
Chapter 2

McGeer's Recipe For Walking

Analysis

Besides pioneering the passive-dynamic approach to gait study, Tad McGeer also

used a Poincar�e map to analyze gait simulations. This robotics approach has

also been used by Rubanovich and Formalskii (1981), Hurmuzlu (1987a), Hur-

muzlu (1987b), and others; this chapter is an outline of that analysis procedure.

Although McGeer did not invent any of the individual elements of this analysis, he

adapted it e�ectively to the study of passive models.

The technique presented is quite useful and is completely independent of the

model's details (i.e., it is independent of the \passive-ness" of the models). Poincar�e

maps and other nonlinear dynamics tools have been used by Hurmuzlu et al. (1993)

and Hurmuzlu et al. (1996) in the study of post-polio gait, and also by Holt

et al. (1991) in the assessment of human walking stability. The same techniques

could be used, for example, to �nd gaits in a multi-link android with a complicated

control scheme.

18

19

The reader is assumed to have some knowledge of nonlinear dynamics, in partic-

ular, Poincar�e maps and the notion of phase space; the basic ideas behind can

be found in texts by Strogatz (1994), Devaney (1989), and Guckenheimer and

Holmes (1983), and Moon (1992) for instance. Similar procedures are used by

Andronov et al. (1966) in their analysis of clocks and escapement mechanisms with

impulses.

2.1 Summary Of Procedure

The procedure can be summarized as follows.

1. Create a mechanically complete model (see section 2.2 and section 4.2).

2. Find ODEs governing the smooth portion(s) of the model's motion (see section

2.3).

3. Imbed the ODEs in a simulation environment (see section 2.4).

4. Determine collision conditions and create one or more maps which map the

state of the walker just before a certain collision to the state of the walker just

after that collision. Imbed these in the code, along with a procedure to settle

down onto the surface(s) of section (see section 2.5).

5. De�ne a function which maps the state of the walker from just after a heelstrike

to just after the next heelstrike (see section 2.6).

6. Using Newton's method, �nd a root of this function (see section 2.8).

7. At the root, numerically approximate the Jacobian of the function, or analyze

other characteristics of the gait (see section 2.9).

20

8. Adjust parameters as needed and repeat repeat steps 6-8 until desirable per-

formance is obtained. If the goal is a physical model, it can then be built (see

section 2.12).

These items are explained below.

2.2 Preliminaries: Model Assumptions

Before beginning an analysis of a walking machine, we need to design a model!

Although this step may seem trivial, there are numerous subtle judgements to be

made here. For example, at present Coleman and Ruina (1998) has a physical

walker that balances in 3-D but does not yet know exactly which aspects of its

physical description are needed to theoretically predict its stability with computer

simulation.

So, to paraphrase Einstein, the model should be as simple as possible, but not

too simple; design choices involve the nature of connections, and contact. The

theoretical models here are simultaneously based on previous results, imitation of

human design, and imitation of other models. Assuming that a complete mechanical

model has been formulated for the walker of interest (see section 4.2), one can follow

McGeer's recipe for analyzing and/or optimizing the model, based on parameter

variations.

21

2.3 Derivation of Equations of Motion for Linked

Rigid Bodies

Consider a system of 2D or 3D rigid bodies joined by rotational joints as shown in

Figure 2.1. The goal is to derive the ordinary di�erential equations which govern

the motion of this linkage. Note that these equations only govern the smooth parts

of the motions of the walking mechanisms { accounting for kneestrike and heelstrike

in the modelling is described in Section 2.5.

In Figure 2.1, the foot radius is zero, the stance leg is connected to the ground

by a 2D rotational joint with one degree of freedom (DOF), and the joints are fric-

tionless. The walkers here can also have rolling contact in 2-D or 3-D and torsional

springs and dampers at the joints. The procedure described here is essentially the

one described in Craig (1989), which is based on the method of Luh et al. (1990),

with some modi�cations. Some advantages of this approach are as follows:

� The algorithm is well-known and is reasonably robust and e�cient.

