Discussion

SCALING RULES (similar to rules for a rolling disk)

Mass Scaling: If all the mass densities of all the parts is doubled, the equations are ab-
solutely unaffected. Thus a motorcycle plus rider is perhaps like .a heavy bicycle with a
young child riding it. '

Speed and Length Scaling: If the dimension of every part on the bicycle (including the
rider) is multiplied by a given factor, the stability will be the same as long as the speed is
correctly scaled:

V2

— = constant,

gL ,
where L is a typical length such as wheelbase or c.m. height. A larger size is thus like
a smaller V' — at a given speed, an otherwise standard bicycle which is too large will

weave, and one which is too small will ‘capsize’ (i.e. lean increasingly to one side without
weaving). If Vi is a bicycle’s lowest stable speed, V2../9L is a sort of “index of merit’
for bicycle design — the smaller the better. However as there is no rule for defining L,
slight differences are only meaningful if bicycle shape varies little. '

Note that a lengthened bicycle such as a tandem is similar to a lowered bicycle.

Time Scaling: When similar bicycles of different sizes have the appropriate velocities de-
fined above, their stability or instability will be similar. (That is, the two fourth-order
polynomials will have proportional solutions.) However, everything will happen slower
with the larger bicycle: the observed period of any oscillation when the speed is correctly
scaledis L/V or ¥/L/g.

Force Scaling: The horizontal ground-contact forces will scale like (FL/MV?) =
f(gL/V?), which approaches a constant at sufficiently high velocities (i.e., when gravity
may be ignored and an oscillation takes place over a fixed distance).

¥#kx* ¥y many people including ourselves, and has been predicted by a large number

of theoretical analyses (including those mentioned above).

In contrast, a bicycle which is unstable may be expected either to weave back and
forth to a greater and greater extent, or to lean increasingly to one side or other. The loss
of balance may take place either slowly (thus permitting rider intervention) or quickly.

Note that a stable bicycle need not be slow-responding or require large handlebar
torques. To understand this, consider a balsa-wood pendulum hanging from a pivot: this
is unquestionably stable according to the above definition, yet it may quickly and easily
be displaced.

To solve for the no-hands motion of a bicycle we can eliminate one variable (either
X or 1) from the above second-order differential equations of lean and steer, which leaves
a single fourth order eqation for the other variable. This equation is the same whichever
variable is kept, so we simply present it as a differential operator:
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or
d* d? d? d
~— + B—0 —+D—+ F =
At Bt +Dg+E=0,
where the coefficients B,C, D, E are polynomial functions of the velocity (which at any
given speed are simply constants like A); see APPENDIX C. These coefficients are each
rather complex combinations of bicycle parameters.

To study stability, we have considered several options:

— Solve for the motion of a given bicycle using a computer, and see whether it falls
down: The trouble with this approach is that there are so many quantities needed to
specify a bicycle — ten or twenty design parameters — that to explore non-standard
designs thoroughly (say five or ten values of each parameter) might require millions or
even trillions of computer runs. Even if it were practical to perform these, the results
would be difficult to absorb.

— Solve the equations analytically, i.e. in terms of sines, cosines, and exponentials.
Unfortunately this is extremely difficult, and the results are so messy that one can
not see general truths — numbers describing a specific bicycle and specific initial
motion must be substituted, leading to the same situation as above. '

— Realize that we don’t really care about the particular motion arising from a particular
disturbance, but rather whether all leaning and steering motions eventually damp
out or not. This property of solutions to the equations of motion can be found out
from the eigenvalues alone, that is from the roots of the fourth-order characteristic
polynomzal:

As4+B33+Csz+Ds+E:O.

If all the roots (eigenvalues) have negative real parts, then all possible solutions will
involve decaying exponentials, and x and ¥ will always return to zero. The trouble
is that even the roots alone are hard to find, unless we use a computer on specific
numerical cases. So this is still not really promising. '

CHRONOLOGICAL COMPARISON OF THE LINEARIZED

EQUATIONS OF MOTION

FOR THE BASIC BICYCLE MODEL



Introdﬁction

In Chapter III of this thesis the linearized equations of motion for a Basic bicycle
model were presented. This chapter chronologically compares other authors’ linearized
equations of motions for a bicycle to those we derived in Chapter III. When it was not
possible to directly compare equations, we have tried to simplify other authors’ equations
to represent the linearized equations of the Basic bicycle model, and/or we simplified the
equations from Chapter III to represent the model studied by the particular author. In
some cases neither approach was possible due to the complexity of the other equations.
For these cases we have given a brief description of the their equations, and when possible

have commented on the likelihood of correctness.!

The purpose of comparison was to gain confidence in our derived equations and to
see which studies could legitimately be used without modifications. Knowing if other
authors’ equations agree with ours also gives us a basis for evaluating their conclusions. It
is from the results of the numerous comparisons given in this chapter, that we developed
and tailored what we feel is the easiest way to correctly derive the linearized equations of
motion, as presented in chapter III. !

