global T timestep simlength 
global pbf1 pbf2 pbf3 pbf4 phasebf ybf1 ybf2 
global pbs1 pbs2 pbs3 pbs4 phasebs ybs1 ybs2 
global psh1 psh2 psh3 psh4 phasesh ysh1 ysh2 
global g mR mE hm hs rF rG rD iF Fk1 k2 Cd 
global butt shoulder armlength hand Fc Fd 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%defining the motion of the rower 
%taken from rowboat.m by Tim Cardanha 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%physical constants  
mR=80; mE=15;            
hm=0.279; hs=0.558; 
 
%erg dimensions  
rF=0.014175;            %radius of sprocket driving the flywheel (1 in) 
rG=0.0254;              %radius of drive gear(1 in) 
rD=0.1524;              %radius of drive wheel (6 in)  
iF=0.1001;              %moment of inertia of flywheel (kg*m^2) 
Cd=0.000199;               %coefficient of drag on the flywheel 
Fk1=24;                 %force in bottom spring, assumed constant (not 
actually constant) 
k2=2276;                %spring constant of spring attached to drive 
wheel (from 2002 report) 
mu=0.6; 
 
        
%leg timing points 
pbf1=0; pbf2=0.3;      %drive times 
pbf3=0.6;pbf4=0.99;     %recovery times 
phasebf=[pbf1 pbf2 pbf3 pbf4]; 
ybf1=0.649; ybf2=1.105;      %start and stop 
distances  
 
%back timing points 
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pbs1=0.1; pbs2=0.4;     %drive times 
pbs3=0.5;pbs4=0.85;     %recovery times 
phasebs=[pbs1 pbs2 pbs3 pbs4]; 
ybs1=-0.23; ybs2=0.209;    %start and stop distances  
 
%arm timing points 
psh1=0.2; psh2=0.4;      %drive times 
psh3=0.5; psh4=0.7;         %recovery times 
phasesh=[psh1 psh2 psh3 psh4]; 
ysh1=0.754;ysh2=0.108;      %start and stop 
distances  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
 
%use ODE solver to get erg pos and vel 
 
xE0=-0.7;xEdot0=-1;thetaFly0=0;omegaFly0=0; 
z0D= [xE0, xEdot0, thetaFly0, omegaFly0]; 
 
%time constants 
T=2;              %period of stroke in seconds 
timestep =0.1;    
tstartD= 0; tfinal = 6;  
 
tspan=[tstartD:timestep:tfinal]; 
options = odeset('events','on'); 
 
time=[];erg=[];vel=[];thetaF=[];omegaF=[]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
 
while tstartD < tfinal 
    
 %call first ODE solver, goes untill end of "drive" 
   [t, z]=ode23('RowErg_D', tspan, z0D, options); 
   %accumulate output 
   time = [time; t]; 
   erg = [erg; z(:,1)]; 
   vel = [vel; z(:,2)]; 
   thetaF = [thetaF; z(:,3)]; 
 omegaF = [omegaF; z(:,4)]; 
    
   %set IC's for recovery 
   tstartR=t(end)+timestep ; tspan=[tstartR:timestep:tfinal]; 
 xE0R = z(end,1); xEdot0R = z(end,2); 
 thetaFly0R = z(end,3);omegaFly0R = z(end,4); 
 z0R = [xE0R xEdot0R thetaFly0R omegaFly0R ]; 
    
   if tstartR<tfinal 
 %call second ODE solver,goes untill end of "recovery", 
 [t, z]=ode23('RowErg_R', tspan, z0R, options); 
   %acculmulate output 
   time = [time; t]; 
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   erg = [erg; z(:,1)]; 
   vel = [vel; z(:,2)]; 
   thetaF = [thetaF; z(:,3)]; 
 omegaF = [omegaF; z(:,4)]; 
    
   %set IC's for next drive 
   tstartD=t(end)+timestep ;tspan=[tstartD:timestep:tfinal]; 
   xE0D = z(end,1); xEdot0D = z(end,2); 
 thetaFly0D =z(end,3);omegaFly0D = z(end,4); 
 z0D = [ xE0D xEdot0D thetaFly0D omegaFly0D ]; 
 else tstartD=tstartR 
 end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
%loop to generate matrix of body lengths, handle pos. 
%some taken from Rowboat.m, some written by me 
 