� The algorithm is generalizable to contact conditions such as disk feet, other

foot shapes, and to systems with tree-like branches.

� Applied torques can be easily added to the equations.

� The inter-link forces are part of the equations and so can be analyzed, if

desired, with minimal additional e�ort.

� The algorithm lends itself to being solved \on-line" instead of analytically,

and so saves time in writing the equations of motion, although at the slight

expense of computation time during simulation.

22

Rigid, immovable ground

frictionless
 hinges

Figure 2.1: A simple linkage.

2.3.1 Con�guration Angles And Reference Frames

To write the equations of motion for 2-D and 3-D walkers, �rst de�ne reference

frames using a convention like the ones shown in Figures 2.2 or 2.3. Each degree

of freedom (DOF) has a reference frame and angle � associated with it. For 2-D

models, there are the same number of links n as reference frames k, so n = k = 2 for

straight-legged models and n = k = 3 for kneed models. For a 3-D straight-legged

model, there are only two links (stance and swing leg) but the stance leg has 3 DOF

and the swing leg has 1 DOF, so n = 2 and k = 4 in 3-D. Another approach is to

create \virtual links" with zero mass and inertia so that each link has a reference

frame and DOF associated with it and n = k always.

Cases where there are more links than degrees of freedom are not considered;

this would occur, for example, during a double support phase in a 2-D model with

exible ankles, where both feet were constrained to touch the ground over a �nite

period of time.

23

Reference frame i is generally oriented as follows: ẑi points along the direction

of the axis of rotation of the joint, x̂i points from the origin of frame i to the origin

of frame i+ 1, and ŷi points in such a way as to complete a right-handed cartesian

frame. Frame i is �xed to link i at the rotational joint where link i touches link i�1.

If a joint has more than one rotational degree of freedom (a ball and socket joint,

say) then several frames are used in an Euler-angle scheme, all with the same point

as their origin. If several frames share the same origin, then the choice of some x̂

and ŷ directions may be arbitrary { it is generally most convenient to make parallel

as many x̂ and ŷ directions as possible. In any case, because of the generality of the

rotation matrices, the only necessary requirement for using the algorithm below is

that frame i rotate about ẑi, and even that requirement can be waived with some

slight modi�cation of the algorithm details.

Figure 2.2 shows the frame convention and notation for using circular feet in

2D. Frame 0 translates with the center of the foot but does not rotate with it.

Figure 2.3 shows the notation for disk feet in 3D. Reference frame 0 will be

attatched to the ground. Reference frames 1, 2, and 3 are at the foot center and

form an Euler angle system for the stance foot. The stance leg is now link 3, and the

swing leg is now link 4. Frames 0, 1, and 2 are associated with massless virtual links.

�1 is the \heading" or \steering" angle about the ẑ1 axis, which is perpendicular

to the slope. �1 = 0 corresponds to straight downhill. �2 is the \bank" or \lean"

angle, measured about the ẑ2 axis. �2 = �=2 means that the walker is not leaning

to the left or the right and that the hip axis is parallel to its projection on the slope

surface. �3 is the \pitch" or \stance" angle corresponding to the stance angle in

2D. It is measured about the ẑ3 axis, which is collinear with the hip axis. �3 = 0

corresponds to the stance leg not leaning forward or backward and means that the

24

plane formed by the hip axis and the stance leg is perpendicular to the slope surface.

θ1

θ2

-θ3

x0
y0

x1

y1

x2

y2

x3

y3
1p

1
c

1p
2

0p
1

2p
3

2p
2
c

3p
3
c

(a) (b)

Figure 2.2: 2-D kneed walker with (a) directions and angles, and (b) vectors de�ned.

