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Governing Equations

Lagrange’s Equations for the Basic Bicycle Model

We now introduce the Lagrange function L,
L =KE} - PES
where KE;" and PE; (the kinetic and potential energy which contribute to Lagrange’s

equations) are given by equations (3.6) and (3.8). In order to derive Lagrange’s equations
we also introduce the Lagrangian operator Lg,

where ¢ represents the generalized coordinates Y., ér, 65, X, 0r, xr, and 3.

What then is Ly operating on L? As is explained by Goldstein [1980], the L4 operating
on L equals the generalized force on the system. In this case with the help of figure 3.9, the
generalized forces, represented by the letter Q, can be written to first order as follows,1

Ly,(L) =Qv, = —D;s — D, (3.9a)

Ld’,. (L) = Q¢>, = Drar (3.9b)

Ly, (L) = Qq; = Dsay (3.9¢)

Lx,(L) = Qx, = Ff + F, (3.9d)

Lo, (L) = Qo, = —Ffcy . (3.9¢)

Ly, (L) = Qx. = My, (3.91)

Ly(L) = Qp = My + ¢5Fy (3.99)

where,
% ok ok ok ok ok

Qv, = — Dy — D, = m;¥, (3.10a)

th, :Drar = Crﬁgr (310b)

Qe, =Dsas = Cydy (3.10¢)
Qx, =Fs + Fr = m¢X, — mil b, + meRogr — mydip (3.104)

Qo, = — cwFy = —mle X, + Teob, + Tyoity + Hextr + FU 45 — Hgsin X\ (3.10¢)
QX,. =My, = mtiztxr + Tyzér - Htér + Tyy)zr - gmt;;tXr + Fiy”lﬁ

— Hy cos M + guip (3.10f)
@y =My +csFy = —mpdX, + F}.6, + Hy sin M6, + F} %, |
+ Hy cos Axy + gvxe + Fizh — gusin M ‘ (3.10¢9)

! In figure 3.9 My is an internal torque to the Basic bicycle model imposed by the rider
on the steering axis and reacted by the rear frame. In our free body diagram we have
assumed the component of the reaction moment on the rear frame, say My, , is negligible.
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THE FOUR CANONICAL DIFFERENTIAL EQUATIONS IN CANONICAL FORM

(see page 23 of hand copy of this paper)
koK Aok k

(1) _FOR THE WHOLE BIKE: the total X-force required to effect the lateral
acceleration of all mass points in a general motion = the sum of applied X-
forces.

mtX + mtﬁtjé -~ mtl—té — mfd'lb = er + fo
LHS:

— the lateral acceleration of m; due to lateral acceleration of the rear contact, no lean
or yaw ‘

— the X acceleration of m; due to yawing (only) of the whole bike

— the X acceleration of m, due to lean (only) of the whole bike

— the X acceleration of m; due to steering only

RHS: sum of forces in X-direction

(2a) FOR THE WHOLE BIKE: the total x-moment (about the heading line
of the rear assembly), required when accelerating mass-points laterally in a
general motion, = sum of x moments of external forces about the same line.

. ) ) . . i} i
mehe X + TyyX + Tyof + Fyy — Hif — Hy cos Mp = gmihex — gmyedyp — Cf(mtgzt—)lﬁ

.
e

. -

where for convenience we have defined 1/\5—('777,7(11 mtz[-f—c £)

/7 LHS:

/' — the y (or x) moment required to accelerate the center of mass of the whole bike

laterally

— the y-moment required for angular acceleration (%, 0) of the whole bicycle about the
rear contact point

— the y-moment required for angular acceleration of the front assembly about the steer-
ing axis X (remember that the contacts can slip sideways, and that X, y, 8 are being
held fixed

— the gyroscopic moment (from wheel spin angular momenta H,, H #) required for
yawing of the whole bike about a vertical axis

— the gyroscopic y-moment required for the precession about the vertical ('¢ cos M) of
the front wheel




RHS:
— the moment of gravity force acting at the c.m. of the total bicycle which is leaned
only (Fig.A8a)
— the moment of gravity force acting at the center of mass of the front assembly, for a
non-leaning bicycle (Fig.A8b) '
— the moment of vertical front contact force (m:gl,/c,) which is offset due to steer only
(Fig.A8b) |
— the steer moment My, does not contribute because — My also acts on the bicycle.
The forces Fx,, Fx # do not contribute because they are in the ground plane and so
have no moments about the rear-assembly heading line.