%initialize vectors 
butt=[]; 
shoulder=[]; 
hand=[]; 
armlength=[]; 
rower=[];   
 
i=1;     %counter 
for i=1:length(time) 
%for t=0:timestep:simlength                      previous loop counter 
   %generate vector of position, vel, and accel at current time,  
   %One vector for each joint length 
   [ybf,ybfdot,ybfddot]=joint(time(i,1),T,phasebf,ybf1,ybf2); 
   [ybs,ybsdot,ybsddot]=joint(time(i,1),T,phasebs,ybs1,ybs2); 
   [ysh,yshdot,yshddot]=joint(time(i,1),T,phasesh,ysh1,ysh2); 
 
 %the position of the rower's body segments are defined by joint.m, 
 %independent of drive or recovery 
 %the location of CM and handle are similarly defined 
         
      yfh    = ybf+ybs-ysh;     %position of 
handle relative to foot/erg  
   yfhdot = ybfdot+ybsdot-yshdot;      %vel of handle rel 
to foot/erg 
      yfhddot= ybfddot+ybsddot-yshddot;     %acceleration of handle: 
H-double-dot in notes 
    
      xR    = ybf+(hm/hs)*ybs;              %posotion of rower CM, 
relative to erg 
      xRdot = ybfdot+(hm/hs)*ybsdot;  %velocity of rower CM, 
relative to erg 
      xRddot= ybfddot+(hm/hs)*ybsddot;     %accel of rower CM, rel. 
to erg, D_double_dot in notes 
    
    %before ending for loop, store all desired quantites in vectors, 
update counter variable 
    %store body positions for only three strokes 
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        butt(i)=ybf; 
        shoulder(i)=ybs; 
        hand(i)=yfh; 
        handVel(i)=yfhdot; 
        armlength(i)=ysh; 
        rower(i)=xR;      
        CM_vel(i)=xRdot; 
 
        i=i+1;  
                 
end 
%%%%%%%%%%%%%%%%%%%%%%%5 
%shortime = (time(8*29:10*29)); 
 %   shortvel = (vel(8*29:10*29)); 
  %  shortpos = (erg(8*29:10*29)); 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%plot results     
%body positions 
figure(1) 
    subplot(5,1,1) 
        plot(time',butt) 
        title('seat length, ybf')  
  
    subplot(5,1,2) 
        plot(time',shoulder) 
        title('shoulder length, ybs') 
     
    subplot(5,1,3) 
        plot(time',armlength) 
        title('arm length, ysh') 
     
    subplot(5,1,4) 
        plot(time',rower) 
        title('pos of Rower CM, xR')  
     
    subplot(5,1,5) 
        plot(time',hand) 
        title('hand position, yfh') 
 
%figure(1) 
 %   subplot(3,1,1) 
  %      plot(time',rower) 
   %     title('pos of Rower CM rel to erg, (D(t)')  
     
    %subplot(3,1,2) 
%    plot(time',erg') 
 %   title('erg pos') 
         
  %  subplot(3,1,3) 
   % plot (time',vel')    
    %title('Erg vel vs Time') 
     
    figure(2) 
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    title('results of MATLAB simulation, plotted vs time (s)') 
    subplot(5,1,1) 
    plot(time',rower) 
        title('pos of Rower CM rel to erg, (D(t)')  
 
    %plot(time',hand) 
    %title('pos of Rower hands rel to erg (m) vs. time (s)')   
  
 subplot(5,1,4) 
 plot (time,erg)    
    title('Erg position(m)') 
     
    subplot(5,1,5) 
 
    plot(time,vel) 
    title('Erg Velocity(m/s)') 
   
    subplot(5,1,2) 
 
     plot(time',(handVel-2*(rG/rD)*vel'), 'b-', time,(omegaF*rF),'g:') 
     title('solid=chain velocity, Tdot (m/s), dotted=sprocket velocity 
(m/s)') 
         
   subplot(5,1,3) 
 
    plot(time,omegaF,time,zeros(length(omegaF),1),'k-') 
    title('Flywheel Angular Velocity (rad/s)') 
     
