Chapter 4

More General 2-D Walkers

This chapter is an updated version of a paper by Mariano Garcia, Anindya Chat-
terjee, and Andy Ruina entitled “Efficiency, Speed, and Scaling of Passive Dynamic
Bipedal Walking.” It was submitted to Dynamics And Stability of Systems on July
28, 1998.

My role in this paper was as follows: I concocted all of the models and equations,
and did all of the simulation and data collection, including finding gait cycles and
analyzing them. Results from Chapter 3 suggested the possibility of period-doubling,
which I found. Andy Ruina and I came up with the tuning criteria during a discus-
ston about zero-slope kneed walkers. Anindya Chatterjee thought up the explanation
for the different scaling rules and the derivation of the transition slope in the short-

step gait.

4.0.3 Abstract

We address some performance limits of the two-dimensional passive-dynamic walk-

ing machines discovered by Tad McGeer. Energetic inefficiency is measured by
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downhill ground-slope v needed to sustain gait, with v = 0 being perfectly efficient.
Speed is measured by the Froude number. We present some necessary conditions
on the walker mass distribution to achieve perfectly efficient (zero-slope capable)
walking for both kneed and straight-legged models. Our numerical investigations
indicate that, consistent with a previous semi-analytical study of a simpler model,
such walkers have two distinct gaits at arbitrarily small ground-slopes, for which
only the longer-step gait is sometimes stable. Energy dissipation can be dominated
by a term proportional to (speed)? from tangential foot velocity at heelstrike and
from kneestrike, or a term proportional to (speed)* from normal foot collisions at
heelstrike, depending on the gait, ground-slope, and walker design. For all zero-slope
capable straight-legged walkers, the long-step gaits have no tangential foot velocity
at heelstrike and are hence especially fast at low power or low ground-slope. A

period doubling route to chaos is also numerically demonstrated for a kneed walker.

4.1 Introduction

Since humans and some potentially-useful robot designs use legged walking motions,
it is interesting to consider the limits of possible performance of bipedal walking
machines.

One natural modeling approach would be to consider the optimal performance
of powered and controlled machines. Because animal nerve systems are so capable,
because the energetic cost of thinking is so low, and because minimizing food use is
advantageous, an energy-based optimization approach is likely to capture much of
how people move (for example, see Beckett and Chang (1973), Alexander (1980),

and Alexander (1991)). Energetic efficiency is one obvious goal of both biological
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and artificial locomotion and transportation systems. Other possible optimization
criteria for consideration in the description of animal motion include peak mus-
cle force, minimum-jerk, minimum-stress, maximum speed, etc., as discussed by
Collins (1995), Nelson (1983), and Hatze (1989). The results of such optimizations,
like the results of animal evolution, will probably often show limited use of muscles
in walking, as shown in EMG studies by Basmajian and Tuttle (1973). So, given
the uncertainties and complexities of many-degree-of-freedom optimization studies
and the likely prediction of small muscle-usage (see Yamaguchi and Zajac (1990)
for example), there is hope for insight from simpler approaches.

Although some motor activity is needed for walking, perhaps it can be neglected
in some analyses like engine power can be neglected for much of the study of airplane
flight, as argued by McGeer (1990a). A simple energy source (gravity) could then
be used as a proxy for the small but essential muscle use of humans (or motor use
in efficient robots). It is hoped, as must be ultimately checked, that many results
thus obtained will be insensitive to the choice of the energy source. However, the
use of gravity as an energy source (as opposed to a simple motor approximation)
eliminates some arbitrariness, and simplifies simulation and physical experimental
verification.

Here, we address walking performance issues in the context of gravity-powered

walking machines, also mentioning some other properties of these machines.

4.2 Passive Dynamic Walking Machines

Passive dynamic walking machines that walk on shallow ground-slopes were first

designed, simulated and built by Tad McGeer, who was inspired by the “ballistic”
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double- and triple-pendulum leg models proposed by Mochon and McMahon (1980).
The McGeer-like passive-dynamic walking machines consist of hinged rigid bodies
that make collisional and rolling contact with a sloped, rigid ground surface.

The two-dimensional kneed walking machine we study here, essentially a copy
of McGeer’s design, is shown schematically in Figure 4.1. It consists of a swing leg
(not in contact with the ground) and a stance leg (touching the ground), connected
by a frictionless hinge at the hip. Extra mass is generally added at the hip serving
as a crude model of an upper body. Each leg (assumed identical to the other) is
composed of a rigid thigh and shank. The stance knee is locked. For kneed walkers,
the swing knee is a frictionless hinge with a knee-stop preventing hyperextension
between kneestrike and heelstrike. The knee stop also prevents the stance leg from
hyperextending, but not from flexing. Straight-legged (kneeless) walkers may be
viewed as obtained from kneed walkers by permanently locking the knees.

A strobe photo of one of our working kneed physical models is shown in Figure
4.2. A simulated walking cycle, using parameters measured from this model, is
shown schematically in Figure 4.3. Step period and stride length data from the
physical model matched our simulation results to within about 5% at this ground-
slope. See Table 4.2 and Figures 4.6 and 4.12 for a comparison of simulation to
experiment.

