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ABSTRACT

This thesis focuses on increasing understanding of bicycle self-stability. As-
suming that short term rider controlled bicycle stability closely relates to bicycle

self-stability, the analysis may be useful in providing general design guidelines.

Because there is no established set of equations of motion agreed upon in the
literature, a ‘basic’ bicycle model having a rigid frame and rider, and rigid knife-
edge discs as wheels is introduced and the linearized equations for hands-off motion
are derived. When these equations are compared to 20 other systems of equations
in the literature, three past sets of equations are found to be in complete agreement
with those derived. Other sets of equations were not as general, were missing terms,

had sign errors, or disagreed in other ways.

The Routh-Hurwitz stability criteria are then applied to the derived linearized
equations to develop seven analytical design criteria. From the design criteria,
limiting criteria which bound any interval of velocities in which ‘the bicycle is self-
stable are discussed. An analytical proof shows that the ‘basic’ bicycle can not be
stable if the steering axis tilt, mechanical trail, and the distance forward from the
steering axis of the front assembly center of mass are all zero. Stabilization of the
bicycle by these parameters is then discussed and numerical examples given. In
addition, it is shown with specific examﬁles that the ‘basic’ bicycle model with no
angular momentum due to the spinning of the wheels can be made stable; and that

a bicycle with negative trail can be stable.



A summary of the conclusions of past work in the bicycle/motorcycle handling
and stability literature shows that most analyses have only explored small varia-
tions from a standard design popular in their day, and have provided fe\;v general
conclusions or design guidelines. As a method of exploring any design configuration,
a simple PC based computer program is described, and illustrated with numerical
examples.

Recommendations include using the analytical design criteria in combination
with information from eigenvalue-eigenvector studies to verify results of past in-
vestigations, and further exploration of new, possibly radically different, bicycle

designs.
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I. INTRODUCTION

Anyone who has ridden a bicycle has had some practical experience in bicycle
stability. However, some of us have experienced bicycle instability. Perhaps it was
when turning one’s head to see if there was an oncoming car, which created an
alarming swerve to the middle of the road; riding down a hill when your steering
began to uncontrollably shake back and forth; losing momentary control when your
bicycle hit a bump in the road; or being unable to ride with no hands on some
bicycles. These incidents of bicycle instability could cause serious accidents, which
possibly can be avoided through improved bicycle design.

The goal of our research is to improve bicycle design.! As a means to ‘ach.ie've
that goal the objective of this thesis was to gain understanding about bicycle sta-

bility and bicycle instability. The premise on which this thesis is written is that

1 This thesis was done in cooperation with the Cornell Bicycle Research Project

(CBRP).
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~ short term rider controlled stability is closely linked to the bicycle’s self-stability, as
defined in Chapter V. We believe the premise is valid because in the short term the
rider has little contrél. Hence, design chénge effects on the bicycle;s self-stability
will have almost immediate impact on rider’s perspective of handling, and possibly
performance. Based on this premise, this thesis focuses on understanding the self-
stability of the bicycle, but much of what is said and derived may apply to rider

controlled stability.

The study of bicycle and motorcycle stability has attracted attention from
such well known mechanicians as Rankine [1869], Sommerfeld and Klein [1903],
Timoshenko [1948], Den Hartog [1948], and Kane [1975]. Past works on the subject
range from purely empirical analyses to nonlinear computer simulation studies.
However, no set of equations of motion has been agreed upon. The literature lacks
comparisons of previous works. Past work has aimed at optimizing the particular
type of bicycle or motorcycle popular in its day, and does not develop understanding
of the relations between design parameters for bicycle stability. As a result, no

general guidelines or design criteria exist for bicycle builders and riding enthusiasts.

Currently what makes a bicycle more stable, or unstable, is misunderstood.
Bicycle design has evolved mostly from experience. How much rider input is re-
quired or desired? What do riders sense as being stable or unstable? What is the
effect of design changes on stability? These are some questions currently not fully
understood from previous research. It is this lack of understanding that has led to

some bicycles which are unpleasant, or even dangerous, to ride.
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This thesis develops and explores analytical design criteria which can be read-
ily used to gain insight on qualitative and quantitative handling characteristics of

different bicycles and riders.

The first step‘in research for this thesis was to find the correct equations of
motion and put them in a simple form. Because in the past so few have compared
their~work to others, and disagreements existed in the equations presented, the
derivation of the equations of motion was requirt;,d. Chapter III and Appendix A
are devoted to this task. The linearized equations of motion for a ‘basic’ bicycle
model are derived using Lagrange’s equations with nonholonomic constraints on the

wheel contacts with the ground, and resulting generalized forces of constraint.

In order to check our equations to see if they were correct, the résulting equa-
tions are compared to published derivations. Three sets of equations are found to
agree with ours completely (one author sighted another’s eqﬁations, so really only
two papers derive equations that agree with those presented in Chapter III); all

were derived using Newton’s Laws. A few other sets agree after slight corrections

and/or modifications.

To these the linearized equations we apply the Routh-Hurwitz stability criteria
and develop analytical design criteria, which we simplify as much as possible. From
these design criteria we prove analytically that the ‘basic’ bicycle model can not be
stable if the steering axis tilt, mechanical trail, and forwards location of the front
center of mass from the steering axis are all zero. We then show how stabilization

1s possible by any ome of these design parameters. In addition, it is shown with
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specific examples: that the ‘basic’ bicycle model with no angular momentum due
to the spinning of the wheels can be made stable; and that a bicycle with negative
trail can be stable.

For comparison purposes and to gain further insight for further research, the
conclusions of previous works were then reviewed and it was found that most anal-
yses of bicycle and motorcycle stability have only explored small variations from
standard designs popular from their day, and have provided few general conclusions
or design guidelines. Because of this, a PC-based method for quickly determining
stability at all speeds for any design conﬁggratiqn was created. The program is

contained in Appendix B. Sample program runs are contained in Appendix C.



II. BACKGROUND AND TERMINOLOGY

Background

The study of bicycle stability is a subset of the study of the dynarmics of two-
wheeled vehicles, which include bicycles, motorcycles, and scooters. Such vehicles
are sometimes called single-track vehicles in the techm'cai literature. Historically,
the published works involving two-wheel vehicles began with research of bicycle
dynamics. In the the early 1900’s when motorized vehicles became a practical means
of transportation, research in two-wheel vehicles focused more on the motorcycle.
This change in emphasis is probably due to the higher speeds involved in motorcycles
and hence, the increased possibility of more serious accidents.! Still, as indicated

in the reference list of this thesis, the phenomenon of how a bicycle stays upright

1 This is not to say that bicycle accidents can not be serious. Other motives for
the switch in emphasis of research may be economic, or related to the perception
that the bicycle is only a toy for children, while the motorcycle is a serious vehicle
for adults.



has remained a topic of general interest and of modern day research.

Dynamics of two-wheel vehicles can be studied with or without rider control.
A study with rider control would allow, for example, the rider to impose torques
to the handlebars or change the position of the upper body relative to the bicylcle,
typically in response to the bicycle’s motion (feedback control). The dynamical
equations developed in this thesis may be used to develop equatioﬁs that include
control, however, the analysis presented here neglects rider control/feedback.? In
this thesis we are studying bicycle self-stability for a model with a rigid rider who
is rigidly fixed to the rear frame of the bicycle and has no control over the bicycle.

As is indicated by the reference list to this thesis, recent technical works have
focused on motorcycle dynamics and in particular have concentrated on developing
tire models (see SAE Motorcycle Dynamics and Handling [1978]). However, as

indicated by works of by Lowell and McKell [1983] and Daniel Kirshner [1982], the

topic of bicycle dynamics is still not clearly understood.

Termanology

Throughout this thesis there are numerous terms that the reader who is not
familiar with the mechanical layout of the bicycle may not understand. Figure 2.1
shows a typical bicycle with arrows labeling design parameters and components
commonly used to describe bicycle geometry.

To clarify some terms used in this thesis we define them here:

1) trail — the distance, measured with the bicycle in an upright position, from

2 See the Chapter I for rationale of why rider control /feedback is neglected.



2)
3)
4)
5)

6)

7)

8)

7

the intersection of the steering axis with the ground back to the contact point

of the front wheel.

mechanical trail — measured the same as trail, this is the perpendicular dis-
tance from the steering axis to the contact point of the front wheel.
rake (fork rake) — the perpendicular distance from the steering axis to the

center of the front wheel.

tilt of steering axis (90°— headangle) — the angle defined by the steering axis

and the vertical.

sliding (skidding) — when a point on the tire/wheel which is touching the
ground moves relative to the ground.

sideslip — when a tire/wheel ‘contact point’ moves sideways relative to the
ground from the direction the wheel is headed due to the elasticity in the tires
and/or sliding. In discussion of vehicle dynamics the phrasé ‘sideslip’ usually
refers to the sideways motion due primarily to eiasticity of the tires. When
there is sideslip the direction of the velocity of the contact point is, in general,

not in the plane of the wheel.

slip angle — the angle made with the tangent to the contact point path (in-
stantaneous velocity direction) and the line from the intersection of the plane

of the front wheel and the ground plane.

lean (tip, roll), steer, yaw, lateral displacement, and forward displacement —
these are words for generalized coordinates and auxiliary variables used to

describe the motion of the bicycle.



10)

11)

12)

Some technical words used in discussion are:

generalized coordinates — minimal set of variables used to describe the position
and orientation of the bicycle. The term generalized coordinates is usually only
referred to when using Lagrange’s equations.

holonomic constraint - a constraint which is integrable. That is, it is such
that it is equivalent to some generalized coordinate being_:held constant, so the
number of degrees of freedom reduces. Many treatise on analytical dynamics
only treét constraints that are holonomic. It can be added to the derivation of
the equations of motion at any time. -

nonholonomic constraint - a constraint that is not integrable. A nonholonomic
constraint does not restrict the configurations which may be achieved, but does
reduce the number of ways the system is free to move at any instant. (Most
typical is a wheel or a skate.) Generally, this type of constraint ca.n be added
to the derivation of the equations of motion only after Lagrange's equations
(or equivalent) have been derived.

auxiliary variables - additional, redundant, variables used to describe, more

conveniently, the position and orientation of the front part of the bicycle.
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II1. OVERVIEW OF THE DERIVATION OF THE
LINEARIZED EQUATIONS OF MOTION
FOR THE BASIC BICYCLE

Introduction

This chapter reviews the derivation of the linearized equations of motion for
a bicycle model. In developing the model, simplifications were made to a real life
bicycle by assumptions about the ridgr-bicycle system behavior. The rider-bicycle
model used in this derivation was cho.sen to make passive rider (rigid rider, riding
no-hands) stability analysis as simple as possible, without neglecting what were
felt as the major stability related design parameters that affect the bicycle’s ‘self-
stability’. The model has been used by several others, supporting our view point,
and thus makes comparison to their equations of motion possible. Throughout this
thesis this bicycle model is referred to as the Basic bicycle model. In Chapter VI of
this thesis we will suggest ways to modify the Basic bicycle model by adding non-

standard features such as gyroscopes, dampers, and springs to enhance or reduce

10
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the self-stability of the bicycle. We refer to these models as Augmented bicycle

models.

The dynamical equations derived for the Basic bicycle model are not limited to
the passive rider case, though that is the only case we iﬁvestigate. As will be noted
at the end of this chapter, these equations can be easily modified to incorporate

rider-controlled steering torques.

The overview of ‘equations and derivation technique for a Basic bicycle model
was required because no commonly accepted set of equations have been established
in the literature on bicycle stability. Many papers exist which present equations
of motion.? However, few if any, close comparisons have been made to see if past
derivation results agree. This chapter tries to clarify the notation and procedures
for deriving the set of linearized equations of motion for the Basic bicycle model.

Chapter IV then compares these results to past works.

In the derivation of the equations of motion we assume small deviations away
from the vertical equilibrium position to make linearization of the equations possi-
ble. Our method of derivation uses Lagrange’s equations with nonholonomic rolling
constraints to arrive at the Basic bicycle model’s linearized governing equations.
The discussion follows the major steps taken in the derivation given by Neimark
and Fufaev [1967]. However, we correct the potential energy expression presented

by Neimark and Fufaev and point out other mistakes made in their derivation. In

addition, we have tried to give further insight into the equations and their physical

! See Chapter IV.
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meaning, and have simplified the algebra in presenting the final Basic bicycle model
equations of motion. As far as we know, this is the first set of equations derived
using Lagrangians equations which agrees in full with other Newtonian derivations,
which adds to the presented equations credibility.

For a linearized Newtonian derivation the reader is referred to Déhring [1955] or
Weir [1972], whose equations are équivalent linear combinations of what is presented
here.? Ddohring gives a good physical description of the equations of motion in his
paper. Weir’s equations are written for easy adaptation to control studies.

The derivation itself has several features fhat make it difﬁcult to perform. First,
the Basic bicycle is composed of four interconnected rigid bodies. This complicates
the Newtonian analysis significantly, and therefore the Lagrangian formulation was
used. Second, the constraints in this problem are nonholonomic; a topic not com-
monly studied or discussed even in advanced dynamics courses. Third, some ex-
pressions for kinetic and potential energy can not be solved for in closed form, so
small angle approximations must be made before the full equation}s are derived, i.e.
straight forward linearization from nonlinear equ;tions is not possible. As a result,
many previously derived sets of equations seem to be in error and we have tried to
clarify points of past confusion.

Because we feel the method used in deriving the equations of motion is a ma-
jor source of errors and confusion in the literature, throughout this chapter specific

details of the derivation, its theoretical justification, and physical interpretation are

2 See Chapter IV for exact conversion.
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kept to a minimum in order to present the derivation in a compact form. Addi-
tional understanding of the equations and specific details of the steps involved are
contained in Appendix A which is referred to throughout this chapter.

A number of potentially importani;, issues regarding the linearization and the
simplifications of the bicsrcle are actually quite subtle and perhaps important (such
as tire radius and tire-road interaction).®> Many are not studied in depth in this
thesis, but some are discussed briefly in the text when appropriate. It is hoped that
by clarifying the derivation for the Basic bicycle model, at least from a Lagrangian
standpoint, these questions can be more readily approached.

This chapter is divided into the major steps that are taken in deriving the
equations of motion for the Basic bicycle model using Lagrange’s equations. These
are: model description, definition of generalized coordinates and auxiliary vari-
ables, simplifying the nonholonomic rolling constraints, approximatiqg the kinetic
and potential energy to quadratic order, and finally applying the Lagrange operator
to develop Lagrange’s equations. With the aid of the simpliﬁed rolling constraints,
the Basic bicycle model’s equations of 'motion are developed by eliminating gen-
eralized forces of constraint from Lagrange’s equations. In all steps the order of
the equations used, for a system slightly perturbed from vertical straight-ahead

equilibrium motion, is such that the final equations are correct to first order.

® See Kane [1977].
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The Basic Bicycle Model

Assumptions

In building the Basic bicycle model we make the following simplifying assump-

tions about the bicycle-rider system and its behavior:

1.

The bicycle consists of four rigid bodies as shown in figure 3.1: the rear
frame with fixed rigi-d rider; the front fork/handlebar assembly; and the
front and rear wheel. The wheels are considered to be rigid knife-edge
disks.

The bicycle wheels roll on a rigid flat horizontal surface with enough fric-
tion between the wheels and the road to prevent sliding.

The rider does not move relative to the frame. (The rider may apply
steering torques.)

Onlj;r small disturbances from the vertical straight-ahead equilibrium mo-

tion position are considered.

. Within the bicycle-rider system there is no friction, e.g. no bearing torques

between the wheels and wheel axle.

. The only external forces applied to the bicycle are: a) body forces due to

gravity b) the constraint forces from the ground on the wheels (keeping
the bicycle from penétrating the ground and from slipping).  ¢) a tip-
ping torque acting on the rear frame. (This torque is set to zero for the
passive-rider analysis. We included to it here to emphasize the equations’

symmetry.)
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7. An internal steering torque on the handlebar, reacted by ‘the frame, is
permitted. This torque ié set to zero for passive-rider analysis.

8. When in its vertical equilibrium position the bicycle-rider system is sym-

metric about the vertical plane passing lengthwise through the rear frame.

9. We could assume constant velocity, though constant .velocity 1s a conse-

quence of the linearized equations.

The first two assumptions constitute a tire model having no sideslip angle.
With the first assumption we have neglected any deformation of the rear frame,
wheels, and front fork/handlebar assembly, and any motion of the rider relative to
the bicycle. From the practical standpoint, we are also neglecting the motion of the
chain and crank assembly, along with the pedaling motion of the riders legs. Most
importantly, we are including the tires as part of the rigid knife-edge disk wheels
(no tire radius), and because by definition they do not deform, no sideslip due to
tire deformation is permitted and there is only one point on a wheel in contact with
the ground.* The first assumption also implies that there is no energy loss due to
tire hysteresis and that the contact point is always in the pia.ne of the wheels.

The second assumption is critical in the derivation of the rolling constraints. It
says that the front and rear contact point do not skid over the ground (no sliding).
It is because of assumptions one and two that we can express the velocity of the
location of the rear and front contact point in an inertia reference frame as functions

of the orientation and spin rate of the rear and front wheel, respectively.

% For the definitions of slip angle, sideslip and sliding see Chapter II.
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With the third assumption, we are neglecting any motion of the rider has
relative to the bicycle (desired or undesired). This includes pedaling motion, arm
motion to move the handlebars to steer the bicycle and any wiggling motion the
rider may use to stay up with no hands.

The fourth assumption allows us to linearize the equations of motion and thus
simplifies the form of the final equations of motion.

The fifth assumption also simplifies the equations of motion and makes applying
Lagrange’s equations easier.

Assumption six means we are neglecting any wind and air resistance the bicycle-
rider system has. The validity of this assumption is decreased for motorcycle design
due to higher speeds and greater air resistance; such forces may Welllbe important
for stability depending on how they vary with lean and steer angle, and how much
weight transfer they produce.

Assumption seven has been added so that the final equations of motions are
in a form that allqws rider control of the steering to be added. Later, the internal
torque is to zero for our passive rider analysis.

The eighth assumption significantly simplifies the kinetic energy expressions
for the Basic bicycle model. It says that there is an equal distribution of mass on
both sides of a plane that splits the bicycle model vertically while in its vertical
equilibrium.

Alternative Way to View the Basic Bicycle Model

Equivalently, we can think of the development of the Basic model in a four
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step process. Figure 3.2a-d are a sequence of four pictures developing graphically
the Basic bicycle model. The pictures are conceptual drawings of the Basic bicycle
model based on the simplifying assumptions in our model. One interesting fact
worth noting, is that the quadratic order geometrical relations for the Basic bicycle
model are not dependent on the wheel radii, so the wheel contacts may be repre-
sented as specific points on the front and rear frames for the linearized equations.
Also, for constant speed bicycle motion, the wheel angular momentum may be re-
placed with a constant speed gyrostat. (A gyrostat is a quantity of spin angular
momentum not associated with any re-orientation inertia, so it reacts with a torque
proportional to precession. It may be approximated physically by a very compact

gyroscope spinning very fast.)

Reference Frames, Generalized Coordinates, and Auxiliary Variables

Reference Frames and Coordinate Azes

In order to derive the equations of motions of the bicycle most simply we
introduce five reference frames. These r‘eference frames are used to measure the
position, xlrelocity, and acceleration of the rear a.nd front contact points, and measure

the inertia of the ngid bodies that make up the Basic bicycle model. To clarify the
notation we use the subscript r to refer to the rear part (rear frame + rider + rear
wheel), the subscript f to refer the front part (front fork/handlebars assembly +
front wheel), and let (_5 mean ‘center of mass’. The coordinate systems used with

each reference frame are shown in figures 3.3 and 3.4 and described as follows:
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1. The inertial reference frame XY Z fixed to the ground with origin at point O.
2. A moving reference frame z,y,z, fixed to the rear framevwith origin at P, the
rear contact point.
3. A moving reference frame z¢yszs fixed to the front fork/handlebars assembly
with origin at Py, the front contact point.
4. A moving reference frame Z,7,Z, fixed to the rear frame with origin at P,, the
center of mass of the rear part of the bicycle (rear frame + rider + rear wheel).
5. A moving reference frame Z;7Zy fixed to the front fork/handlebar assembly
with origin at _Pf, the center of mass of the front part of the bicycle (front
fork/handlebar assembly + front wheel).
With the bicycle in the upright-straight ahead configuration, the y, and yy
axes are parallel to the XY plane, and the z, and zs axes are perpendicular to
the rear frame, and, 2, and zy vare perpend.icular to the ground, straight up. The

orientation of these axes relative to the bicycle are shown in figures 3.3 and 3.4.

Generalized Coordinates and Auziliary Variables

We are studying small deviations of a bicycle from the vertical equilibrium
with approximately straight ahead motion initially along the Y axis, on a level
plane, with approximately constant velocity.> The Basic bicycle model has seven
independent generalized coordinates which describe its position and configuration

for this case. We will next define these seven generalized coordinates, and then

5 Later, we prove that for small lateral perturbations the velocity remains con-
stant constant to first order.
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introduce four auxiliary variables that will be used to simplify the derivation of the
equations of motion. In section 1 of Appendix A we derive the relations between the -
generalized coordinates and auxiliary variables and show the how relationships are
dependent on the geometry of the bicycle. The major geometric design parameters
are shown in figure 3.5 and are defined throughout the chapter as needed.

The seven independent generalized coordinates which describe the bicycle posi-
tion are as follows: the coordinates X, and Y, measured from the inertial coordinate
system, which locate the contact point P, of the rear wheel with the ground; the
angle 6., the heading of the rear frame with respect to the OY axis (the angle be-
tween the intersection of the rear frame plane with the XY plane, and the OY axis);
the angle x., the tilt of the rear frame from the vertical; the angle 1, measured from
the straight ahead position, through which the front fork/handlebar assembly fork
is turned; and the angles ¢, and ¢ s which describe the degree of rotation of the rear
and front wheel respectively, Iﬁeasured relative to lines from the wheel centers to
the contact points. When these generalized coordinates are specified, the position
and orientation of the bicycle is known exactly with respect tc; the inertial coor-
dinate system. The seven independent generalized coordinates are shown in figure
3.6. With reference to a forward facing rider with the bicycle moving predominantly
é.long the inertial OY axis (where Z is the vertical), the positive sign conventions
are given by: x., tilted over to the right; ¥, steer to the left; ,, headed to the left;

¢r and ¢y, angle due to forward roll.5 All angles in figure 3.6 are shown in their

§ It should be noted that the definition of ¢ and ¢ are slightly irregular, in that,
positive ¢, and positive ¢; imply a wheel angular velocity vector in the negative
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positive direction.