In the straight-legged version, �3 � 0. To convert to McGeer's usual 2-D angle

convention in his �gures, �stance = ��1, �thigh = � � �1 � �2 � "T , and �shank =

�thigh � �3 + "K

�i is the angle of rotation of link i with respect to link i � 1 about the ẑi axis,

with link 0 either �xed to the ground, or at least not rotating with respect to the

ground. Together, � � �1 : : : �k make up the con�guration space, or generalized

coordinates, for the system.

Rotation matrices, denoted by R, are then de�ned so that a vector written in

frame i (denoted by a pre-superscript) ip could be written in frame i+ 1 as

i+1p = i+1
i R ip (2.1)

Note that i+1p and ip are really the same vector, just written in di�erent coor-

dinate systems.

25

4p
4
c

3p
4

3p
3
c

(a)

z0

y0

x0

x3

z2

y3 θ1

x1

y1

z1

θ2

θ3

x2

y2

z3

x4

-y4

θ4

z0

y0

x0

2p
3

(b)

4p
4
f

z4

Figure 2.3: 3-D walker with (a) directions and angles, and (b) vectors de�ned. To

convert to McGeer's usual 3-D angle convention in his �gures, = ��1, � = �=2��2,

�stance = �3, and �swing = �3 + �4 � �

.

2.3.2 Dynamics Algorithm

With reference frames and rotation matrices de�ned, the next step is to de�ne the

angular velocity !i and acceleration _!i of frame i (same as link i using virtual links

and n = k). In the notation here, the subscript identi�es the link of interest, while

the superscript denotes the frame in which the components are written. Beginning

with the base frame and proceed outwards, i = 0! n� 1.

i+1
!i+1 =

i+1
i R i

!i + _�i+1 ẑi+1 (2.2)

i+1 _!i+1 =
i+1
i R i _!i +

i+1
i R i

!i � _�i+1 ẑi+1 + ��i+1 ẑi+1 (2.3)

Next, de�ne the velocity and acceleration of each frame (v, _v) and center of

mass (vc, _vc), in terms of the �i, _�i, and ��i, assuming all links are joined by pin

joints and R = 0. If the walker has round or disk feet, see Section 2.3.3 for the

26

correct stance leg equations.

i+1vi+1 =
i+1
i R (i!i �

ipi+1 +
ivi) (2.4)

i+1vci+1 =
i+1
!i �

i+1pci+1 +
i+1vi+1) (2.5)

i+1 _vi+1 =
i+1
i R (i _!i �

ipi+1 +
i
!i �

i
!i �

ipi+1 +
i _vi) (2.6)

i+1 _vci+1 =
i+1 _!i+1 �

i+1pci+1 +
i+1
!i+1 �

i+1
!i+1 �

i+1pci+1 +
i+1 _vi+1 (2.7)

(2.8)

where ipi+1 is a vector from the origin of frame i to the origin of frame i+1, written

in terms of frame i, and i+1pci+1 is a vector from the origin of frame i to the center

of mass of link i, written in frame i + 1. The velocities (Equations 2.4 and 2.5)

do not necessarily enter into the momentum conservation equations shown below

(Equations 2.11 and 2.12), but they are included here for completeness and also

because in some cases it is convenient to use or track them.

So-called \inertial forces" F and \inertial torques" N are then de�ned for each

link, also in terms of the �i, _�i, and ��i. Although we do not usually advertise this

terminology, we use it here in order to follow the derivations in Craig (1989) and

Luh et al. (1990).

i+1Fi+1 = mi+1
i+1 _vci+1 (2.9)

i+1Ni+1 =
i+1Ici+1

i+1 _!i+1 +
i+1
!i+1 �

i+1Ici+1
i+1
!i+1 (2.10)

Here, mi+1 is the mass of link i + 1 and i+1Ici+1 is the moment of inertia matrix

about the center of mass of link i+ 1, written in the i+ 1 frame. Obviously, F and

N will be zero for virtual links.