Three remarkable features that make the McGeer-like models so intriguing for

both robotics and the understanding of animal gait are these:

1. Existence of Gait. A mechanism that resembles human legs in overall layout
has an uncontrolled periodic motion that is rather anthropomorphic. A look
at video recordings of McGeer’s kneed machines (or our imitations of them),

at passive-dynamic kneed simulations, or a comparison of passive-dynamic
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a) DIMENSIONAL PARAMETERS b) DYNAMIC VARIABLES
re,m /\
f;ms /

Figure 4.1: Our description of McGeer’s kneed walking model. Shown above are
(a) model parameters, and (b) dynamic variables. Radii of gyration and masses
of thigh and shank are denoted by r;, m;, s, and mg, respectively. The foot is a
circular arc centered at the “4”. er is defined to be the angle between the stance
thigh and the line connecting the hip to the foot center. Dynamic variable values
Os, 01, and 6y, are measured from ground-normal to lines offset by er from their
respective segments. A stop (not shown) at each knee prevents hyperextension of

either knee. In straight-legged models, the knee is locked.
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Figure 4.2: Strobe photo of our passive dynamic walker walking down a shallow
ramp in our lab. The double leg-set constrains motions to a plane. The simulation
we show in Figure 4.3 uses the parameters measured from this walker. Photo by

R. Pratap.
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stick-figure strobe shots with human data (lower part of Figure 4.3) certainly

hint at the role of passive-dynamics in human gait.

2. Efficiency of Gait. These machines can walk down shallow ground-slopes,
indicating small energy cost for horizontal transport. McGeer numerically
found walking motions for ground-slopes as low as about 0.005 radians and

we will show here predictions for walking at arbitrarily small ground-slopes.

3. Stability of Gait. For certain parameter combinations, McGeer found stable
limit cycle motions for both straight-legged and kneed walkers as Goswami
et al. (1996b) and Garcia et al. (1998) later repeated for some straight-legged

walkers, and we repeat and extend here for kneed and straight-legged walkers.

Recent or current work is in progress by Fowble and Kuo (1996), Adolfsson
et al. (1998), Coleman and Ruina (1998), and Garcia (1998) to extend McGeer’s
work on three-dimensional models. All of the above work hints at the possible role
of passive-dynamics in producing and stabilizing efficient uncontrolled motion. But
even unstable limit cycle motions of mechanical systems can (in principle) be stabi-
lized with minimal energetic cost, as has been demonstrated for a three-dimensional
walking model by Fowble and Kuo (1996) and implied by McGeer (1993b). Thus,
although the stability feature of some passive-dynamic designs is intriguing and pos-
sibly useful, even unstable passive-dynamic motions could be relevant to animals or

machines.
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Figure 4.3: Simulated gait cycle (ours, similar to McGeer’s). Angles of leg segments
are shown from just before a heelstrike to just after the next heelstrike in a steady
stable gait of the walker in Figure 4.1. The heavy line corresponds to the motion of
the heavy-line leg on the small cartoon under the graph. At the start of the step, this
is the stance leg, but it becomes the swing leg just after the first heelstrike shown,
and again becomes the stance leg after the second heelstrike shown. In general, the
angular velocities of the segments have discontinuities at kneestrike and heelstrike,
which would appear as kinks in the trajectories above, but they do not happen
to be prominent here. The strobe-like picture of the walker simulation shows the
anthropomorphic nature of the gait; it was created from the simulated gait cycle
in the graph. Measured human data (including trunk, with a smaller scale and a
longer stride) from Winter (1987) is shown to the right. The parameters used in the
simulation are those of the working physical model in Figure 4.2. The dimensional
parameters are as follows: [; = 0.35m, wy; = Om, m; = 2.345kg, r, = 0.099m,
¢ = 0.091m, [, = 0.46m, w, = 0.025m, m; = 1.013kg, r; = 0.197m, ¢, = 0.17m,
R =0.2m, v = 0.036rad, g = 9.81m/s? g7 = 0.097rad.

|2m
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4.3 Preliminaries

4.3.1 McGeer’s Recipe

Our numerical analysis follows the program of McGeer (1990a) in treating a step
as a Poincaré map. This approach is particularly well suited to the analysis of gait
and is not limited to passive models. The technique is also described in some detail
by Garcia et al. (1998) and Coleman et al. (1997).

A kneed walking step starts just after a heelstrike and ends after the next heel-
strike. We assume that the swing knee is initially free to flex, and so we say that
the walker is in three-link mode. Starting with initial conditions right after heel-
strike, we solve the differential equations of motion for the three-link mode until
kneestrike is detected. Using the angular-momentum based velocity-jump condi-
tions that describe the knee collision (assumed to be instantaneous and sticking),
we obtain new initial conditions for the start of the straight-leg or two-link mode
(like McGeer, we use suction cups with adjustable leaks to enforce the sticking knee
collision in our physical kneed models). We then solve the equations of motion for
this straight-leg phase (with the knee locked) until heelstrike is detected (straight-
legged walkers are always in two-link mode, and have no kneestrike during their
gait). At the instant of double-support (i.e., contact at both feet), heelstrike oc-
curs, which is also assumed to be instantaneous and sticking. The assumption of
a sticking collision seems reasonable for the physical model where no macroscopic
bounce or slip is observed. At heelstrike, the legs exchange stance and swing roles.
Using the angular-momentum based velocity-jump conditions that describe the foot
collision and renaming variables to switch legs, we obtain the initial conditions for

the next three-link mode. Equations of motion for two- and three-link modes, as
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well as kneestrike and heelstrike calculations are given in Appendix 4.10.