In the literature the variables X, x, 8., and 1 are often referred to as lateral .

motion, roll or lean, yaw or heading, and steer. We will use both terminologies

where convenient.

Also, for convenience and added clarity in the derivation, we introduce four
dependent front coordinates X, Yy, 65, and x 5 which locate the front contact point,
Py, and give the heading and lean of the front assembly, in the same manner as
their respective rear coordinate counterparts. For the given assumptions in the Basic
bicycle model they can be derived to quadratic order as functions of the generalized
coordinates. Hence we will call them auziliary variables. These variables have the

same sign convention as those of the rear coordinates and are also shown in figure

3.6.

Relations Between the Generalized Coordinates and Auziliary Variables

In section 1 of Appendix A, methods for deriving the relations between the
generalized coordinates and auxiliary variables are shown. The results to first order

for the case where the bicycle’s frame maintains small deviations from the Y 2 plane

z. and z¢ direction, respectively.
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take the form,”

Xf~ X, = —cub, + s (3.1a)
Y=Y = cy (3.15)
Xf—Xr=—1sin)\ - (3.1¢)
85 — 6, = 1pcos A (3.1d)

where ¢y, A, and ¢s are defined as,
€¢w — the wheelbase, distance between P, and Py,

'A — the steering axis tilt, measured from the vertical
towards the rider (90°— headangle).

¢f — perpendicular distance behind steering axis to Py.
These quantities are geometric design parameters of the bicycle and shown in
their positive configuration in figure 3.5. All are measured when the bicycle is in
its vertical straight ahead position. Later in Chapter V it will be shown how these

parameters affect the stability of the Basic bicycle model.

7 Because ¥; is not a small quantity it is technically necessary to express equation
(3.1b) to second order when developing the kinetic energy as follows,

2

2
Y-V, = cw(l - %)—}-cf%—' cos A

so that,
Y=Y, —cyb,6, + cscos M (3.1%)

This is used when calculating the kinetic energy of the front part of the bicycle where
Yf2 is required. However, including second order terms of the form (gig;) = 2¢;4;
in the Lagrangian of second order does not affect Lagrange’s equations. Hence,
although technically required, the additional terms do not contribute to Lagrange’s
equations.
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The equations (3.1a-d) are used in simplifying the rolling constraint equations

and kinetic energy of the front part of the Basic bicycle model. They are referred
to as the relations between the generalized coordinates and the auxiliary variables
throughout this thesis. For the derivation and a better understanding of these

relations the reader is referred to section 1 of Appendix A.

Rolling constraints

In general a bicycle has four nonholonomic coptraints relating the motion of
the location of the rear and front contact point in the inertial XY reference plane,
to the orientation and rotation rate of the wheels. These relations are referred to as
rolling constraints. We can specify these rolling constraints due to our assumptions
of no ‘sliding’ (skidding) and no ‘sideslip’ (due to tire deformation). These relations
can be linearized according to our assumption of only small deviations from the
equilibrium motioﬁ, because they are added to the problem only after the Lagrange
equations are developed. The relevant first-order results, which are used later to
develop the equations of motion, and which are derived in more detail in section 2

of Appendix A, can be expressed as follows,

Y, = ar¢.§,. (3.2q)
Yy = asé; (3.26)
: cs .. COS A
8, = Z—¢v + Y, - (8.2¢)
- Cf v o COSA - COS A
6, = ‘C—‘(/) +¥Y, . +¥Y; . (3.2d)

cos A

X =-Y8, Vb, =-V.0. — f-f-ff,z/} A% (3.2¢)

w
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Later equations (3.2a,b) are used to prove that for small disturbances, ¥; = 0 to
first order, so it can be eliminated from (3.2d,e)t .

Origially the number of generalized cz;ordinates 1s seven. By implementing ;che
constraint equations (3.2a-e), four of which are independent, the variables 6,., X,.,.
$r, and ¢ ¢ will be eliminated from Lagrange’s equations, and thus the system will be
left with only three generalized coordinates: Xr, the lean angle, ¢, the steer a.ngle,‘
and Y;, the coordinate that locates: the rear wheel along the Y axis. These three
generalized coordinates represent the three degrees of freedom for the iinearized
Basic bicycle model. However, as juét mentioned Y, is zero to first order and
therefore Y, becomes a constant to first order.® Thus because Y; is not present in
_ the final equations there are only two nontrivial degrees of freedom fer the linearized
model. Mathematically this means tﬁat two second order differential eaua.tions, or
one fourth order differential eciuation, represent the motion of the system.

in general, these constraints should be acided to the problem only after La-
. grange’s equations have been found. Also, note that the generalized coordinate
Xr is not present in the rolling constraint relations and that the relations are not

dependent on the wheel radii.

Kinetic Energy of the Basic Bicycle Model

Because Lagrange’s equations involve taking the derivative of the Lagrange
function, in order to formulate the equations of motion of the Basic bicycle model

to first order, the total kinetic energy of the Basic bicycle model is needed to second

8 This is one of the subtle points we referred to earlier.
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order. However, as discussed in section 3 of Appendix A, simplifications can be
made to the kinetic energy expression by eliminating terms that do not contribute
when forzﬁulating Lagrange’s equations. Terms that are constant or which are time
derivatives of the product of two generalized coordinates, such as (9;9,) = Zérér and
( X,..Gr) = Xr0-+6,-Xr, do not contribute to when formulating Lagrange’s equations.
As a result, any term with the following coefficients can be left out due to the
fact that when Lagrange’s equations are developed it does not contribute: (z/)b,-),
(Xr.ﬁr), 6.6, Yip. This chapter only presents the contributing terms of the kinetic
energy. For discussion on how to include the additional noncontributing terms refer
to section 3 of Appendix A.

To calculate the total kinetic energy, the bicycle can be broken into two separate
pieces, the rear part (rear frame + rider + rear wheel) and the front part (front
fork/handlebar assembly + front wheel). Here we denote the respective kinetic
-energies as KE} and K E'}', where the ( )* means ‘contributing terms only’. This
section presents the result of K E} which is derived in more detail in section 3
of Appendix A. K E}" is then derived from KE; using the relations between the

generalized coordinates and auxiliary variables, equations (3.1a-d).

Kinetic Energy of the Rear Part of the Basic Bicycle Model

The result from section 8 of Appendix B of the contributing terms of X E, to

second order is:

kEtrcru

o S

7 S

1 . - - — .
K.E;*- = Emr(Xr - lrgr + hr).(r)2 + %any‘r2
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KE;'OC

+ 5(Rw><3 + 2RyzXr0r + Rz62)

KEapin

rwheel

-

o . 1 ..
+ Crérxrbr + 5Cr 7 - (33)

my — mass of the rear part of the Basic bicycle (frame+
rider + wheel).

-l hy — length and height to the rear center of mass measured
N ZpYrzy.

Rz, Ryz, Rzz — components of the rear part inertia tensor measured
in Z,7,Z, (includes the rear wheel).

C- — polar mass moment of inertia of the rear wheel.

The inertia tensor terms Ryy, Ryz, and Rz are the components of a matrix
representing the rear inertia about the axes with origin at the rear center of mass

P, measured in the Z:Y,Zr as shown in figure 3.4. The rear inertia tensor is then,

R 0 0
0 Ry Ryr
0 Rz R/ ..

rYeZr

where Rzy = Rzzy = 0 because of our assumption of symmetry about the plane of
the rear frame, and Ryz = Rz; by definition of the inertia tensor components. To
simplify the derivation, the rear inertia includes the inertia of the rear wheel as if
it where glued to the rear frame.

It should be emphasized that the term Ry is a component of the rear inertia

tensor defined as
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This should not be confused with the product mass moment of inertia term Iy,
which is equal to the [7Zdm. In the derivations and notation used in this thesis,
the off-diagonal inertia terms are always combonents of an inertia tensor, not the
product mass moment of inertia.

The overbraces in equation (3.3) indicate where terms under the braces came
from when deriving the contributing kinetic energy. K E!™"* means these are terms
from the rigid body translation kinetic energy of the rear. K ET°* means the terms
come from rigid body rotation of the rear part.’® And K E:gf,:‘e .; Means these terms

were derived from the kinetic energy due to the rotation of the rear wheel relative

to the frame, the so-called ‘spin’ of the wheel.

Kinetic Energy of the Front Part of the Basic Bicycle
The kinetic energy of the front part of the bicycle can be derived from that of
the rear. Hence, by replacing the r subscripts in equations (3.3) with a f for front

the kinetic energy of the front part of the bicycle is obtained as,

KE;FG".
+ 1 7.6 Toon2, L ?
KE; =omp(Xs—1pfs + hyxs)® + smsYy
KE}'at
1 ] . o
+ §(FWX§ + 2Fgzx 65 + Foz67)
KE;?:f:eel
o . 1 ..
+Crbrxs0s + 5Cr¢5 (3.4)

Just as for the contributing rear kinetic energy, equation (3.3), in equation

® As discussed in section 3 of Appendix A, we treat the rear wheel as if it is glued
to the rear frame and then add terms due to the spinning of the wheels separately.
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(3.4) some terms have been omitted because they do not contribute to Lagrange’s
equations. Equation (3.4)‘ is not in terms of the generalized coordinates, which we
need to derive Lagrange’s eqﬁations. Us;ing th¢ reiations between the generalized
coordinates and the auxiliary variables, equations (3.1a-d), wé can expand equation
(8.4) in terms of the generalized coordinates. In doing so, we again omit terms that
do not contribute to Lagrange’s equations which yields the contributing kinetic

energy of the front in terms of the generalized coordinates,?

KE;raru
1 1 ; NG LT N2 1 L
KEf* = Zmy(X, ~ (o + 106, + Fipgy - dih)” + smyY;
KEj°
+ 3 (F_;,—y—(xr — ¥sinA)? + 2F5z(Xr — ¥ sin A)(0; + 1 cos A) + Fe(6 + 9 cos )\)2>
KE:'I:':eel
C S . 1., .,

+Cds (X,(;, — 6, sin A + x4 cos /\> +5C142 (3.5)

where,

dZEfSiﬂ/\-f--ifCOS/\-Cf

Because of the need to omit noncontributing terms from equation (3.4) in terms
of the generalized coordinates equations, K E}*’ # K E’}’"*'. For this reason we have
made a double plus superscript for the contributing kinetic energy of the front part
n equation (3.5).

It can easily be shown that d is the perpendicular distance from the center of

mass of the front part to the steering axis as shown in figure 3.7. Once again, as in

19 Note that in equation (3.4), Y7 is not constant to second order. However,
second order terms of this function are noncontributing as is shown in (3.18)".
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equation (3.3) for the rear part, the overbraces in equation (3.5) indicate where the
terms originate in the derivation of the kinetic energy.

The total contributing kinetic energy K E;" of the basic bicycle model is then

the addition of equations (3.3) and (3.5),
KEf =KE} + KE}* (3.6)

We emphasize that only the terms that contribute to Lagrange’s equations have
been kept in these expressions.

Especially note the total cont;ributing kinetic energy has been expressed in
terms of the seven generalized coordinates Y., ér, 65, X, xr, 6-, and . Al
auxiliary variables have been eliminated. Later, after developing Lagrange’s equa-
tions, with the help of the rolling constraints (3.2a-b), we will prove that for small
disturbances, ;. qir, and ¢ f» are all constant to first order, thus simplifying the
equations of motion further. With the help of the rolling cbnstraints (3.2c-¢), we
will redpce the number of generalized coordinates in the equations to two, by further

eliminating the variables Xr and f, from the equations of motion.
Potential Energy of the Basic Bicycle!!

Using the inertial reference system XY Z the total potential energy of the Basic

bicycle, PE,, at any instant is by definition,

PE =m.gZ,. + mfg_Z—f (3.7)

1 The results of this section differ from those of Neimark and Fufaev [1967].
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where m,gZ, is the potential energy of the rear, msgZ; the potential energy of
the front, and ¢ is the gravitational constant. The heights Z, and Z ;¢ of the rear
and front center of mass respectively are then measured from the XV plane, i.g.
the road surface as shown in figure 3.8. In general, Z, and 7f change only due to
variations of the lean angle Xr, and the steering angle 1, and are independent of the
generalized coordinates, X, ¥;, br, ¢- and ¢5. Thus the potential energy is only a
function of the lean and steer angle, x, and 1, respectively. Section 4 of Appendix
A presents the derivation of the potential energy to second order, i.e. the details of
how Z, and 7f change as a function of Xr and 9. The results are that the tota]

potential energy of the bicycle can be written to second order as,

constant
e

PEt = m,-g?z—,. -+ mfng —gmtﬁtxi

gmf (¢251n/\ 2x,.¢)

_ gltmtcf
2Cy,

(¢2 sin A — 2x,.1,b) (A.20q)
where,

my =m, +my

7 - Mrlr +mf(cy +15)
t = ™y

This can be simplified by defining v to be the following,

v=m d+cfmtlt

Cw

Then the contributing potential energy (leaving out the constant terms mrgh, and

mfghs) becomes,

PE} = —-%(mtﬁtxf = 2¢¥xv + ¢’vsin)) (3.8)
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where again ( ) stands for total, ( )* again means ‘contributing terms’, and I,
which is the distance forward from the rear contact point, P, to the center of mass

for the total bicycle, measured in the plane of the rear frame as shown in figure 3.9.

Lagrange’s Equations for the Basic Bicycle Model

We now introduce the Lagrange function L,
L=KE} — PE}

where KE; and PE; are the kinetic and potential energy which contribute to

Lagrange’s equations and are given by equations (3.6) and (3.8). In order to derive

Lagrange’s equations we also introduce the Lagrangian operator £
grang q grang P 4

dd 9

T dtdg  aq

where ¢ represents the generalized coordinates Y., ¢r, 65, Xr, 0ry Xr, and 9.
What is the quantity defined by Ly operating on L? As is explained by Gold-

stein [1980], the Lgq operating on L is a generalized force on the system. In this case

with the help of figure 3.10, the generalized forces represented by the letter Q, can

be written to first order as follows,1?

Ly, (I)=Qv, =-D; - D, (3.9a)

£¢r (L) = Q¢‘v~ = D.a, (39b)

12 In Figure 3.10 My is an internal torque to the Basic bicycle model imposed
by the rider on the steering axis and reacted by the rear frame. In our free body
diagram we have assumed the component of the reaction moment on the rear frame,
say My, , is negligible.



where,
Qq
D, Dy
F., Fy
MXr’ Mw

G, Gy
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Lg, (L) =Q4, = Dsay (3-9¢)
Lx, (L) =Qx, = Fy +F, (3.94)
Le. (L) = Qo, = —Fc, | (3.9¢)
Ly, (L) =Qy, = My, (3.95)
Ly (L) =Qyp = My + csFy (3.9¢9)

the generalized forces conjugate to the various generalized
coordinates (g represents the respective length or angle,
and @, is thus a force or a moment).

the constraint forces on the rear and front wheel, respec-
tively, initially in the ¥ direction.

the constraint forces on the rear and front wheel, respec-
tively, initially in the X direction.

the moments M, and M - Tepresenting the steer torque
and tipping torque, respectively.

the constraint forces on the rear and front wheel, respec-
tively, always in the Z direction. To first order these
forces always add to be equal and opposite to the

forces due to gravity.

Rewriting £, (L) in terms of the bicycle design parameters we have,

Qv, =— Df — D, = m,Y, (3.10a)
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Qs, =D.a, = C,é, (3.100)
Qs; =Dyay = Csés (3.10¢)
Qx, =Ff + Fr = mX, — mib, + mehikyr — mydij (3.10d)

Qo == cwFy = —mu, X, + Toab, + Tyoitr + Hyxr + FU 3

— Hysin A (3.10¢)
Qx =My, = miheXe +Tyebr — Hib, + Ty % — gy, + Fl i)

— Hy cos /\g/; + gvip (3-10f)

Qp =My +csFy = —mpdX, + F}\ 6, + Hy sin X6, + F,%r

+ Hy cos Axr + gvxr + Fii — gusin M (3.10g)
where,

H =C,¢, | (3.11a)
Hf = Cydy | (3.115)
H,=H; + H, (3.11c)
Tyy =m.k, + Ryy +mshs + Foy (3.11d)
Tee = m,l, + Rer + mp(cy + 1)? + For (3.11¢)
Ty: = —=mrhele + Ryz — mghy(cw +15) + Fyz (3.117)
Fix =msd® + Fgzsin® A — Fyzsin 2) + Fozcos? A (3.119)
Fy, = —mshyd — Fygsin A + Fyrcos A (3.11h)
FY, =my(cw +15)d — Fyrsin A + Foxcos A (3.112)

The quantities in equation (3.11a-i) seem to have clear physical significance,
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H,, Hy - — The angular momentum due to spinning of the rear
wheel and front wheel, respectively.

H, — The total angular momentum of the bicycle due to
wheel spinning.

Tyy, Tyz, Te: — The inertia tensor components for the entire bicycle in
its upright position, about the rear contact point in
measured in z,y,2,.
9\ — The mass moment of inertia about the steering
axis of the front part.

,{y — The quantity defined by the front inertia tensor mea-
sured about the point where the steering axis intersects
the ground, dotted with unit vectors in the Y direc-
tion and A direction. That is, it is the torque
about the steering axis needed for lean-acceleration of
the bicycle.

s — The quantity defined by the front inertia tensor mea-
sured about the intersection of the perpendicular from
the rear contact with the steering axis, dotted with
unit vectors in the Z direction and A direc-
tion. That is, the torque about the steering axis due
to yaw acceleration of the bicycle.

Further we define T the inertia tensor for the entire bicycle (with wheels glued
to the frame) about the rear contact point, P,.. The tensor T is defined just like R

and looks like

T, 0 0
0 Ty Ty
0 T, T.

TrYr 2y

Linearized Equations of Motion for the Basic Bicycle Model

Equations of Motion
Using equations (3.9¢,g,f), we can solve for two equations of motions for the

Basic bicycle model in terms of Lagrange’s equations, and, in addition, two equa-
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tions which determine the lateral forces in the X, direction oh the front and rear
wheel. Eliminating Fy from (3.9¢) using (3.9g) and leaving (3.9f) alone we get the

Basic bicycle model’s equations of motion in terms of Lagrange’s equations,

L:Xr (L) = MXr (3.12(1)

Ly (L) + f—f— Lo, (L) = M, (3.120)

When the generalized coordinates §, and X, have been eliminated from Lagrange’s
equations using the constraint equations (3.2c-e), equations (3.12a,b) will be our
two equations of motion gc')verning leaning x, and steering .

By eliminating F; from equation (3.9d) and rewriting (3.9¢) we have two equa-

tions that can be used to solve for the lateral forces on the Basic bicycle model,

Lx. (L) + -E—f;i@ ~F (3.130)

w

e () _

Cw

Fy (3.13b)

-Once xr and 9 are found, equations (3.13a,b) may be used to find the lateral forces

from the ground on the front and rear wheel, Fy and F,, respectively.

Proof that Velocity Terms are Constant to First Order

Using equations (3.10b) and (3.10c) to eliminate D, and D 7 from (3.10a) we

find,

always positive
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Since, as indicated by the overbrace, the coefficient to Y, is always positive, ¥; must
be zero to first order and,

LY. =0

Y, = 0, then by using the first two rolling constraint equations presented in
this chapter (3.2a-b) we can also prove that é, and ¢ s are zero to first order, or
¢, and é s are constant. Thus, for small perturbations from the upright position,
the linearized equations Ly, (L) = 0, Ly, (L) =0, and L4, (L) = 0. That is, Y,

¢r, and ¢y are ignorable coordinates and can be eliminated from the equations of

motion.13

Elimination of x, and 8, from equations (8.12a,b)

Substituting the remaining rolling constraints (3.2c-e) (where Y; has been set

equal to a constant V and ¥; = 0),

\ . by

b, = L4 9= (3.2¢)
Cw Cw

b, =L+ gbVCZs A (3.2d)

Xe= Vi = -y gy (3.2¢)

into equations (3.12a,b), the variables ér, 5,, and X, can be eliminated. Thus we
form two coupled second order linear differential equations with constant coeffi-

cients. These equations take the general form,

Mixx Rrt Kxe Xr+ My Y+ Coyp 4 Koy 6 = M, (3.14)

13 The topic of ignorable coordinates and thejr physical meaning in a nonholo-
nomic system is not clearly understood by the author. For more discussion on
ignorable coordinates for holonomic systems see Wells [1967] pp. 235.



36

Moy bt Cyp bt Kopy et My St Cy Xt Ky xr = M (3.15)

Equation (3.14) is the first order approximation of the moment, M, _, about the

track of the bicycle, applied to the rear frame, e.g. by training wheels. i?or this

reason we call it the lean equation. The second equation (3.15) provides the torque
about the steering axis, My, thus we call it the steer equation.