At this point, the so-called \outward iterations" are complete. This is more or

less a copy of the notation in Craig (1989), where i+1Fi+1 and
i+1Ni+1 are vectors.

27

Generally speaking, uppercase boldface is reserved for matrices and/or tensors like

i+1Ici+1, but this rule isn't followed strictly .

Note that the kinematic constraints are embedded in equations 2.9 and 2.10. For

more complicated contact conditions, the equations must be modi�ed to reect the

appropriate constraints. Section 2.3.3 demonstrates code modi�cations to include

disk feet.

The so-called \inward iterations" consist of writing Newton-Euler equations for

each link. Assuming pin joints as before, a free-body diagram (FBD) of each link

(the two outermost links are shown in Figure 2.4), starting with the outermost link

and proceeding inwards, i = n ! 1, will yield the following equations, after some

rearrangement.

ifi =
i
i+1R

i+1fi+1 +
iFi (2.11)

ini =
iNi +

i
i+1R

i+1ni+1 +
ipci �

iFi +
ipi+1 �

i
i+1R

i+1fi+1 (2.12)

i�i =
ini � ẑi (2.13)

Above, i�i is the applied torque about axis ẑi, which is zero for passive models. ifi

is the force exerted on link i by link i� 1, and ini is the torque exerted on link i by

link i� 1, each written in frame i. If the stance leg has round or disk feet, then one

needs to modify the stance leg angular momentum balance equation(s) as shown in

Section 2.3.3.

The e�ect of gravity is included most simply by accelerating the base of the

mechanism 0 _v0 upward by g, as described in Craig (1989), and so one does not

need to compute the forces and torques due to gravity in the equations above (see

also Section 2.3.3). Also note that n+1fn+1 = n+1nn+1 = 0 if the outermost link

is swinging freely, which is almost always the assumption. One exception to this

28

would be if there was some torque on the leg about the hip axis due to a torsional

spring or damper.

mi g

ifi

-ifi -ini

ini

mi-1 g

i-1fi-1

i-1ni-1

Figure 2.4: Free body diagrams of the two outermost links. Gravity is shown on the

FBDs but can be accounted for in the algorithm by simply accelerating the base

link upwards by g, so it does not enter explicitly into each force and torque balance.

2.3.3 Adapting the Algorithm to Other Models

Some models are not properly described by Figure 2.1. Most commonly, the models

will have round or disk feet or other kinematic contact conditions at the foot. They

can also have torsional springs, dampers, or rotary actuators at the joints, branching

links, or separate contact conditions at the outer links. In this section, some of these

variations are considered.

Torsional Springs, Dampers and Actuators

� is a vector of applied joint torques, which can include torsional springs, dampers,

and actuators. A linear torsional spring at joint i will provide a restoring torque

proportional to �i. A linear torsional damper at joint i will provide a negative torque

proportional to _�i. Most generally, �i can be some function of time or state or both,

29

which is solved for independently at each time step.

Consider the following example for a planar double pendulum. The middle joint

has an actuator which provides a constant torque of 1 about its ẑ axis (all ẑ axes are

parallel and point out of the manipulator's plane in this case). The base joint has a

linear torsional spring of sti�ness k which exerts no torque on the pendulum when

�1 = 0. Both joints have some friction which is modeled by a torsional damper with

coe�cient c. The vector of joint torques at each time step in this case would be

� =

2
64�c

_�1 � k�1

1� c _�2

3
75 (2.14)

which would then be inserted into Equation 2.19 to solve for ��.

Circular Or Disk Feet

The equations presented previously need to be slightly modi�ed if round or disk

feet are used in the model. These modi�cations amount to (1) writing the correct

accelerations for the center of mass of the stance leg and associated frames, and (2)

correcting the angular momentum balance equation(s) for the stance leg. Note that

the modi�ed equations will reduce to the original pointfoot equations when R is set

to 0, so only one derivative �le is needed for point or round feet.