(2b) FOR THE WHOLE BIKE: the total -moment (about the z-axis through
the rear contact P,, which for small angles is equivalent to a vertical axis)
required when accelerating mass-points laterally in a general motion = sum of
moments of external forces about the same line.

~meleX + ToyX + Tz + Fy, + HoX — Hysin M = —c Fxy

LHS:

— the z (or §) moment required to accelerate the center of mass of the whole bike

— the z-moment required for angular acceleration (X, 0) of the whole bicycle about the
rear contact point v

— the z-moment required for angular acceleration of the front assembly about the steer-
ing axis X ’

— the gyroscopic moment required for tipping of the whole bike about the heading line
of the rear assembly :

— the gyroscopic z-moment required for the precession about the horizontal (—1 sin A)
of the steered front wheel

RHS: moment of Fx s about the z axis.

(3) FOR THE FRONT ASSEMBLY ONLY: the total Y-moment about the

steering axis )\ required for a general bicycle motion = sum of external mo-
ments about the same axis.

—msdX + Fy X% + FU 6+ FlL 9+ Hy(x cos A+ §sin ))
=My +erFxyg— g(mysd + mt;[fu—c,c)x + gsin X(m ¢d + mt;%q)gb
=My +e;Fxy — gvx + g(sin \)vip |

(where v is defined in (2a) above).




LHS:

— 1-moment required to support lateral acceleration of the front assembly

— Moments about X axis required when the front assembly is given angular acceleration
about the x (y) axis and 6 (z) axis. Because inertia tensors about any point are
symmetric matrices, the moment about one axis required for angular acceleration
about another is the same as the moment about the second required for angular
accleration about the first.

— the moment about the steering axis required for angular acceleration of the front
assembly about that axis (the coefficient is the polar moment of inertia)

— the moment about the steering axis required for precession (¥ cos A + @ sin A) about
an axis in the plane of the bicycle which is perpendicular to the steering axis.

RHS:

— the steering moment My, and the moment about the steering axis of the horizontal
force, are easy to see. (Fig.A9a)

— when the bicycle is leaned only, the vertical reaction force at the front contact and
the vertical gravitational force on m # both have components proportional to y which
are perpendicular to the plane of the bike. These forces act on lever arms ¢ 5 and d.
(Fig.A9b)

— when the bicycle is steered only, these two forces are displaced from the plane of
the bicycle, and no longer pass through the steering axis. Resolve them initially
into components perpendicular and parallel to the steering axis; then when they are
displaced, it is easy to see that only the components initially perpendicular to the
steering axis (which are multiplied by sin ) exert moments, with lever arms equal to
their lateral displacements ¥d and Yey. (Fig.A9c)

KKk

Constraints

REDUCED EQUATIONS OF MOTION

Equations 1,2a,2b,3 are true whatever horizontal forces F Xxry Fxy act at the wheel
contacts, and in particular they are true if the forces are Jjust right to prevent the wheels
from side-slipping relative to their instantaneous headings.

[Need a discussion of side slip here......]

For the rear wheel, zero side slip is expressed by the equation X = —V4. (See
Fig.A10a.) For the front contact, an analogous relation is needed in terms of the X-co-
ordinate and heading of the front wheel: X f = —V8r. To write this in terms of the
variables describing the motion, we need X § = X — cwb + cfyp for the X-co-ordinate of
the front contact Py (Fig.A10b), and 07 = 0 + ¢ cos A for the heading of the front wheel
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(Fig.A10c). (cos A comes in because a small rotation of the front wheel about the steering
axis can be considered a sum of small rotations about horizontal and vertical axes — and
only the latter changes the front wheel’s heading.)

With these relations, we can express such quantities as 6, § and X in terms of and
¥ and . By subtracting the rear-wheel constraint from the front-wheel constraint, we
obtain

—cwd + cpth = Vipeos A,

which may be solved for § to give

é:itzlv—}-VCOS)‘gb .
Cw Cu
This may be differentiated once to give 6:
" . A
Gt b+ yCos b
Cw Cw

Finally, the rear constraint relation may be differentiated once, and 6 may be replaced:

. . \ A
X=-vi= _Vcc—f¢ 7K lai)

Cw
Fodokokkkok skok kok Kok

After substituting these relations into Egs. 1,2,3, to eliminate 6,6 and X , we have
four equations but apparently only two variables. However, demanding that the horizontal
contact forces should prevent the wheel sideslip means that these forces are no longer freely
selectable, but must be exactly the right magnitude at every instant. In essence, they are
the two remaining variables. ;

Since we are concerned at present only with the motion, the most convenient thing is
to rearrange the equations so that the unkown forces do not appear in two of them; these
two will allow us to solve for the unknowns X, ¥.