Expanding equations (3.14) and (3.15) in terms of the bicycle parameters the

coefficients to the lean equation are:
Mox=Tyy
Cxx=0
K:XX-': - gmt.f_z-t

. Cf
MX“!’:F;‘y + E:Tyz

Cyp= — (Hf cos A + g—-f—Ht> +V(Tyz cosA _ .C_fmtﬁt)

Cw Cw

cosA cosA -
- V2 myng

Kx¢=gv - HtV

w Cw

and the coefficients to the steer equation are:

2
c [+
Mlblll:Fi/\ + z_fF,,\’z + ZQLTzz

Cw 2
Cpo =V (22 (Fo + S, ) 1 &
v = Cw Az Co zz ch
A
Kyyp=—gvsin A + VHg sin/\cos -+ V2Vcos/\
Cw Cw

Mrﬁx:F:\y + s_nyz
Cyx=Hjcos X + -ccth

Kyx=gv
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Note that the coefficients are functions of velocity, dependent on wheel radii
only in the relation of H; and H, to V. (See equations (3.11a,b) and note V =
q.S,-a,-.) |
Representation of the Equations of Motion

Equations (3.14) and (3.15) can be expressed ither as two second order differ-
ential equations or one fourth order differential equation. For the case of two second

order differential equation it is common to write the equations in matrix form as

follows,
M c K
Mix My Cx Cxw Kxx Kxw Xr
D*+ D+ =
Myx  Myy Cox  Cyp Kox  Kyy P

where M, is the mass matrix , C is the damping matrix, K is the stiffness matrix,

and D is the differential operator. Expanding M, C, and X we have,

Mxx Mx¢ Tyy F!\y + %Tyz
M.—_ == &2
Moyx Myy F,’\y.+ %Tyz Fi+ 25—:’”—}7',{'2 + szTzz
Cxx Cxt/J
C=
Cox  Cyy
0 - (Hf cos A + %Ht> +V (Tyz CZiA - %mtzt)

Cw

Hpcos A + ;‘%Ht 14 <998_a\ (F)'\'z + -C%Tzz) + %u)

M,,

My
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Kyx K —gmih, gv — JETJ/'g—ziwA - V? %mtﬁt
= IC;/,X Ky B gv —gvsinA + VHysin /\C—‘Z’:’l + V2-°‘:—if\—1/

To derive one fourth order governing linear differential equation we can solve
for either x, or ¥ using equations (3.14) and (3.15). Solving for an equation in
either variable will result in the same fourth order characteristic equation.

Assuming a solution of the form e*! results in a characteristic fourth order
polynomial in s whose roots can be used to determine if the solution to the equation
grows or decays in time.14

Alternatively, we can derive this fourth order characteristic equation by noting,

just as in a linear algebra problem, that for a solution to exist for the matrix equation

(3.15) that the determinant of the matrix must be zero. That is,

det(M s+ Cs+K)=0 (3.16)

where we have replaced the differential operator D with s.
To solve for the determinant of the system we first note that that the determi-

nant can be defined by the following,
1
det M= 3 M+ M

where * is defined for any 2 x 2 matrices, say matrix a and matrix b, as follows,

a*b = (ai1byz + azab11 — a12by1 ~ ag; by7)

14 This is discussed more in Chapter V. See Braun [1976] pp. 179 for details of
the solution of this equation.
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Further noting a * b = b * a we use this definition to define the determinant of the

equation (3.16) as follows,
%(M 524 C s+ K) % (M s+ C s+ K)=
%(M * M)s* + %(M *C)s® + %(M * K)s?
+5(C+ M+ (€00 + 2 ok
+ 5005 M)+ 2(E 2 C)s + 2+ ) =
det M s*+ (M5 C)s* + (M * K +det C)s® + (K % C)s + det K= 0(3.160)

We define for our use later in Chapter V the coefficients of the fourth order

polynomial as A4, B, C, D, andF,

As*+Bs* +Cs’ + Ds+ E =0 (8.17)
Thus,
1
A =3 M+ M= det M (3.18q)
B=M=x+C (3.18b)
C=M=*K+det C (3.18¢)
D=K=xC (3.184)
E =—;— K+*K= det K (3.18¢)
Conclusion

Once the equations of motions have been derived they can be used in various

type analyses. Among them are:
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1) Given arbitrary x, and 1 we can calculate the required moments M, and
My.
2) f M,,. = 0 we can solve for the behavior of Xr for a prescribed P, l.e. we
can define a controller %(x,) and analyze stability.
3) Given that M, =0, we can solve for My and .
4) Given M, =0 and My =0, we can solve for the equation of motion and
analyze the bicycle’s self stability.}3
5) Passive mechanisms such as gyroscopes, springs, and dampers can be easily
added to the equations of motion to analyze their effect on the bicycle.
This thesis focuses on the passive rider ‘self stability’ of the bicycle. For this
reason we shall next investigate the equations (3.14), (3.15), and (3.16) when M,

and My, are equal to zero.

15 This is done in the next chapter.



41

"1°pouw 83104219 21spg 8y}
©1N3}11sU0d )pyy selpoq P161u unogy

| °9 FdN9I4

193HM  LNOY S

T1A3HM "vay

ATTdWISSY

AVEIATIONYH/ME04 INOYH IIJ////J/

d3ATd aNY
dWVHd dv3y



e "JeplJd PUD ©704021qQ ®j)1) Ped y

PS L 3dNoId




43

"{£]1eAl)oedseu S1864M JdDBJd puUP JuUouj epniou)
s}dod uped pup luou4) (ydod upbeu pup juod luocuy
‘sieeym uo se1poq p1bBid «P8XYU1], om) 180 om
puUD ‘uollo)luy ou pup seijpoq pifiu sunssy

9c' ¢ J4N9I

ldvd 1INOY4d 40
SSVW 40 d3.UIN3D

ldvVd dv3d -0
SSVW 40 d31N3AD



44

*A1®A)1dedsed 'jJeeym Juody pup

dD9dJd 8yl o wnjuewow Jdpinbup eyy)y eup IH
pup LI edoym ‘s1p)sodlb Bujuulds 31spy sp
s189ym By}l eopjdey *sys|p Uiyl oup s)eoeym
pup 1034 ®q 0} punodB ey) eunsso Jdeyldn 4

°c'E HdNOTA

SIXY 9NIH33LS



45

*Adlowosb jusu))yded 1eqpT] *sepp)q ©)1D)S
821 AU)ll ©0) SMSIP UIY)l 8yl BONpeoY

PC' ¢ JdNOId

, ,
TT!II!.mw<mJMMI3.IIIL¢
SIXV ONIHF31lS WOoH4 /, . ,

SSYW 40 d431IN30 TIVHEL .
INOd4d 40 135440 IVIINVHIINW

A\L,A\\Ny\ Il

ONIY3IEILS 40 FIONV



46

g d Iy pup z A “x sesupuy edousuds jou
BUlAOW PUD ZAX SWDJ) 8DUBUS JB&J D) IdBUT

¢ g JdN9Id

N s

@



<4z dedx pup “z K x sewpuy ®OUBUS JOu

BujAow pup ZAX euwpdy eoueds yed D) L1deuU]

79 J¥N9TH

AANNNANAN

N

o



"Uollounb) juoo ®A)))sod
Jleyy u) umoys $eoup)s)p pup mmdoc<
*sJuelewbupnd cmgmmv Dlldeuy pup Dldleuwoeq

PG e JHNII A

48

A
=
O

¥

SSYW 40
d31IN3I3 dv3y

SSVYW 40
d31IN3ID INOHH

WQMPMZ<M<Q <Hkmmsz<mm
LU.'N.I...N_.IN,NQ- \lAlx.AW_. (_E

SYILINWVIYd <Hpmmszwzomu

kOoW&&:W’N“&.[u- (*E



49

.coyvoanmyucoo eAlllsod
et J18yl u) UMoYys sedupls)p pup seBuy
‘sdeleuwbuond uBisep pjllusu) Pup o2lJleuoeqg

96° ¢ JdN9I A

i
G
¥

~ SSVYW 40
d41IN3ID dv3y

SSVW 4D
d3IN33 LNOYAH

&O-.NI\IA.H*-WIINH_- ..\MK.A.H_. kE <(\ .LU.NsA (ZZ . AA

LY Ry Ay
'SYFLINVUVD VILYINI INOY *SYILINVHEV VILYINT dvI




50

‘ ..VQLG.X@X.@.ZO,LO> xtowjxno.vco
u&.L@.}lx. ®.L>.LX www_uczu(_ooo TON~.~OLQCGO

9°¢ JIN9IAH
Iu
o T33IHM dv3N
<y 40 MoVl
J A
& Ls
/ “N
\ / /
| / / N
T33HM  INOY ) / / X N
- 7740 Moval N / g
: , / A
/ /|
7 o
A
C = v - -
k¢
N | X
NOILISOd S
WNIHgI1IND3 \ <
WWOILY3A Jx



51

‘P 'sI1Xp Bujdee)s eyl 0} SSPW JO JOIUSBD JUuOody
oyl Eogu,oocowwuv JdpIno) puedded eyl Jo uo)}iul je(]

L7 3dNOTd

sty




52

LN pup 47 sspuw jo Jde)lued luodj pup
Joed ey) o) ©0UD)LS|p TJPDlLdeA eyl jo uol)iul jeq

8L JdNald

AANN AN

N

o



583

3y pup? J'lulod 19DJUOCOD JpPeJ BY) O) BAl1D}eJ
®10401Qq edJdl)yUe jo ssou JO Jelues eyl Jo UO)IDOOT]

6°¢ JdN9aId

NOILISOd "IVOILY3A NI
J10A0Id JFJILNI 40
SSYW 40 d31N30



54

*lepou ®40\A0~£ 218bg eyy jo EDLOOHT \AUOQ 990
Ol"2 3d4NOId

Y9

N Toeeey



\
_;.r':;i‘n_ b -, ;, ‘\ ‘.
FAT NN LSO BV N
e —f-- ‘

- ™
-

IV. CHRONOLOGICAL COMPARISON OF THE LINEARIZED

EQUATIONS OF MOTION

FOR THE BASIC BICYCLE MODEL

Introduction

In Chapter III of this thesis the linearized equations of motion for a Basic

bicycle model were presented. This chapter chronologically compares other authors’

linearized equations of motions for a bicycle to those we derived in Chapter III.

When it was not possible to directly compare equations, we have tried to simplify
other authors’ equations to represent the linearized equations of the Basic bicycle
model, and/or we simplified the equations from Chapter III to represent the model
studied by the particular author. In some cases neither approach was possible
due to the complexity of the other equations. For these cases we have given a

brief description of the their equations, and when possible have commented on the

55
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1

likelihood of correctness.

'The purpose of comparison was to gain confidence in our derived equations and
to see which studies could legitimately be used without modifications. Knowing if
other authors’ equations agree with ours also gives us a basis for evaluai;,ing their
conclusions. It is as a result of the numerous comparisons given in this chapter,
that we developed and tailored what we feel is the easiest way to correctly derive
the linearized equations of motion, as presented in Chapter III.

The equations of motion of a bicycle have mainly been derived either from
Lagrange’s equations, or using Newton’s Laws on the individual rigid bodies which
make up a bicycle. Chapter III describes the derivation of the linearized equations of
motion using Lagrange’s equations with nonholonomic constraints. Dohring [1955]
derived an equivalent set of linearized equations using Newton’s Laws. Weir [1972]
gives a four degree of freedom Newtonian derivation using vector notation. To
our knowledge we are the first to derive correct linearized equa.tions'of motion
for a fully general Basic bicycle model with Lagrangian methods. It seems that
using Lagrange’s equations (or at least the concept of generalized coordinates) is
a simpler approach, because it eliminates the requirement of solving complicated
simultaneous equations representing the force and moment balance on the 4 rigid
bodies that make up the Basic bicycle model.? We mention however, that the

Lagrangian approach suffers because many students are not exposed to Lagrangian

1 This chapter includes some of the conversion notations required to make our
comparisons.

2 See for example Roland [1971].
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dynamics at the undergraduate level, especially for systems with nonholonomic
constraints. In this sense, the Basic bicycle model could be used to introduce the
subject, having géneral appeal and pedagogical meaning.

On the whole, the previous literature concerning the equations of motion suffers

from three major flaws:

1) Some derivations seem impenetrable. This results from leaving out steps, from.
choosing notation which is not well suited to the job, from using roundabout
procedures when more direct ones are possible, from not simplifying the results
afterwards, and from not explaining their physical significance. The resulting
equations are often far too complicated to use, except numerically. Some equa-
tions are so long that it takes seve;‘al pages just to define the coefficients. Most

of these studies do not enhance the reader’s understanding of bicycle motion.

2) Few or no comparisons were made to works by previous authors, so their cor-
rectness was not known, and earlier results were ‘lost’. Only one author explic-

itly stated that he had compared his equations to a previous author’s.

3) The models used by some authors have ignored major stability-related design
parameters. Some lack steering axis tilt, have only point masses, or make other

assumptions restricting distribution and location of mass.

What follows is a chronological comparison of all papers we have found in
which equations of motion for bicycles (or motorcycles) are presented. Because we
feel that failure to compare to others’ equations (especially when they are cited as a

reference) is inexcusable, we have noted each author’s comments on previous works.
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In our comparisons, we found that in fewer than half of the papers do the equations
of motion resemble those derived in Chapter III. In fact, of the papers discussed, we
found that oﬁly two derived fully general and perfectly correct results (one of these
was later employed by another investigator). Several more were either a little less
general or had minor errors which an alert readér might catch. A number of others
were too complicated to check in full (but some of them raised some questions we

could not answer). Finally, several are just plain wrong.
Results of Chronological Comparison of Linearized Equations of Motion3
Whipple, 1899

The first to formally derive a fully general and scholarly set of equations for
the Basic bicycle model was Whipple in 1899. He treats the front and the rear parts
symmetrically throughout the derivation. He derived nonlinear governing eqﬁa.tions
of motions for a Basic bicycle model with an active (leaning) rigid rider, and then
linearized about the vertical equilibrium configuration. His equations of motion can
be found as eq. XIV, eq. XV, and eq. XIII in his paper on pp. 321-323, but not all
terms are defined. The equation are restated more clearly and explicitly in matrix
form on p. 326. We also note that the figure defining some of his variables is at the

end of the bound volume containing his paper.

3 Comparisons to works by Whipple [1899], Carvallo [1901], Sommerfeld and
Klein [1903], and Déhring [1955] were performed mainly by Dr. Jim Papadopoulos,
whose results are summarized here. Some of his understanding and commentary on
other comparisons are contained in other parts of this chapter.
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It is most convenient to compare Whipple to DShring [1955] since similar axis

orientation 1s used. The equations on page 326 are in the form of the 3 x 3 matrix

which operates on his variables ¢, ¢', 7, where A is the derivative operator Ed? There

are a few evident typos: the first term of the second row should have \? not Ag;
and the third column second row should have W+, not W'y) .

We found his notation to be more difficult to understand than most and there-

fore give some details about the comparison. In his notation,

¥

sin @

¢ =

where 1 is the lean of the rear frame and @ is the steer angle. (In our notation
the lean of the rear frame is x, and % is the steer angle.) The last equation in
his matrix defines 7 as a funcﬁon of ¢ and ¢' and allows one to eliminate 7 from
the first two equations of the matrix. Doing so, one finds the first equation is in
comélete agreement with our lean equation when ¢ and ¢' are written in terms of ¥
and Q. The second equation of the matrix, when it is corrected and then multiplied
by Ffoﬁ;—e, we find agrees completely with Déhring’s {1955] equation (31). As is
explained below, Dobring’s equation (31) is a linear combination of our lean and
steer equation and thus Whipple’s linearized equations are in complete agreement
with those presented in Chapter III. His work, which is as sophisticated as almost
any later investigation, was evidently done for his degree from Trinity College,

Cambridge University.
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Overall, the definitions of Whipple’s variables are difficult to decipher and make
" his paI;;e:r difficult to read, but his equations appear to be rigorously derived and
are fully genéral W%len compared to those given in Chapter III. Whipple is critical
of McGaw’s [1898] study of tricycles, and Bourlet’s [pre-1896] study of bicycles,

neither of which have we read.
Carvallo, 1901

Carvallo [1901] wrote 300 generally lucid pages on the stab‘ility of monocycles
(rider inside a'single wheel) and bicycles. Only the second part of the monograph,
which won a prestigious prize, concerns us. In it he modifies Lagrange dynamics
to deal with rolling hoops and bicycles (we were not able to tell if his method
is a different way of dealing with nonholonomic constraints). We are concerned
primarily with section V on no-hands stability. The gquations where each term was
derived z;.re laid out on pp. 100-101, and restated in condensed form on p. 103. The
equations are exactly analogous to ours, one for lean and one for steer.

Although we c;mld not find where Carvallo said this, it appears that his bicycle
has two identical heavy wheels, the rider and frame are considered a single unit,
and the mass of the front assembly is at the center of the front wheel and its inertia
properties are those of the wheel. (This is not an unreasonable idealization if the
handlebars are not heavy and are positioned on the steering axis as was common in
designs of that day. Technically, for such a design the mass of the handlebars and

straight part of fork can then be considered part of the rear frame.)
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We find that Carvallo’s equations (for a bicycl;: with massless forks and han-
dlebars) agree exactly with ours. Most quantities are defined in the text, but the
reader shoﬁld note that the wheel inertias are defined relative to their ground con-
tact, i.e. Cy is for spin about a diameter, 4, is for lean (le., 41 = Cy + 1 R?), By
is for rolling about the contact point (i.e., B; = I, + pR?). S = —I‘% is the wheel
rotation rate. Carvallo makes no reference to other works, which is not surprising

as his research was evidently performed in 1898.

Sommerfeld and Klein, 1908

Sommerfeld and Klein (S & K) in 1903 derived the linearized equatic;ns of
motions for the Basic bicycle model havirig all the mass and inertia of the front
assembly in the front wheel (similar to Carvallo). Somewhat similar to Whipple
[1899], they used a Newtonian analysis of the fronf and rear assembly, and treated
the two parts as two trailers attached toA the steering axis, deriving the linearized
equations of motions using axes parallel to the steering axis. S & K refer to Whipple
[1899] and Carvallo [1901] but do not say whether their equations agree.

Their equations are most easily compared to Ddhring’s [1955], and are found
to be a correct subset of his. It is possible that S & K'’s slight simplification(s) to
the model were due to their main interest in determining what effect the wheels as
gyroscopes had on the stability (since the article is a chapter in their massive work

on gyroscopes). They are critical of Bourlet [1898] (whose book we have not read). .
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Bower, 1915

Bower in 1915, without reference to any previous bicycle work, derived the
linearized equations of motion for a simplified Basic bicycle model at the end of an
article mainly concerning the gyroscopic effects of the engine and wheels on steady
turns. His model comsists of a rear frame with its center of mass; above the rear
contact‘ point, having polar inertia Rzz provided by two point masses, one ahead
and one behind the center of mass. Two smaller masses at the same height are
attached to the front assembly. Wheel inertia and caster trail are also included, but
the steering axis is restricted to be vertical.

Instead of providing two second order equations for his model, he presents the
governing 4th order linear differential equation (eq. (19) in his analysis), which
is not convenient for comparison. The e coefficient, given as equation (24) in his
paper, is comparable to the determinant of the X matrix presented in our Chapter
III. Comparison indicates that Bower’s equations must be missing the gv term in
the Ky coefficient of the lean equation for his simple model, which confirms that
his equétions lack some of the effects of trail has on the bicycle. No comparison
was made to Bower’s coefficients A-D for his simplified bicycle model, but casual
observation indicates they also lack terms.

Looking back at his derivation it appears that his ¢ is our —v, and his 6 is our
Xr. His egs. (15) and (16) may be added to eliminate the internal reaction P, thus
leading to a lean equation. However, (a) he has ignored product of inertia terﬁs

(relative to the wheel contacts) which should appear multiplying his 1y, v, this is



63
correct for the rear part of his simplified model? but not for the front unless trail
va#ishes. Also, (b) he has left out the lateral offset of the front and rear mass center
- from the track line due to steer angle; this too is correct for the rear part of his
simplified bicycle but not for the front unless trail vanishes. (It also appears that
he should have included a vertical reaction force at the steering bearing, though
this would cancel when (15) and (16) are added.) Finally (c) his centrifugal forces
(such a f are in error because he assumes a steady curve due to steer angle divided
by a finite wheelbase, whereas in fact even with an infinite wheelbase the rate of
steer can produce path curvature of the front wheel and with nonzero trail the rate
of steer also affects the yaw rate of the rear wheel. Based on these observations,
it seems likely that his lean equation could apply correctly to his simplified model
only when the trail is zero.

We believe the steer equation could be is formed by adding (1 + $)(eq. 17) +

($)(eq. 18) to eliminate P (thé term multiplied by his §), but we have not checked

this in detail.
Pearsall, 1922

In 1922 Pearsall, with the stated intention of extending Bower’s [1915] ideas
and discovering the cause of “speedmans wobble,” derived a set of equations for a
bicycle model somewhat similar to the Basic bicycle model presented in Chapter III. -
He never states precisely whether his model is restricted in any way, but fof example,

his equations don’t include any product of inertia terms, so they are probably not
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general.

His technique for deriving the equations of motion was to first linearize the
equations of motion of a rolling hoop and then “add on” the trailer effects due to
the remaining parts of tﬁe bicycle using fairly casual arguments. While his brief
verbal justifications sound valid, in fact almost no terms in the equations are exactly
correct. We did not make the effort to trace his errors, but note that there may
have been a major mistake in the kinematical treatment (which is not spelled out
very explicitly): the headings 4 and 4 of the rear and front assemblies are defined
relative to the track line, but then they appear to be treated as coordinates relative
to inertial space in the equations.

We compared his equation (4) to our steer equation and his equation (5) to
our lean equation, and found that his equations differ significantly in almost every
term when compared to those presented in Chapter IIT. His equations would also
disagree with Bower’s if simplified for Bower’s model.

Pearsall does not say if he compared his equations to Bower’s, and he does not

refer to any other works.
Timoshenko and Young, 1948

In this textbook on advanced dynamics, Timoshenko and Young derived a
nonlinear (large-angle) lean equation for a simplified Basic bicycle model having
only a point mass in the rear part of the bicycle, and a steer angle controlled by the

rider. Their model neglects wheel inertias, steering axis tilt, trail and front-mass
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offset from the steering axis. When linearized, we find this lean equation agrees

with our lean equation simplified for an equivalent configuration.

Dohring, 1955

In 1955, in order to more generally analyze the stability of motorcycles and
motorscooters, DShring extended Sommerfeld and Klein’s (S & K) [1903] linearized
equations for the Basic bicycle model by allowing the mass distribution of the front
assembly to be fully general. Just as S & K did, Déhring used Newton’s Lawsv
to derive the equations of motion in linearized form, rather than linearizing from
nonlinear equations as Whipple had.