Following McGeer, we assume in our simulations that during the heelstrike col-
lision, there is no impulse on the old stance foot. We have not tested this modeling
assumption with force plate measurements, but it is self-consistent and gives simu-
lation results which correctly predict the behavior of our experimental models. The
heelstrike collision causes the knee on the new swing leg to unlock and flex, and
the next step begins. This yields one evaluation of the “stride function”, McGeer’s
name for the nonlinear return map (or Poincaré map) which describes one step.

If the new initial conditions after one step are exactly the same as those of
the previous step, we have found a period-one limit-cycle (also called a fixed point
of the map, or a gait cycle). If gait cycles do exist, they might be stable, in
which case they can be found by direct simulation of the system over several steps,
provided the initial conditions chosen are in the basin of attraction (as in Goswami
et al. (1997)). Whether or not the fixed points are stable, they can be found
by root-finding algorithms applied to the return map, as in McGeer (1990a) (also
explained by Garcia et al. (1998)). At the fixed point, the eigenvalues of the Jacobian
determine stability (all eigenvalues inside the unit circle implies linearized stability),
something that is of secondary interest.

Although the root-finding involved in finding a gait cycle involves the numerical
solution of n equations in n unknowns (where n is the dimension of the return map)
there is no a priori guarantee that any gait cycles will exist for a given passive
dynamic walking machine (i.e., a given set of masses, lengths, etc.) on a given
ground-slope 7. In practice, all searches with all designs have found either zero,
one, or two anthropomorphic period-one solutions for given machine parameters

and ground-slope. Other non-anthropomorphic solutions may exist where the leg
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swings forward and backward more than once or the swing leg makes full revolutions

(as in Garcia et al. (1998) and Coleman (1998b)) but we do not consider them here.

Aside On The Map Dimensions

In general, one expects the dimension of the Poincaré map to be one less than the
order of the system. For general straight-legged walkers, the map of the 4th-order
system (two angles and two rates) is generally three-dimensional. For the superfi-
cially 6th-order kneed walker (three angles and three rates in three-link mode), the
map is also only three-dimensional because the kneed walker is like a straight-legged
walker for part of the swing-phase (after kneestrike). Thus, of the four numerically-
calculated eigenvalues of McGeer (1990b) (—0.001,0.073,0.261 + 0.363:), the first

is actually exactly zero.

4.3.2 Reality Checks

Our numerical simulations are based on the assumptions above and not a general
purpose rigid-body simulation code. Thus, some of the periodic solutions we find
might violate various physically-relevant inequality conditions (foot clearance, etc.)
as discussed in McGeer (1990b). For our purposes, we neglect those violations in
order to have solutions to study over the parameter range of interest; but when
building a physical model, these issues are of interest. In our simulations, we can

rationalize this neglect for each item of concern as follows.

1. Foot scuffing. In simulations of straight legged walkers, the swing leg in-
evitably passes through or scuffs the ground near mid-swing. In physical
realizations of straight legged walkers, McGeer overcame this scuffing either

with electromechanically-retractable ankles or with tiles placed on the ground
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(spaced for alternate stance-leg landings). A student group at Cornell Uni-
versity (Lattanzio et al. (1992)) overcame this difficulty using a passive mech-
anism that slightly retracted the swing leg. Kneed walkers may, but do not
necessarily, avoid this scuffing by sufficiently flexing the swing knee at mid
stride. For 3-D walking mechanisms (e.g., Fallis (1888)) and possibly in part
for humans, foot scuffing can be avoided by side to side rocking. An unpowered
scuffing solution could be changed to a non-scuffing solution by adding a small
amount of actuation or a passive mechanism to slightly retract alternating legs

for clearance.

. Positive knee-locking of the stance leg. In our physical model, a joint-
stop prevents knee hyperextension, but nothing stops knee flex, except residual
suction in the knee cups just after kneestrike. In our simulations we assume
that the stance knee is locked until it leaves the ground. Naturally-arising
torques at the knee prevent unlocking in some but not all solutions. The
simulation shown in Figure 4.3 has a slight stance-leg unlocking impulse at
kneestrike which we ignore in our simulations. The corresponding physical
model does not collapse, presumably because the naturally-arising torques
just after kneestrike are enough to re-engage the knee stop. But even if they
might not be, intermittent locking of a rotating joint can be performed with

(theoretically) zero energy cost.

. Positive stance contact force and no slip. The simulations assume con-
tact between the stance leg and the ground. There is no contact tension in
our simulations since all motions are well below the speed range (v ~ /gL)

where tension is required to keep the stance leg in contact with the ground.
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The ground reaction forces and impulses are generally well within the friction

cone for the foot-ramp interaction (say p = 0.8).

4. Unlocking of the new swing leg. As a leg switches from stance to swing
in the simulations, it is allowed to flex or extend at the knee. That this
motion is not hyperextension needs to be checked. Some of our simulated gaits
have a small amount of this hyperextension, especially at near-zero ground-
slopes. Allowance of such hyperextension could be designed into a low-energy

controller.