Equation (2a) (with X and 6 eliminated) is already in that form; because it dealt
with moments about a line in the ground it will be called the lean equation. For the other
equation we simply eliminate Fx; from (2b) and (3), and leave My, on the right hand
side; this is called the steer equation. (Evidently equation (1) is not needed, unless we
wish to find Fx,.)

We write these two equations in the form:

My X + Myytb + Cxw¥ + Ko x + Kyy =0, the lean equation*

(note that there is no C,,x term); and

My X + M¢¢"Z; + Cyx + C¢¢¢. + Kyx X + Kyyptp =My , the steer equation.

* If we had allowed flexible training wheels (say) to help support the rear assembly

against leaning, the lean equation would have to have the supporting moment M, on the
_right hand side.




The coeflicients to the lean equation are

My =Tyy |
' Cf .
Cyx =0
A _—
CX“/) = — (Hf COSA + Ej"Ht) +V<Tyz cos - fimtht>
Cw Cw Cw

}{XX ::—-gnuﬁk

cos A 2COSA  —
‘K}¢ =gv — H,V -V My

Cw Cw

and the coefficients to the steer equation are:
' i
Myy =Fy, + =Ty,
Cw
cs }
Myy =F3 + 2;‘ng + Z;Tzz
w

w

Cyy =Hj cos A + fth

Cou =V<cos AF;'\'z <5 (cos /\Tu 4 1/))

Cw Cw Cw
Kyx =gv
in A A A
K¢¢=—gvsin)\+Vwa+V2cos v

Note that most coefficients are functions of velocity. In fact the angular momentum H f
for the front wheel typically could be written as H F=V(Jg/ ar), where ay is front wheel
radius and Jy¢ is front wheel polar moment of inertia; and similarly for the rear. However
there is also the possibility of adding independent high-speed gyros to the bicycle, in which
case Hy and/or H, might be constant, or a negative multiple of speed, etc.

When developed in this form, the equations display a degree of symmetry.

Section 2:Derivation of Constraint Relations for the Basic Bicycle Model

In chapter III, equations (3.2a-e) were used to simplify the Lagrange’s equations and

said to be derived from the constraint relations on the front and rear contact points
motion for the Basic bicycle model. This section shows how the derivation of equations
(3.2a-e) follows from simplifying the constraints that exist on a bicycle with thin rigid
disks as wheels.

For the Basic bicycle model we have assumed the tires to be part of the wheels which
are assumed thin rigid disks. This implies infinitely stiff tires, so no side-slip angle can
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exist on our Basic bicycle model. That is, the direction of the velocity of the contact point
is defined by the intersection of the plane of the first wheel and the ground plane. This
direction is referred to as the instantaeous direction that the bicycle is headed for the Basic
bicycle model.

In addition, we assume enough friction exists between the thin rigid disks and the
ground so that there is no relative motion between the point of contact of the rigid wheel
and the ground. That is, there is no sliding of the wheel on the surfaces of the road. In
the practical sense this could be caused by oil on the pavement or loose gravel.

Based on the above assumptions, 4 nonlinear kinematic rolling constraints exist for
the Basic bicycle model. These constraints are nonholonomic and can be added only
after developing Lagrange’s equations.? The constraint equations relate the velocity of the
rear and front contact point velocity to their respective heading in the ground plane and
respective wheel rotations. Writing these in their nonlinear form for the rear contact point
velocity we have, "

Y, = aq¢, cos b, (A.2a)
X, = —ayhy sin b, (A.2b)

where ¢, is the angular velocity of rotation of the rear wheel in its own plane, that is, the
spin rate. Similarly for the front contact point,

Yy = aséscosy (A.2¢)
Xf = ~afq3f sin ¢ (A.2d)

where ¢ is the spin rate of the front wheel. These equations (and all others in this chapter
unless otherwise indicated) assume the sign convention used in chapter IIL.