Circular Feet in 2D Figure 2.2 shows the frame convention and notation for

using circular feet in 2D. The acceleration of frame 0 is non-zero in general (even for

point-feet because it is used to account for gravity) and is denoted by 0 _v0 Equation

30

2.6 for 1 _v1 is modi�ed in the above algorithm as follows.

0 _v0 = [g cos ; R ��1 � g sin ; 0] (2.15)

1 _v1 =
1

0
R0 _v0 (2.16)

The g cos and �g sin terms result from accelerating the base upwards to account

for the e�ect of gravity, as described above.

m1 g
-2f2

1f1

-2n2

1n1

Figure 2.5: Free-body diagram of the stance leg for a walker with circular feet.

Figure 2.5 shows a free-body diagram of the stance leg with a circular foot.

Because of the circular foot, one needs to account for the torque of the contact force

1f1 from the ground about the center of the stance foot. Lastly, Equation 2.12 for

the stance leg is modi�ed as follows.

1n1 =
1N1 +

1

2
R2n2 +

1pc1 �
1F1 +

1p2 �
1

2
R2f2 �

1

0
R0p1 �

1f1 (2.17)

where 0p1 = [R 0 0]T is the vector from the contact point to the center of the foot.

Gravity is included in the FBD but it is not explicitly included in Equation 2.17 for

reasons stated previously.

31

Disk Feet in 3D Another possibility is to have disk feet, as McGeer (1991) and

Fowble and Kuo (1996) did in their 3D models. Modifying the code to include

the case of disk feet involves following procedure as done previously for circular

feet, except that the calculation of the foot center acceleration 3 _v3 is slightly more

involved. The formulas which govern a rolling disk are well known, however (see

Rand (1994) or Greenwood (1988) for example), so there is no fundamental obstacle,

especially if the equations are �rst derived symbolically.

Because not all of the equations are derived symbolically, including the accel-

eration of the stance leg center of mass and associated frames for disk feet is a

slightly convoluted procedure and is best postponed until the discussion of the on-

line scheme in Section 2.4. Briey, Maple
iR
symbolic software is used to derive

and substitute some extra terms for 3 _v3 in the algorithm (Equation 2.6). When

they are added to the existing algorithm, the resulting formula for 3 _v3 is that for

the acceleration of the center of a rolling disk. If the foot radius R is set to zero, the

formula reduces to the previous one for a 3 DOF rotational joint. For more details

on the modi�cation to Equation 2.6 in 3D, see Section 2.4.1.

The second modi�cation for disk feet in 3-D, as in the 2-D case, is to account

for the torque of the contact force (in this case, 3f3) on the stance leg. Paralleling

Equation 2.17, and using Figure 2.6,

3n3 =
3N3 +

3

4
R4n4 +

3pc
3
� 3F3 +

3p4 �
3

4
R4f4 �

3

2
R2p3 �

3f3 (2.18)

where 2p3 = [R 0 0]T is the vector from the contact point (origin of frame 2) to the

center of the foot (origin of frame 3).

Note that in the usual case of rotational joints, one writes the angular momentum

balance for link i about the ẑi axis, which passes through the frame origin. But the

angular momentum balance equations for frames 1 and 2 are written about axes

32

-4n4

-4f4

3f3

3n3

z3

1n1
z1

z2

2n2

z4

Figure 2.6: Free-body diagram of the stance leg for a 3-D walker with disk feet.

through the foot center which are parallel to ẑ1 and ẑ2 and do not pass through the

origins of frames 1 or 2. The equations would yield the same result regardless of

the choice of axis.