5. Ground release of the new swing leg. As a leg switches from stance to
swing, it is released from the ground. We assume that it does not penetrate
the ground, but ground penetration could also be avoided by a low-energy

controller.

4.3.3 Measures Of Performance

The performance issues of interest here are energetic cost and speed.

Slope And Specific Cost Of Transport

Since moving sideways in a gravitational field is workless, a rational dimensionless
measure of energetic efficiency is somewhat problematic for transport or locomotion

on level ground. The most reasonable measure of efficiency

(fundamental minimum energetic cost)

4.1
(actual cost) (4.1)

is zero for all but the most ideal machines, for which it is undefined (0/0).
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The common dimensionless measure of (in)efficiency for locomotion is, however,

the “specific cost of transport” or “specific resistance”

(mechanical energy cost for transport)
(weight) x (distance travelled)

n= (4.2)

where the energy cost is also the energy dissipated. For steady walking motions

with no joint or rolling friction, this reduces to (McGeer (1993b))

_ (energy dissipated per step)
~ (walker weight) x (step length)

(4.3)

In the case of gravitationally-powered walking, the energy dissipated is (weight)

X (height drop over one step). So the inefficiency measure is

n =sin~y or n = tan-y (4.4)

depending on whether it is distance along the path or horizontal distance that
is being rewarded.

Other possible measures of transport cost are equivalent to the ground-slope 7y
at which the gait takes place (at least for small cost of transport). For example,
an almost identical measure of inefficiency is F//N where F' is the propulsive force
necessary to maintain a constant (average) velocity, and N is the force normal to
the transport surface. This is the common measure of rolling resistance. For rolling
downhill, this ratio reduces to tan~y. The coefficient of friction u can be defined as
the work per unit (distance x weight) required to drag an object on level ground.

The same object can slide steadily down a ramp if tany = p.
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Finally, borrowing from aeronautics, a measure of aircraft performance when
powered by gravity is the best achievable glide ratio, tan, which is also approxi-
mately the lift to drag ratio of the aircraft (as in Katz (1994)).

For downhill locomotion on small ground-slopes, with dissipation due only to

sticking collisions, we can equate all of these inefficiency measures to

inefficiency = v (4.5)

Perfect transport efficiency is achieved by passive walking with v = 0.

Speed Performance

Energetic efficiency does not credit speed nor penalize slowness. In practice, speed is
also important. However, speed at a high energetic cost is of limited value, excepting
for critical tasks such as hunting and escaping. Intuitive measures of merit, such
as minimizing power for a given speed or maximizing speed at a given power are
dimensional and thus lead to improvement by scale changes alone. For example,
at a given ground-slope, the speed of all the designs we consider can be increased
by a factor of ten with no increase in power by increasing the height by a factor of
100 and decreasing the mass by a factor of ten. That is, speed scales with /gl and
power scales with mg3/2'/?, where g is the acceleration due to gravity, and [ is a
characteristic dimension, say the length of the walker’s leg.

A simple nondimensional measure of merit that rewards speed is the square root

of the Froude number,

SR
o~
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at a fixed ground-slope. This measure cannot be affected by simple scaling changes.
It is the natural measure recovered by redimensionalizing our non-dimensional re-

sults.

4.3.4 Kinetic Energy Lost In Plastic Collisions Of Walkers

The scalings we discuss depend essentially on the energy loss in the perfectly plastic
(no-slip, no-bounce) heelstrike collision. General treatments of rigid body collisions,
as well as references to the literature, may be found in works by Brach (1991), Chat-
terjee (1997), Chatterjee and Ruina (1998), and Brogliato (1996). We summarize
below some relevant facts.

At the instant prior to heelstrike, let the velocity of the incipient contact point
on the foot be & down the slope and ¢ normal to the slope as in Figure 4.4. See
also Chatterjee and Garcia (1998).

Under the presumably reasonable assumption that no impulse from the ground

acts at the trailing foot, the kinetic energy lost in the collision is equal to the product

|:jj y] M M e (4.7)

M21 M22 y

DN =

M

where M is a 2 x 2, symmetric, positive semi-definite matrix that depends on the
mass distribution and geometry of the walker. M is also configuration dependent,
i.e., it depends on 6%,. We define M(0) as M in the limit as 0, — 0. For the
discussion that follows, we need not discuss explicit (and complicated) representa-
tion of M in terms of the mass distribution and configuration of the linkage. The
only exception is for a simple first-order approximation of M in Section 4.6.3; more

discussion is found in a companion paper by Chatterjee and Garcia (1998).
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configuration at heelstrike

impending
foot contact
point

impending ground contact point

Figure 4.4: Close to heelstrike, the x and y coordinates of any point on the foot
relative to any point on the ground can be used as generalized coordinates to describe
the configuration of the walker. Since we are examining a known gait cycle, these
points can be chosen to be the points at which contact will occur at heelstrike. [ is

the distance between the foot center and the hip.
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4.4 The Simplest Walking Model

An extreme simplification of a straight-legged walker is the “minimal biped” of
Alexander (1995) (a hip-mass on massless legs), made deterministic by the addition
of infinitesimal point-masses at the feet. This “simplest walker” was studied in
some detail in Garcia et al. (1998) with both perturbation methods and numerical
simulation. The key results of that study are summarized below.