Equations (A.2a-d) represent 4 nonholonomic constraints imposed on the Basic bicycle
model which has seven generalized coordinates: X,., Y;, 8., ¥, ¥, ¢r, ¢7. Hence, for the
given assumptions, the bicycle has three degrees of freedom.® However, as a consequence
of linearizing the equations of motion, for the case of linearized equations of motion in the
derivation it is shown that Y, is constant to first order. Hence, for the linearized model,
only two degrees of freedom exist.

What follows is the linearization and simplification of the nonlinear nonholonomic con-
straints. As will be shown, as a result of the linearization 2 constraints become holonomic
and 2 remain nonholonomic.

By assuming small angles of rotation

the 4 nonlinear nonholomic constraints reduce to four linear nonholonomic constraints
as follows,

Y, = a,é, (A.3a)
X, = -Y,6, (A.3b)

* This is what the author interprets from Goldstien [1980].
5 See Neimark and Fufaev [1967].




Yi=asdy (4.-3¢)
Xy =Y (4.3d)

Eliminating the auxiliary variables we can simplify these expressions.
Using equation (3.1b), (A.3c) becomes,

Y; =Y, = asdy (4.4)
Taking the time derivative of equation (A.la) and substituting equation (A.3b) for X,.,

Xf — X, = —cyub, + Cf;l.: .(A.la)

X, = Xf + cuby — CﬂZv = -Y,9, (A.5)

Substiting (4.1d) into (A.5) and cancelling X/,

0, =0f —1pcos A (A.1d)
Xf + cowby — crp = ~Y(8 — thcos A) (A.6a)
Cwb, — c”['; = Y,,'z/J cos A (A.6b)

Rewriting equations A4.3a, 4.3b, A.6b, and A.3c we have the four linear constraints ex-
pressed in terms of the generalized coordinates,

Y, = ard, (A.7a)

Y, = aséy (A.7b)
(AR SR Sk (A.7¢)
X, = -Y,6, (A.7d)

As is shown in Chapter III the time derivatives of these constraint equations is sometives
required. Taking their time derivatives we have,

Y, = ard, (4.7e)
Y, = asds (A7)
. Cf « .. COSA :
6, = 211/» + ¥ — (A.79)
X, =V, - V4, = -V, - f-fy,.¢ — V2 C‘;’i (A.7h)

Equations (B.7a-b) are used to simplify Lagrange’s equations by reducing‘the number
of degrees of freedom in the final equations. And as is shown in chapter III Y, is zero to
first order so we have eliminated this term in the expression presented in chapter III.

8




Note that the lean angle x, is not present in these relations, and they are not depen-

dent on the radii of the wheels.
ke sk ok ok ek

Rolling constraints

In general a bicycle has four nonholonomic contraints relating the motion of the loca-
tion of the rear and front contact point in the inertial XV reference plane, to the

orientation and rotation rate of the wheels. These relations are referred to as rolling
constraints. We can specify these rolling constraints due to our assumptions of no ‘sliding’
(skidding) and no ‘side slip’ (due to tire deformation). These relations can be linearized
according to our assumption of only small deviations from the equilibrium motion, because
they are added to the problem only afterthe Lagrange equations are developed. The
relevant first-order results, which are used later to develop the equations of motion, and
which are derived in more detail in section 2 of appendix A, can be expressed as follows,

I}r = ar‘;r (32(1)
. cf . cos A
v cy - s COS A . COS A
0, = -C——'(,b + 9Y, + ¥Y, - (3.2d)

X, =-Y,0, - V.6, = V.0, — Zc-f-”mp Y

(3.2¢)

w

Later equations (3.2a,b) are used to prove that for small disturbances, ¥, = 0 to first order,
so it can be eliminated from (3.2d,e).

Originally the number of generalized coordinates is seven. By implementing the con-
straint equations (3.2a-e), four of which are independent, the variables 6,, X rs @ry and @y
will be eliminated from Lagrange’s equations, and thus the system will be left with only
three generalized coordinates: y,., the lean angle, 1, the steer angle, and Y, the coordi-
nate that locates the rear wheel along the Y axis. These three generalized coordinates
represent the three degrees of freedom for the linearized Basic bicycle model. However,
as just mentioned Y, is zero to first order and therefore Y, becomes a constant to first
order.” Thus because ¥, is not present in the final equations there are only two nontrivial
degrees of freedom for the linearized model. Mathematically this means that two second
order differential equations, or one fourth order differentjal equation, represent the motion
of the system.