 %figure(3) 
 %subplot(2,1,1) 
   % plot(shortime,shortvel,'b',shortime,zeros(length(shortime),1),'k-
') 
  %  title('Erg Velocity') 
   % xlabel('time (s)') 
    %ylabel('velocity (m/s)') 
      
    %subplot(2,1,2) 
    %plot(shortime,shortpos,'b',shortime,zeros(length(shortime),1),'k-
') 
 %   title('Erg position') 
  %  xlabel('time (s)') 
   % ylabel('Position (m/s)') 
 
  
  
  
  
 %plot(time',omegaF'/100,'m', 
time',hand,'k',time',rower,'r',time',(handVel-2*(rG/rD)*vel'), 'b-',  
time,(omegaF*rF),'g:'); 
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%RootRunErg.m 
%This program sets up and runs the ergometer simulation,  
%a "root find" method is used to integrate for the IC's that give 
stable, 
%periodic motion. 
%event detection is used to switch between two ode solvers: 
%RowErg_D solve eqs of motion on the drive, RowErg_R, for the recovery 
%each integration period is stopped by 'event detection' (ED),  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%5 
clear 
clc 
 
global T timestep simlength 
global pbf1 pbf2 pbf3 pbf4 phasebf ybf1 ybf2 
global pbs1 pbs2 pbs3 pbs4 phasebs ybs1 ybs2 
global psh1 psh2 psh3 psh4 phasesh ysh1 ysh2 
global g mR mE hm hs rF rG rD iF Fk1 k2 Cd 
global butt shoulder armlength hand Fc Fd 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%physical constants  
mR=80; mE=15;            
hm=0.279; hs=0.558; 
 
 
 
 
%erg dimensions  
rF=0.014175;            %radius of sprocket driving the flywheel (1 in) 
rG=0.0254;              %radius of drive gear(1 in) 
rD=0.1524;              %radius of drive wheel (6 in)  
iF=0.1001;              %moment of inertia of flywheel (kg*m^2) 
Cd=0.000199;               %coefficient of drag on the flywheel 
Fk1=24;                 %force in chain return spring, assumed constant 
(not actually constant) 
k2=1138;            %spring constant of position return spring  
                    %attached to drive wheel (% was 2276, halved on may 
10th);   
 
                             
%stroke time constants 
T=2;              %period of stroke in seconds 
timestep =0.1;          %time between iterations 
simlength = 20;         %total simulation length 
 
%constants used to define rower body motion in joint.m 
%leg timing points 
pbf1=0; pbf2=0.3;      %drive times 
pbf3=0.6;pbf4=0.99;     %recovery times 
phasebf=[pbf1 pbf2 pbf3 pbf4]; 
ybf1=0.649; ybf2=1.105;      %start and stop 
distances  
 
%back timing points 
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pbs1=0.1; pbs2=0.4;     %drive times 
pbs3=0.5;pbs4=0.85;     %recovery times 
phasebs=[pbs1 pbs2 pbs3 pbs4]; 
ybs1=-0.23; ybs2=0.209;    %start and stop distances  
 
%arm timing points 
psh1=0.2; psh2=0.4;      %drive times 
psh3=0.5; psh4=0.7;         %recovery times 
phasesh=[psh1 psh2 psh3 psh4]; 
ysh1=0.754;ysh2=0.108;      %start and stop 
distances  
 
%constants for ODE solver and root find 
xE0=0;xEdot0=0;thetaFly0=0;omegaFly0=0;                 %IC's 
z0D= [xE0, xEdot0, thetaFly0, omegaFly0];               %IC's  
tspan=[0:timestep:T];                                   %timespan for 
one stroke 
epsx = 1;epsv=1; tol = 10^(-4); total = 20; k = 0;     %constants for 
root finding method 
options = odeset('events','on');                        %tell the ODE 
solvers to look for events 
time=[];erg=[];vel=[];thetaF=[];omegaF=[];              %initialize 
storage vectors 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
%loop to generate matrix of body lengths, handle pos. 
 
butt=[]; shoulder=[]; hand=[]; armlength=[]; rower=[];  %storage 
vectors 
i=1;     %counter 
 
for i=1:length(tspan) 
   %generate vector of body part position, vel, and accel at current 
time,  
   %One vector for each joint length 
   [ybf,ybfdot,ybfddot]=joint(tspan(i),T,phasebf,ybf1,ybf2); 
   [ybs,ybsdot,ybsddot]=joint(tspan(i),T,phasebs,ybs1,ybs2); 
   [ysh,yshdot,yshddot]=joint(tspan(i),T,phasesh,ysh1,ysh2); 
 