Dohring’s final equations were found to be in exact agreement with those de-
rived in Chapter III. In order to compare his equations to ours we made the following
substitutions in his equations (29) and (30) of his [1955] paper,

Y =ycoso

6, =0; — ysino
where - is steer angle (our 1) and 6, is lean angle (our xr). When these substitutions
are made Ddhring’s equation (30) is exactly our lean equation. Our steer equation
results from the linear combination of Déhring’s equation (31) and (30). Using

Dohring’s notation this combination is as follows:

(eg-31) | c;sino(eq. 30)
T ]

= —-Md = our M‘l’

Although not rigorous in how his linearizations are made, Déhring’s derivation

was fairly easy to follow, and offers a good physical description of the variables and
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equations of motion. Déhring refers to S & K, but never states explicitly how his

equations compare.
Collins, 1963

In his 1963‘ University of Wisconsin Ph.D. dissertation R. N. Collins, working
on a project supported by Harley Davidson Motor Company, studied a Basic bicycle
model with the addition of a driving force on the rear tire and an expﬁcit force for
aerodynamic drag applied to the front fork/handlebar assembly. He derived the
equations of motion using Euler’s equations (Newton’s Laws) for the 4 rigid bodies
of the Basic bicycle model.

Collins derives nonlinear velocity and acceleration expressions for the rear and
front center of mass first (see pages 19 and 20 of his dissertation), and then linearizes
about the vertical equilibrium position,i before deriving the linearized equations of
motion. By writing the drive force and aerodynamic drag force as a function of the
square of the forward velocity of the motorcycle (see p. 12 in his dissertation), he
alters the vertical contact forces on the front and rear wheels. By making the as-
sumptions of no slip angle and constant velocity he has only two degrees of freedom
for his model and he is therefore able to write the linearized governing equations
as two coupled second order ordinary differential equations in the lean and steer
angles (see p. 76 eq. (5.1) a.nc\l eq. (5.2) in his dissertation). The final equations are
complicated in appearance and include over 30 qua.ntities.deﬁned in terms of mo-

torcycle parameters. (These quantities often include previously defined quantities,
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which further complicates understanding of the equations.)
His equation (5.1) is not exactly the steer equation, and his equation (5.2) is
not exactly the lean equation. However, if we transfer all the terms to the left hand

side, and form the combination,

sin cefeg. (5.1)] + h[eq.(5.2)] = [equation with no ¢ and no M;]=0

’

the result appears to be the lean equation. That is, in our notation the coefficients
Mx, Cxx (which is zero), K, are all in agreement with those presented in Chapter
III. The steering moment M3, our equivalent My, also drops out of the equation as
it should. So while the task of multiple substitution was tedious and prevented us
from completely comparison of the lean equation, or even from determining what
combination of his equations ought to give our steer equation, it may be that Collins’
resulting equations are correct.

The only potential flaw to come to light is that Collins’ equivalent to our Cyy
term, namely

——(sin OlKgl -+ h2K31),

should probably include the angular momentum of both wheels. However, this
expression appears to contain only the front moment of inertia I7, not Ij.

Collins refers to the works of Sommerfeld and Klein [1903], Bower [1915],
Pearsall [1922], and Dé&hring [1955], but never compares his equations to theirs

(nor to those of Whipple [1899] or Carvallo [1901], who were cited by S & K).
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Singh, 1964

One year later, working on the same project sponsored by Harley Davidson
Motof Company, D. V. Singh’s Ph.D. dissertation added tire side slip to Collins’
model. For reasons not stated, Singh rederived the equations of motion in a notation
similar to Collins, with just a few modifications for tire side slip.

Singh’s final equations are (6.11-d) and (6.12-d) on p. 74 of his dissertation.
These equations were judged too impenetréble to compare to those in Chapter 111,
because the coefficients are defined in terms of secondary quantities, which in turn
are defined as functions of physical parameters. However, on p.49 he assumes that
the tire corning forces (tire side slip) are proportional to the steer angle, which is
only true for steady turns. Hence, we judge at least his treatment of side-slip (eq.
4.31) to be incorrect, though if sideslip is prevented we can’t say whether or not his
. equations are correct.

Surprisingly, it was noted by casual review of Singh’s and Collins’ theses that
disagreement exists in their expression for the velocity of the rear center of mass
of the vehicle. Tbjs can be found on pagé P- 52 of Singh’s dissertation eq. (4.40a-
c) and p. 19 of Collin’s dissertation eq. (2.132-c). Equation 4.40(a) of Singh’s
dissertation has an extra term compared to 2.13(a) of Collins, and some signs appear
to be different in subsequent.equations, although the coordinate axes chosen in both
treatments seem to be equivalent.

Though he refers to Collins and to C;)Hins’ references, Sinéh does not compare

his equations to anyone. e
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Neimark and Fufaev, 1967

- In 1967 Nefmark and Fufaev (N & F) with a brief reference to DShring [1955]
derived equations of motion of the bicycle as a classical example of a nonholonomic
system. In their del"ivation they use Lagrange’s equations with nonholonomic con-
straints for the path of the wheels and obtain the linearized equations of motion for
the Basic bicycle model. It is their derivation that our Chapter III mainly follows.

The equations in their book which represent the relations between the auxiliary
variables and generalized coordinates, linearized rolling- constraints, kinetic energy
for the rear and front part of the bicycle, potential energy of the bicycle, and
equations of motion, can be found starting on p. 334 as eq. (2.10), eq. (2.15), eq.
(2.26) and eq. (2.29), eq. (2.30), and eq. (2.37-38), respectively.

As mentioned in Chapter III an error is made in their formula for potential
energy eq. (2.30). (The correct potential energy to second order is found in section
4 our of Appendix A.) This error results in the incorrect coefficients a4, b3, and
by in eqs. (2.37-38), where gma,d should be replaced by g(mgd + £1]). In addition
to these corrections the reader shoﬁld note that a typographical error occurs in
the b; term on p. 344 of their text (where 1 should read %) and in several other
terms in the description of the geometry and viscous damping expressions. Also, in
deriving the nonlinear equations they present nonlinear kinematic equations which
are actually incorrect because they neglect the rise and fall (pitch) of the bicycle
due to variations in the steer angle. (The linearized versions of these equations are

correct as shown in section 1 of our Appendix A, however, quadratic order terms are
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needed to derive the correct potenti;l energy.) By eliminating the effects of viscous
damping in the steering colﬁmn, and making the above corrections N & F’s final
equations .of motion can be brought into agreement with those derived in Cﬁapter
I1L.

N & F refer to Dohring* and state that their equations agree in form, but it
is unlikely they meant term for term as we have found them to be in disagreement.
They also refer to a Russian book by Loicjanskii and Luré [1935] when analyzing a
simplified model of an uncontrolled bicycle on p. 355. Because this reference was
not available, it is not known if agreement actually exists, however it seems probable
because N & F’s equations become correct when simplified in this way. N & F do
not mention any other bicycle—related. works, although their massive reference list

includes Carvallo [1901].

Singh and Goel, 1971

In January 1971 Singh and Goel (S & G) add steer damping to the Basic
bicycle model in analyzing a.Rajdoot motor scooter. In their analysis they claim
to use Dohring’s [1955] linea;rized equations of motion (which we have found to be
correct) with a steering torque proportional to the the time derivative of the steer
angle (viscous damping). We have not rigorously compared term by term but casual

observation shows that the equations are in the same format as those of Dohring

[1955].

* See p. 361 of their text.
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S & G refer to Pearsall [1922], Timoshenko [1948], Dohring [1955], Collins

[1963], and Singh [1964], but make no comparison to their equations of motion.
Sharp, 1971

In August 1971 Sharp, who apparently began working on the equations of
motion while at the B. S. A. motorcycle company, published a paper presenting his
version of the linearized equations of motions for the motorcycle. In his Lagrangian
approach rather than using the method presented by Neimark and Fufaev in Chapter
II1, he explicitly allows the vertical force from the ground on the front wheel (Zy)
to do work on the bicycle. For this reason Z; appears in his expressions for the
generalized forces. In this way he accounts for the change in potential energy of
the bicycle when steered. The nonlinear equations he presents are actually only
approximations for this reason.

Allowing for whegl side slip, and incorporating the work done by the vertical
force on the front wheel, he derived Lagrange’s equations with generalized forces at
the wheels’ contact with the ground. These resulted in four equations of motion,
incorporating front and rear tire side forces, which govern lateral motion, yaw, roll,
and steer of the motorcycle. They which appear in his paper starting 'at the bottom
of p. 327 (no equation numbers are given). These equations are correct as far as
we know.

However, when assuming that the tires have infinite stiffness (no side slip),

which reduces the number of equations from four to two, an algebraic mistake and
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several typographical errors occur in the Appendix II. As a result the steer equation
(the second equation) is incorrect. The algebraic error made by Sharp results in

the incorrect cancellation of the following term (in his notation),
2[Mysek + Iy, cose + Myebllt §

We also make note of the following typos: the z? in the lean equation of Appendix II
should read £3; there is an extra parathesis in the ninth term of the fourth equation
in Appendix 1 .section entitled “Linear equations of motion”; the term #; cos €8 in
the expression for z/) in Appendix II should read z; cos e§ ; Iry should read i 5y in the
¢'> term of the steer equation of appendix 2; and finally terms involving il%llta':l sin €
in the & term of the steer equation can be eliminated as they cancel one another.
Sharp also makes the slightly restrictive assﬁmption that one principal axis of
the center of mass moment of inertia tensor of the front assembly is parallel to the
steering axis. Thus the equations in his paper, when corrected, are a subset of those
derived in Chapter III. Sharp refers to the work of Whipple [1899], Pearsall [1922]

and Collins [1963], but does not compare his equations to theirs.
Roland, 1971

In 1971 Roland published a report written for the Schwinn Bicycle Company
containing a extensive nonlinear computer simulation study.® In this report Roland

derived nonlinear equations that represent the motion of a bicycle with tire side slip

% This report was based on work performed for a National Commission on Prod-
uct Safety research contract. See Roland [1970].
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and rider lean. His 8 equations of motion are shown in matrix form on p. 37 of
his report. Reading from the top down the first three equations represent force
balance for the entire bicycle. The fourth through the sixth equations represent
moment balance for the entire bicycle. The seventh equation is apparently moment
balance for the front assembly about the steer axis, which can presumbly be used
to solve for the steering torque if the tire side force is eliminated. The eighth and
final equation‘ represents the rider upper-body lean degree of freedom, and can be
used to solve for the tilting moment of the bicycle on the rider when rider motion
is prescribed. These equations are written so that the second time derivatives are

all on the left side of the matrix equation, while all the lower order terms are on

the right hand side.

Roland used axes parallel and p'erpendicula.r to the steering axis in the plane
of the rear frame, and perpendicﬁlar to the rear frame. However, his report to
the Schwinn bicycle company is missing an important figure describing the ori-
entation of the body-fixed axes. This figure is contained in a later publication

Mechanics and Sport [1973]. In the later publication, Roland also corrects some

typos that were in the 1971 publication.

In the %971 report, the seventh equation, the steer moment equation, is given
on p. 13 as eq. (2.3.30). We took this equation and assumed e = T — ' in order
for it to agree with the: seventh equation in the matrix on page 37. We then made
simpliﬁca.tidns to the equation to see if it agreed with our Lagrange equation for 1,

(3.109).
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First we set any term multiplied by yr or y}% equal to zero. (This means there

is no lateral imbalance.) We then neglected terms multiplied by the pitch rates q
and ¢"”, which are second order effects. Next we assumed angles (and their time
derivatives) to be smail and let siné = § and cos § = 1, and cancelled any products

of the small quantities p, p", ¢, ¢”, and § (and their time derivatives).

We then linearized the variables Y12, Y22, Y32 in the same way. Terms multiplied

by 712 ‘become zero, 122 = m(rV — 9¢) and 733 = myg.

The coefficient of the § term seems correct, and the resulting equation appears
somewhat similar to our equation (3.14), but we are not able to make the resulting
equation agree completely. There is some question as to whether the comparison
we are making is correct, because it is not understood if in fact Roland’s equation

(2.3.30) should be equivalent to our equation 3.10g.

An eqt;a.tion equivalent to our lean equation has not yet been constructed from
Roland’s equations. However, it is probable that an equivalent equation would be
obtained by combining the fourth and sixth equations in his matrix to represent
rolling moment about the track line, setting the rider lean angle to zero, including
the mass of the rider with that of the rear frame and rear wheel, setting pitching
motion to zero, and setting tire side slip to zero. The lateral forces, Fy¢r and Fyey,
on the wheels can perhaps be solved for analytically using the first, fou.rth and sixth
matrix equations or taken from other linearized equations studies. Since we have
not attempted ;his, we are not able to judge whether his lean equation reduces to

ours.
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Roland refers to the works of Whipple [1899], Bower [1915], Pearsall [1922],
Manning [1951], Déhring [1955], Collins [1963], Singh [1964], and also Singh and

Goel [1971]. However, he makes no comparisons to their equations of motion.

Weir, 1972

In an appendix to his 1972 UCLA Ph.D. dissertation focusing mainly on the
control and handling characteristics of motorcycles, Weir derived the equations of
motion for the Basic bicycle model with a general Newtonian approach, linearizing
as the derivation proceeded. Weir’s final 4 equations, eq. [A-85], [A-92], [A-99],
[A-108] in his analysis, represent the lateral motion, yaw, lean and steer equations
of motion.

Weir was the only author to state explicitly that he compared his equations
to another past work.® He compared his equations to Sharp’s [1971] four equa-
tions (before Sharp’s simplification to only two nontrivial degrees of freedom). In
comparing Weir’s 4 equations to Sharp’s four equations, we find Weir and Sharp ;in
agreement with one another. Weir, however, is more general than Sharp, in that
he did not make the simplifying assumption regarding the principal axes of the
front inertia. When Weir’s four equation are simplified by adding the zero sideslip
constraints we find his equations agree exactly with ours, as long as our nonstan-
dard sign convention for wheel angular momentum (positive for forward rolling) is

recognised.

® See page 130 of Weir’s dissertation.



76
Besides stating that comparing his equations agree with to Sharp’s, Weir refers
to Whipple [1899], Pearsall [1922], Déhring [1955], Singh [1964], Singh and Goel

[1971], but does not compare his equations to these works.
Singh and Goel, 1975

In 1975 Singh and Goel presented (but did not derive) a 12th order mathe-
matical model, for the continued analysis of the Rajdoot scooter. Instead of using
Singh’s {1964] equations, or Dohring [1955] equations as they did in 1971, they em-
ploy a Lagrangian formulation which appears similar to Sharp’s [1971] format. The
authors claim that the model used is a fully general Basic bicycle model, having
in addition unsymmetric lateral mass distribution, lateral slip, aerodynamic forces,
viscous damping of the steering, and transient tire forces and moments (which ac-
count for the high order of the system).

The four equations of motion presented are said to represent the lateral motion,
yaw, lean, and steer equations of motion. We have not yet checked these equations
for correctness, but they do appear similar to Sharp’s [1971] four equations. Singh
and Goel refer to their 1971 paper on the Rajdoot scooter, and to Sharp’s [1971]

paper, but do not compare their equations.

Sharp and Jones, 1975

In 1975 Sharp and Jones use the equations derived by Sharp [1971] and modify

it to incorporate a different tire model. As in the 1971 paper the principal axes of
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inertia are assumed to be parallel and perpendicular to the steering axis equations
of motion. Other than this, these equations are equivalent to those in Sharp’s 1971

" paper, which when simplified correctly formed a subset of the equations presented

in Chapter III of tiﬁs thesis.
Weir and Zellner, 1978

Weir and Zellner later published the results of Weir’s dissertation derivation in
Motorcycle Dynamics and Rider Control (SP-428, 1978), but mistakenly thinking
Weir’s earlier derivation was wrong, they deleted a necessary term without com-
ment. The term needing correction can be found on page 8 in the matrix equation

(1), where the second row fourth column terms of the matrix should read,

L-
‘—[—isz + L68 + Lg

There are also some typos in equation (1) and we note the third row fourth column
term should read,
Njs® + N;s + N
and finally the fourth row fourth column term should read,
T;s® 4+ T 58+ T
Because of these typographical errors we recommend using Weir’s dissertation for
any comparison of equations or results. |
Incidentally, when corrected Weir and Zellner’s matrix can be written to be

symmetric except for the antisymmetric gyroscopic terms, but his notation does

not make this evident.
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Gobas, 1978

Using a technique which he calls the Boltzman Hamel method, in 1978 Gobas
presented a linearized set of equatioﬁs very similar in form to Nefmark and Fufaev
[1967]. Gobas’ equations, (1.4) in his paper, incorporate the forward acceleration of
the bicycle, V. Setting V terms to zero and comparing, we think the lean equation
may be correct, but in the steer equation the coefficient to the x, term seems to Be
in disagreement with the equations in our Chapter III. The variable b is not defined
in the paper but we suspect that it is equivalent to our v.

Gobas refers to Nefmark and F ufaev, but does not compare equations.
Adzele, 1979

In his 1979 Master’s thesis Adiele, who was focusing on design optimization
and performance evaluation of two-wheeled vehicles, derived nonlinear equations of
motion for the Basic bicycle with tire side slip using Kane’s method of generalized
active and inertia forces.

His equations, representing lateral motion, lean, steer, and yaw (in that order)
are present in matrix form on pages 22-24 of his thesis. His variable V is our X r
A is our x,, 8 is our %, and r is our §,.. Because his equations resembled Sharp’s
[1971] four equations, we expanded Adiele’s matrix, linearized his equations for
small values of A and 6, and compared them to the equations in Sharp’s [1971]
Appendix 1.

The results show that Adiele’s equations are in error, missing several terms
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compared to Sharp and having several sign errors. However, by allowing the front
maés to be zero his equations are nearly correct.

'Adiele refers to Roland [1971], but does not compare equations. A subsequently
pubiished paper by Taylor and Adiele [1980] on stability in large angle éteady turns
also appears to rely on Adiele’s equations, even though the authors evidently knew
of earlier linearized studies (by Weir, and others) which they could have used to

check their equations.
Lowell and Mckell, 1982

In 1982 Lowell and Mckell, using ad hoc arguments similar in style to Pearsall
[19221 derive a set of linearized equations for a Basic bicycle model with a point mass
in the rear part, some steering inertia and front gyroscopic effects, but no front mass,
and no tilt of the steering axis. When compared to our equations simplified for this
case, we find there is significant disagreement. Several terms have been neglected
in both the lean and steer equation, however, the terms which are presented are
correct. The neglected terms are significant, as a bicycle with vertical steeriﬁg axis
and positive trail should return upright if speed is great enough (£ > 0), and show
ever-increasing lean if speed is below a critical value (E < 0)." However their
approximations make E = 0 always, so their bicycle model neither straightens up

nor leans further, but in fact oscillates about a steady turn.

T For this simple bicycle E varies exactly opposite to E for a standard bicycle.

When it is positive at low speeds and negative at high speeds.
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We find the only way to make their equations correct is to use them for a

bicycle with zero gyroscopic effects and zero trail.

Lowell and McKell refer to Timoshenko and Young [1948], Gray [1918], and
Pearsall [1922] but only state (correctly) that their lean equation agrees with Tim-

oshenko’s when simplified. They made no other comparisons.

Conclusions

Of the 20 sets of equations discussed in this chapter only 3 sets (Ddhring [1955],
Singh and Goel’s [1971] adaptation of these, and Weir [1972]) agreed exactly with
those we presented in Chapter III of this thesis. (The slip angle condition had to be
set to zero in Weir’s equations.) Five others simply had minor errors, or were not as
general (Whipple [1899], Carvallo [1901], Sommerfeld and Klein [1903], Timoshenko
and Young [1948], and Sharp [1971]). Three (Collins [1963], Singh [1964], and
Roland [1972]) were to difficult too evaluate, though we have definite reservations
about the first two. The remaining eight were missing terms, or disagreed in other

ways (we did not check Singh and Goel [1975]).

Other works which derived linearized equations of motion, but whose compar-
ison results are not presented here, are Eaton’[1973] and Psiaki [1979]. Eaton’s
derivation was not noticed until late in this thesis’s progress. Psiaki derived very
dense nonlinear equations and then linearized rather formally; we did not expend
the effort to sort out his notation. Guo [1979] performed a nonlinear analyses but
did not linearize, so we did not compare to his equations. Psiaki stated he found

numerical agreement with Collins, and Guo referred to Nefmark and Fufaev but
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made no comparison with them.

Other scientists have studied various aspects of bicycle behavior without de-
riving equ‘a'tions of motion. Rankine [1869] described steering phenomenology, and
discussed the relation between a sinusoidal steering motion and the resulting sin-
soidal lean angle. Sharp [1896] derived the steer torque in a steady turn.® Jones

[1970] approximated the steer torque arising from bicycle lean (Kxy). Man and

Kane [1979] studied steady turning at large lean angles.

8 See eq. 6 on page 231 of his book. His result is nearly correct except that it
neglects the effect of centrifugal force on the mass-center of the front assembly.



V. STABILITY ANALYSIS OF

THE BASIC BICYCLE MODEL

The Meaning of Bicycle Stability

Traditionally when discussing dynamic stability of linear systems the concepts
of equilibrium and degrees of freedom are used to define an equilibrium state of a
system as being asymptotically stable or asymptotically unstable.! For the case
of the bicycle we use these concepts to define stability in terms of only two of the
bicycle degrees of freedom. For the stability of the bivcycle we are only concerned
with the stability of the variables representing the lean and the steer degrees of
freedom, x, and v, respectively. 'I‘hat is, after the bicycle system is perturbed,
6, and X,, can take on new nonzero equilibrium positions and the system, for all

practical purposes, can still be considered stable.? Hence, when we discuss bicycle

! See the definition of stability on p. 3 of Etkin [1982).

2 We lack mentioning the other generalized coordinates’ time derivatives Yy, ér,

82
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stability we apply the definition of dynamic stability only to the lean and steer (x-
and ¢) degrees of freedom. We therefore define bicycle stability in the following
way:

A bicycle is stable, if, after a very small disfurbance from its vertical straight-

ahead equilibrium motion i, asympiotically approaches a vertical .stmight-rollz'ng;_}

configuration in the lean and steer degrees of freedom, x, and Y, respectively.