In general, these constraints should be added to the problem only after Lagrange’s
equations have been found. Also, note that the generalized coordinate x, is not present

" This is one of the subtle points we referred to earlier and is discussed more in section
6 of appendix A.




in the rolling constraint relations and that the relations are not dependent on the wheel
radii.

Elimination of x, and 8, from equations (3.12a,b)

Substituting the remaining rolling constraints (8.2¢c-e) (where Y, has been set equal
to a constant V and Y, = 0),

g, = fizp' + ¢Vc:s A (3.2¢)

br = L4 v 22 (3.2d)

Xy = Vb, = -~y _ g2 2 (3.2¢)
Cuw Cow

into equations (3.12a,b), the variables §,, §,, and X, can be eliminated. Thus we form

two coupled second order linear differential equations with constant coefficients.
kA K

REDUCED EQUATIONS OF MOTION

ok ok ok sk ok sk

Representation of the Equations of Motion :
Equations (3.14) and (3.15) can be expressed either as two second order differential

equations or one fourth order differential equation. For the case of two second order

differential equation it is common to write the equations in matrix form as follows,

M c K

(Mxx Mx¢>D2+(Cxx Cxt/J)D_I_(’Cxx ’Cx¢> (Xr>=(Mxr)
Myx  Myy Cox  Cyy Keox Kyy g4 My
where M, is the mass matrix , C is the damping matrix, K is the stiffness matrix, and D

is the differential operator. Expanding M, C, and K we have, [see Hand thesis page 28 &
29 for defs. we need TEX file]

M= My Myy _ [ need need
Myx Myy need need

C= (Cxx szp)
Cyx  Cyy
_ [ need mneed
~ \ need need
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K Kix Kyo _ need need
Koy Ky need need

e ko sk ok sk ok sk ok ok

Augmented Basic Bicycle Equations

Applications of the Governing Equations

The equations of bicycle motion, which govern rear-assembly lean-angle x and steer
angle i, are:

My X + KxxX + Myph + Cyyth + Kyypp =M, (the lean equation),

and

My, X + Cyyx + Ky + M,/,,MZ + C¢¢¢ + Kyyt =My (the steer equation).

My is the steering moment exerted by the rider (or by some device attached to the rear
assembly), and the tipping (or supporting) moment M, is normally zero. .

By solving, or studying the stability of, these equations, a variety of topics may be
studied. Here, several are described very briefly, to give the reader an idea of the equations’
potential usefulness.

Steering Moment Given as Function of Motion

If the steering moment M, is given as a function of bicycle motion (for example,
by a ‘balance — controller’ which applies a steering moment depending on the bicycle’s
lean), this may be incorporated in the analysis by modifying the steer equation. Then the
lean equation and the modified steer equation can be used simultaneously to determine
the behaviour of x and ¢. This approach can be used to evaluate balancing strategies or
controller designs.,

On the other hand, we may want to study the effect of controlling the steer angle as
a function of bicycle lean. If 4 is given in terms of X, the lean equation must be used to
solve for x. If desired, the solution may be inserted into the steer equation to find the
resulting steer moment.

No-Hands Stability

After setting the steering moment to zero, we may use both equations simultaneously
to study no-hands motion and stability (the primary focus of this report).

Steer Moment Given as Function of Time
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The heading of a stable bicycle may be affected (and thus in some sense controlled) by
applying steering moments. The steering produced by instantaneous or ramped application
of a steer moment can be deduced by solving the equations of motion with the given My (t)
on the right-hand-side, under the assumption that 0,9, x, X = 0 initially. Similarly, if the
wind tends to tip the bicycle, the time-dependent tipping moment M, (t) must be used in
the lean equation. :

Skateboards

Skateboards have axles designed so that the wheels steer by an amount proportional
to the lean angle. Since both the front and the rear wheels of a skateboard steer, to apply
the bicycle analysis it is necessary to define an imaginary ‘non-steering rear-wheel contact
point’, P™  as the correct origin for defining moments of inertia, etc. If the front and
rear axles steer exactly opposite amounts, Pi™ is half-way between the front and rear
contact points (any trail is ignored for simplicity). More generally, for a given lean angle
imagine that there is a series of wheels along the length of the skateboard, whose steer
angles vary linearly between the actual values at the front and back. Then Pi™ is at the
imaginary wheel whose steer angle is zero (this might be off the skateboard altogether).
Then the wheelbase (i.e. the distance to the front contact) and other important quantities
are calculated with respect to Pi™, not with respect to the actual rear contact.