The equations of motion of a bicycle have mainly been derived either from Lagrangg’s
equations, or using Newton’s Laws on the individual rigid bodies which make up a bi-

cycle. Chapter III describes the derivation of the linearized equations of motion using

Lagrange’s equations with nonholonomic constraints. Ddhring [1955] derived an equiva-

! This chapter includes some of the conversion notations required to make our compar-
isons.



lent set of linearized equations using Newton’s Laws. Weir [1972] gives a four degree of
freedom Newtonian derivation using vector notation. To our knowledge we are the first
to derive correct linearized equations of motion for a fully general Basic bicyclé model
with Lagrangian methods. It seems that using Lagrange’s equations is a simpler approach
because it eliminates the requirement of solving complicated simultaneous equations re;p-
resenting the force and moment balance on the 4 rigid bodies that make up the Basic
bicycle model.? We mention however, that the Lagrangian approach suffers because many
students are not exposed to Lagrangian dynamics at the undergraduate level, especially
for systems with nonholonomic constraints. In this sense, the Basic bicycle model could
be used to introduce the subject, having general appeal and pedagogical meaning.

On the whole, the previous literature concerning the equations of motion suffers from
3 major flaws:

1) Some derivations seem impenetrable. This results from leaving out steps, from choos-
ing notation which is not well suited to the job, from using roundabout procedur:,es
when more direct ones are possible, from not simplifying the results afterwards, al;d
from not explaining their physical significance. The resulting equations are often far
too complicated to use, except numerically. Some equations are so long that it takes
several pages just to define the coefficients. Most of these studies do not enhance the
reader’s understanding of bicycle motion.

2) Few or no comparisons were made to works by previous authors, so their correctness
was not known, and earlier results were ‘lost’. Only one author explicitly stated that

he had compared his equations to a previous author’s.

? See for example Roland [1971].



3) The models used by some authors have ignored major stability-related design param-
eters. Some lack steering axis tilt, have only point masses, or make other assumptions
restricting distribution and location of mass.

What follows is a chronological comparison of all papers found in which equations
of motion for bicycles (or motorcycles) are presented. Because we feel that failure to
compare to ofhers’ equations (especially when they are cited as a reference) is inexcusable,
we have noted each author’s comments on previous works. In our comparisons we found
that in fewer than half of the papers do the equations of motion resemble those derived in
Chapter IIT. Of the papers discussed, we found that exactly two derived fully general and
perfectly correct results (one of which was adopted by another investigator). Several more
were either a little less general or had minor errors which an alert reader might catch. ;A
number of others were too complicated to check in full (but some of them raised some

questions we could not answer). Finally, several are just plain wrong.
Results of Chronological Comparison of Linearized Equations of Motion3

Bourlet, 18?7

Bourlet published a paper containing mathematical analyses of bicycle stability based
on a “complicated differential equation” which is not derived or published in his trea-

tise. His paper includes a rider controlled and “hands- off” analysis and was criticized By

* Comparisons to works by Whipple [1899], Carvallo [1901], Sommerfeld and Klein
[1903], and Déhring [1955] were performed mainly by Dr. Jim Papadopoulos, whose results
are summarized here. Some of his understanding and commentary on other comparisons
are contained in other parts of this chapter.



Whipple (1899) for making assumptions about the rider that were “so artificial that the
results have little interest.” Because Bourlet did not publish his equations of motion no
comparison of his equations is possible. Results from his analysis seem to be sketchy based

on Whipple’s discussion.”

McGaw, 1898

McGaw in 1898, according to Whipple (1899), discussed steady motion which Whipple
claims is a special case of his analysis (see (4), page 325). Whipple noted the difference
between himself and Mcgaw and attributed it to an error in the application of virtual
work by McGaw. Any work done by Mcgaw is assumed then to be contained in Whipple’s
analysis. We have not yet looked at McGaw’s paper.

Whipple, 1899

The first to formally derive a fully general and scholarly set of equations for the Basic
bicycle model was Whipple in 1899. He treats the front and the rear parts symmetrically
throughout the derivation. He derived nonlinear governing equations of motions for a Basic
bicycle model with an active (leaning) rigid rider, and then linearized about the vertical
equilibrium configuration. His equations of motion can he found as eq. X1V, eq. XV, and
eq. XIII in his paper on pp. 321-323, but not all terms are defined. The. equation are
restated more clearly and explicitly in matrix form or p. 326. We also note that the figure
defining some of his variables is at the end of the bound volume containing his paper.