The simplest point-foot model has two gaits (two fixed points) at arbitrarily
small ground-slopes. Of these, the long-step gait is stable at sufficiently small
ground-slopes (v < 0.015), while the short-step gait is unstable at all ground-slopes.
(In Garcia et al. (1998) these two gaits are called the “long-period” and “short-
period” gaits, possibly incorrectly intimating that the long-period gait is generally
slower than the short-period gait.) As v — 0, the long-step gait motion approaches
a symmetric motion that has normal heelstrike collisions (& = 0 in Figure 4.4). The
short-step solution does not have this symmetry and the (quasi-massless) foot has
a collision with a non-zero tangential component at heelstrike.

For this walker, both gait cycles were found to have stance angle f;, step-length,

and velocity proportional to /3

at small ground-slopes (see curves D in Figure 4.9),
while the step periods tend to (different) nonzero constants as the step length goes
to zero. This implies a walking power consumption proportional to the fourth power

of speed (for low speeds), for both gaits:
Power o« mutg™2173/2, (4.8)

where m is the walker mass, v is the average walking velocity, ¢ is the gravitational
constant, and [ is the walker’s leg length. Equation 4.8 makes the unintuitive

prediction that cost of transport increases with decreasing gravity and leg length.
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This scaling also follows from the energy balance between collision losses and
used-up gravitational potential energy, rather like for the rimless wheel described by
McGeer (1990a). For this special case, M(0) of Equation 4.9 is singular, and the only
energy dissipation term comes from the ¢ or normal component of the foot velocity
at heelstrike, for both gaits. As explained partially in Alexander (1980) and for this
model in Garcia et al. (1998), the normal velocity is proportional to both stance
angle and stance angle rate. Since for small motions, the period is approximately
independent of amplitude and the speeds are proportional to amplitude, the kinetic
energy lost is proportional to the fourth power of step amplitude. The gravitational
power available is proportional to step amplitude and ground-slope. Thus, (step
amplitude)* oc (step amplitude) x (slope), and so (step amplitude) oc (slope)*/3.

Between ground-slopes of v ~ .015 to v & .019 a period-doubling route to chaos
was observed. Aside from the period doubling route to chaos, no other non period-
one gaits were sought or found. Recently, Howell and Baillieul (1998) discovered a
stable period-three gait at a slope of v ~ 0.0125 and subsequent period-doublings
(period-six, period-twelve, etc.) for this model.

In the rest of this chapter we describe, as based on or at least tested by numerical
integrations, which of the features above extend to more general straight-legged and
kneed walkers. In some cases the equations of motion were derived with the help
of symbolic algebra (Maple®) and the simulations were run using MATLAB®. The
numerical methods and error checks used are similar to those described in Garcia

et al. (1998).
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4.5 More Complex Walking Models

4.5.1 Straight-Legged Pointfoot Walker With Finite Foot

Mass

Describing mass distribution for a general straight-legged walker requires specifying
center of mass position and moment of inertia. The studies of Goswami et al. (1996b)
and Goswami et al. (1997) were limited to a subset where the center of mass was on
the foot-to-hip line (zero fore-aft offset), which reduced the number of parameters
by one. We now consider a subset of the walkers of Goswami (and co-workers)
with two finite point-masses: one at the hip and one at the foot (like the Goswami
walkers, this subset also has point-feet). This simplification further reduces the
number of parameters by one.

For the particular cases we study, the foot mass is still substantially smaller
than the hip mass, but not infinitesimally small; the swing-leg angular velocity does
not contribute to the pre-collision angular momentum about the new contact point
(point of foot-collision at heelstrike), and the return map is two-dimensional, as it
is with the simplest walker. Despite this simplification, we still resort to numerics

when studying this class of models.

Solution Families And Scaling Laws

For the cases we have tried of these walkers, there are still two solutions at arbitrarily
small ground-slopes. Again, the two solutions are distinguished by the long-step
solution having essentially normal heelstrike collisions and the short-step solution
having heelstrike collisions with a significant tangential component (a feature also

approximately observed in McGeer (1993b) and McGeer (1992) for a more complex
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walker).

For the simplest walker, with negligible foot mass, the only kinetic energy lost is
that of the hip. When the feet have finite mass, however, the foot masses also lose
energy at heelstrike. If the striking foot hits the ground with no tangential velocity,
the loss scales as step length to the fourth power, giving a step length proportional to
y'/3. With non-negligible-foot-mass, a tangential velocity component at heelstrike
can change the energy-loss scaling.

This is demonstrated in Figure 4.5, which shows stance angle as a function
of v for two walkers as described above. (Figure 4.11 is similar but plots step
velocity as a function of slope.) For the long-step solution, the stance angle remains
proportional to the cube-root of the ground-slope. Unlike the simplest walker, the
stance angle for the short-step solution is linearly proportional to v at very small
ground-slopes, and proportional to v'/3 at somewhat larger slopes. There is some
transition region where the short-step scaling changes between the 7'/3 and the
7 scaling. So for the long-step gait, which is stable, power o< (speed)*, while for
the unstable short-step gait, power o (speed)? below the transition region and o
(speed)* above the transition region. Experimental results from Vaida et al. (1981)
show that total power requirement data for level walking with and without stilts

can be fit to square or fourth-power scaling laws.