Once the appropriate equation coefficients have been provided, the analysis is per-
formed on the lean equation after setting the steer angle 1 proportional to the lean angle
X (cf. “Steer Angle Given”, above).

Tricycles

We can study the behaviour of tricycles by ignoring the lean equation (which should
have the supporting moment My on the right hand side), and employing the steer equation
with x = 0. If (¢) is given, this equation delivers the steering torque My, required; and
if we set My= 0, it determines hands-off stability, and allows us to find P(t) if desired.
Once 1(t) is either specified or found, the lean equation gives the supporting moment M,
supplied by the rear wheels. .

This tricycle analysis can also be used to investigate whether a shopping cart will tend
to travel straight, when rolling freely either forwards or backwards.

Lateral Forces on Wheels

Bicycle wheels, especially in the traditional large size, are rather weak laterally — side
loads cause high spoke stresses and may even lead to collapse. The equations of motion
can be used to find these forces in any given motion; perhaps the most interesting case is
when the rider varies the steer angle rapidly, or applies a large steer torque. In this case
we first solve for the motion as above so that both x(t) and #(t) are known. Then we use
equations (1) and (2b) to solve for the horizontal forces Fxr and Fxy, in terms of x and v
and their derivatives. The lateral force at each wheel is not Just the horizontal force, but
because of lean also includes a component of the vertical force. So at the rear the lateral
force is Fx, — X(gmtﬁg—[—t), and at the front it is Fx; — (x — 4 sin A)(gmtg-f”—).

The above topics can be treated in a straightforward way with essentially no modifi-
cations to the equations of motion. To study subjects such as the following requires more

12




thought, and often a significant alteration of the equations. The greatest complicatidn
arises when new degrees of freedom are introduced: ways mass can move independent of
the four rigid bodies which define the basic bicycle.

Finite Fore and Aft Forces

This concerns the effects of finite forces acting mostly in the forward or backwards
direction. In a small steering and leaning motion, these may slightly shift their direction
or point of application in such a way as to enter the lean and steer equations.

Aerodynamic ‘Lift’ Forces in Still Air

When a ‘flat’ object moves relative to the air, often the largest aerodynamic forces
are ‘lift’ forces perpendicular to its relative motion (a horizontal force is still called lift).
There is some concern that a covered (disk) wheel or covered bicycle might generate such
forces in small steering motions, which would destroy stability. The idea is perhaps that if
the front wheel turns a little, the lift forces will cause it to turn even more (and also apply
a tipping moment to the bicycle).

While we have not worked out whether these effects destroy self-stability, at least it
seems likely that any instability arising from this still-air ‘viscous damping’ will occur
slowly, and may not be too important for a rider-controlled bicycle. However sidewinds —
steady, or especially sudden — will produce large disturbing forces.

Tire Phenomena

— tire deformation under maneuvering forces gives rise to ‘sideslip’, ‘camber thrust’, etc.
(raising the pressure reduces the effect).

— bicycle tire behaviour may be well modelled by a series of springy fingers. (Note: a
tire’s vertical stiffness apparently is :

— Is tire ‘sideslip’ an important factor in bicycle dynamics? Analytical estimates of tire
‘sideslip’ behaviour, and of the forces which cause it, suggest that tire deformation
phenomena may be much more important for motorcycles in their typical riding con-
ditions than for bicycles in theirs (and also that sideslip may be insignificant in steady
turns, because the force of the ground is nearly in the plane of the wheel). On the
other hand, wheel (and bicycle) flexibility appears to be an important factor in bicy-
cle shimmy. The question is whether tire behaviour is important in bicycle shimmy
conditions.

— Brief instructions for incorporating tire behaviour and wheel flexibility in the equations
of motion — and the order of equation which results from each choice. For best
understanding, perhaps it is preferable to retain simplicity by modelling the front tire
only.)

Rider Body Articulation _.
[Not yet written. Riders may both bend and _shift sideways at the waist; are both
important separately? Number of equations; sketch how to derive them.] '

Frame Flezibility
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[Not yet written. ‘Torsional’ bicycle flexibility may be important for the study of
shimmy — in contrast to wheel flex, it involves the gyroscopic effects of wheel tilt. How
to derive equations. Possibility of developing simplified equations which represent high-

frequency oscillations alone?]
koK ok ok

What to do with the Equations of Motion

Once the equations of motions have been derived they can be used in various type
analyses. Among them are:

1) Given arbitrary x, and ¢ we can calculate the required moments M,, and M,,.