It is most convenient to compare Whipple to Ddhring [1955) since similar axis orienta-

tion is used. The equations on page 326 are in the form of the 3 x 3 matrix which operates

T See Whipple (1899), page ***.




on his variables ¢, ¢', 7, where X is the derivative operator Tji' There are a few evident

typos: the first term of the second row should have A2 not Az; and the third column second
row should have W+, not W'y) .
We found his notation to be more difficult to understand than most and therefore give

some details about the comparison. In his notation,

and

where 9 is the lean of the rear frame and Q is the steer angle. (In our notation the lean
of the rear frame is xr and % is the steer angle.) The last equation in his matrix defines
7 as a function of ¢ and ¢' and allows one to eliminate = from the first two equations
of the matrix. Doing so, one finds the first equation is in complete agreement with our
lean equation when ¢ and ¢' are written in terms of ¥ and Q. The second equation of
the matrix, when it is corrected and then multiplied by ft’)‘s'o, we find agrees complete]y
with Déhring’s [1955] equation (31). As is explained later, Déhring’s equation (31) is a
linear combination of our lean and steer equation and thus Whipple’s linearized equations
are in complete agreement with those presented in Chapter III. His wbrk, which is as
sophisticated as almost any later investigation, was evidently done for his degree from
Trinity College, Cambridge University.

Overall, the definitions of Whipple’s variables are difficult to decipher and make his
paper difficult to read, but his equations appear to be rigorously derived and are fully

general when compared to those given in Chapter III. Whipple is critical of McGaw’s
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[1898] study of tricycles, and Bourlet’s [pre 1896] study of bicycles, neither of which have

we read.
Carvallo, 1901

Carvallo [1901] wrote 300 generally lucid pages on the stability of monocycles (rider
inside a single wheel) and bicycles. Only the second part of the monograph, which won
a prestigious prize, concerns us. In it he modifies Lagrange dynamics to deal with rolling
hoops and bicycles (we were not able to tell if his method is a new way of dealing with non-
holonomic constraints). We are vconcerned primarily with section V on no—hands stability.
The equations where each term was derived are laid out on pp. 100-101, and restated in
condensed form on p. 103. The equations are exactly analogous to ours, one for lean and
one for steer.

Although we could not find where Carvallo said this, it appears that his bicycle has
two identical heavy wheels, the rider and frame are considered a single unit, and the mass
of the front assembly is at the center of the front wheel and its inertia properties are those
of the wheel. This is not an unreasonable idealization if the handlebars are not heavy and
are positioned on the steering axis as was common in designs of that day. Technically, for
such a design the mass of the handlebars and straight part of fork can then be considered
part of the rear frame.

We find that Carvallo’s equations (for a bicycle with massless forks and handlebars)
agree exactly with ours. Most quantities are defined in the text, but the reader should
note that the wheel inertias are defined relative to their ground contact, i.e. Cy is for
spin about a diameter, A, is for lean (i.e., Ay = C1 + p1R?), B, is for rolling about.tl.le.
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contact point (i.e., By = I, + py R?). S = % is the wheel rotation rate. Carvallo makes no
reference to other works, which is not surprising as his research was evidently performed

in 1898.
Sommerfeld and Klein, 1903

Sommerfeld and Klein (S & K) in 1903 derived the linearized equations of motions for
the Basic bicycle model having all the mass and inertia of the front assembly in the front
wheel (similar to Carvallo). Somewhat similar to Whipple [1899], thej used a Newtonian
analysis of the front and rear assembly, and treated the two parts as two trailers attached
to the steering axis, deriving the linearized equations of motions using axes parallel to the
steering axis. S & K refer to Whipple [1899] and Carvallo [1901] bu;c do not say whether
their equations agree. |

Their Vequations are most easily compared to Ddhring’s [1955], and are found to be a
correct subset of his. It is possible that S & K’s slight simplification(s) to the model were
due to their main interest in determining what effect the wheels as gyroscopes had on the
stability (since the article is a chapter in their massive work on gyroscopes). They are

critical of Bourlet [1898] (whose book we have not read).
Bower, 1915

Bower in 1915, without reference to any previous bicycle work, derived the linearized
equations of motion for a simplified Basic bicycle model at the end of an article mainly
concerning the gyroscopic effects of the engine and wheels on steady turns. His model

consists of a rear frame with its center of mass above the rear contact point, having polar
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inertia Rz provided by two point masses, one ahead and one behind the center of mass.
Two smaller masses at the same height are attached to the front assembly. Wheel inertia

and caster trail are also included, but the steering axis is restricted to be vertical.

Instead of providing two second order equations for his model, he presents the govern-
ing 4th order linear differential equation (eq. (19) in his analysis), which is not convenient
for comparison. The e coefficient, given as equation (24) in his paper, is comparable to
the determinant of the X matrix presented in our chapter III. Comparison indicates that
Bower’s equations are missing the gv term in the Ky coeflicient of the lean equation for
his simple model which confirms that his equations lack some of the effects of trail has on
the bicycle. No comparison was made to Bower’s coefficients A-D for his simplified bicycle

model, but casual observation indicates they also lack terms.