The Short-Step Transition Region

The ground-slope at the transition region is governed by the ratio of the foot mass
to the hip mass. If the foot mass is p times the hip mass instead of being totally
negligible, then we will show later by asymptotic arguments that the transition

occurs near a ground-slope proportional to p*/2. Step length oc 7'/ at ground-
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Figure 4.5: Scaling transition comparison for two point-foot walkers. Data for
walker E is shown again in Figure 4.9. Parameters for walker E are shown in Table
4.1. Walker F has a foot mass of 0.05 and a hip mass of 0.9. At large ground-slopes
(v > p*?), the walker stance angles and velocities scale as y'/3. The predicted
critical slopes for walkers E and F are shown at the bottom of the plot. Above
these slopes, we expect the stance angle to be proportional to the cube root of the
ground-slope. The ratio of the two critical slopes is nearly identical to the ratio
of the intersections of the two best-fit lines in the linear scaling regimes with a
cube-root scaling line. The solution curves for the “simplest” walker would show as
parallel lines more or less on top of the upper curves in this figure. Note that the
“x” symbol used here refers to data from a different walker than in Figure 4.9. See

Figure 4.11 for a similar plot of step velocity versus slope for the above walkers.
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slopes where v >> p*?2, and step length o v at smaller slopes where 7 << p*? (see
Section 4.6.3).

Figure 4.5 shows two such transitions. Walker E has a foot mass of 0.1 and a
hip mass of 0.8 (any units) and so pg = 0.125. Walker F has a foot mass of 0.05
and a hip mass of 0.9 so pr = 0.0556. Using the above rule of thumb, we expect the
transition ground-slope for walker E to be proportional to pg®/? = 0.125%2 ~ 0.044
and that of walker F to be proportional to pp*? = 0.0556%2 ~ 0.013 (these values
are marked in Figure 4.5). The ratio of the two critical slopes is equal to the ratio
of the intersection values of the extrapolated best-fit lines from each walker’s linear-

scaling regime with an arbitrary cube-root-scaling line, as shown in the figure.

4.5.2 Generic Kneed And Straight-Legged Models

What about walkers with more general mass-distribution, non-zero foot radii, and
foot offsets? Figure 4.6 shows stance angles at gait cycles occurring at different
ground-slopes 7 for the kneed walker of Figure 4.3. Stable solutions are denoted
by the heavy line. The dashed curve shows stance angle versus ground-slope for
the straight-legged version (the same walker but with the knees always locked,
Osp, = O11,).

Some observations about the solutions in Figure 4.6 are as follows:

1. For both kneed and straight-legged walkers there are ground-slope 7 regimes
where there are either zero, one, or two solutions. This agrees with the obser-

vations and calculations of McGeer (1990a) and McGeer (1990b).

2. For the parameters used here, none of the straight-legged solutions and only

a section of the kneed solution-locus are stable.
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Figure 4.6: Numerically-calculated locus of solutions showing stance angle as a
function of ground-slope for our physical kneed walking model (solid line) and for
the same model but with the knees locked (dashed line) at fixed points. The thick
portion of the solid line denotes stable solutions for the kneed walker. Figure 4.12

is a similar plot but with velocity replacing stance angle.
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3. Along the kneed curve, kneestrike occurs later and later in the step, until at
one end of the curve (point 1), heelstrike and kneestrike occur simultaneously.
The locus of solutions terminates here since we do not investigate motions
where heelstrike precedes kneestrike. In the analogous region on the dashed
curve for the straight-legged walker (point 2), the heelstrike collision becomes
increasingly tangential in nature, until the solution disappears. In this area,
solutions and numerics become very unstable; we believe that the solution
terminates at a ground-slope of about v = 0.056 based on numerical evidence

not discussed here.

4. At the other end of the long-step curve, the gait cycles are approaching initial
conditions which approach falling backwards, i.e.,. the walker has just enough
initial kinetic energy for the stance leg to make it past the vertical position.
The same thing occurs at the analogous point on the dashed curve for the
straight-legged walker. In both cases, this is the slowest gait found for the

walkers.

5. All of the straight-leg solutions and some of the kneed solutions allow the foot

to scuff the ground during the gait cycle.

6. Each walker needs a minimum ground-slope to sustain gait (about 0.016 rad
for the straight-leg walker and about 0.02 rad for the kneed walker). So, these

walkers are not perfectly efficient by the efficiency measures discussed earlier.
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4.6 Walking At Near-Zero Slopes

As seen in the previous section, generic McGeer-like walking machines will typically
have no steady walking motions below some nonzero ground-slope; thus, they have
some nonzero inefficiency. But we have already seen that the point-foot walker with
or without negligible foot mass can be perfectly efficient. Here we investigate the
possibility of more general straight-legged and kneed walkers capable of zero-slope

walking.