 %the position of the rower's body segments are defined by joint.m, 
 %independent of drive or recovery 
 %the location of CM and handle are similarly defined   
      yfh    = ybf+ybs-ysh;     %position of 
handle relative to foot/erg  
   yfhdot = ybfdot+ybsdot-yshdot;      %vel of handle rel 
to foot/erg 
      yfhddot= ybfddot+ybsddot-yshddot;     %acceleration of handle: 
H-double-dot in notes 
    
      xR    = ybf+(hm/hs)*ybs;              %posotion of rower CM, 
relative to erg 
      xRdot = ybfdot+(hm/hs)*ybsdot;  %velocity of rower CM, 
relative to erg 
      xRddot= ybfddot+(hm/hs)*ybsddot;     %accel of rower CM, rel. 
to erg, D_double_dot in notes 
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    %before ending for loop, store all desired quantites in vectors, 
update counter variable 
    %store body positions for only three strokes 
        butt(i)=ybf; 
        shoulder(i)=ybs; 
        hand(i)=yfh; handVel(i)=yfhdot; handAccel(i)=yfhddot; 
        armlength(i)=ysh; 
        rower(i)=xR; CM_vel(i)=xRdot; CM_accel(i)=xRddot; 
        i=i+1;  
                 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%root finding method iterates to find IC's that produce periodic 
oscillations  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%theory/system/method of guessing IC's 
%f=[fx;fv]; x=[x0,v0]; 
%f1 = fx = xf-x0  
%f2 = fv = vf-v0 
 
%taylor approx to find f=0; 
%f =[fx]   =  [0]   =   J *  [xx0-x0] 
%   [fv]      [0]             [vv0-v0] 
 
%J = [f1x f1v]  
%    [f2x f2v]  
 
%[xx0] = [x0]   - J^(-1) * [fx] 
%[vv0]   [v0]              [fv]  
 
%f1x = dfx/dx0 = fx(x0+delta,v0) - fx(x0,v0) / delta 
%f1v=  dfx/dv0 = fx(x0,v0+delta) - fx(x0,v0) / delta 
%f2x=  dfv/dx0 = fv(x0+delta,v0) - fv(x0,v0) / delta 
%f2v = dfv/dv0 = fv(x0,v0+delta) - fv(x0,v0) / delta 
 
%fx(x0+delta,v0) = xf(x0+delta,v0) - x0; run ODE solver with 
x0=x0+delta 
%fv(x0+delta,v0) = vf(x0+delta,v0) - v0; 
%fx(x0,v0+delta) = xf(x0,v0+delta) - x0; run ODE solver with 
v0=v0+delta 
%fv(x0,v0+delta) = vf(x0,v0+delta) - v0; 
%fx(x0,v0) = xf(x0,v0) - x0;             run ODE solver with x0=x0; 
%fv(x0,v0) = vf(x0,v0) - v0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%end theory, start 
code%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
while ((epsx > tol) & (epsv > tol)& (k < total)) % three termination 
criteria (third needed?) 
   
     %call first ODE solver, goes untill end of "drive" 
     [tD, zD]=ode23('RowErg_D', tspan, z0D, options); 
     %set IC's for recovery 
     tspan=[(tD(end)+timestep):timestep:T]; z0R = [zD(end,1) zD(end,2) 
zD(end,3) zD(end,4)]; 
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     %call second ODE solver,goes untill end of "recovery", 
     [tR, zR]=ode23('RowErg_R', tspan, z0R, options); 
     %acculmulate output 
     time = [tD; tR]; 
     erg = [zD(:,1); zR(:,1)];    vel = [zD(:,2); zR(:,2)]; 
     thetaF = [zD(:,3); zR(:,3)]; omegaF = [zD(:,4); zR(:,4)]; 
    