Looking back at his derivation it appears that his ¢ is our —, and his 6 is our y,.
His egs. (15) and (16) may be added to eliminate the internal reaction P, thus leading to a
lean equation. However, (a) he has ignored product of inertia terms (relative.to the wheel
contacts) which should appear multiplying his w1, 123 this is correct for the rear part of
his simplified model, but not for the front unless trail vanishes. Also, (b) he has left out
the lateral offset of the front and rear mass center from the track line due to steer a.ngle;
this too is correct for the rear part of his simplified bicycle but not for the front unless
trail vanishes. (It also appears that he should have included a vertical reaction force at the
steering bearing, though this would cancel when (15) and (16) are added.) Finally (c) his
centrifugal forces (such a f; are in error because he assumes a steady curve due to steer
angle divided by a finite wheelbase, whereas in fact even with an infinite wheelbase the
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rate of steer can produce path curvature of the front wheel and with nonzero trail the rate
of steer also affects the yaw rate of the rear wheel. Based on these observations, it seems
 likely that his lean equation could apply correctly to his simplified model only when the
trail is zero.

We believe the steer equation is formed by adding (1 + $)(eq. 17) + ($)(eq. 18) to

eliminate P (the term multiplied by his §), but we have not checked this in detail.
Pearsall, 1922

In 1922 Pearsall, with the stated intention of extending Bower’s [1915] ideas and
discovering the cause of “speedmans wobble,” derived a set of equations for a bicycle
model somewhat similar to the Basic bicycle model presented in Chapter III. He never
states precisely whether his model is restricted in any way, but for example, his equations
don’t include any product of inertia terms, so they are probably not general.

His technique for deriving the equations of motion was to first linearize the equatiops
of motion of a rolling hoop and then “add on” the trailer effects due to the remaining
parts of the bicycle using fairly casual arguments. While his brief verbal Jjustifications
sound valid, in fact almost no terms in the equations are exactly correct. We did not make
the effort to trace his errors, but note that there may have been a major mistake in the
kinematical treatment (which is not spelled out very explicitly), that is, the headings
and @ of the rear and front assemblies are defined relative to the track line, but then they
are treated as coordinates relative to inertial space in the equations.

We compared his equation (4) to our steer equation and his equation (5) to our lean
equation and found his equations significantly differ in almost every term when compared
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to those presented in Chapter III. His equations also disagree with Bower’s model.

Pearsall does not say if he compared his equations to Bower’s, and he does not refer

to any other works.
Timoshenko and Young, 1948

In this textbook on advanced dynamics, Timoshenko and Young derived a nonlinear
(large-angle) lean equation for a simplified Basic bicycle model having only a point mass
in the rear part of the bicycle, and a steer angle controlled by the rider. Their model
neglects wheel inertias, steering axis tilt, trail and a front mass offset from the steering
axis. When linearized, we find this lean equation agrees with our lean equation simplified

for an equivalent configuration.
Déhring, 1955

In 1955, in order to more generally analyze the stability of motorcycles and ‘mo-
torscooters, Dohring extended Sommerfeld and Klein’s (S & K) [1903] linearized equations
for the Basic bicycle model by allowing the mass distribution of the front assembly to be
fully general. Just as S & K did, D&hring used Newton’s Laws to derive the equations

of motion in linearized form, rather than linearizing from nonlinear equations as Whipple

had.

Dohring’s final equations were found to be in exact agreement with those derived in
Chapter III. In order to compare his equations to ours we made the following substitutions
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in his equations (29) and (30) of his [1955] paper,

P =7coso

6y =0, —vysino
where v is steer angle (our ¥) and 8, is lean angle (our Xr). When these substitutions are
made D6hring’s equation (30) is exactly our lean equation. Our steer equation results from
the linear combination of D&hring’s equation (31) and (30). Using Déhring’s notation this

combination is as follows:

(eq.l31) + ¢ sin al(eq. 30) = —Mg = our My

Although not rigorous in how his linearizations are made, DShring’s derivation was
fairly easy to follow, and offers a good physical description of the variables and equations

of motion. Dohring refers to S & K, but never states explicitly how his equations compare.
Collins, 1963

In his 1963 University of Wisconsin Ph.D. dissertation R. N. Collins, working on a
project supported by Harley Davidson Motor Company, studied a Basic bicycle model with
the addition of a driving force on the rear tire and an explicit force for aerodynamic drag
applied to the front fork/handlebar assembly. He derived the equations of motion using
Euler’s equations (Newton’s Laws) for the 4 rigid bodies of the Basic bicycle model.