This modified definition of dynamic stability, bicycle stability, assumes that
for the degrees of freedom Xr, and %, another equilibrium position does not exist
close enough in the vicinity of the slightly disturbed region to cause the disturbed
motion to converge to another, different, equilibrium position. From parking lot
experiments this seems to be a good assumption for small disturbances.3

Before going on, we point out that Just because a bicycle design configuration
is found to be stable, does not necessarily imply that a rider would, or should,
desire it more than an unstable bicycle design configuration. We emphasize that
our definition of a self-stable bicycle configuration does not impl_y that a bicycle
which is more comfortable, safer, and/or éasy to ﬁde. In fact, a self-stable bicycle
configuration may seem overly sluggish and undesirable. The goal of this thesis is

not try to gain understanding of whether a self-stable bicycle is easier to ride or

and ¢ £, which do not effect the linearized equations of the Basic bicycle model.
Note however, these variables can also take on new equilibrium positions.

3 Prior to the analytical studies done for this thesis many observational experi-
ments were performed. Appendix D contains the announcement of a bicycle stability
demonstration performed by the author highlighting the observations made.
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more comfortable, but rather to understand analytically the effects of bicycle design
parameters on mathematically based stability criteria. Further studies, beyond the

- scope of the thesis, are required to compare rider impressions to our results.

Stability Analysis Techniques

Historically, stability of the vertical straight ahead (upright) equilibrium config-
uration of the bicycle and motorcycle has been studied in four Ways: -analysis of the
eigenvalues and eigenvectors of the system; numerical integration of the equations
of motion a.nd>study of the solutions; application of the Routh-Hurwitz criteria; or
experimental observations of bicycle behaviour. Each approach has its merits a‘nd.
drawbacks, as we will now explain.

First, using the system of equations, or the characteristic fourth order polyno-
mial derived in Chapter III of this thesis, one can determine the eigenvalues (the
roots to the fourth order equation), and eigenvectors (mode shapes) of the system
which can be used to-calculate the natural frequencies and mode shapes of the sys-
tem representing a bicycle traveling at a particular speed.* If, in such an analysis,
any of the eigenvalues have positive real parts, the solution to the system will grow
away from the equilibrium in time and the system is unstable (at least based on the
linearized equations). Complex eigenvalues represent oscillatory solutions whose

real parts determine whether the amplitude of the oscillations will grow or decay

* When we say system, we are referring to the set of equations that describe the
bicycle’s motion.
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in time.® Thus eigenvalue-eigenvector analyses allow for various design configura-

tions to be compared by numerically evaluating their eigenvalues. From this.we
can determine which design configuration is mathematically more or less stable.6
Traditionally, this has been done by saying the more negative the real part of the
eigenvalue, the more stable the system. The eigenvectors can be used to try to
imagine how the bicycle went unstable. That is, we can try to distinguish how each
degree of freedom is contributing to the instability, falling over and steering back
and forth. It is from the eigenvalue-eigenvector stability analyses that the terms
capsize, weave and wobble modes have been adopted to described the motion of the
bicycle or motorcycle at various speeds.” Eigenvalue-eigenvector analyses can only
be performed with a linearized set of equations.

A second method used to study sté,bility 1s to numerically solve the equations of
motion using a digital or analog computer. This can be done for linear or nonlinear
sets of equations. Plots of the response (the solution) to various inpﬁts can be used

to quantitatively and qualitatively characterize the stability of the system, and/or

changes in design parameters (just as with the eigenvalue-eigenvector analysis.).

% For any polynomial equation with real coefficients, complex roots will always
occur in complex conjugate pairs.

® Calculating the eigenvalues also allows the halflife of the amplitude of the
oscillation and damping ratio to be calculated, which can be used as a measure of
stability for a particular design configuration, instead of the eigenvalue.

T See Sharp [1975]. Note that the wobble mode is only present when a tire model
allowing for tire slip angle is incorporated into the equations.
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This method can also be used to verify stable equilibrium motion(s), if any exist.

One of the major problems associated with numerical studies is the verifica-
tion of the equations themselves. Because nonlinear equations are generally more
complicated to solve for than linear equations, we believe the probability of math-
ematical error is higher with nonlinear models (and quite possibly little further
understanding is gained). Thus., although the computer may be powerful enough
to solve nonlinear equations, the results should be reviewed with caution until the

nonlinear equations have been verified in some way.

Another computer-related method for studying stability of the bicycle would be
modeling the bicycle components as rigid bodies and constraining motion between
the rigid bodies by springs with varying stiffness. The computer could then be used
to solve the equations of motion of individual rigid bodies, without complicated
dynamical equations. To the author’s knowledge no one has performed this type of

numerical simulation for bicycles.

A th'ird method of eva.luating bicycle stability is to apply the Routh—Hmvﬁtz
criteria, which is the method used in this thesis. This method allows for the stabil-
ity of an equilibrium configuration to be determined based on the coefficients of the
fourth order polynomial derived in Chapter III. It determines whether any of the
eigenvalues (roots to the fourth order polynomial) have real positive parts, without
actually solving for them. This technique yields criteria which directly lead to ana-
lytical expressions linked to the stability of the system. Qualitative statements can

be made by comparing various design configurations stability regions. Quantitative
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statemgnts can be formulated from analytical expressions linked tp stability. Like
eigenvalue and eigenvector analyses, the Routh vHurWitz criteria are applicable only
to the linearized system of equations, as it is based on the fourth order polyno-
mial, which is the characteristic equation for the two coupled linearized differential
equations.

The Routh-Hurwitz criteria are limited in the quantitative aspect, in that, it
does not give any exact measure of how stable a particular design configuration
is relative to another. However, as will be seen, it develops analytical expressions
which give the relative importance of various design parameters for stability. In
this way, éua.ntitative insight into the important parameters in design is seen and
provides an analytic foundation for further analysis of the parameters related to
stability.

The fourth method used to analyze the stability of the bicycle is to experimen-
tally measure the bicycle’s behaviour. Data for various design configurations can
then be compared and results analyzed. This thesis does not discuss the experi-
mental methods used in a.nélyzing bicycle stability or their results. The interested
reader is referred to the work of Kondo [1955], Kageyama [1962], Kondo [1962], Fu

[1966], Roland [1970], Jones [1970], and Eaton [1973].

Discussion of Analysis Techniques

In both the eigenvalue-eigenvector and numerical stability analyses, no imme-
diate insight to the effect of design changes on the stability of the bicycle is likely to

be apparent until after numerous bicycle configurations have been compared. Only
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after comparing trends in changes of the eigenvalues, or solutions to the equations
can results be quantified to try to develop design criteria for achieving stability. This
process has the potential to become long and tedious, and is sub ject to interpreta-
tion of data. Certainly, no definite pfoofs can be made from these techniques, and
parameters of importance can not be seen without numerous computer simﬂations
and study of results.?

Even with a detailed parameter study using the method of root loci, or nonlin-
* ear solutions to the equations of motion, results drawn from these kind of methods
have yielded mostly numerical results for a particular design of bicycle or motor-
cycle, and do not provide the analytic design criteria needed by bicycle designers.
It is the opinion of the author that studying more detailed models is not valuable
until basic, analytically based, quantitative understanding of the importance of de-
sign ’para.meters i1s available. Because of simpler computations and its direct link to
analytically based design criteria as functions of veiocity, application of the Routh
- Hurwitz stébility tests were chosen as the main technique used in this thesis.

We next derive the Routh-Hurwitz criteria for the Basic bicycle model.

The Routh-Hurwitz Stability Criteria

The Routh-Hurwitz method differs from eigenvalue-eigenvector analysis be-
cause it tells us whether or not there are unstable eigenvalues, i.e. roots to a

characteristic equation with positive real parts, without actually solving for them.

® Although not summarized in this thesis we reviewed others results and found
few gave general conclusions about design for stability.
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Results are analytical, hence useful for general statements and insight into impor-
tant parameters in the design of bicycles. However, results do not give the same
information oﬁ the degree of stability or instability provided by eigenvalues and
eigenvectors.

The Routh-Hurwitz criteria are formulated using the coefficients to the fourth
order polynomial (eq. 3.17). When we apply the criteria to the Basic bicycle model’s
characteristic equation the resulting necessary but not sufficient conditions are that
the coefficients A-E all must be greater than zero. These conditions must be met
for the system to be stable.® Using the notation introduced in Chapter III, these
conditions are the first five of seven Routh-Hurwitz criteria that must be satisfied

for the system to be stable. In general they are,

A=%M*M=det'M>0 (4.1)
B=Mx+C>0 (4.2)
C=M=+K+det C>0 (4.3)
D=K+C>0 (4.4)
E=%}C*IC= det K> 0 (4.5)

where the matrix multiplication * is defined in Chapter III and the quantities M,

C, and K are the mass, damping , and stiffness matrices for the system as follows,

Mux  Mxy Tyy e T 2Ty
M= == 2
Myy  Myy B+ &0 Fy+24F, + 4T,

% See Ogata [1976].
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Cxx Cxt!}

C= =3
C¢x Coyy

0 — (Hf COS A -+ —LHt) +V (T co:A fﬁmt—ﬂ)
Hfcos A+ %Ht V(“"“(F + —-LTzz> + -j—éu)

}Cxx K:xvﬂ

K= -
Kyx  Kyy

—gmyhs qu — HtVCZi’\ V2 c°5)‘m thi
gv —gvsin A+ VHy sin/\czy‘ +V2czi>‘v

As was shown in Chapter III of this thesis, and shown above, in general, the
coeficients A-E are functions of the coefficients of the lean and steer equations
(3.14,15), which are functions of the velocity of the bicycle. (This proves the intu-
itive result that the stability of the bicycle is dependent on the speed at which it is
moving.) In what follows, for a given bicycle design we will imagine evaluating the
stability criteria (4.1-4.5) at many different velocities, to find ‘stable regions.’1?

In addition to the coefficients A-E being positive, in order to have a stable
configuration (a set of design parameters, which has a range of stable velocities)

two additional criteria must be met. These criteria are functions of the coefficients

10 When we say region of stability we mean that for a range of velocities, all
criteria are satisfied. In general, some lower and higher speeds will bound the
stability region.
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A-E and once derived are as follows, !

BC ~AD >0 (4.6)
B*E
P> 5c-4p (&

If we further assume that a region of stability exists (A, B, C, D, E, 4.6, and 4.7 are
all met for a range of velocities), we find equation (4.6) is encompassed in equation
(4.7). That is, while in a region of stability, (4.7 is a more‘restrictive criterion than
(4.6), and is always met if (4.7) is met. Thus, assuming a region of stability exists,

equation (4.6) is always met and equation (4.7) can be rewritten as,!?
BCD > AD? + EB? (4.7a)

or equivalently,

C>A4 (%) + E(—g-) (4.75)

11 For brevity, we have skipped the derivation of these criteria but rules for their
derivation can be found in Ogata [1976).

12 Based on the results of previous studies and experiments it is reasonable to
assume that some region of stability exists for the Basic bicycle model with some
design configurations. In this study we will always assume that a region of sta-
bility exists when discussing the stability criterion (4.6) and (4.7), then verify our
assumption numerically by evaluating (4.1-7).
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Interpretation and Meaning of the Routh-Hurwitz Criteria

For a given design configuration which has a range of stable velocities, there
must be upper and lower limiting speeds which bound the stable regions.!® For a
general design, it is conceivable that more than one stable region can exist, as will
be explained. This section describes which Routh-Hurwitz criteria are the limiting
criteria for these stable regions. That is, for a given design configuration, if in a
range of stable velocities, which criteria will first be violated when leaving the stable
region.

The Routh-Hurwitz stability .criteria are essentially a way of indicating when
the eigenvalues of a system (roots to the fourth order characteristic equation) have
negative real parts. To understand which Routh-Hurwitz criteria are the limiting
criteria, we studied when the roots of the fourth order polynomial goes from de-
scribing a stable system (all roots having zero or negative real parts) to an unstable
system (any roots having positive real parts).

Graphing the roots to the characteristic equation in general, as shown in figure
5.1, we note that a stable system can become unstable in two ways:

1) a negative purely real root becomes positive or,

~ 2) the negative real parts of complex conjugate roots become positive.

13 The upper and lower stability limit could conceivably be infinity or zero, re-
spectively. As we will mention later, from a physical standpoint we know that
traditional bicycle design configurations are unstable with zero velocity. One might
investigate the stability criteria to see if adding gyros, etc. to the Basic bicycle
model could make it self-stable with zero velocity.



93

Point P; illustrates that when a purely real root changes from negative to
positive, it must pass through zero. We‘note from the form of the characteristic
equation (3>.17) that the only time that a p;ély'real root can equal zero is when the
E coefficient is zero. (Substitute s = 0 into the equation~ (3.17).) This means that
assuming some region of stability exists, the F coefficient, equation (4.5), can be a
limiting criterion. In this case, for example, as velocity changes the E criterion will
be the first violated when entering an unstable velocity region (with either velocity
increasing or decreasing).

Points P, and P; illustrate that when a conjugate pair of complex roots change
from negative real parts to positive real parts, they must pass through the purely
imaginary condition. Substituting the component of a purely imaginary theoretical
root, say iw, into the fourth order polynomial we find that the condition that such

a solution exist yields the equality of inequality (4.7a), as is next shown.

Substituting iw for s in equation (3.17) we have,
Aw* —iBw® = Cw® 4+ iDw + E = 0
Equating real and imaginary components to zero,
At ~CW*+ E=0 (4.8)
Bw® — Dw =0 (4.9)

Solving for w? in (4.9) and substituting this into (4.8) we have, the stability limit

for Routh-Hurwitz criterion (4.7a),

CDB = AD? + EB?
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This shows mathematically that if a stability region exists, (4.7a) also can be a
limiting criterion. The E inequality (4.5), and the Routh-Hurwitz inequality (4.7a)
together vﬁll detect all transitions to instability, and in fact it can be shof?vn that
one of these inequalities must be violated before any other criteria can be. Thus,
one or both determine the limits to aﬁy stable range of velocities.
To determine whether (4.5) or (4.7a) could ever provide both of the limiting
criteria for a stable region, we look at the general form of (4.5) and (4.7a) as
functions of velocity. Expanding the E inequality (4.5), in terms of tile bicycle

parameters as a function of velocity, we find a function of V of the form,
E=¢ey+eV?

where ey and e; are constants based on the design parameters of the bicycle. Because
E has no term in V to first order, we know from the shape of the curve that E can
only provide one of the limiting velocities, not both. That is, it can only have, at
most, one positive velocity at which it changes sign as is indicated in figure 5.2. So
E might serve as a lower limit or upper limit to some stability region, but not both.
If e and e; are both positive, equation (4.5) is not a limiting criteria. Meaning,
should a region of stability exist, (4.7a) must be both the upper and lower stability

limits as is next explained.

Note that in inequality (4.7a), that if we set either B , C, or D (inequalities 4.1-
4) to zero, that in each case inequality (4.7a) is violated. This means that provided

a region of stability exists and the coefficient A is positive, that (4.7a) must be one
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or both of the limiting criteria because it will be violated before (4.1-4). Expanding
the general form of (4.7a) in terms of the bicycle parameters we can see that this

is possible. We find (4;7a) of the form,
V2(7'4V4 + 7‘2V2 +7’o) >0

where ry, 2, and ry are constants based on the design parameters of the bicycle. As
shown in figure 5.3, in general equation (4.7a) criterion can define zero, one or two
stability regions by itself due to the form of its dependence on velocity. Should (4.7a)
only provide one limiting criteria the E criteria can act as the other limiting criteria
if a stability region exists. Figure 5.4 summarizes the various possible combinations
between criteria (4.5) and (4.7a) for determining a stability region in the positive
velocity region.
Reviewing figure 5.4 and assuming that the bicycle is unstable at zero velocity
we have four possible combinations of the E criterion and the criterion (4.72) as a
function of velocity:
1) always Unstable (U)
2) Unstable, then always Stable (US)
3) Unstable, then Stable, then always Unstable (USU)
4) Unstable, then Stable, then Unstable, then always Stable (USUS)
Of course some of the combinations presented in figure 5.4 may be physically im-
possible, but that remains to be proven.
As just mentioned, for (4.7a) to absolutely be a limiting criterion the coeffi-

cient A must be positive. Before going on we note (and show later) that A, the
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determinant of the mass matrix, is a constant and not a function of velocity. If then
A is positive, it is positive for all speeds and the condition A > 0 is always met.
We assume then for analysis purposes that A is always positive.14

Equations (4.1 — 7a) form the analytical basis for stable bicycle design criteria.
We will next expand each of the necessary conditions (4.1 — 5) out in terms of the
bicycle design parameters to formulate and simplify analytic désign criteria for the
bicycle. We found criterion (4.7a) was very complicated and have only represented
this as functions of the velocity coefficients found in inequalities (4.1-5). After
developing the design criteria some common beliefs about bicycle stability will be
disproved and the relative importance of some design parameters will be illustrated.
Later in Chapter VI, we suggest how these stability criteria can be used in design
practicé to optimize the stability of the bicycle.
Routh-Hurwitz Criteria for the Basic Bicycle Model

In order to aid our analysis the equations (4.1-4.5) hé,ve been expanded, first
leaving the components of the M, C, 'and K matrices intact and then showing
simplified forms of thé coefficients in terms of the bicycle design parameters. Note
how the two constants related to the steering axis tilt and mechanical trail, %4\- and
f—&, repeatedly occur in these expressions. These constants naturally come out of
the expansion of the criteria and also frequently appear in the equations of mofion

of the bicycle.

14 The author has been assured by Dr. Jim Papadopoulos that there is an ana-
lytical proof showing the determinant of the mass matrix always must be positive.
The author did not have time to reference this proof.
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The reader should note that the simplified forms of the coefficients are separated

2
according to their coefficients ;:—f:, c%if\-, 9—%5;4\-%, and (%) . In some cases this is a
measure of the relative size of the particular term compared to other terms in the

equations. In general, however, this is not always the case. The following are the

results of these simplifications,

A= det M=gay>0 _, (4.1)
! Cf C?’ - Cy 2
= Tyy (FAA + 2Z—F/\z + cTTzz — (F,\y + ’C——Tyz) >0 (4.1a)

2
=Tyy Fyy — F£y2 + 2z—f (Tny:\rz - F;yTyz) + (?) detT >0 (4.15)

w
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B=Mx*C=bV >0 | (4.2)

cosA [, cs <5
Tny< - (F)‘z + o Tzz) + Cwu

— (Ff\y + ?Tyz) (Hf cos A + Ecth>

—~ (F;y + ﬂTy,,) <— (Hf cos A + ijim) +v<Ty, cost _ _Cimtﬁt>>
>0 (4.2a)
A A
=TnyCOS . TnyCOS —CiTzz T,V Ly - TszCOS /\F,'\y
c - Cf COS A —cf2
+ RV Emb - TV Lt TyemiB LV >0 (4.25)

=V (COS A (Tny),\’z - TyzF/{y) -+ CZS A c-f d8t T

Cw

cr ' T cr\? 5 T
+ L(Tyymd+ By mi, +<Z‘> Tyymele + Tyemee ) | >0 (4.2¢)
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C=Mx%K+detC = co + c, V2 (4.3)
A
=Tyy (—gy sinA + VHy sin/\czs + V2 CZS Au)
(F/\y"l" T~>gl/

(FAy + T_,,z> (gv ~ By S8 A o0 ’\mjzt)

Cw Cw

2 —
+ (F,I\,\ + 2 f + zg‘Tzz> (“gmtht)

w

(Hf cos A + th> (—— (Hf cos A\ + -C—th>+V<TyzCOS/\ — _Cimtﬁt>>
Cw Cw Cw

(4.3a)

>0
=2 [——- cos? X

cos A

w

H: -
+ EL (M cos X -+ %mtht COs A)
Cw

H - H H
(mdeyy + —I—/—tF,'\y + By mihs — ?nyz cos A + ?f sin /\Tyy>

V2
cos A ¢

_f— (Tyy mJt + mt-ﬁtTyz>

Cw Cy

+ [—F/{C\gmt-ﬁt —2F,,gmgd — Ty, gsin Amgd

2 ( —2F} gmels — 2T,.gm d — 2F,\zmth,g>

Cw

+ = sm/\( yygmtlt>

‘UJ

2 — -
-+ (C__f) (-—Tzzgmtht - 2Tyzgmtlt>:l
Cc

w

>0 (4.38)
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D=CxK=d,V+dsV? | (4.4)

A -
= —gv (— (Hf cos A + Z:C_th) +V (Tyz CZS — Ef—-m:h-;))
w w Cw

_ (gv _ Htvcos)\ _v? cOS’\mt-ﬁt> (Hf cos A + -Cc—)th>

w Cw

— gmihV (czs A (F,'\'z + __ch Tzz) + ——-zf 1/) (4.4a)
Hfcos A — cos A H:H cosAcs (H? H, -
_y3| 2 foit A el W
=V i: 7 e mqehs cos A + - cos A 2 + — (V2 % mtht)J

A _
+V [ °‘ZS (—gmththz — gTy:m fd)

w

cos A Ei (—gmtthZZ —_ ngszt)} >0 (4.4b)

Cw Cy
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E =K % K=ey + e,V? (4.5)

Cw Cw

_ A A
= — gmh, (—gl/ sin A + VH; sin/\Cos + V2 €08 1/)

g (gy _HYV cosA 2 cos A mt—t) >0 (4.50)

Cw w

=Vg cos A (th — mt-ﬁtﬂf sin/\) + 921’ (mt.gt sin A — V) >0 (4'5b)

Cw

- : A H -
V|2 (s B 2t (Zima)]

Cw Cw Cy v

+g° [mtﬁt sin Am d — m3d”

Cw

+ 2 (m?ﬁtit sin A — 2mfdmjt>

_ (%)2 (mfif)J >0 | (4.5¢)
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(4.7a) =V3(ryVE+ 1 V2 410) > 0 (4.7a)
where,
r4 =bicads — agd? (4.8)
ro =bicods + bycod; — 2a¢d1ds — egbf (4.9)
ro =b1co — agd; (4.10)

and aq, by, o, ¢2, dy, ds, €, and e, are defined in equations (4.1—5). They represent
the coefficients of the velocity when criteria A—E expanded as functions of velocity.