2) If M,,. = 0 we can solve for the behavior of Xr for a prescribed ¢ (i.e. we can define
a controller ¥(xr) and analyze stability). ‘

3) Solve for My (given that M, = 0 for and ¢.

4) Given M,,, = 0 and My = 0 we can solve for the equation of motion and analyze
the bicycle’s self stability.

5) Passive mechanisms such as gyroscopes, springs, and dampers can be easily added
to the equations of motion to analyze their effect on the bicycle

ok ok ko

[PRIMITIVE BICYCLE GOES HERE]

% 3k koK 5k ok ok %k

The Meaning of Bicycle Stability

For the stability of the bicycle we are really concerned with the stability of the variables
representing the lean and the steer degrees of freedom, x, and 4, respectively. That is,
after the bicycle system is perturbed, 4, and X, can take on new nonzero equilibrium
positions and the system, for all practical purposes, can still be considered stable. We lack
mentioning the other generalized coordinates’ time derivatives Y, é,, and é #» which do not
effect the linearized equations of the Basic bicycle model. Note however, these variables
can also take on new equilibrium positions. Hence, when we discuss bicycle stability we
apply the definition of dynamic stability only to the lean and steer (xr and 9) degrees of
freedom.

We therefore define bicycle stability in the following way:

A bicycle is stable, if, after a very small disturbance from its vertical straight-ahead

equilibrium motion it asymptotically approaches a vertical straight-rolling configuration

in the lean and steer degrees of freedom, Xr and 1, respectively.

Before going on, we point out that just because a bicycle design configuration is found
to be stable does not necessarily imply that a rider would or should desire it more than an
unstable bicycle design configuration. We emphasize that mathematically based definitions
of what is more stable compared to what a rider feels is ‘more comfortable’ or ‘easier to
ride’ could differ substantially.

Stability Analysis Techniques
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Historically, stability of the vertical straight ahead (upright) equilibrium configuration
of the bicycle and motorcycle has been studied in four ways: analysis of the eigenvalues
and eigenvectors of the system; numerical integration of the equations of motion and study
of the solutions; application of the Routh-Hurwitz criteria; or experimental observations
of bicycle behaviour. Each approach has its merits and drawbacks, as we will now explain.

First, using the system of equations, or the characteristic fourth order polynomial
derived in chapter III, one can determine the eigenvalues (the roots to the fourth order
equation), and eigenvectors (mode shapes) of the system which can be used to calculate
the natural frequencies and mode shapes of the system representing a bicycle traveling at
a particular speed. If, in such an analysis, any of the eigenvalues have positive real parts,
the solution to the system will grow away from the equilibrium in time and the system
is unstable (at least based on the linearized equations). Complex eigenvalues represent
oscillatory solutions whose real parts determine whether the amplitude of the oscillations
will grow or decay in time. Thus eigenvalue-eigenvector analyses allow for various design
configurations to be compared by numerically evaluating their eignevalues. From this we
can determine which design configuration is mathematically more or less stable, Tradi-
tionally, this has been done by saying the more negative the real part of the eigenvalue,
the more stable the system. It is from the eigenvalue-eigenvector stability analyses that
the terms capsize, weave and wobble modes have been adopted to described the motion of
the bicycle or motorcycle at various speeds.

A second method used to study stability is to numerical integration of the equations
of motion using a digital or analog computer. Plots of the response (the solution) to
various inputs can be used to quantitatively and qualitatively characterize the stability bof
the system, and/or changes in design parameters (just as with the eigenvalue-eigenvector
analysis.). This method can also be used to verify stable equilibrium motion(s), if any
exist. '

One of the major problems associated with numerical studies is the verification of
the equations themselves. Because nonlinear equations are generally more complicated to
solve for than linear equations, we believe the probability of mathematical error is highe
with nonlinear models (and quite possibly little further understanding is gained), /Thus,
although the computer may be powerful enough to solve nonlinear equations, the results
should be reviewed with caution until the nonlinear equations have been verified in some
way.”

A third method of evaluating bicycle stability is to apply the Routh-Hurwitz criteria.
This method allows for the stability of an equilibrium configuration to be determined
based on the coefficients of the fourth order polynomial. It determines whether any of
the eigenvalues (roots to the fourth order polynomial) have real positive parts, without
actually solving for them. This technique yields criteria which directly lead to analytical
expressions linked to the stability of the system. Qualitative statements can be made by
comparing various design configurations stability regions. Quantitative statements can be
formulated from analytical expressions linked to stability.