2.3.4 Form Of Equations Of Motion

In the way shown above, one can generate equations which govern the motion of

the linkage. With some separation and factorization, they can be re-written in the

form

� =M(�)�� +V(�; _�) +G(�) (2.19)

where � is an n� 1 vector of joint torques, M(�) is the symmetric n� n mass

33

matrix of the linkage, and �, _�, and �� are the n� 1 vectors of con�guration angles,

angular rates, and angular accelerations, respectively. Furthermore, V(�; _�) is an

n�1 vector of centrifugal and coriolis terms, andG(�) is an n�1 vector with gravity

terms only Craig (1989). Note that there are no additional constraint equations;

the constraints are embedded in equation 2.19 when the accelerations of the link

centers of mass are written as functions of the �, _�, and �� in Equations 2.6 and 2.7.

It is important to understand the format above in order to use the scheme which is

presented in Section 2.4.

Typically, in dynamic simulation, the goal is to solve for the angular accelerations

at each time step as functions of the angles and angular velocities. To do so, one

simply inverts M(�) in Equation 2.19 above.

�� =M�1(�)[� �V(�; _�)�G(�)] (2.20)

Note that the inversion is never done symbolically; most often, M(�) is calcu-

lated and inverted numerically.

Neglecting V(�; _�)

If the angular velocities are small enough during the motions of interest, and if some

loss of accuracy is acceptable in the interests of computation time, one can neglect

the coriolis and centrifugal terms in V. In this analysis, no terms are neglected.

However, McGeer (1990a) used linearized equations for a straight-legged walker. In

kneed walkers, the the swing shank reaches angluar velocities that are high enough

to render V non-negligible in general.

34

Two Advantages To The Above Scheme

Two fortuitous side-e�ects occur with the abovementioned notation scheme(s). One

is that the kinetic energy of the walker, a useful scalar quantity, can be written

compactly as

KE =
1

2
_� �M(�) _� (2.21)

as described by Craig (1989). Here, M(�) is, of course, the mass matrix described

previously and _� is a vector of angular rates [_�1::: _�i]
T .

The second, and possibly more useful side-e�ect is that the expression

M(�) _� (2.22)

is a vector whose entries are the angular momenta of certain subsystems of the

walker. The last entry is the angular momentum of the outermost link about its

hinge axis. The next-to-last entry is the angular momentum of the two outermost

links about the next-to-last hinge axis, and so on. The �rst entry in Equation 2.22

(or the �rst three entries, in the case of a 3D walker) is the angular momentum of

the whole walker about its contact point with the ground. This will prove useful in

the heelstrike and kneestrike calculations, as is described in Section 2.5.

2.4 Numerical Integration of Equations of Linked

Rigid Bodies

Using the equation-generating algorithm described previously, there is a choice of

methods for simulating a given mechanism. \Simulation" means numerical solution

of the ordinary di�erential equations which govern the motion of the mechanism,

35

subject to speci�c initial conditions (the swing phase), along with the calculation

of pre- and post-collision velocities at kneestrike and heelstrike.

2.4.1 On-Line Scheme for the Swing Phase

The equations for the swing phase of motion are presented in the Section 2.3. The

straightforward method is to use the algorithm to derive symbolic code for the

elements of M(�), V(�; _�), G(�), and possibly � , calculate each element at each

time step, and then solve Equation 2.20 numerically at each time step or partial

time step.

Another simulation technique is known as on-line simulation Luh et al. (1990).

In this method, symbolic code is not written in the usual sense, but Equations

2.2-2.13 are solved directly at each time step. If you like, Equations 2.2-2.13 are

themselves the symbolic code, and the parts of Equation 2.19 are solved for sepa-

rately, and then put together.

Solving for V and G

To solve Equations 2.2-2.13 for ��, one �rst sets all the ��i to 0 and sweep through

the inward and outward Newton-Euler iterations (Equations 2.2-2.13). The only

non-zero terms which remain are those due to gravity and velocity products, since

��i = 0. The result will be of the form

� = 0 = V(�; _�) +G(�) (2.23)

where V and G are terms sought as part of Equation 2.19. If there are applied

torques and � 6= 0, the above structure is not changed and � can be speci�ed at a

36

later step.