Collins derives nonlinear velocity and acceleration expressions for the rear and front
center of mass first (see page 19 and 20 of his dissertation), and then linearizes about
the vertical equilibrium position, before deriving the linearized equations of motion. By
writing the drive force and aerodynamic drag force as a function of the square of the

13



forward velocity of the motorcycle (see p. 12 in his dissertation), he alters the vertical
contact forces on the front and rear wheels. By making the assumptions of no slip angle
and constant velocity he has only two degrees of freedom for his model and he is therefore
able to write the linearized governing equations as two coupled second order ordinary
differential equations in the lean and steer angles (see p. 76 eq. (5.1_)'and eq. (5.2)
in his dissertation). The final equations are complicated in appearance and include over
30 quantities defined in terms of motorcycle parameters. (These quantities often include
previously defined quantities, which further complicates understanding of the equations.)

His equation (5.1) is not exactly the steer equation, and his equation (5.2) is not
exactly the lean equation. However, if we transfer all the terms to the left hand éide, and

form the combination,
sin afeq. (5.1)] + h2[eq.(5.2)] = [equation with no ¢ and no Mj),

the result appears to be the lean equation. That is, in our notation the coeflicients M, ,
Cyx (which is zero), K, are all in agreement with those presented in Chapter III. The
steering moment M3, our equivalent My, also drops out of the equation as it should. So
while the task of multiple substitution was tedious and prevented us from completely com-
parison of the lean equation, or even from determining what combination of his equations
ought to give our steer equation, it may be that Collins resulting equations are correct.

The only potential flaw to come to light is that Collins equivalent to our Cyy term,
namely

——(sin OéKz] -+ hszg.]),

should probably include the angular momentum of both wheels. However, this expression
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appears to contain only the front moment of inertia I, not Ij.
Collins refers to the works of Sommerfeld and Klein [1903], Bower [1915], Pearsall
[1922], and Déhring [1955], but never compares his equations to theirs (nor to those of

Whipple [1899] or Carvallo [1901], who were cited by S & K). ’ ‘
Singh, 1964

One year later, working on the same project sponsored by Harley Davidson Motor
Company, D. V. Singh’s Ph.D. dissertation added tire side slip to Collins model. For
reasons not stated, Singh rederived the equations of motion in a notation similar to Collins,
with just a few modifications for tire side slip.

Singh’s final equations are (6.11-d) and (6.12-d) on p. 74 of his dissertation. These
equations were judged too impenetrable to compare to those in chapter III, because the

~coefficients are defined in terms of secondary quantities, which in turn are defined és
functions of physical parameters. However, on p.49 he assumes that the tire corning forcés
(tire side slip) are proportional to the steer angle, which is only true for steady turns.
Hence, we judge at least his treatment of side-slip (eq. 4.31) to be incorrect, though if
sideslip is prevented we can’t say whether or not his equations are correct.

Surprisingly, it was noted by casual review of Singh’s and Collins’ theses that disagree-
ment exists in their expression for the velocity of the rear center of mass of the vehicle.
This can be found on page p. 52 of Singh’s dissertation eq. (4.40a-c) and p. 19 of Collin’s
dissertation eq. (2.13a-c). Equation 4.40(a) of Singh’s dissertation has an extra term com-
pared to 2.13(a) of Collins, and some signs appear to be different in subsequent equations,

although the coordinate axes choosen in both treatments seem to be equivalent.
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Though he refers to Collins and to Collins’ references, Singh does not compare his

equations to anyone.
Netmark and Fufaev, 1967

In 1967 Nefmark and Fufaev (N & F) with a brief reference to Déhring [1955] derived
equations of motion of the bicycle as a classical example of a nonholonomic system. In
their derivation they use Lagrange’s equations with nonholonomic constraints for the path
of the wheels and obtain the linearized equations of motion for the Basic bicycle model. It
is their derivation that our chapter III mainly follows.

The equations in their book which represent the relatioﬁs between the auxiliary vari-
ables and generalized coordinates, linearized rolling constraints, kinetic energy for the re;,r
and front part of the bicycle, potential energy of the bicycle, and equations of motion, can
be found starting on p. 334 as eq. (2.10), eq. (2.15), eq. (2.26) and eq. (2.29), eq. (2.30),
and eq. (2.37-38), respectively.

As mentioned in Chapter III an error is made in their formula for potential energy
eq. (2.30). (The correct potential energy to second order is found in section 4 our of
Appendix A.) This error results in the incorrect coefficients aq, b3, and by in eqs. (2.37-
38), where gmsyd should be replaced by g(mzd + Ecll) In addition to these corrections
the reader should note that a typographical error occurs in the b, term on p. 344 of the}r
text (where —;— should read %) and in several other terms in the description of the geomet%y
and viscous damping expressions. Also, in deriving the nonlinear equations they present
nonlinear kinematic equations which are actually incorrect because they neglect the rise

and fall (pitch) of the bicycle due to variations in the steer angle. (However, the linearized
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versions of these equations are correct as shown in section 1 of our Appendix A. However,
quadratic terms are needed to derive the correct potential energy.) By eliminating the
effects of viscous damping in the steering column, and making the above corrections N &
F’s final equations of motion can be brought into agreement with those derived in chapter
III.