The subscript representing the power of velocity.
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Design Criteria and Examples for Simplified Cases
Equations (4.1-5) must be met for self-stability of a Basic bicycle model. In
addition (4.7a) must be met to fulfill all Routh-Hurwitz criteria.and guarantee self-
st;cnbility. These equations, although complicated, are design criteria for stability of
the bicycle in terms of bicycle design parameters. If all criteria (4.1-4.5) are met, and

in addition (4.7a) is met, the Basic bicycle model is stable for small disturbances.

In order to gain understanding about bicycle stability, we desire to know the
effects of the bicycle design parameters on the Routh-Hurwitz criteria. That 1s,
what changes increase or decrease bicycle self-stability. Using the Routh-Hurwitz

criteria stability can be measured three ways:
1) The size of the stable velocity region.
2) The minimal speed stability is achieved.
3) Analytically, by studying the relations between parameters in the criteria.

For our analysis we have chosen a primitive bicycle lacking several of what in
the past have been deemed as making the bicycle stable. Qur primitive model is a
subset of the Basic bicycle model and, because it lacks several design features, is
easier to analytically study. The primitive bicycle has no steering axis tilt, A =0,
no mechanical trail, ¢y = 0, no angular momentum, H; = Hf = 0, and the front
center of mass is located on the steering axis, d = 0. The inertias, however, are fully

general. The primitive bicycle with tiny skates as wheels is shown in figure 5.5.

Next we will see how stable the primitive bicycle is by evaluating the stability
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criteria (4.1-5).  For the primitive bicycle model equations (4.1-5) simplify to:
A=TyF;, ~ ,I\g,,2 >0
=Ty Fer— FL > 0

= <m$f +Rw+mf-}:;>F3;+det F>0

1
B = Vz—(Tny/{’z —~Ty:F3,) >0

|4

Cw

((R-y—z—; + m,jf + mfﬁi)F;;

-+ (—‘R'y“;_'+ m,j;,j,- + mf—fl—f(if + Cw))F‘y—;) +det F>0

1 — S
C= Vzc—ngmtht — Fezgmihy > 0

w

D = —Vzl—gmt—Eth—z- > 0

15 Analytically we felt (4.72) was too complicated to present. Instead we study
(4.1-5) and then numerically check if and when criteria, (4.7) is met.
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For the primitive bicycle we see that we can prove that 4 is always positive. B
Is always positive if F,, > 0 é.nd Ry: < 0.%  We note that Fy: must be positive,
for C to be positive. D is always violated as it is always negative or zero. And
finally, F is aiwa.ys violated as it is always equal to zero, but never negative.

Because the D and F criterion are always violated the primitive bicycle will
never be self-stable.!”

How then can this primitive bicycle be made stable?

We next add wheels to our primitive model. This resembles a real bicycle
much more and cé.n be thought of as a prototype machine built by someone who
has never seen a modern bicycie. It is shown in figure 5.6. Fof the primitive model

with wheels we find that equations (4.1-5) take the form:

¢ However, B could still be positive if Fy: < 0 and/or Ry, > 0, its just not
guaranteed.

17 In the remainder of this Chapter when we say self-stable we are referring to

the Basic bicycle model model’s equations being asymtotically stable for the lean
and steer degrees of freedom.
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A=T,Fy,~-F >0
= TyyFezr — F2 > 0

= <m£i+Rﬁ+m{E"})Fﬁ+ det F >0

1
B = V:‘(Tnygz —Ty:Fy,) >0

v

Cw

((Ry—y— +m R, +m Ry Fer

-+ (—Ry;-{- m,-_};,jr -+ mf_ﬁf(if + Cw))F@?) +det F>0

H? 1@H .+ H T
C= Vz(—v-g- + c_,;_ffiFF_*_ Fyzmihy — Vf y=)) = Frzgmihe > 0

1 H + 1 H:H 1 T
D= V3 (;:‘Vimthi’F z: éz : _szgmthtFﬁ> >0
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Note that 4 and B are not fugctions of the angular momentum of the wheels

due to spinning. Hence, they do not change from the primitive case. The criteria C
will definitely be positive as speed increases because the coefficient to the V2 term
is always positive.!® The D criteria will definitely become positive a.t some velocity
for the same reasoning. E, however, is still equal to zero (almost positive) so the
primitive bicycle with positive momentum gyroscopes (or wheels), will also never
be self-stable. We next analyze the E, equation (4.5b), criteria to see what is the
slightest change that can be made to the primitive bicycle with wheels so that it

becomes self-stable.

We note that the slightest amount of negative steering axis tilt, —\, will make
this criterion positive. And although this complicates the other criteria, (4147w
have programmed equations (4.1-5,7) to show that this modified primitive bicycle
model is almost always self-stable.’®  Figure 5.8 shows the primitive bicycle with
wheels and a slight negative steering axis tilt. This bicycle showed it Wa,é .self-stable
from 6.0 to 504 mph for inertia properties approximating a 200 lb. rider as shown
in figure 5.7.

In addition, we found for the given inertia configuration, that the primitive

bicycle with wheels could be made stable by individually adding mechanical trail,

18 This assumes we are talking about a normal bicycle with no “reverse spinning”

gyroscopes attached to make the magnitude of angular momentum of the wheels
negative using our notation.

19 For the assumed inertia distribution shown in figure 5.7.
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cf, negative steering axis tilt, —A, or moving the front center of mass forward away
from the steering axis, d. Of course, combinations of these changes in design can
also make the bicycle stable, as is illustrated in figures 5.9 - 5.11. Appendix B and

C contain the computer program, data, and output verifying the cases discussed in

this Chapter.

From the above one might imply that the primitive bicycle with no angular
momentum due to wheel spinning can only be self-stable with wheels or added
gyroscopes. However, figure 5.12 shows that even a bicycle without wheels can be

self-stable. The data associated with this unique bicycle is also shown in Appendix

C.

Conclusions

Equations (4.5) and (4.7a) represent the limiting design criteria for a Basic bicy-
cle model, assuming that the model is self-stable at some velocity. These equations
are expressed in terms of the bicycle design parameters to ease further research and
evaluation of the criteria. The criteria can be used as design guidelines for bicycle
models relative self-stability and have no restrictions other than the assumptions
needed to create the Basic bicycle model listed in Chapter III of this thesis. Numer-

ous ways exist to use the criteria to gain understanding on bicycle design. Among

them are:

1) Vary critical parameters from a standard set of design parameters to opti- ‘
mize the self-stable velocity region. (Make the self-stable velocity as large

as possible.)
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2) Make the self-stable speed as low as possible.
3) Develop further simplified analytical relations for a bicyf:le design from
these criteria. |
4) Create bicycle stability comparison charts using current bicycle products
and various size riders.
5) Compare rider handling test results to analytical prediction of stability.
6) Explore radical designs to see if they can be self-stable.
7) Find the effects of controllable parameters on this criterion, by doing trend
analysis.
All these ideas for further analysis and research are aimed at Increasing understand-
ing of bicycle design.

In this chapter we have demonstrated the use of these criterion to evaluate
critically some popular bicycle design guidelines and also to recreate a typical bicycle
of today to give our criteria some credibility. The results we have shown seem
reasonable.

We emphasize these criteria are only guidelines and the sensitivity to design
changes has not been fully explored. The assumptions involved in deriving the
criterion make the criteria more applicable to bicycle then motorcycles. However,
these criteria are a start towards analytical understanding of two-wheeled vehicles

and we hope that in the future they will be even further developed and compared

to.
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and 4.7a, which deftne stable regtlons.
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ALWAYS UNSTABLE

FIGURE 5.5

The primitive blcycle.
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ALWAYS UNSTABLE

FIGURE 5.6

The primttive bilcycle with wheels.






STABLE

1 SMALL A

FIGURE 5.8

The primitive blcycle wlith wheels

and a slight negative tilt of the
steerlng aoxls.
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STABLE

FIGURE 5.9

The primttive bilcycle with
wheels and tratl.
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STABLE

FIGURE 5.10

The primltive blcycle with
wheels, and front center of mass
offset from steerlng axls.
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FIGURE 5.12

A stable bicycle model with no wheels.
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FIGURE 5,13
A stable blcycle model with negative tratl.



VI. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

Summary of Conclusions

In Chapter III of this thesis we defined a Basic bicycle model. We then derived
the linearized equations of motion for the Basic bicycle model using Lagrange’s
equations. The Lagrangian formulation of the equations was chosen because it
was felt an easier method to apply, requiring fewer algebraic steps. The final two
governing equations (3.14-15) appear at the end of Chapter III. These equations are
in considerably simpler form when compared to most past works. The tﬁlo equations
are functions of seventeen independent design parameters shown in figures 3.5a-b.
The equations are in general form and can be used for analyzing bicycle self-stability
or control studies.

In Chapter IV we made an extensive comparison of our equations to twenty
other sets of equations of motion presented in past works. In all, only three of
the twenty papers compared had equations equilvalent to ours. We found that the

128
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earliest published derivation known for a Basic bicycle model (Whipple [1899]) is in
agreement ﬁth our linearized equations except for some typos. Only two derivations
(Déhring [1955] and Weir [1972]) were as general as ours and had equations that
agree completely. Singh and Goel [1971] used D8hring’s [1955] equations. Other
authors did not have as general a model, made algebraic mistakes in their derivation,
had typos, or disagreed in other wé,ys. We note that Déhring [1955] and Weir [1972]

were both Newtonian derivations and ours Lagrangian.

In Chapter V we developed the Routh-Hurwitz criteria for the Basic bicycle
model’s equations of motion to study bicycle self-stability. Numerically evaluating
the design cﬁteria using a computer we found several self-stable configurations.
Although no general analytical conclusions were made, numerical evaluation of the

criteria supports analytical simplifications.

After expanding these criteria, because they are complicated, we applied them
to a ‘primitive’ model showing that the parameters of steering axis tilt, mechanical
trail, and front center of mass offset have immediate impact on the self-stability
of the bicycle. These parameters significantly changed the size and location of
the stable velocity region for the bicycle designs we explored. Other parameters
could have similar effects but were not investigated. Just for fun, at the end of
Chapter V we included a self-stable bicycle design which has no spinning angular
momentum due to the wheels and a self-stable bicycle design which has negative

trail. The numerical values used for the parameters in these models are contained

in Appendix C.
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In conclusion, we feel that the design criteria developed in this thesis can be
used to> improve bicycle design and better understand the effect of design changes
on bicycle stabﬂity. We remind the reader that the premise on which this conclusion
~ is based, is that '3hort term rider controlled stability is closely linked to the bicycle’s
self-stability. We believe the premise is valid because in the short term the rider
has little control of the bicycle. Hence, design change effects on the bicycle’s self-
stability will have almost immediate impact on the rider’s prespective of handling,
and possibly performance. We hope that the design criteria developed in this thesis
will be investigated further and the computer program enhanced for designers to

study the stability characteristics of their designs.

Recommendations

Because we were able to quickly and easily generate several self-stable rider-
bicycle configurations, we feel that there is potential that many other stable rider-
bicycle configurations exist. Based on the results of stable configurations found
in Chapter V, we feel there is no reason to limit stability studies to only consider
small modifications to current designs (which is what we observed in most papers
referenced). We recommend that new, possi’.bly radical, configurations be stud-
ied. These new configurations could be compared to popular designs. New bicycle
désigns could be safer, give more preferred handling characteristics, and, possibly
improve performance.

Because using Routh-Hurwitz criteria lacks in giving information about how

long a perturbation will take to decay, we recommend the Routh-Hurwitz criteria be
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used in combination with eigenvalue-eigenvector studies to further develop analyti-
cal guidelines for bicycle design. These guidelines could be modified for Augmented
bicycles having added gyros, springs, and dampers to see their effect analytically
and numerically on bicycle stability. The guidelines could also be developed after
prescribing a controller, ¥(6,), if wanted.

Based on the results given in Chapter V, the evolution of bicycle design is
not clear. Popular bicycle designs have not evolved into the “most stable” design
configuration, at least from a self-stability standpoint. This implies that the rider
may not desire the most stable configuration, or that there might be some design
configurations that for reasons we still don’t understand are more desirable. For
this reason we recommend that the popular assumption that the bicycle be designed
to be as stable as possible (real eigenvalues as negative as possible) be reviewed. It
may well be that riders do not prefer an analytically self-stable bicycle at all speeds.

Finally, a method for measuring a rider’s desires in bicycle stability is needed
to compare to theoretical results. Hopefully, this will enable bicyc}e builders to

more readily customize bicycle designs to a rider preferred stability configuration.



APPENDIX A

SPECIFIC DETAILS, THEORETICAL JUSTIFICATION, AND PHYSICAL
INTERPRETATION OF THE DERIVATION OF THE

LINEARIZED EQUATIONS OF MOTION

Section 1: Derivation of Relations Between the Generalized

Coordinates and the Auxiliary Variables

In chapter III the relationships between the generalized coordinates and the

auxiliary variables for small angles were approximated as,

X=X = —cubr +cp9 (3.1a)
Yi—-Y, =co (3.1%)
Xf—Xr= —tsinl ' (3.1¢)
67 — 6, =1cos (8.1d)
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The first two of these equations, (3.1a) and (3.15), are essentially an expression of
the front contact point relative to the rear contact point in the ground plane. The
second pair of equations, (3.1¢c) and (3.1d), are the angles which describe the front
fork/handlebar assembly relative to the rear frame; that is, befween the body fixed
axes Z,J,.zr and TfY;Z;. This section shows how to derive these relations.

The relations can be derived in two ways. The first is the more formal method
which involves deriving nonlinear equations relating the auxiliary variables Xy, Yy,
Xf, 05 to the generalized coordinates, X, Y., xr, and 6, then linearizing the
equations about the vertical equilibrium position. This method involves several
coordinate transformations and proved to be time consuming, tedious and as far as
the author knows, not known in closed form.!

T he second method involves approximating the displacements of the front con-
tact relative to the rear contact and treating small angles of rotation as vectors.
This method yields the same linearized results as the nonlinear approach should.
It, however, is mathematically simpler and physically easier to understand.

What follows is a description of how to derive equations (3.1a — d) using the

second method. The notation used here is the same as in chapter III.

First, we derive equations (3.1a) and (3.15) which relate the rear and front

contact points. To do this, we approximate the displacements due to small an-

1 See Psiaki [1979]. We should note that although Niemark and Fufaev’s [1967]
nonlinear equations yeild the correct expressions to first order, their equations ne-
glect the rise and fall of the bicycle due to steering effects. And hence, are not the
correct nonlinear kinematic equations as presented.
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gles of §; and ¢ individually, and then add their displacements to get the linear
approximation.

Figure A.1 shows a top view of the track of the bicycle with no steer but a
small angle 6. The difference between X, and X to first order due to this positive
rotation 8, is —cy6,. Now, adding a positive angle of rotation due to the steer P,
as shown in figure A.2, the difference between X, and X f is approximated to first

order as,

Xf—Xr o —cubr +csp (A.la)

where the term + cf9 is seen by looking down the steer axis, holding 6 constant,
and approximating the sideways motion for a positive steer to first order as shown
in figure A.3.

The difference between the front contact point and rear contact point in the ¥

direction to first order is simply the wheelbase length,
Y-V . =cy (A.1b)

However, because Y, has a nonzero equilibrium position in the derivation, the dif-
ference between Yy and Y} is needed to second order when calculating Yf, which i1s
used in the kinetic energy equations. Adding the second order effects due to yaw

and steer, as shown in figure A.4 we get,

6;2 2
Y-V, =cw(1— -2L) +cf%——cos/\

In chapter 3 the above equation was designated (3.15)'. As it turns out the higher
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order terms in the 6, and ¥, although technically required, do not contribute to
Lagr%mge’s equations.

| Next, to derive equations (3.1¢) and (3.1d), we again treat small angles of
rotations as vectors. This‘time rather than approximating small displacements,
we approximate small rotations. This approach is identical to adding the angular
velocity vectors for relative motion of rigid bodies.? It is emphasized that this
can only be done for the first order approximation.

Applying this to the Basic bicycle model shown in figure A.5, this means that
the angle of the rear frame (rear body fixed coordinates Z,Y,Zr) from its equilibrium
position with respect to the inertial reference XY Z, ~, /XY 2, Plus the angle of the
front fork/handlebar assembly (front body fixed coordinates Z7YsZs) relative to
the rear frame, Yf/rs yields approximately the angle of the front fork/handlebars
relative to the inertial frame of reference, v /Xvz- Thisis shown in figure A.5. This
approximation becomes exact in the limit as the small angles of rotation go to zero.
It is correct however, to ﬁrst order.® Using the approximation we can express this

relation in vector form as,

Te1XYZ + T 2 Fpxv 2 (A4.2a)

For our Basic bicycle model Y/r is X, where X is the unit vector positive up along

the steering axis and ¢ is the magnitude of 7, Jre

? See Meriam and Kra.ige’[1986] pp. 314.

? See Shames [1980].
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Expressing the vectors Yr/xyz and Yy/xyz in the Z,,7,.,Z, and Ty,7;, %y
coordinate systems respectively, we can rewrite equation (A4.2a) to first order as

follows,

6,K + xr3r + X > 0,K + x537 (A.25)

However, for small angles,

&
R
-

P4
&y

X~ cos \K + sin A\J

These relations can be proven to be correct to first order for small angles of 8., ¥,
and yr, by writing out jr, j}, and ) as functions of J, I, and K.*
Writing equation (A.2b) in terms of the inertial coordinates system’s unit vec-

tors we have,

8, K + xrd — 1 sin AT + ¢ cos \K ~ Hfﬁ+xfj (A.2¢)

equating the KandJ components we get two scalar equations equivalent to (3.1¢)

and (3.1d)

Xr—¥sinA >~ xy (A.1le)
Or +1pcosA by (A.1d)

Thus, equations (A.la-d) agree with (3.1a-d) presented in chapter IIL

4 This may not be possible in closed form.
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Section 2: Derivation of Constraint Relations for

the Basic Bicycle Model

In chapter I11, equations (3.2a-e) were used to simplify the Lagrange’s equations
and said to be derived from the constraint relations on the front and rear contact
points motion for the Basic bicycle model. This section shows how the derivation
of equations (3.2a-¢) follows from simplifying the constraints that exist on a bicycle
with thin rigid disks as wheels.

For the Basic bicycle model we have assumed the tires to be part of the wheels
which are assumed thin rigid disks. This implies infinitely stiff tires, so no side-slip
angle can exist on our Basic bicycle model. That is, the direction of the velocity of
the contact point is defined by the intersection of the plane of the wheel and the
ground plane. This direction is referred to as the instanteaous direction that the
wheel is headed. |

In addition, we assume enough friction exists between the thin rigid disks and
~ the ground so that there is no relative motion between the point of contact of the
rigid wheel and the ground. That is, there is no sliding of the wheel on the surfaces
of the road. In the practical sense this could be caused by oil on the pavement or
loose gravel.

Based on the above assumptions, four nonlinear kinematic rolling constraints
exist for the Basic bicycle model. These constraints are nonholonomjc and can be

added to the problem only after developing Lagrange’s equations.> The constraint

® This is what the author interprets from Goldstein [1980].
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equations relate the velocity of the rear and front contact point velocity to their
respective heading in the ground plane and respective wheel rotations. Writing

these in their nonlinear form for the rear contact point velocity we have,

Y, = ardy cos b, | (A.3q)

X, = —ar¢y sin b, (4.30)

where ¢, is the angular velocity of rotation of the rear wheel in its own plane, that

is, the spin rate. Similarly for the front contact point,

Yf = afgz'Sf cos §y (A.3¢)

X = —asés sinf (A.34d)

where ¢ s is the spin rate of the front wheel. These equations (and all others in this
chaz;ter unless otherwise indicated) assume the sign convention used in chapter III.
Equations (A.Ba;d) represent four nonholonomic constraints imposed on the
Basic bicycle model which has seven generalized coordinates: X, Y;, 6,, ¢, Xry Ory
Pr. Heﬁce, for the given assumptions, the bicycle has three degrees of freedom.®
However, as a consequence of linearizing the equations of motion, for the case of
linearized equations of motion in the derivation it is shown that Y; is constant to
first order. Hence, for the linearized model, only two degrees of freedom exist.
What follows is the linearization and simplification of the nonlinear nonholo-
nomic constraints. As will be shown, as a result of the linearization, two con;traints

become holonomic and two remain nonholonomic,

® See Neimark and Fufaev [1967] p. 335.
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By assuming small angles of rotation the four nonlinear nonholomic constraints

reduce to four linear nonholonomic constraints as follows,

Y, = aré, (A.4a)
X, = ~Y,, (A.4b)
Y; = asés (A.4c)
X =-Y;8; (A.4d)

Eliminating the auxiliary variables we can simplify these expressions.

Using equation (3.1b), (A.4c) becomes,
Yy =Y, =asés (A.5)
Taking the time derivative of equation (4.1a) and substituting equation (A.4d) for
Xj— X, = —cubr + s (A.1a)
X,. = Xf + cwér - Cf'l/.) = -—Yre,- (A.G)
Substituting (A4.1d) into (A.6) and cancelling the X; and —Y,6, terms,
6, = 05 — 1pcos A (A.1d)

Xi+ coby — cip = Y (65 — tpeos A) (A.7a)

Cwly — cpth = Yyop cos A (A.78)
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Rewriting equations A.4a, A.4b, A.7b, and A.5 we have the four linear constraints

expressed in terms of the generalized coordinates,

}"r = ar‘.{sr (A8a)
Y, =asds (A.8b)
. . . A
b, = “Loj 4y, 58 (A.8¢)
Co Cy
Xr = —Yrer (A.8d)

As is shown in chapter III the time derivatives of these constraint equations is

sometimes required. Taking their time derivatives we have,

Yy =aré, (A.8¢)
Y. =asd; (A.8f)
b = L4, S22 (4.8)
X =-Y6, - Vb, = -V,6, - Tv -y 4 (4.8R)

Equations (A.8a-h) are used to simplify Lagrange’s equations by reducing the
number of degrees of freedom in the final equations. And as is shown in chapter III
Y, is zero to first order so we have eliminated this term in the expression presented
in chapter III.