Solving for M and then ��

Now the task remains to �nd M(�) (or more simply, just M) in order to solve for

the components of Equation 2.19. It is helpful to write out M�� as follows, with M

of size n� n.

2
66664

M11 : : : M1n

...
. . .

...

Mn1 : : : Mnn

3
77775

2
66664

��1

...

��n

3
77775 (2.24)

It is clear that the �rst column of M ican be generated by setting ��1 = 1,

��2 : : : ��n = 0, and sweeping through the inward and outward iterations (Equations

2.2-2.13) as done above for V and G, but now with g = 0 and all the _�i = 0.

Similarly, one can solve for column i of M by setting ��i = 1 and all other �� = 0 for

i = 2 : : : n. In this manner, one constructs the matrix M of the coe�cients of the

��i in the terms of the form _! � p and, together with V and G from above, solves

Equation 2.19 for the new ��.

On-Line Scheme for Disk Feet in 3D

In the previous section, the Newton-Euler iterative scheme was modi�ed to compute

the acceleration of the stance leg and related frames for the case of disk feet. This

can also be done with the on-line approach. First, note that 3 _v3 is written as follows.

3 _v3 =
3 _!3 �

2p3 +
3
!3 �

3
!3 �

2p3 +
3

0
R 0 _v0 (2.25)

37

where 0 _v0 is the upwards acceleration to account for gravity.

The gravity terms and the ! � ! � p terms are calculated during the �rst

Newton-Euler iteration, when all the ��i are zero. The expressions that remain are

in the _! � p term, and consist of \second-derivative" expressions with coe�cients

multiplying ��i and \product" expressions containing _�i _�j. The second-derivative

coe�cients are calculated during the mass-matrix computations, by setting

3 _v3 =
3 _!3 �

2p3 (2.26)

with all the _�i = 0 and one �� = 1 at a time while all the others are zero, as described

above in Section 2.4.1.

So, it remains to calculate the product expressions in the _! � p term. MAPLE

iR
symbolic algebra software was used to di�erentiate the elements of the velocity

vector of the foot center (providing the _! � p term) and then set all the ��i = 0.

The terms that remain are added to 3 _v3 during the calculation of the ! � ! � p

terms.

So the lines in the code to calculate the acceleration of the foot center without

the ��i (which are calculated during the iterations for the mass matrix) are as follows.

3v3 =
3
!3 �

2p3 (2.27)

3 _v3 =
3
!3 �

3v3 +
3

0
R 0 _v0 +

2
66664

R sin �3 sin �2 _�2 _�1 + (_�3 � _�1 cos �2)R cos �3 _�3

R cos �3 sin �2 _�2 _�1 � (_�3 � _�1 cos �2)R sin �3 _�3

0

3
77775

(2.28)

where, as before, 0 _v0 is the upwards acceleration of the base to mimic gravity.

38

Comments On E�ciency

The e�ciency of algorithms for generating and/or solving equations of motion is

typically measured by the number of oating-point operations, or \ops", that they

require in order to generate coe�cients in the ODEs, as a function of the number

of links or degrees of freedom (DOF) of the mechanism in question. As presented,

the Equations 2.2-2.13 constitute a so-called \order-n algorithm", meaning that the

number of operations needed to solve for the elements of Equation 2.19 (but not

solve for ��) grows linearly with the number of links or DOF.

By making an on-line scheme, an order-n algorithm is performed a total of n+1

times (once for V and G and n times for M), which creates an algorithm of order

n2. Although it might seem that using a slower algorithm is pointless, the following

things should be kept in mind.

� These models have relatively few links (n < 3) and degrees of freedom (k < 4),

and so e�ciency considerations are less important here, although certainly not

trivial.

� There is no need to use a separate symbolic algebra package for writing equa-

tions, except for the disk feet modi�cations.

� The symmetry of M reduces the number of operations needed to generate its

columns (this is true for both symbolic and on-line schemes).