N & F refer to Dohring* and state that their equations agree in form, but it is unlikely
they meant term for term as we have found them to be in disagreement. They also refer
to a Russian book by Loicjanskii and Luré [1935] when analyzing a simplified model of an
uncontrolled bicycle on p. 355. Because this reference was not available, it is not known. if
agreement actually exists, however it seems probable because N & F'’s equations become
correct when simplified in this way. N & F do not mention any other bicycle-related works,

although their massive reference list includes Carvallo [1901].
Singh and Goel, 1971

In January 1971 Singh and Goel (S & G) add steer damping to the Basic bicycle model
in analyzing a Rajdoot motor scooter. In their analysis they claim to use Déhring’s [1955]
linearized equations of motion (which we have found to be correct) with a steering torque
proportional to the the time derivative of the steer angle (viscous damping). We have nt‘)t
rigorously compared term by term but casual observation shows that the equations are in
the same format as those of Dohring [1955].

S & G refer to Pearsall [1922], Timoshenko [1948], Déhring [1955], Collins [1963], and

Singh [1964], but make no comparison to their equations of motion.

* See p. 361 of their text.
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Sharp, 1971

In August 1971 Sharp, who apparently began working on the equations of motion
while at the B. S. A. motorcycle company, published a paper presenting his version of the
linearized equations of motions for the motorcycle. In his Lagrangian approach rather than
using the method presented by Nefmark and Fufaev in chapter III, he explicitly allows the
vertical force from the ground on the front wheel (Z#) to do work on the bicycle. For this
reason Zy appears in his expressions for the generalized forces. In this way he accounts
for the 'change in potential energy of the bicycle when steered. The nonlinear equations he
presents are actually only approximations for this reason.

Allowing for wheel side slip, and incorporating the work done by the vertical force
on the front wheel, he derived Lagrange’s equations with generalized forces at the wheels’
contact with the ground. These resulted in four equations of motion, incorporating front
and rear tire side forces, which govern lateral motion, yaw, roll, and steer of the motorcycle.
They which appéar in his paper starting at the bottom of p. 327 (no equation numbqrs
are given). These equations are correct as far as we know.

r

However, when assuming that the tires have infinite stiffness (no side slip), which
reduces the number of equations from four to two, an algebraic mistake and several typo-
graphical errors occur in the appendix to Sharp’s 1971 paper. As a result the steer equation
in Appendix II of his paper (the second equation) is incorrect. The algebraic error made

by Sharp results in the incorrect cancellation of the following term (in his notation),
2[Myek + If, cos e + Myebllyt §

We also make note of the following typos: the z? in the lean equation of Appendix IT should
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read #2; there is an extra parathesis in the ninth term of the fourth equation in Appendix
1 section entitled “Linear equations of motion”; the term i, coseé in the expression for
% in Appendix II should read &y cosed; I fy should read iy in the ¢ term of the steer
equation of appendix 2; and finally terms involving %;y-ll t&1 sin e in the § term of thé steer
equation can be eliminated as they cancel one anothel;.

Sharp also makes the slightly restrictive assumption that one principal axis of the
center of mass moment inertia tensor of the front assembly is parallel to the steering axis.
Thus the equations in his paper, when corrected, are a subset of those derived in Chapter
IIL. Sharp refers to the work of Whipple [1899], Pearsall [1922] and Collins [1963], but does

not compare his equations to theirs.
Roland, 1971

In 1971 Roland published a report written for the Schwinn Bicycle Company con-
taining a extensive nonlinear computer simulation study.’ In this report Roland derived
nonlinear equations that represent the motion of a bicycle with tire side slip and rider lean.
His 8 equations of motion are shown in matrix form on p. 37 of his report. Reading from
the top down the first three equations represent force balance for the entire bicycle. The
fourth through the sixth equations represent moment balance for the entire bicycle. The
seventh equation is apparently moment bal@nce for the frame assembly about the steer
axis, which can be used to solve for the steering torque if the tire side force is eliminated.

The eighth and final equation represents the rider upper-body lean degree of freedom, and

5 This report was based on work performed for a National Commission on Product
Safety research contract. See Roland [1970].
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can be used to solve for the tilting moment of the bicycle on the rider when rider motion
is prescribed. These equations are written so that the second time derivatives are all on
the left side of the matrix equation, while all the lower order terms are on the right hand

side.

Roland used axes parallel and perpendicular to the steering axis in the plane of the
rear frame, and perpendicular to the rear frame. However, his report to the Schwinn bicycle
company is missing an important figure describing the orientation of the body-fixed axes.