4.6.1 Necessary Mass Distribution Conditions For Efficient

Walking

Necessary conditions on the mass distribution for near-zero-slope kneed walkers are

as follows:

1. As demonstrated in a companion paper by Chatterjee and Garcia (1998),
based on some reasonable assumptions, if walking motions do occur at very
small ground-slopes, these motions will be very slow. For these motions, grav-
ity forces will be much bigger than inertia forces. As a result, the walker must
be close to static equilibrium at all times. In the limit of zero slope, the walker
configuration must approach a static equilibrium, or standing solution. Thus
the foot-normal at the near-zero-slope walking condition must be directed

towards the body center of mass.

2. At the instant of double-support, or heelstrike, both legs are straight and
simultaneously touch the ground. As the ground-slope (hence, step length)

goes to zero, the spacing between the legs at this instant also goes to zero. In
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the limiting case, the foot contact point must be that point on the foot which
is farthest from the hip. Thus the normal to the foot contact point must pass

through the hip.

3. From (1) and (2) the line from the hip through the body center of mass
must intersect the foot curve normally at the place that will be the nominal
contact point at zero-slope walking. For circular feet this is equivalent to the
collinearity of the center of mass of the whole body, the hip, and the foot

center (see Figure 4.7).

4. For the swing leg to be in static equilibrium in three-link mode and to have
zero knee-locking torque, the center of mass of the shank must lie directly

under the knee, in the straight-leg configuration (see Figure 4.7).

The simplification of these ideas for straight-legged walkers is described by item
(3) above. These necessary statics-based conditions on the mass distribution do
not guarantee that near-zero-slope walking solutions exist. Although we do not
know general sufficient conditions, it is our experience that designs which meet
these conditions and whose total center of mass is close to the hip do have walking
motions for arbitrarily small ground-slopes.

The machines investigated by Goswami et al. (1996b) and Goswami et al. (1997)
satisfy these necessary conditions, so will probably walk at arbitrarily small ground-
slopes.

Walkers satisfying the necessary conditions above have an M(0) which is diag-

onal.
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4.6.2 Tuning Mass-Distribution For Near Zero-Slope Walk-
ing
After adjusting the mass parameters (tuning) for the walkers of Figures 4.3 and 4.6
to match the conditions for zero-slope walking (Figure 4.7), we found (by simulation)
that both of these tuned walkers do indeed have walking motions at near-zero-slopes.
Also, each walker now has two walking motions or gait cycles at all ground-slopes
of v < 0.04. The long-step, long-period cycle is stable at small ground-slopes, while
the short-step, short-period cycle is unstable. In these numerical experiments, some

reality-checks from section 4.3.2 are violated, and so we cannot experimentally verify

the tuning criteria.

Conditions for Gait Solutions at Arbitrarily Small Slopes

@A‘ shank cm
g

_/

a) Straight-Legged Walker b) Kneed Walker

Figure 4.7: To walk at arbitrarily shallow ground-slopes, a walker must allow a static
standing solution at zero slope with the stance leg locked, the swing leg unlocked,
the legs parallel, and the hip directly above the foot contact. These conditions are

shown graphically for (a) a straight leg, and (b) kneed walker.

Figure 4.8 shows the evolution of solution families of the tuned kneed walker
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(Figure 4.7) as it is detuned into the original kneed walker of Figure 4.6. As the 0%

detuned walker is detuned, the graphs change shape in the following ways.

1. The cusp at the origin breaks and the two solutions separate. The long-step
solution remains stable for small slopes but shifts to the right and no longer
extends to zero ground-slope. Also, an unstable region appears at very low

speeds.

2. The short-step solution also shifts to the right; the point on this curve where
the solution terminates (where heelstrike and kneestrike are simultaneous)

shifts up the curve.

3. At higher ground-slopes, the two solutions get closer and eventually merge as
the walker is de-tuned; the curve then splits into two solutions. As the walker
is de-tuned further, the solutions continue to separate. The high-slope solution
branch presumably continues to exist at very high slopes. This merging and

splitting of solutions does not seem to occur in straight-legged walkers.

Figure 4.9 shows short-step and long-step gait solutions for the abovementioned
tuned straight-leg (A) and kneed (C) walkers, the point-foot walker of Garcia
et al. (1998) (D), which is tuned by definition, and two other tuned straight-leg
models (B and E). The parameters for each of these tuned walkers are listed in
Table 4.1. Figure 4.13 is the same plot but with step velocity replacing stance
angle.

We make the following observations on their behavior.

1. All of these walkers can walk at arbitrarily small ground-slopes.
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Figure 4.8: Solution families during de-tuning of the tuned kneed walker. Subplot
a) shows the perfectly tuned walker with solutions extending to zero slope. Subplots
b), (c¢), and (d) show the solution curves no longer meeting at low slope. Subplot
e) shows the solutions merging and splitting into two solution regions, and subplot
f) shows the (100 % detuned) original lab walker of Figure 4.6. Presumably, the
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higher-slope solutions are also present but not visible on subplot (f).
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Figure 4.9: Gait families for tuned zero-slope-capable walkers on (a) a linear plot,
and and (b) a log-log plot. Parameter values are listed in Table 4.1. By “gen. mass.
dist.” it is meant that the parameters are close to those of the kneed walker of
Figure 4.3. Note (1) there are two gaits cycles at each v for all walkers shown; (2)
for the “simplest” walker (D) both step lengths are proportional to 7'/3; (3) the
short-step gaits of the other walkers have step lengths proportional to v for small
v; (4) the long-step gaits for the other walkers have step lengths that are much
longer than for the short-step gaits, though not necessarily exactly proportional to
v'/3 for small v; and (5) for a point-foot, straight-legged walker with non-negligible
foot mass, the step length of the long-step gait is proportional to '/ for small 7.