Note that the generalized coordinate Xr is not present in these relations, and

they are not dependent on the radii of the wheels.
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Section 3: Derivation of the Kinetic Energy of the Rear Part

of the Basic Bicycle Model to Second Order

Introduction

In Chapter III the contributing kinetic energy for the rear part of the Basic
bicycle model to second order, KE} was stated without pfoof. The objective of
this section is to show the derivation of K E;} and give its theoretical justification.
We also discuss how the noncontributing terms can be derived and why they can
be eliminated. To accomplish the derivation the definition of kinetic energy for a
rigid body is applied to the two rigid bodies that make up the rear part of the Basic
bicycle model. In doi‘vng so we have simplified the algebra by noting how the rear

wheel interacts with the rear frame.

The notation used here is identical to that presented in Chapter III. We note
however, that the upper subscript for the kinetic energy terms, KE*, indicates
what type kinetic energy the terms; from (rotation, translational, etc.), and the
lower subscript, K E., designates what component or part of the bicycle the term is
representative of. Vector quantities are indicated by an arrow overh.ead, ¥ ; tensor

quantities are in bold face; and the overhead bar, ¥, indicates center of mass.

Definition of Kinetic Energy for a Rigid Body

By definition, the translational and rotational kinetic energy of a rigid body



can be represented as,’

where,

KEtrans
KErot -
m -

174 .

&
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KEtrons — m(ﬁ ‘ﬁ) (A.9)

KE®=>5-B.3 (A.10)

the translational kinetic energy.
the rotational kinetic energy.

the total mass of the rigid body.

the velocity vector of the center of mass relative to
the inertial reference XY Z.

is the inertia tensor of the rigid body for the point
at the center of mass.

the angular velocity vector of the body relative to
the inertial reference XY Z.

In order to evaluate equations (4.9) and (A.10) both the & and V must be

*

measured with respect to the same inertial reference frame and expressed in the

same coordinate system. The quantities & and B also must be expressed, but not

necessarily measured, from the the same reference frame. In this derivation we are

using the inertial reference XY Z to measure & and V, and expressing all quantities

in the body fixed 7,7,%, axes with origin at P, shown in figure A.6.

The rear part of the Basic bicycle model is composed of two rigid bodies: the

rear frame with rigidly attached rider and the rear wheel as shown in figure A.9.

Equations (A.9) and (A.10) apply to each component of the rear part. The total

7 See Meirovitch [1983] pp. 132-133.
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kinetic energy of the rear part of the Basic bicycle model is the sum of the total
translational kinetic energy and rotational kinetic energy due to each component.

For the case of the Basic bicycle model, certain simplifications can be made in
applying the equations (A.9) and (A.10). In cdcﬂating the translational kinetic
energy of the rear part, KE!"™"* we note that the rear wheel is constrained to
only rotate relative to the bicycle. Because of this we can treat the rear part
translational kinetic energy, K Eyrqns, as if the rear frame and rear wheel are one
rigid body. Similarly, we can calculate the rotational kinetic energy of the rear part,
KET°, by treating the rear wheel as if it were rigidly attached to the rear frame,

and then add the additional rotational kinetic energy due to the spinning of the

spin

rear wheel relative to the rear frame, K E el

The total kinetic energy of the rear part of the Basic bicycle model, KE,, is
then the sum of the rear translational and rear rotational kinetic energies as if the
rear wheel was welded to the rear frame, plus the additional rotational kinetic energy

due to the rear wheel spinning. Mathematically this is expressed as follows,®

KE, = KE!™™ 4 KET® 4 KEPin (A.11)

rwheel

We can further define each term of the rear kinetic energy of the Basic bicycle. For

the translational term,

1 —
. KEiren = 5m,V"’ (A.12)

® Note we have left out the + superscript in the K E, equation (A.11) because
in general the equation is true. However, as we will discuss next carrying all terms
of the KE becomes messy and many terms that do not contribute can be neglected.

-
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where V is the velocity of the center of mass of the rear part (rear frame + rider

+ rear wheel); m, is the mass of the rear frame, rider, and rear wheel. And for the

 rotational term,

KE=>5,-R.&, (4.13)

N

where R is the inertia tensor of the rear part about the Z:Y, 2, axes; & the angular
velocity of the rear part expressed in the body fixed axes Z,Y,Z, with origin at P,.

K E:f:,:‘e o1 1s the additional rotational kinetic energy due to the rotation of the
rear wheel relative to the rear frame, the ‘spin’. The theoretical value of K E:gi,:: .l

is not as easily expressed without further discussion, so we won’t express it mathe-

matically yet.®

Next we will form the definition of K E¥*"* K ETot and KE™ in terms of

wheel

the bicycle design parameters.
Translational Kinetic Energy of the Rear Part

To calculate KE!*™* we need T/—z, which can be expressed in terms of the

cartesian coordinates X, Y, and Z,, which locates the rear center of mass P, as,
V,=X.+Y,+7Z, (A.14)

We can express X, Y, and Z, in terms of the generalized coordinates X,, Y;, 6,

and xr to second order as,

X=X, ~1.6, +hx, (A.15q)

% If we wished to add additional mass such as saddlebags, passengers, etc... we
could do so here provided we maintained symmetry about the plane of the bicycle
when in its vertical position.
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— - 6?‘ — ’(1)2 . Cf —_—
Y., =Y.+, (1 — -:‘2—) + hybrxs + - sin A — x,¢ -c-—(hr —a,) (A.158)

2

Z,=h(1- 52_ (A.15¢)

where, as SilOWIl in Chapter III, I, and %, locate P, in the ZrYr2zr coordinates axes.

Note here that we have appro:dmé.ted X,, Y., and Z, to second order. In
theory we could have solved for the nonlinear expressions for these variables but
this would incorporate solving for k. and I, as functions of the steer angle 1. This
1s a tedious task and, as far as we know, as not been solved in closed form. This is
mainly because the pitching motion of the bicycle is a function of ¥%, so that the
closed form solution is one which requires the roots to a fourth order polynomial,
thus making exact nonlinear equations lengthly and cumbersome.

Rewriting Vi to second order and keeping only contributing terms,
V, =YV 4+ (X =16, + Fosr)? (A.14a)
And the contributing translational kinetic energy for the rear, KE!™*"* becomes,
1 . . - '
KE!n? = Smr (er + (Xr - 1.6, + h,)'(,)z) (A.12q)

where m, includes the mass of the rear wheel so the translational kinetic energy of

the rear wheel is included in K Een,
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Rotational Kinetic Energy of the Rear Part!®

To calculate K E7°* we need the angular velocity of the rear part &,. This can
be found by projecting the components of %, and 6, on to the rear body fixed axes
Z:Y,Zr. It can be shown that the angular velocity due to pitch of the rear frame
is of second order and because & is squared pitching effects can be neglected in the
rotation kinetic energy formulation.!! Therefore the angular velocity of the rear

frame for the Basic bicycle model is due to yawing, ér, and leaning, x, rotations.

Expressing it in the rear body fixed coordinates we have,
By = —b,sin X, + Xrir + by cos x, K, (A.16)

Because the equilibrium position for the variables Xr and 6, is zero, there are no

zero order terms in this expression we can linearize to first order as follows,
Ty = Xrjr + 0,k (A.160)

Calculating the rear part rotational kinetic energy as if the rear where glued to the
rear frame and assuming symmetry about the plane of the rear frame we can add

up the rotation kinetic energy due to the rear frame and rear wheel. X E7°! is then,

1[0 Rz 0 0 0
KE=2 (% || 0 Ry Bg|-|x (A.13q)
2\ 6, 0 Ry Rz 6 ) z5 s

9 Remember K ET°! is the kinetic energy of the rear part (rear frame + rear
wheel + rider) as if the rear wheel were glued to the rear frame. It does not include
the kinetic energy of the rotation of the rear wheel relative to the rear frame. We
designate this KEP'"

rwheel®

11 Pitching effects are not negligible in the potential energy expression.
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Expanding (A4.15a) we have,

KE[ =3 (Rywx? + 2Ry=xrb, + R=6?) (A.13b)

where R, the inertia tensor of the rear part, includes the rear wheel as if it was
glued to the rear frame. This is 0.k. because we have not put in any constraints

yet.

Kinetic Energy Due S_‘pi'fll, of Rear Wheel

The rotation of the rear wheel relative fo the rear frame is called the spin of
the rear wheel. In calculating the additional rotational kinetic energy due to the
spinning of the rear wheel relative to the rear frame, we note that the angular
velocity of the rear wheel, Jyryheer Will be the same as that of the rear frame plus
the additional angular vélocity due to its motion relative to the rear frame, that is
its ‘spin’.

Therefore, the angular velocity of the rear wheel is the angular velocity of the
rea.rhframe, &y, plus an additional ¢, due to the rear wheel spinning in the body
fixed Z, direction. Linearizing this as we did the center of mass velocity V, and
keeping terms to second order in the I direction because the B equilibrium position

is not zero we have,
‘:erheel = (‘-Q'Sr - é1'>(r) i.r + X.r.-]:.r + érEr (A17)

Solving for K ET3,,.; we have,

"'(].51' - érXr
Xr (A.18qa)
6r

"'q;r - érXr C
s ]| o
6, 0

o O

KErat

rwheel =

[\
o}o
[N
L
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expanding,
KE'®in included in KET*¢

rwheel
™

. —

T . .. 1 .
A’E:fuzheel = %eré?- + Cr¢rXrer + ’2' (Ariz + Areg) (A.].Sb)

And as stated before R includes the inertia of the rear whee] and thus the second

spin

group of terms in the above equation is included in X E7° as indicated. K B heel

is then just the first group of terms in (A.180) as indicated by the overbraces.
The total kinetic energy of the rear of part of the bicycle to second order is

then equations (A.12a), (A.13b) and part of (A.18b) added,

K‘E:Tlﬂl
S e R
.B.Er = '2'mr(Xr - lrer + thr) + '2‘er7-
KE:" KEcyt'n

rwheel

- —

q ] . . L. 1.
+ 5(RygX? + 2RyzXr6: + Reb2) + Crdrxoby + 5Cré7  (4.19)

where ( )* indicates ‘contributing parts’ and,

mr - mass of the rear part of the Basic bicycle(frame-+rider+wheel).
1.k, - length and height to the rear center of mass measured
IN ZrYrzy.
Ryy, Ryz, Rzz-  components of the rear part inertia tensor measured
in .Y,z
C- - polar mass moment of inertia of the rear wheel.
ér - spin rate of the rear wheel.
Y, - component of the velocity of the rear contact point in

the Y, direction
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Also note the definition of Ryz and Ry

Y

Ry;=R;§=—/'37'Edm

Equation (A.19) is equivalent to kinetic energy of the rear part presented in

Chapter III,
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Section 4:Derivation of the Potential Energy of the Basic

‘Bicycle Model to Second Order

In Chapter III the approximate potential energy for the Basic bicycle model,
expression (A.20a), was given without proof. This section shows how the potential
energy of the Basic bicycle model is derived to second order. To do this we will
use small angle assumptions, just as we did in deriving the relation between the
generalized coordinates and auxiliary variables.

There is, of course, the possibility of deriving nonlinear equations and then
linearizing about the vertical equilibrium position for small disturbances. How-

~ever, this method results in exceedingly complicated geometric relations which are
more clearly understood using small angle approximations. QOur aim is therefore to
quickly, sensibly, give a method for seeing where the potential energy term comes
from without going into the mathematical clutter. It is felt by the author that this
is the quickest and easiest method to understanding the equations and arrive at the
correct expression for the potential energy term to second order.

Using the grdund as a reference as mentioned in Chapter III, the change in

potential energy can be expressed as,
PE; =m.gZ, + mfgff (A.20)

where Z, and 7f are the locations of the rear and front part center of mass, re-
spectively, as shown in figure A.7. As we will show the quantities Z, and 7f are

functions of both the lean angle of the rear frame, x,, and steer angle of the front
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frame relative to the rear frame, 1.
The lean angle dependence is illustrated in figure A.8. When the bicycle with
no steer angle is leaned over the center of mass is lowered just as with an inverted

pendulum.i‘

The steer angle effects the potential energy three ways. First, imagine the
 bicyclé is put in the vertical equilibrium position and the rear frame held fized.
Assuming a geometry and mass configuration as shown in figure A.9. A rotation P

about the steering axis would result in lowering the front center of mass, m 512

Second, with the frame still held fixed, this same % also raises the front wheel
off the ground as shown in figure A.11. As a result, an overall drop of the center
of mass of the total bicycle after the rear frame is freed and lowered (and therefore
a decrease in potential energy). This can be thought of as a pitching of the rear
frame and fork assembly about the rear contact point as shown in figure A.10.13
(Remember, no constraints have been added to the problem yet.)

Unlike in the derivation of the relations between the auxiliary variables and the
generalized coordinates, and kinetic energy expressions, the raising andvlowering of

the bicycle is of second order and must be included in potential energy derivation

12 In this deraviation we make some assumptions about the location of the center
of mass. In general when checked the derived equations were found valid.

13 This discussion assumes that the the bicycle has the typical design configura-
tion of with positive head angle, positive trail, and front center of mass located in
front of the steering axis. The final equations derived however are valid for design
configurations with negative design parameters.
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to derive the correct linearized equations of motion to first order. This is due to the
fact that the terms representing the up and down motion (drop) in the potential
energy are not squared, as was the case in the kinetic energy expressions.

The third effect due to the steer angle is that the center of mass of the front
fork /handlebar ass:embly and front contact point do not remain in the plane of the
rear frame as shown in figure A.11. As aresult, steering the bicycle while the bicycle
is already lea,rﬁng at a particular angle could result in raising or lowering the center
of mass of the total bicycle.

Adding all effects of lean angle and steer angle yields the correct expression for
the potential energy to second order. This can be done in three steps; Starting from
the equilibrium position and assuming positive small angle rotations of x, and .
Each step contributes to the change in potential energy.

1. Give a small positive lean to the bicycle from the equilibrium position with no
steer angle and hold the frame at a constant x,. Find the change in height of

the total center of mass, P;.

2. At the same constant lean angle, still holding the rear frame ﬁxéd, and give a
small positive steer. Find change in height of the front center of mass, Tﬁf.l“

3. Free the rear frame by allowing the rear frame to rotate in its plane about the
rear contact point. Raise or lower the front contact point so that it is at the
ground level. Find the change in height of the total center of mass due to this

raising or lowering of the bicycle.

4 Practically speaking the front wheel would dig into the ground. We will allow
this for now and raise or lower the frame in step 3.
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To calculate the total change in potential energy we subtract all changes in

potential energy due to lowering the height of the center of mass(es), from the

potential energy of the bicycle in its equilibrium position (or add potential if tile

height was increased due to ¢ or x,). The results and figures describing the changes
in potential energy to second order are as follows:

1) Change due to pure leaning.
—% <X3Emr + X?—Efmf> = —Zzigﬁtmt

2) Change due to positive steer with rear held fixed and constant lean angle.

_% (mfd¢2 sin A — 2mfdxr1,b>
3) Change due to freeing the rear frame and raising the front wheel contact to be
at ground level.

A
_-2‘%1 (mtcjrz/)"’ sin A — 2m¢cfxr¢>

Summing all the changes in potential energy to second order and adding them

to the potential energy in the equilibrium position we get the the equation presented

in Chapter III.

constant
™ —

PE; =m,gh, + msgh; -—-g—mﬁtxf

d
- g—T—néI— (1/)2 sin A — 2Xr¢)
_ glimaey
2¢y

(#? sin X - 2x,9) (4200



where,

if we further let,

v=mysd+ -zimjt
w

and disregard constant terms then we simply have,
PE; = —%(mﬁz}xﬁ — 2px,v + PPrsin ))

where ()¢ stands for total.

160

(A.205)
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FRONT CENTER OF MASS
LOWERED AND TAKEN

OUT OF THE REAR FRAME
PLANE.

FRONT CONTACT POINT,P
LIFTED OFF THE GROUND'.

S s

FIGURE A.I|

Rear view of front assembly of Bastc bleyele
model with rear frame held fixed tn the

vertlcal equtltibrtum posttton and g posltlve
steer angle, Y.
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PROGRAM DESIGN

This program calculates the Routh Hurwitz Criteria equations
as functions of velocity.  An option for displaying the -
stable velocity regions is then given.

REAL var(17)

REAL mr,hr,lr,Ryy,Rzz,Ryz,cw,cf,lambda,Ryp,Rzp,alphar
REAL mf,hf,1f,Fyy,Fzz,Fyz,Fyp,Fzp,alphaf,u

REAL CrR,CfR,g :

REAL d,Tyy,Tzz,Tyz,F11,Fly,Flz,Ktr,Khd,mt,ht,1t,nu
REAL al,a2,a3,a4,a5,a6

REAL bl1,b2,b3,bd,b5,b6,b7

REAL a0,b0,c¢0,d0,e0,f0,g20,h0,i0,j0,k0,10,m0

INTEGER ANS

INTEGER I,J,YES1

Intialize arrays to zero.
CALL INIT(var)
Read and echo the baseline dataset.
OPEN(7,I0STAT=YES1,FILE="BICDES.DAT')
READ(7,1000) (var(I),I=1,17)
FORMAT (T2,G17.4) |
temporarily echo data
Do 899 I=1,17
Print ¥, var(I)

Continue

Intialize design data to variable names.

mr = var(1l)

ir = var{2)

hr = var{3)

Ryp = var(4)

Rzp = var(5)

alphar = var(6) % 3.1415827/180.0
cw = var{7) )

cf = var(8)

‘lambda = var{9) * 3.1415927/180.0
mf = var{10)

d = var{1ll)

u = var(12}

Fyp = var{13)

Fzp = var{l14)

alphaf = var{15)% 3.1415927/180.0
CrR = var(1l6)

CfR = var{1l7)

g = 386.4



Calculate front

Calculate front

Ryy
Rzz
Ryz
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and rear inertisas.

Rzp*(cos(alphar))**2+Ryp*(sin(alphar))**2
Rzp*(sin(alphar))**2+Ryp*(cos(alphar))**2
Rzp*cos(alphar)*sin(alphar)

—Ryp*sin(alphar)*cos(alphar)

Fyy
Fzz
Fyz

szt(cos(alphaf))**2+pr*(sin(alphaf))**2
sz*(sin(alphaf))**2+pr*(cos(alphaf))**2
sz*cos(alphaf)*sin(alphaf)

—pr*sin(alphaf)*cos(alphaf)

hf
1f

wan

design lengths

(cf+d)*sin(lambda)+u*cos(lambda)
(cf+d)*cos(lambda)—u*sin(lambda)

Calculate entire bicycle inertias and special front inertia
quantities.

Tyy
Tzz
Tyz
Fll

Hunn

Fly
Flz

mr*hr**2+Ryy+mf*hf*xZ+Fyy
mr*lr**2+Rzz+mf*(cw+lf)**2+Fzz
—mr*hr*lr+Ryz—mf*hf*(cw+lf)+Fyz
mf*d**2+FyY*(sin(lambda))x*Z
—Fyz*sin(2*1ambda)+Fzz*(cos(lambda))**2
-mf*hf*d-Fyy*sin(lambda)+Fyz*cos(lambda)
mf*(cw+lf)*d—Fyz*sin(lambda)

+Fzz¥cos (lambda)

Calculate design length ratios and simplifying definitions.

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

. m a w W

Lo R K U N Y

EKtr
Khd
mt
ht
1t
nu

Ryy,Rzz,Ryz
Fyy,Fzz,Fyz
Tyy,Tzz,Tyz
Fl1l1,Fly,Flz
Ktr,Khd,nu
mt,ht,1lt

cf/cw

cos{lambda)/cw

mr+mf
(mr¥hr+mf*hf) /mt
(mr*lr+mf*(cw+lf))/mt
mfid+mtxltxKtr

Calculate al-a6, coefficients for the lean equation.

Print x,

al
a2
al
ad

N

ad
ab

Tyy
-g%mttht

Fly+KtrxTyz
-(CfR*cos(lambda)+Ktr*(CfR+CrR))
+(Tyz*Khd-Ktr*mt*ht)

g%*nu
~{CfR+CrR)*Ehd-Khdfmttht

3

al,a2,ad3,a4,a5,a6
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‘Calculate bl-b7, coefficients for the steer equation.

bl
b2
b3
b4
b5
b6
‘b7

ot s nn

Fl1+42*Ktr*Flz+(Ktrxx2)$Tzz
Khd*(Flz+Ktr*Tzz)+Ktrtnu

-g¥nu¥sin(lambda)
CfR¥sin(lambda)*Khd+nutKhd
Fly+Ktr*Tyz
CfR*cos(lambda)+Ktr*{CfR+CrR)
g¥nu

Print %, b1,b2,b3,b4,b5,b6,b7

Calculate a0-m0, coefficients for the fourth order polynomial.

al
b0
c0
do
el
fo
g0
ho
io
jo
kO
10
mO

alxbl-a3xbs
al*b2-a3*¥b6-adxhs
al*®b3-a3xb7-b5%a5+blxa2
21%¥b4-b5*ab-b6xad
~84*b7-a5%xb6+b2%a2

-b6%ab )

a2%*b3-a5*b7

a2tb4~abxb7
b0*d0xf0-a0xf0%x2
b0*cO0*f0+b0*d0%e0-2%a0%e0*f0~h0xb0Ok%2
bO*cO*eO—aO*eO**2—g0*b0**2
b0xd0-a0xf0

bO0¥c0-a0xe0

Print Routh Hurwitz criteria as function of velocity.

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

LR R KB

- M e e W e e

WRITE(6,10) 'Want
FORMAT(1X,A50)
READ{(6,20) ans
FORMAT(I1)

IF

A=, a0 ,’> > 0

'B ="', b0, v > 0!

'C =7, ¢c0,’” + ?,40,' V2 > 0’ :

'D =7, e0,’ V', + ',f0," VvV*3 > 0’

'E =7, g0, + ?,h0,' VvV~ 2 > @’

'6th= ’,10,' V3 + ’,m0,’ V > 0’

'7Tth= 7,i0,? V™4 + 7,30,’ V*2 + ',k0,' > 07

to know stable velocity regions? 1 yes 2 no

(ANS.EQ.1) THEN

CALL PRTSTA(a20,b0,c0,d0,e0,f0,g0,h0,i0,j0,k0,10,m0)

ENDIF

STOP
END
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SUBROUTINE PRTSTA(20,b0,c0,d0,e0,f0,g0,h0,i0,j0,k0, lO,mO)
REAL =a0,b0,c0,d0,e0, fO,gO hO,lO JO kO 10,m0

REAL VMPH,SPEED, VIPS

REAL A,B,C,BIGD,E, ROUTHS ROUTHT7

INTEGER J

CHARACTER*1 PRT(7)

DO 400 J=1,100

SPEED = J

- VMPH = SPEED/2

VIPS = VMPH*5280%12/3600

A ' = a0 .