This figure is contained in a later publication Mechanics and Sport [1973]. In the later

publication, Roland also corrects some typos that were in the 1971 publication.

In the 1971 report, the seventh equation, the steer moment equation, is given on p.
13 as eq. (2.3.30). We took this equation and assumed e = z/, — z'% in order for it to
agree with the seventh equation in the matrix on page 37. We then made simplifications

to the equation to see if it agreed with our steer equation.

First we set any term multiplied by yr or y} equal to zero. (This means there is no
lateral imbalance.) We then neglected terms multiplied by the pitch rates ¢ and ¢", which
are second order effects. Next we assumed angles (and their time derivatives) to be small
and let sin § = 6 and cos § = 1, and cancelled any products of p, p", ¢, ¢", and § and their

time derivatives.

We then linearized the variables 712, v22, 732 in the same way. Terms multiplied by

Y12 become zero, 722 = mg(rV — g¢) and v32 = myyg.

The coefficient of the § term seems correct, and the resulting equation appears some-
what similar to our equation (3.14), but we are not able to make the resulting equation
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agree completely. There is some question as to whether the comparison we are making
is correct, because it is not understood if in fact Roland’s equation (2.3.30) should be
equivalent to our steering equation.

An equation equivalent to our lean equation has not yet been constructed from
Roland’s equations. However, it is probalbe that an equivalent equation would be ob-
tained by combining the fourth and sixth equations in his matrix to represent rolling
moment about the track line, setting the rider lean angle to zero, including the mass 6f
the rider with that of the rear frame and rear wheel, setting pitching motion to zero, and
setting tire side slip to zero. The lateral forces, Fytr and Fyi¢, on the wheels can perhaps
be solved for analytically using the first, fo—urth and sixth matrix equations or taken from
other linearized equations studies. Since we have not attempted this, we are not able to
judge whether his lean equation reduces to ours.

Roland refers to the works of Whipple [1899], Bower [1915], Pearsaﬂ [1922], Man-
ning [1951], Dohring [1955], Collins [1963], Singh [1964], and also Singh and Goel [1971].

However, he makes no comparisons to their equations of motion.
Weir, 1972

In an appendix to his 1972 UCLA Ph.D. dissertation focusing mainly on the control
and handling characteristics of motorcycles, Weir derived the equations of motion for
the Basic bicycle model with a general Newtonian approach, linearizing as the derivation
proceeded. Weir’s final 4 equations, eq. [A-85], [A-92], [A-99], [A-108] in his analysis,
represent the lateral motion, yaw, lean and steer equations of motion, like Sharp’s [1971]
four equations. Weir, however, did not make the simplifying assumption regarding the
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principal axes of the front inertia.

Weir was the only author to state explicitly that he compared his equations to an-
other past work.® He compared his equations to Sharp’s equations before simplification
to only two nontrivial degrees of freedom. In comparing Weir’s 4 equations to Sharﬁ’s
four equations, we find Weir and Sharp in agreement with one another. Weir, however, is
more generaJ than Sharp, with regard to the principal axes of the front system. Weir’s two
equations agree with ours, as long as our nonstandard sign convention for wheel angular
momentum (positive for forward rolling) is recognised.

Besides stating that comparing his equations agree with to Sharp’s, Weir refers to
Whipple [1899], Pearsall [1922], Dohring [1955], Singh [1964], Singh and Goel [1971], but

does not compare his equations to these works.
Singh and Goel, 1975

In 1975 Singh and Goel presented (but did not derive) a 12th order matllematiéal
model, for the continued analysis of the Rajdoot scooter. Instead of using Singh’s [1964]
equations, or D&hring [1955] equations as they did in 1971, they employ a Lagrangian
formulation which appears similar to Sharp’s [1971] format. The authors claim that the
model used is a fully general Basic bicycle model, having in addition unsymmetric lat-
eral mass distribution, lateral slip, aerodynamic forces, transient tire forces and moments
(which account for the high order of the system), and viscous damping of the steering.

The four equations of motion presented are said to represent the lateral motion, yaw,

lean, and steer equations of motion. We have not yet checked these equations for correct-

8 See page 130 of Weir’s dissertation.
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ness, but they do appear similar to Sharp’s [1971] four equations. Singh and Goel refer
to the 1971 paper on their Rajdoot scooter and Sharp’s [1971] paper but do not compare

their equations.
Sharp and Jones, 1975

In 1975 Sharp and Jones use the equations derived by Sharp [1971] and modify it to
incorporate a different tire model. As in the 1971 paper the principal axes of inertia are
assumed to be parallel and perpendicular to the steering axis equations of motion. Other
than this, these equations are equivalent to those in his 1971 paper, which when simplified

are a subset of our equations presented in Chapter III of this thesis.
Weir and Zellner, 1978