x0=erg(1);xf=erg(end); 
v0=vel(1);vf=vel(end); 
fx=xf-x0; fv=vf-v0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% 
%find final position and velocity if IC's are perturbed by small 
amount,  
%move x0 and v0 by "delta" run ODE solvers for each case  
%store the partial derivatives in J, the jacobian matrix 
%J = makeJ(x0,v0,delta)   (Should this be a seperate function?) 
delta=10^-3; 
J=[0 0;0 0]; 
   %perturb x0 and call ode solver over one stroke 
   tspan=[0:timestep:T]; 
    z0D=[x0+delta v0 0 (handVel(1)-2*(rG/rD)*v0)/rF];  
    [tD, zD]=ode23('RowErg_D', tspan, z0D, options); 
     
    tspan=[(tD(end)+timestep):timestep:T]; z0R = [zD(end,1) zD(end,2) 
zD(end,3) zD(end,4)]; 
    [tR, zR]=ode23('RowErg_R', tspan, z0R, options); 
     
    ergx0 = [zD(:,1); zR(:,1)];    velx0 = [zD(:,2); zR(:,2)]; 
    thetaFx0 = [zD(:,3); zR(:,3)]; omegaFx0 = [zD(:,4); zR(:,4)]; 
x0x0=ergx0(1);xfx0=ergx0(end); 
v0x0=velx0(1);vfx0=velx0(end); 
     
%perturb v0 
%need to reset initial conditions for new run 
    tspan=[0:timestep:T]; 
    z0D=[x0 v0+delta 0 (handVel(1)-2*(rG/rD)*(v0+delta))/rF];  
    [tD, zD]=ode23('RowErg_D', tspan, z0D, options); 
     
    tspan=[(tD(end)+timestep):timestep:T]; z0R = [zD(end,1) zD(end,2) 
zD(end,3) zD(end,4)]; 
     
    [tR, zR]=ode23('RowErg_R', tspan, z0R, options); 
    ergv0 = [zD(:,1); zR(:,1)];    velv0 = [zD(:,2); zR(:,2)]; 
    thetaFv0 = [zD(:,3); zR(:,3)]; omegaFv0 = [zD(:,4); zR(:,4)]; 
 
x0v0=ergv0(1);xfv0=ergv0(end); 
v0v0=velv0(1);vfv0=velv0(end); 
   
 f1x= ( (xfx0-x0x0) - (xf-x0) )/ delta; 
 f1v= ( (xfv0-x0v0) - (xf-x0) )/ delta; 
 f2x= ( (vfx0-v0x0) - (vf-v0) ) / delta; 
 f2v =( (vfv0-v0v0) - (vf-v0) ) / delta; 
  
 J=[f1x f1v;f2x f2v]; 
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 JJ=J^-1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%finish it up, iterate for next x0, v0 
 
xx0 = x0 - ( JJ(1,1)*fx+JJ(1,2)*fv ); 
vv0 = v0 - ( JJ(2,1)*fx+JJ(2,2)*fv );    
 
epsx=abs(xx0-xf);  
espv=abs(vv0-vf); 
 
z0D=[xx0 vv0 0 (handVel(1)-2*(rG/rD)*vv0)/rF]; 
tspan=[0:timestep: T]; 
 
k=k+1; 
 
end 
%figure(1) 
 
%subplot(3,2,1) 
%plot(tspan,butt,'r:',tspan,shoulder,'g:',tspan,hand,'c:') 
%title('top line=seat length (ybf), middle=shoulder length (ybs), 
top=arm length (ysh); (m)'); 
 
%subplot(3,2,2) 
%plot(tspan,rower) 
%title('pos of Rower CM, (m)'); 
 
%subplot(3,2,4) 
%plot(time,erg) 
%title('erg pos, (m)'); 
 
%subplot(3,2,6) 
%plot(time,vel); 
%title('erg vel (m/s)'); 
 
 
%subplot(3,2,3) 
%plot(time,omegaF,time,zeros(length(omegaF),1),'k-') 
%title('Flywheel Angular Velocity (rad/s)') 
 
%subplot(3,2,5) 
%plot(tspan,(handVel-2*(rG/rD)*vel'), 'b-', time,(omegaF*rF),'g:') 
%title('solid=chain velocity, Tdot (m/s), dotted=sprocket velocity 
(m/s)') 
 
 
 