B = bO*VIPS

C = c0+d0xVIPS*x%x2

BIGD = e0xVIPS+f0xVIPS*x%x3

E = g20+h0XxVIPS%32

ROUTHE = 10xVIPS*%x3 4+ mOxVIPS
ROUTHT = i0*VIPS*x4 + jOxVIPS* %2 + kO
PRT(1) = P 1

PRT{2) = !

PRT(3) = v

PRT(4) = B

PRT(5) = 7

PRT(6) = r ot

PRT(7) = 17

IF{A.LE.O0) THEN

PRT(1) = -
ENDIF
IF(B.LE.O) THEN
PRT(2) = 'B’
ENDIF
IF(C.LE.O0) THEN
PRT(3) = ¢’
ENDIF -
IF(BIGD.LE.O) THEﬁ
PRT(4) H - 'D’

ENDIF
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IF(E.LE.O) THEN

PRT(5) = 'E?
ENDIF
IF(ROUTH6.LE.O) THEN

PRT(6) = '6’

ENDIF

IF (ROUTH7.LE.O) THEN

PRT(7) = 7
~ ENDIF
WRITE(6,30) VMPH,PRT(1),PRT(2), PRT(3),PRT(4) ,PRT(5), PRT(S),
t PRT(7),ROUTHT
30, FORMAT(1X, 'VEL=',T6,F6.2,T13,A1,TRZ,Al,TR2,A1, TR2, A1, TRZ,, A1,
x TR2,A1,TR2,A1,G17.4) -
400 CONTINUE
END

' SUBROUTINE INIT(var)

REAL var(17)

INTEGER J

DO 600 J=1,17

var(J) = 0.0
600 CONTINUE
RETURN
END

c>
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Camputer output for figure 5.5. The primitive bicycle model is never

stable.-
A = 6.03825024E+08 > 0O
B = 2.05998160E+07 V > O
C = -4.07941811E+09 + 244939.00000000 V-2 > 0
D = -9.94980000E+07 V + 0.00000000E-01 V=3 > 0
E = 0.00000000E-01 + 0.00000000E~01 V"2 > 0
6th= 5.04569843E+12 V°3 + -2.39558802E+18 V > 0

.. T7th= 0.00000000E-01 V™4 + -5.02036904E+20 V"2 + 2.38356202E+24 > O
Want to know stable velocity regions? 1 yes 2 no 1 :

VEL= 0.50 C D E 6 0.2345E+25

VEL= 1.00 C D E &6 0.2228E+25

VEL= 1.50 C D E 8 0.2034E+25

VEL= 2.00 C D E 6 0.1762E+25

VEL= 2.50 C D E 6 0.1412E+25

VEL= 3.00 C D E & 0.9840E+24

VEL= 3.50 C D E 6 0.4786E+24

VEL=z 4.00 C D E 7 -0.1046E+24

VEL= .4.50 C D E 7 -0.7655E+24

VEL= 5.00 C D E 7 ~-0.1504E+425

VELz= 5.50 C D E 7 ~0.2321E+25

VEL=z 6.00 C D E 7 -0.3215E+25

VELz 6.50 C D E 7 -0.4187E+25 .

VEL= 7.00 C D E 7 -0.5236E+25

VEL= 7.50 D E 7 ~0.6364E+25

VEL= 8.00 D E 7 ~-0.7569E4+25

VEL= 8.50 D E 7 ~0.8852E+25

VEL= 9.00 D E 7 -0.1021E+286

. VEL= 9.50 D E 7 -0.1165E+26

VEL= 10.00 D E 7 -0.1317E+286

VEL= 10.50 D E 7 -0.1476E+26

VEL= 11.00 D E
200.0 mr, lbm 1
20.0 | lr, in 2
50.0 hr, in 3
100000.0 Ryp, lbm in~2 4
20000.0 Rzp, lbm in~2 5
60.0 alphar, degrees 6
41.0 cW, in 7
0.0 cf, in 8
0.0 lambda, degrees 9
10.0 B mf, lbm 10
0.0 , d, in 11
30.00 u, in 12
50.0 ' Fyp, lbm in~2 - 13
2000.0 Fzp, lbm in~2 14
45.00 alphaf, degrees 15
0.0 i CrR, lbm in 16

0.0 ‘ CfR, lbm in 17
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Computer output for figure 5.6. The primitive bicycle model with wheels

is never stable.

HOoOQW»
N

[
ct
g

6.03825024E+08
2.05998160E+07
-4.07841811E+09
~-9.94980000E+07
0.00000000E-01
= 3.66700711E+12 V°3 +

+
v
+

>
v

0

+

>0 ’ .
.549775.56250000 Vv~2 >

0.00000000E-01

Tth= 4,.65083798E+16 V~4 +
Want to know stable velocity regions? 1 yes 2 no

VEL=z 0.50
VEL=z 1.00
VEL= 1.50
VEL= 2.00
VEL= 2.50
VEL= 3.00
VEL= 3.50
VEL= . 4.00
VEL= 4.50
VEL= 5.00
VEL= 5.50
VEL= 6.00
VEL= 6.50
VEL= 7.00
VEL= 17.50
VEL= 8.00
VEL= 8.50
VEL= 9.00
VEL= 68.50
VEL= 10.00
200.0
20.0
"50.0
100000.0
20000.0
60.0
41.0
0.0
0.0
10.0
0.0
30.00
50.0
2000.0
45,00
50.0

50.0

aacaoaaoaoan

D

=ReleBuliclvlcRolw)

trd bt b bt b b bt b b b b b b b B b b b

oo,

12682.92578125

Ve

0
vy >
2 >0

>

-2.39558802E+16 V
~-6.68690532E+20 V-2 +

0.2332E+25

0.2181E+25
0.1940E+25

0.1626E+25
0.1263E+25
0.8808E+24
0.5158E+24
0.2118E+24
0.1303E+23
7 -0.5692E+22
0.2013E+24
0.7102E+24
0.1588BE+25
0.2949E+25
0.4852E+25
0.7406E+25
0.1071E+26
0.1488E+26
0.2004E+26
0.2630E+26

mr, lbm
lr, in
hr, in

Ryp, lbm in~2
Rzp, lbm in~2

alphar,
cw, in
cf, in
lambda,
mf, lbm
d, in
u, in

degrees

degrees

Fyp, lbm in~2
Fzp, lbm in~2

alphaf,

degrees

CrR, lbm in
CfR, 1lbm in

0

0

1

2.38356202E+24 > 0

WO -3 N
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Camputer output for figure 5.8. The model is self-stable after 6.5 mph.

A =
B = 2.12858400E+07 V > 0
C = -4.35002522E+09 + 533447.18750000 vz > o
D = -~1.02676024E+08 V + 12667.25781250 v~3 >
E = 0.00000000E~-01 + 169280.62500000 V-2 > 0
6th= - 3.19877441E+12 V°3 + ~2.64836875E+16 V >
Tth= 4.05197050E+16 V"4 + =~7.40612033E+20 V©2 +
Want to know stable velocity regions? 1 yes 2 no
VEL= 0.50 C D 6 0.2662E+25
VEL= 1.00 € D 6 0.2494E+25
VEL= 1.50 cC D 6 " 0.2223E+25
VEL= 2.00 C D 6 0.1864E+25
VEL= 2.50 C D 6 0.1437E+25
VEL= 3.00 C D ‘6 0.8695E+24
VEL= 3.50 "C D 6 0.4924E+24
VEL= 4.00 C D 6 0.4395E+23
VEL= 4.50 C D 6 7 ~0.3321E+24
VEL= 5.00 C D 6 7 -0.5861E+24
VEL= §.50 7 ~0.6628E+24
VEL= 6.00 7 ~0.5009E+24
VEL= 6.50 7 -0.3324E+23
VEL= 17.00 0.8129E+24
VEL= 7.50 0.2116E+25
VEL= 8.00 0.3962E+25
VEL= 8.50 0.8439E+25
VEL= Q.QO 0.9645E+25
VEL= 9.50 0.1368E+26
VEL= 10.00 0.1866E+26
VEL= 10.50

200.0 mr, lbm

20.0 lr, in

50.0 hr, in

100000.0 Ryp, lbm in~2

20000.0 Rzp, lbm in~2°

60.0 alphar, degrees

41.0 cw, in

0.0 cf, in .

-2.0 lambda, degrees

10.0 mf, lbm

0.0 d, in

30.00 u, in
- 50.0 Fyp, lbm in~2

2000.0 Fzp, lbm in~2

45.00 alphaf, degrees

50.0 .CrR, 1lbm in

50.0 CfR, lbm in

6.43872320E+08 > 0

0
0

1

2.71923973E+24 > 0

€O 00 =3 M UL CIN) s
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Camputer output for figure 5.9. The model is self-stable after 7.0 mph.

ouonoanou
H

VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=

200
20.
50.
100
200
60.
41,
1.0
0.0
10.
0.0
30.
50,
200
45.
50.
50.

6.57631936E+08
3.34873640E+07
~-4.18753459E+089
~1.77594864E+08
-1.73520602E+08

>
v

+
V +
+

0

> 0

606022.18750000

101589.44531250

1.15465246E+13 V™3 +
1.53587326E+17 V74 +

to know stable velocity

0.50
1.00
1.50
2.00
2.50
3.00
3.50
- 4,00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
8.00
8.50
10.00
10.50

aaogaoaoaoaoao

.0

0

0
000.0
00.0
0

0

0

00
0
0.0
00
0

0

v B

elviviviclvRololololw)

bl bl bef 3 bxd bt b b bed b bRt B IS

[ Mo M er W wr W e}

vez2 >

13301.60546875 V~3

0
>
vz 5> 0
>

-2.34374433E+16 V
-2.47629300E+21 V~2 +

3 =3 ~3 =3 =3 =3

regions? 1 yes 2 no

0.5917E+25
0.5356E+25
0.4457E+25
0.3276E+25
0.1890E+25
0.3984E+24
-0.1077E+25
-0.2392E+25

- -0.3382E+25

-0.3858E+25
~0.3610E+25
-0.2407E+25
0.6381E+22
0.3906E+25
0.9590E+25
" 0.1738E+26
0.2762E+26
‘0.406TE+26
0.5691E+26
0.76T7TE+26

mr, lbm

- 1lr, in

hr, in

Ryp, lbm in~2
Rzp, 1lbm in~2
alphar, degrees
Ccw, in

cf, in

lambda, degrees
mf, lbm

d, in

u, in '
Fyp, lbm in~2
Fzp, 1lbm in~2

alphaf, degrees

CrR, lbm in .
CfR, lbm in .

0

0

1

6.10823578E+24 > 0

O 00 ~1 O O o> I D)
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Computer output for figure 5.10. The model is self-stable after 5.5 mph.

CfR,

0
0

A = 6.28236032E+08 > 0
B = 2.93819360E407 V > 0
C = -4.24441088E+09 + 686129.25000000 V-2 >0
D = -1.36504560E+08 V + 12682.92578125 v-~3 »
E = -5.97219840E+07 + 18848.75195312 V-2 > 0
6th= 1.21918337E+13 V"3 + -3.89519217E+16 V >
Tth= 1.54628405E+17 V°4 + =~2.17455098E+21 V©2 +
Want to know stable velocity regions? 1 yes 2 no 1
VEL= 0.50 C D E &8 0.5201E+25
VEL= 1.00 C D E 6 0.4710E+25
VEL= 1.50 C D E s 0.3828E+25
VEL= 2.00 C D E s 0.2912E+25
VEL=z 2.50 . C D 'E &8 0.1738E+25-
VEL= 3.00 ‘C D E 6 C.5082E+24
VEL= 3.50 C D 7 -0.8563E+24
VEL= 4.00 C D 7 -0.1611E+25
VEL= 4.50 D . 7 ~0.2187E+25
VEL= 5.00 D 7 ~-0.2198E+25
VEL= 5.50 D 7 ~0.1431E+25
VEL= 6.00 0.3481E+24
VEL= 6.30 0.3384E+25
VEL= 7.00 ' » 0.7986E+25
VEL= 7.50 0.1442E+26
VEL= 8.00 0.2303E+26
VEL= 8.50 0.3415E+26
VEL= 98.00 0.4815E+285
VEL= 9.50 0.8512E+26
VEL= 10.00 0.8638E+26
VEL= 10.50
200.0 nr, lbm
20.0 lr, in
50.0 hr, in
100000.0 Ryp, 1lbm in~2
20000.0 Rzp, lbm in~2
60.0 alphar, degrees
41.0 cw, in
0.0 cf, in
0.0 lambda, degrees
10.0 mf, lbm
2.0 d, in
30.00 u, in
e 50.0 Fyp, lbm in~2
. ¢5m2OO9.O ; - Fzp, lbm in~2 .
- 7.7.45.00 -2 7. alphaf, degrees
50.0 " CrR, lbm in
50.0 lbm in

W00~ U b Ny

5.36867295E+24 > 0
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Camputer output for figure 5.11. Mcodel apprommatang a Schwinn Varsity bi~
cycle and rider is self-stable between 8.0 and 12.0 mph

A= 3.895152640E+08 > 0

B = 3.22249620E+07 V > 0

C = -9.77952973E+08 + 803181.00000000 V-2 > 0

D = ~1.62276576E+08 V + 12427.99218750 V=3 "> 0
E = 4.79032238E+10 + -1.09805950E+06 V-2 > 0
6th= 2.09715242E+13 V~3 + -2.51020961E+17 V > 0

Tth= 2.60633923E+17 V"4 + -5.38259588E+21 V-2 + ~9.01019454E+4+24 > 0
Want to know stable velocity regions? 1 ves 2 no 1

VEL= 0.50 ~0.9425E+25

C D 6 7

. VEL= 1.00 C D 6 7 -0.1065E+26

VEL= 1.50 C D 6 7 -0.1264E+26

VEL= 2.00 C D 6 7 ~0.1528E+26

VEL= 2.50 C D 6 7 -0.1845E+286

VEL= 3.00 C D 6 7 ~0.2199E+26

VEL= 3.50 C D 6 7 ~0.2568E+26

VEL= 4.00 C D 6 7 -0.2929E+26

VEL= 4.50 C D 6 7 ~0.3252E+26

VEL= 5.00 C D 6 7T -0.3506E+28

VEL= 5.50 C D 6 7 ~0.,3656E+26

VEL= 6.00 C D 6 7 ~0.3662E+26

VEL=> 6.50 7 ~-0.3481E+256

VEL= 7.00 7 -0.3066E+26

VEL=z 17.50 7 -0.2367E+26

VEL= 8.00 _ 7 -0.1328E+26

VEL= 8.50 0.1071E+25

VEL= 9.00 ' . 0.2002E+286

VEL= .8.50 ’ 0.4421E+26

VEL= 10.00 0.7434E+26

VEL= 10.50 0.1111E+27

VEL= 11.00 ) 0.1554E+27

VEL= 11.50 0.2079E+27

VEL= 12.00 E 0.26395E+27

VEL= 12.50 E 0.3410E+27

VEL= 13.00 E 0.4235E+27

VEL= 13.50 ‘
200.0 mr, lbm 1
20.0 lr, in 2
50.0 hr, in 3
100000.0 Ryp, lbm in*2 4
20000.0 ' Rzp, lbm in”"2 5
60.0 alphar, degrees 6
41,0 cw, in 7
1.00 o cf, in 8
15.0 lambda, degrees -9
10.0 : mf, lbm 10
2.0 : d, in - 11
30.00 u, in 12
50.0 Fyp, lbm in"2 13
2000.0 Fzp, lbm in~2 14
45.00 : _ alphaf, degrees. 15
50.0 CrR, lbm in 16

50.0 CfR, lbm in 17



Camputer output for figure 5.12.
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The model is self-stable after 3.5 mph.

Figure 5.12 shows a positive d and positive c, for this model. However,

the correct figure would show negative d and Ce equal to zero.

A =
B =
C =
D =
E =
6th=
7th=
VEL= 0.50
VEL= 1.00
VEL= 1.50
VEL= 2.00
VEL= 2.50
VEL= 3.00
'VEL= 3.50
VEL= 4.00
VEL= 4.50
VEL= 5.00
VEL= .5.50
VEL= 6.00
VEL= 6.50
VEL= T7.00
VEL= 7.50
VEL= 8.00
VEL= 8.50
VEL= 9.00
VEL= 98.50
VEL= 10.00
VEL= 10.590
VEL= 11.00
200.0
20.0
70.0
00000.0
12500.0
45.0
40.0
0.0
~-1.0
5.0
-0.6
10.00
0000.0
5000.0
5.00
00.0

00.0.

5.5660108B0E+07
1.87555212E+06
~3.25146848E+08 +
1.95284475E+406 V +
1.08488152E+08 +
2.35150934E+11 V°3 +
0.00000000E-01 V~4 +.

aoaaao

>
v

0
>

0

119030.49218730 Vv~2 »
0.00000000E-01 V-3
~-3.7274397%E~-02 V-2 >
-7.51040127E+14 V

(o2 Mo W e M or e o)

PRCIPR IR IR R g

-0.1855E+22
-0.1748E+22
-0.1570E+22
-0.1321E+22
~-0.1001E+22
-0.6099E+21
-0.1476E+21
0.3859E+21
0.9904E+21
0.1666E+22
0.2413E+22
0.3231E+22
0.4120E+22
0.5080E+22
0.6111E+22
0.7214E+22
0.8387E+22
0.9632E+22
0.1085E+23
0.1233E+23
“0.1379E+23

0
>
0
>

4.58213402E+17 V™2 +
Want to know stable velocity regions? 1 yves 2 no

mr, lbm
lr, in
hr, in
. Ryp, 1lbm in~2
Rzp, lbm in~2
alphar, degrees
cw, in
cf, in
lambda, degrees
mf, lbm
d, in
u, in
Fyp, 1lbm in~2
Fzp, 1lbm in~2
alphaf, degrees
CrR, lbm in
CfR, lbm in

0
0

1

-1.89007294E+21 > 0

W00 ~t O O O
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Camputer output for figure 5.13. The model is self-stable after.7.5 mph.

AEHOQWY

ot

o I ) I TR T I T

Tth=

Want to know stable velocity

VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
" VEL=
VEL=
-VEL=
VEL=
VEL=
VEL=
VEL=
VEL=
VEL= 1
VEL= 1

200.
20.0
50.0
1000
2000
60.0
41.0
-1.0
-2.0
10.0
2.0

30.0
50.0
2000
45.0
50.0
50.0

6.20933184E+08
1.69176500E+07
-4.73024614E+09
~6.04941920E4+07
3.56813338E+09

> 0

Vv >0

+
vV +
+

2.89079191E+12 V-3 +
3.48298848E+16 V-4 +

0.50
1.00
1.50

2.00
2.50
3.00

-3.50

4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
0.00
0.50

0

00.0.

0.0

0

.0
0

acaoaaoaaaoaoaan

D

jvRelvivioRelv)

DO OO

-

613096.00000000 vVv-~2 >

86333.79687500 V-2 >

0
12048.56152344 vVv-~3
0
>

~4.24617947E+16 V
-7.11189031E+20 V-2 +

It B B BN B SN BES BEN IR PN )

0.1493E+25
0.1331E+25
0.1069E+25
- 0.7197E+24
0.30i2E+24
~-0.1645E+24
~-0.6497E+24
-0.1122E+25
-0.1543E+25
-0.1871E+25
-0.2058E+25
-0.2052E+25
-0.1794E+25
-0.1223E+25
-0.2701E+24
0.1137E+25
0.3076E+25
0.5630E+25
0.8886E+25
0.1294E+26

mr, lbm

lr, in

hr, in

Ryp, lbm in~2
Rzp, lbm in~2
alphar, degrees
cw, in

cf, in

lambda, degrees
mf, lbm

d, in

u, in _—
Fyp, lbm in~2
Fzp, lbm in~2
alphat, degrees
CrR, 1bm in
CfR, lbm in

0

0 .

regions? 1 yves 2 no 1

1.54746767E+24 > 0

OO0~ WY b O DD
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BICYCLE STABILITY DEMONSTRATION ANNOUNCEMENT
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BICYCLE STABILITY DEMONSTRATION
On Saﬁurday november 15th at 11:00am Scott Hand will demonstrate

some results of his bicycle stability research in the west end of the veternar-
ian parking lot. This demonstration is restricted to the Weekends due to

i

1)

the availibility of the parking. The demo will show:

A riderless bicycle can be stable. We will push a schwinn varsity, and
show that it stays upright and goes straight for speeds greater that
7Tmph. Even after perturbing its motion the bicycle will return to an
upright position. (or constant curvature

Wheel alignment is critical to the straightness or curvature of stable
motion. We will misalign a wheel and show that the bicycle takes a
curved path. The direction of this curved path is predictable.

Increasing the inertia of the front wheel of a bicycle significantly in-
creases its stability. We will substitute a much heavier wheel and show
slower stable speeds and increased ability to recover from a pertuba-
tion.

A bicycle with negative trail can be stabilized by adding a negative
spring. We will extend the fork to get a negative trail and show this
configuration is unstable. We will then add a negative spring to the
steering axis and show how this configuration is stable.

A riderless bicycle can naturally self right itself once in a steady turn.
This is a nonlinear phenomena in which a bicycle stable in straight
line motion can also be stable in a steady curve, but as it slows will
naturally upright into a straight line position.

A bicycle can be towed by a string (time permitting). We will show
how to tow a bicycle, similar to flying a kite. In doing so we will
show that the placement of attachment ot the strmg is critical to have
stability.

Those attending are welcome to try any of the experiments after the

demonstration. For further information please call Scott Hand at 255 3518
or Jim Papadopoulos at 255-5035.

Rain date Sunday November 16th at 1:00pm.

Please see map to the parking lot on reverse side.
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