The Routh-Hurwitz criteria are limited in the quantitative aspect, in that, it does

" We note when other’s equations were compared to those derived in chapter III that
only 2 of 18 agreed with our resulting equations.
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not give any exact measure of how stable a particular design configuration is relative to
another. ~

This paper does not discuss the experimental methods used in analyzing bicycle sta-
bility or their results. The interested reader is referred to the work of Kondo [1955],
Kageyama [1962], Kondo [1962], Fu [1966], Roland [1970], Jones [1970], and Eaton [1971].

Discussion of Analysis Techniques

SPECIAL CASES

Note: in some of these cases, a bicycle which is not (self-)stable may still be balanced véry
eastly by a rider

— A bicycle (+rider) with standard dimensions and mass—distribution can never be (self-
)stable if the gyroscopic effects of the front and rear wheels are somehow canceled.
But this is not to say that all bikes must have gyroscopic effects to be stable.

— A ‘primitive’ bicycle with a vertical steering axis, symmetry of the front assembly
about the steering axis, and an arbitrary distribution of mass on the rear assembly
(see Fig.1a), is slightly unstable: unless the rear assembly has enough high-up mass
in front of the steering axis (as when the rider is leaned forward, and the front wheel
bears most of his weight; Fig.1b). In the case that we checked, the computer showed
that it can be stabilised by making the trail slightly positive, or by moving the front-
assembly center of mass ahead of the steering axis (while leaving the front c.m. inertia
tensor with a vertical principal axis). By combining these effects, the bicycle may be
stabilised even when the trail is somewhat ne ative, as long as the front-assembly
center of mass is sufficiently far forward of the steering axis (Fig.1c). The gyroscopic
effect of the front wheel is essential to the stability of this vehicle, because in its
absence C' and D will always be negative. On the other hand, too large a gyroscopic
influence from the rear wheel will keep RH negative.

— An isolated rolling wheel (see Fig.2a for the equivalent bicycle) is not quite stable,
because it never uprights itself from a steady turn, and it never stops oscillating to
either side of its average lean angle. However, a wheel with a downwards tilted bar
attached [at or just below the axle] (Fig.2b) does stop oscillating above a certain
speed.

— Perhaps motivated by the example of a furniture caster, many authors have suggested
the importance of trail to stability, however with little solid evidence. Trail (or rather
mechanical trail, the perpendicular distance behind the steering axis of the front con-
tact point) does strongly affect the handlebar torque required in a given maneuver,
partly because in a rapid steering motion it will make the rear assembly yaw more,
but mostly because any ground-contact force component which is perpendicular to
the wheel exerts a turning moment (with mechanical trail as the lever-arm) which is
partly resisted by the rider’s hands. Moderate such moments are probably important,
as feedback for steering, or to allow the rider to control the bicycle by forces rather
than displacements (control of the steering angle would have to be precise at high
speeds, and such control would prevent the bicycle from contributing to the balancing
task). However large moments would make steering a real effort. So we looked at
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the stability of a bike with a massless front assembly, no gyroscopic effects (as if it is
sliding on skates), and some steering-axis tilt and trail (Fig.3a). Surprisingly for us,
such a configuration can be stable for a huge speed range. The trail must be posi-
tive, but it is best if it is small. Finally, the mass of the rider must be stretched out
along a forwards—leaning line (which, however, must not lean as far as the line from
the rear contact P, to the center of mass m;). A crude model made with furniture
casters (Fig.3b) was indeed stable, though perhaps not to the extent of the theoretical
model, which predicted stability from a very slow velocity up to infinity. Despite this
tremendous stability, such a design would require only tiny handlebar torques to steer
it. .

The lean equation shows that a bicycle can be stabilised if the steer angle is controlled
to be proportional to the lean:

~ —koX .

Skateboard wheels actually steer according to this rule, so some results of their stability
analysis can be found easily.

Tricycles don’t have the same balancing problems as two-wheeled vehicles, but they
are still reputed to be hard to control in some circumstances. We may analyse their
behaviour by assuming that a bicycle has an adequate supporting moment M, holding
it upright (x = 0), and using the steer equation to evaluate stability of no-hands riding
or the torque required in a steady turn. |
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