%figure(5) 
%plot(tspan,CM_vel,'r:',time,vel 
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function [y, ydot, yddot] = joint(t,T,phases,y1,y2); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% this is the file 'joint.m', called by RunErg.m 
% inputs: current time, period, length and phase of joint movement  
% outputs: length, vel, and accel of joint   
% Aside from this comment, this program is copied exactly from Tim 
Cardanha 8/7/93 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%t    present time 
%T    Period of one stroke 
%phases  the four start and stop times 
%y1,y2  the extrema of motion 
 
%first get t inside one peiod by subtracting out T 
%find present phase, p =t/T 
t = rem(t,T); p =t/T; 
 
% first check the still joint cases 
if (p<=phases(1)) 
   y=y1; ydot=0; yddot=0; return;end; 
if ( (p>=phases(2))& (p<=phases(3))) 
   y=y2; ydot=0; yddot=0; return;end; 
if (p>=phases(4)) 
   y=y1; ydot=0; yddot=0; return;end; 
 
%define variables for stroke motion 
if ((p>=phases(1))&(p<=phases(2))) 
   p1=phases(1); p2=phases(2);end; 
 
%make recovery motion the same as stroke motion 
if ((p>=phases(3))&(p<=phases(4))) 
   p1=phases(3);p2=phases(4); 
   temp=[y1,y2]; y1=temp(2);y2=temp(1);  %switch y1 and y2 
end; 
 
%calculate the scale factors 
halfdiff=(y2-y1)/2; yave=(y1+y2)/2; 
halfdeltat=T*(p2-p1)/2; pave=(p1+p2)/2; halfdeltap=(p2-p1)/2; 
 
%calculate the normalized position, vel, and acc 
s=(p-pave)/halfdeltap; 
z      = 15*s/8 - 5*s^3/4 + 3*s^5/8; 
zprime = 15/8   -15*s^2/4 + 15*s^4/8; 
zpprime= -15*s/2 + 15*s^3/2; 
 
%calculate y and its derivatives 
y = yave + z*halfdiff; 
ydot = zprime*halfdiff/halfdeltat; 
yddot = zpprime*halfdiff/halfdeltat^2; 
 
return; 
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function [value,isterminal,direction] = RowErg_D(t,z,flag) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%this function integrated the equation of motion of the erg during 
%the drive, (when the clutch is engaged). 
%this is defined by the event chainVel >= sprocket vel 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%bring in variable defined in RunErg.m 
global T timestep simlength 
global pbf1 pbf2 pbf3 pbf4 phasebf ybf1 ybf2 
global pbs1 pbs2 pbs3 pbs4 phasebs ybs1 ybs2 
global psh1 psh2 psh3 psh4 phasesh ysh1 ysh2 
global g mR mE hm hs rF rG rD iF Fk1 k2 Cd Fc Fd 
%pull values from input variable z 
xE=z(1); xEdot=z(2); thetaFly=z(3); omegaFly=z(4); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
%find body segment lengths at this time by calling joint.m 
%needed variables defined globaly in RunErg.m 
   [ybf,ybfdot,ybfddot]=joint(t,T,phasebf,ybf1,ybf2); 
   [ybs,ybsdot,ybsddot]=joint(t,T,phasebs,ybs1,ybs2); 
   [ysh,yshdot,yshddot]=joint(t,T,phasesh,ysh1,ysh2); 
    
    %calculate vel accel of handle: H-double-dot in notes 
    yfhdot = ybfdot +ybsdot -yshdot; 
    yfhddot= ybfddot+ybsddot-yshddot; 
    %acceleration of rowers COM rel to erg, D-double-dot in derivation  
    xRddot=ybfddot+(hm/hs)*ybsddot;   %if using two seperate mass 
points xRddot=0.25*mR*ybsddot+mR*ybfddot 
     