Figure 4.13 is a similar plot but with step velocity instead of stance angle.
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Table 4.1: Parameters for several tuned walkers in any consistent units. Only C has
knees. Straight-legged walkers A, B, D, and E have redundant parameters since the
shank and thigh are rigidly connected. m; and m; are the thigh and shank masses.

For B, D, and E my is a point-mass at the bottom of the foot.

Walker A B C D | E

Ly 035 [ 05| 035 [051]0.5

Wy -0.023 | 0 | -0.023 | O 0

my 2345 | 04| 2345 | o0 |04

Tt 0.1882 | 0 | 0.1882 | O 0

Ct 0.084 | 0 | 0.084 | O 0

[ 046 | 05| 046 |0.50.5

W 0.022 | 0 | 0.022 | O 0

Mg 1.013 (0.1 ] 1.013 | 1 |0.1

T 0.1226 | 0 | 0.1226 | O 0

Cs 0.17 | 05| 0.17 |0.50.5

R 0.2 0.2 0.2 0 0

Er 0.097 | 0 | 0.097 | O | O
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2. The simplest walking model (D) is the only one with both gaits having a step

length oc v!/3.

3. At the smallest ground-slopes, the tuned straight-leg walkers with finite foot
mass (A, B, and E) each have one gait solution with step length oc v (the
short-step gait) and one solution with step length oc v'/3 (the long-step gait).
At steeper ground-slopes (v > 0.01), all the gait solutions have step length

x v'/3 as seen most clearly in Figure 4.9b.

4. The tuned kneed walking solutions (C) seem to follow a similar pattern to
the straight-leg solutions in Figure 4.9. However, the long-step lengths of the
tuned kneed walker are not proportional to v'/? at very small ground-slopes.
(Note how the “x” symbols trail off at the left of the plot as if they were
migrating towards the linear y = az scaling.) In fact, further numerical results
indicate that this solution slowly changes to a linear scaling at extremely small
ground-slopes (v & 0.00015). Strictly speaking then, for the kneed walker,
both the long-step and short-step gaits have step lengths o «y, although the

longer period gait changes its scaling at extremely small ground-slopes.

5. Although it is not shown in the plots, all of the tuned long-step gaits have a

certain ground-slope below which the gait is stable (down to zero slope).

Our numerical results indicate that a step length proportional to v/? is the
longest step possible (and hence the smallest power consumption possible) at very
small ground-slopes (i.e., low walking speeds).

As compared to walkers which do not meet the criteria in Figure 4.7 above,
tuned walkers will have a longer step length at a given small ground-slope (assuming

other parameters such as masses, inertias, and leg lengths are held constant). This



165

is illustrated by comparing Figures 4.9 and 4.6 from Section 4.5.2. At any ground-
slope where gaits exist for both tuned and un-tuned walkers, the tuned walkers
have a larger stance angle, and hence a longer step. Because the step periods
are approximately the same for similarly-scaled tuned and un-tuned walkers, tuned

walkers will also be faster than non-tuned walkers at a given ground-slope.

4.6.3 Energy And Scaling For Near-Zero-Slope Walking

Here, we show that for general walking machines that walk at near-zero ground-
slopes, the step length (or velocity) for small slope 7 is asymptotically proportional

to either /3

or to . Thus far in our numerical investigations, as seen from the
numerical results in Figure 4.9, we find that all solutions for zero-slope-capable

straight leg walkers apparently obey one of these two scalings.

Derivation Of Scaling Rule For Straight-Legged Walkers

Consider a straight-legged walker, with curved feet, at the instant prior to heelstrike.
At this instant, 05 = 6y, (ignore 6y, in Figure 4.1 for the straight-leg case). The
matrix M referred to earlier (see Equation 4.7) is actually a function of fy;, but

since #,; is small we write

For the present discussion, we mention that for zero-slope-capable walkers, M (0)
will be diagonal when expressed in the coordinate system implicit in Figure 4.4 and
Equation 4.7. In particular, its element M;; will be equal to the total mass of

the walker, while element Ms, will be smaller (a function of mass distribution and



166

walker geometry). Finally, for a straight-leg, point-foot walker with a small foot
mass (as considered in Section 4.5.1), My, is approximately equal (asymptotic) to
the foot mass.

Recall Figure 4.4. Now we express & and g in terms of ést and éth, at the heelstrike
configuration but just before heelstrike (0}, = —6%,). We define the length [ to be
the distance between the hip and the foot center.

We obtain:

T = R(ést — éth) + [ cos HZt(ést — éth), (4.10)
y = —Ilsin0(0s + Op).

Assume that as v — 0, the gait cycle step length 8%, is asymptotically of O(~?)
for some p > 0. During the walking step, the angular rates ést and éth must also be
O(y?). Moreover, at the instant of heelstrike, one or both of these rates must also
be of the same order of magnitude O(+?) (these claims are proved by contradiction
in Chatterjee and Garcia (1998)). Note that one wou