Weir and Zellner later published the results of Weir’s dissertation derivation in Motor-
cycle Dynamics and Rider Control (SP-428, 1978), but mistakenly thinking Weir’s earlier
derivation was wrong, they deleted a necessary term without comment. The term needing

correction can be found on page 8 in the matrix equation (1), where the second row fourth

column terms of the matrix should read,

L+
I6 P +L53+L5

There are also some typos in equation (1) and we note the third row fourth column term
should read,
N gsz + N §S + Ng
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and finally the fourth row fourth column term should read,
Tgs2 + T i8+ Ts

Because of these typographical errors we recommend using Weir’s dissertation for any

comparison of equations or results.
Gobas, 1978

Using a technique which he calls the Boltzman Hamel method, in 1978 Gobas derived
a linearized set of equations very similar in form to Nefmark and Fufaev [1967]. Gobajs’
equations, (1.4) in his paper, incorporate the forward acceleration of the bicycle, V. Setting
V terms to zero and comparing, we think the lean equation may be correct, but in the steer
equation the coefficient to the y, term seems to be in disagreement with the equations
in our Chapter III. The variable b is not defined in the paper but we suspect that it is
equivalent to our v.

Gobas refers to Nefmark and Fufaev, but does not compare equations.
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Adiele, 1979

In his 1979 Master’s thesis Adiele, focusing on design optimization and performance
evaluation of two-wheeled vehicles, derived nonlinear equations of motion for the Basic
bicycle with tire side slip using the method of generalized active and inertia forces. His
model is linearized for small steer angles and results in 4 equations representing the late€a1
motion, yaw, lean, and steer equations of motion on page 33 of his thesis. |

His equation representing lateral motion, lean, steer, and yaw (in that order) are
present in matrix form on pages 22-24 of his thesis. His variable V is our X,, ) is our Xrs
8 is our %, and r is our §,.. Because his equations resembled Sharp’s [1971] four equations,
we expanded Adiele’s matrix, linearized his equations and compared to the equations in
Sharp’s Appendix I.

The results show that Adiele’s equations are in error, missing several terms compared
to Sharp and having several sign errors. However, by allowing the front mass to be zero
his equations are nearly correct.

Adiele refers to Roland [1971], but does not compare equations.
Lowell and Mckell, 1982

In 1982 Lowell and Mckell, with ad hoc arguments similar in style to Pearsall [1922]
derive a set of linearized equations for a Basic bicycle model with a point mass in the
rear part, some steering inertia, but no front mass, and no tilt of the steering axis. When
compared to our equations simplified for this case, we find there is significant disagreement.

Several terms have been neglected in both the lean and steer equation, however, the terms
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presented are correct. The neglected terms are significant, as a bicycle with vertical steering
axis and positive trail should show divergent instability at all speeds (E < 0), whereas in

fact they find oscillation about a steady turn (E = 0).

We find the only way to make their equations correct is to use them for a bicycle with

zero gyroscopic effects and zero trail.

Lowell and McKell refer to Timoshenko and Young [1948], Grey [1918], and Pearsall
[1922] but only state (correctly) that their lean equation agrees with Timoshenko’s when

simplified. No other comparisons are made.
Conclusions

Of the 20 sets of equations discussed in this chapter only 3 sets (Dohring [1955], Singh
and Goel’s [1971] adaptation of these, and Weir assume zero angular momentum and zero
trail terms. [1972]) agreed exactly with those we presented in chapter IIT of this thesis.
(The slip angle condition had to be set to zero in Weir’s equations.) Five others simpily
had minor errors, or were not as general (Whipple [1899], Carvallo [1901], Sommerfeld
and Klein [1903], Timoshenko and Young {1948], and Sharp [1971]). Three‘ (Collins [1963],
Singh [1964], and Roland [1972]) were to difficult to evaluate, though we have definite
reservations about the first two. The remaining eight were missing terms, or disagreed in

other ways (we did not check Singh and Goel [1975].

Other works which derived the linearized equations of motion, but whose comparison
results are not presented here, are Eaton [1973] and Psiaki [1979]. Faton’s derivation
was not noticed until late in this thesis’s progress. Psiaki derived very dense nonlinear
equations and then linearizes. His equations were judged not worth the effort to sort out.
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Guo [1979] performed a nonlinear analyses but did not linearize, so we did not compare to
his equations. Psiaki stated he found numerical agreement with Collins, and Guo referred
to Neimark and Fufaev but made no comparison with them.

Other scientists have studied various aspects of bicycle behavior without deriving
equations of motion. Rankine [1869] described steering phenomenology, and discussed
the relation between sinusoidal steering motion and the resulting sinsoidal leaning. Sharp

1896] derived the steer torque in a steady turn.” Jones [1970 incorrectly approximated
p

the steer torque for a leaning bicycle. Man and Kane [1979] studied only steady turning.
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