    %equation of motion 
 xEddot = ( yfhddot-( ( 
(rD/(2*rG))*(mR*xRddot)+0.5*(k2*(rG/rD)*xE) -Fk1)*(rF/iF) - 
(Cd/iF)*((yfhdot-2*(rG/rD)*xEdot)/rF)^2 )*rF )... 
     / ( 2*(rG/rD) + rF*(rF/iF)*(rD/(2*rG))*(mR+mE) ); 
  
  alphaFly = (yfhddot-2*(rG/rD)*xEddot)/rF;  
 
if nargin < 3 | isempty(flag), 
   value=[xEdot, xEddot, omegaFly, alphaFly]'; 
else 
   switch flag 
   case 'events' 
        value=
 ((rD/(2*rG))*(mR*xRddot+(mR+mE)*xEddot)+0.5*(k2*(rG/rD)*xE)-Fk1); 
 %omegaFly*rF-(yfhdot-2*(rG/rD)*xEdot); % yfhddot; %yfhdot-
z(4)*rF; 
        isterminal = 1; 
        direction = -1; 
   otherwise 
        error(['Unknown flag ''' flag '''.']); 
   end 
end 
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function [value,isterminal,direction] = RowErg_R(t,z,flag) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%this function integrated the equation of motion of the erg during 
%the drive, (when the clutch is engaged). 
%this is defined by the event chainVel >= sprocket vel 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%bring in variable defined in RunErg.m 
global T timestep simlength 
global pbf1 pbf2 pbf3 pbf4 phasebf ybf1 ybf2 
global pbs1 pbs2 pbs3 pbs4 phasebs ybs1 ybs2 
global psh1 psh2 psh3 psh4 phasesh ysh1 ysh2 
global g mR mE hm hs rF rG rD iF Fk1 k2 Cd Fc Fd 
%pull values from input variable z 
xE=z(1); xEdot=z(2); thetaFly=z(3); omegaFly=z(4); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
%find body segment lengths at this time by calling joint.m 
%needed variables defined globaly in RunErg.m 
   [ybf,ybfdot,ybfddot]=joint(t,T,phasebf,ybf1,ybf2); 
   [ybs,ybsdot,ybsddot]=joint(t,T,phasebs,ybs1,ybs2); 
   [ysh,yshdot,yshddot]=joint(t,T,phasesh,ysh1,ysh2);      
    %calculate vel accel of handle: H-double-dot in notes 
    yfhdot = ybfdot +ybsdot -yshdot; 
    yfhddot= ybfddot+ybsddot-yshddot;  
     %acceleration of rowers COM rel to erg, D-double-dot in derivation  
    xRddot=ybfddot+(hm/hs)*ybsddot;   %if using two seperate mass 
points xRddot=0.25*mR*ybsddot+mR*ybfddot 
 
   %Equations of motion 
   xEddot = ( 2*Fk1-(k2*(rG/rD)*xE)*(rG/rD) - (mR*xRddot) )/(mR+mE); 
   alphaFly = -1*(Cd/iF)*omegaFly^2; 
 
 
if nargin < 3 | isempty(flag),    
 value=[xEdot, xEddot, omegaFly, alphaFly]'; 
else 
   switch flag 
   case 'events' 
      value= yfhdot-2*(rG/rD)*xEdot-omegaFly*rF; 
%((rD/(2*rG))*(0.25*mR*ybsddot+mR*ybfddot+(mR+mE)*xEddot)+0.5*(k2*(rG/r
D)*xE)-Fk1); 
      isterminal = 1; 
      direction = 1; 
   otherwise 
      error(['Unknown flag ''' flag '''.']); 
   end 
end 
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function animate(Xerg) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
 
 
 
global T timestep simlength 
global pbf1 pbf2 pbf3 pbf4 phasebf ybf1 ybf2 
global pbs1 pbs2 pbs3 pbs4 phasebs ybs1 ybs2 
global psh1 psh2 psh3 psh4 phasesh ysh1 ysh2 
global g mR mE hm hs rF rG rD iF Fk1 k2 Cd 
global butt shoulder armlength hand 
 
n=simlength/timestep+1;                %counter, used later 
 
%lenght of body segments 
Ll=ybf2*0.5;         %lower leg 
Lu=ybf2*0.5;         %upper leg(thigh) 
Al=ysh1*0.5;         %forearm 
Au=ysh1*0.5;         %upper arm 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Define the positions of various body parts, with respect to the foot 
% footboard of the erg is the origin (0,0) 
% x is horizontal, y is verticle 
% B ->butt, S->Shoulder, H->hand, CM->center of mass, K->Knee, E->elbow  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
    xB=butt;  
    yB=zeros(1,n);  
 
    xS=butt+shoulder;  
    yS=hs*cos(asin(shoulder/hs)); 
 
    xH=butt+shoulder-armlength;  
    yH=yS; 
 
    xCM=butt+(hm/hs)*shoulder;  
    yCM=(hm/hs)*yS; 
 
    xK = Ll*((Ll^2-Lu^2+xB.^2)./(2*Ll.*xB));  
    yK = Ll*sin(real(acos((Ll^2-Lu^2+xB.^2)./(2*Ll.*xB)))); 
 
    xhe = Al*((Al^2-Au^2+armlength.^2)./(2*Al.*armlength));   %dist 
from hand to elbow 
    xE=xH+xhe; 
    yE = yS-Al*sin(real(acos((Al^2-
Au^2+armlength.^2)./(2*Al.*armlength)))); 
  
     
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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clf 
axis([-2 2 -1 1]) 
axis equal 
xlabel('x-position (m)') 
ylabel('y-position (m)') 
zlabel('z-position (m)') 
title('Side view of the motion of the rower and erg')  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%draw line for body segments in intial position 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
lowerleg = line( [0     xK(1)], [0     yK(1)], 
'linewidth',3,'erase','xor'); 
upperleg = line( [xK(1) xB(1)], [yK(1) yB(1)], 
'linewidth',3,'erase','xor'); 
back     = line( [xB(1) xS(1)], [0     yS(1)], 
'linewidth',3,'erase','xor'); 
upperarm = line( [xS(1) xE(1)], [yS(1) yE(1)], 
'linewidth',3,'erase','xor'); 
lowerarm = line( [xE(1) hand(1)],[yE(1) 
yS(1)],'linewidth',3,'erase','xor'); 
 
frame1   = line( [0     0      ],[0     -0.125    
],'linewidth',1,'erase','xor'); 
frame2   = line( [1     1      ],[0     -0.125    
],'linewidth',1,'erase','xor'); 
frame3   = line( [-1     1      ],[0     0        
],'linewidth',1,'erase','xor'); 
frame4   = line( [-1     1      ],[-0.125     -
0.125],'linewidth',1,'erase','xor'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 
%animate rower body w/ respect to the erg 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%-k=2; 
%while k<n 
  %set(lowerleg,'xdata',[0     xK(k)],'ydata',[0     yK(k)]); 
  %set(upperleg,'xdata',[xK(k) xB(k)],'ydata',[yK(k) yB(k)]); 
  %set(back,'xdata',    [xB(k) xS(k)],'ydata',[yB(k) yS(k)]); 
  %set(upperarm,'xdata',[xS(k) xE(k)],'ydata',[yS(k) yE(k)]); 
  %set(lowerarm,'xdata',[xE(k) xH(k)],'ydata',[yE(k) yH(k)]);  
 
    %drawnow 
    %k=k+1; 
    %pause(0.25) 
    %end   
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%animate the erg and rower 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k=2; 
while k<n 
   
  %rower's body 
  set(lowerleg,'xdata',[0+Xerg(k)     xK(k)+Xerg(k)],'ydata',[0     
yK(k)]); 
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  set(upperleg,'xdata',[xK(k)+Xerg(k) xB(k)+Xerg(k)],'ydata',[yK(k) 
yB(k)]); 
  set(back,'xdata',    [xB(k)+Xerg(k) xS(k)+Xerg(k)],'ydata',[yB(k) 
yS(k)]); 
  set(upperarm,'xdata',[xS(k)+Xerg(k) xE(k)+Xerg(k)],'ydata',[yS(k) 
yE(k)]); 
  set(lowerarm,'xdata',[xE(k)+Xerg(k) xH(k)+Xerg(k)],'ydata',[yE(k) 
yH(k)]);  
   
  %erg frame 
  set(frame1,'xdata',  [0+Xerg(k)     0+Xerg(k)    ],'ydata',[0     -
0.125]);  
  set(frame2,'xdata',  [1+Xerg(k)     1+Xerg(k)    ],'ydata',[0     -
0.125]);  
  set(frame3,'xdata',  [-1+Xerg(k)     1+Xerg(k)    ],'ydata',[0      0   
]);  
  set(frame4,'xdata',  [-1+Xerg(k)     1+Xerg(k)    ],'ydata',[-0.125 -
0.125]);  
  drawnow 
    k=k+1; 
    pause(0.25) 
end   
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