� The algorithm is the same for any linkage of the type described by Figure 2.1;

the only things that change are the user-de�ned rotation matrices. So, once

the code is written (for a variable number of links), it can be used for many

di�erent models.

39

� The code is modular and can be modi�ed to include di�erent contact condi-

tions or branching structures.

In short, the exibility and simplicity of the above algorithm tends to outweigh

its e�ciency disadvantages, since it can be used for all of these (simple) models. One

other thing to keep in mind when discussing algorithm e�ciency is that the e�ciency

of the symbolic code generated is dependent on the strategy used to optimize it and

not just on the mechanics approach. An otherwise-e�cient approach can still result

in ine�cient code if there are many redundant calculations or a lack of trigonometric

simpli�cation.

Another option is to use commercial multibody codes such as Working Modelr,

ADAMS, or DADS to study the motions of the models. But for systematically vary-

ing parameters and �nding limit cycles (including unstable limit cycles), simulation

packages themselves are generally not su�cient. However, as a simulation check,

some undergraduates in the Ruina lab developed simulations of a 2D point-foot

model in DADS, and of a 2D kneed model in Working Modelr whose results agreed

with the numerical simulations.

2.5 Collision Calculations

This section describes the computations that take place between di�erent smooth

motion phases of the walker; in general, these phases are separated by sticking (plas-

tic) collisions (heelstrike or kneestrike). The smooth ODEs are generally integrated

forward in time until the state vector approaches some collision condition which can

be written as

40

c(�) = 0 (2.29)

Note that c is a scalar function of the state (more speci�cally, of the con�gura-

tion). Approaching heelstrike, the function c(�) often corresponds to the swing foot

height above the ground, or some similar calculation, as in Equation 3.3 for a point-

foot walker. Approaching kneestrike, c(�) corresponds to the di�erence between the

swing knee angle and the locked knee angle (see Figure 4.1).

Note, in the case of heelstrike, there is the possibility that the swing foot might

scu� (i.e. temporarily pass underground) and Equation 2.29 might be true for some

short period of time at mid-stride; this is generally ignored. For instance, straight-

legged walkers in 2-D always scu� when both legs are parallel. So the while-loop

must be able to tell the di�erence between a scu� and a true heelstrike.

With the above caveat stated, and ignoring scu�ng, the smooth ODEs are

integrated in a while-loop for as long as

c(�) + h _c(�) > 0 (2.30)

where h is the time step of the numerical integration, and c and _c are evaluated at

each time step.

2.5.1 Getting Onto The Poincar�e Section

The simulation exits the while-loop when the system is less than h time units away

from a collision. Before the collision transition equations can be applied, the collision

condition in Equation 2.29 must hold true to at least the integration tolerance, and

to higher precision if possible. To do this, one can use a Newton method to �nd

zeros of c.

41

A simple version of the algorithm is as follows.

� Exit ODE while-loop with current c and _c and store current time step h0.

� While abs(c) > numerical tolerance/1000

1. Calculate new time step h = �c= _c.

2. Evaluate state derivatives and compute new state with Runge-Kutta

method.

3. Compute new values for c and _c based on new state.

� Draw �nal con�guration after c converges to near-zero and restore original

time step h0.

Typically, the numerical tolerance is on the order of 1e-10, so the algorithm

should converge quadratically to c < 1e � 13. The factor of 1000 is somewhat

arbitrary.

After the algorithm is complete, one can apply the approporiate collision calcu-

lation (heelstrike or kneestrike) described below.

2.5.2 Kneestrike in 2-D

Using McGeer's angles, just before kneestrike, the state space consists of a stance

angle ��st, swing thigh angle ��th, swing shank angle ��sh, and their respective rates

(see Figure 4.1). The \-" superscript indicates that the state is immediately before

kneestrike; this state is known from the numerical integration and the algorithm

described previously. McGeer's angles are used here to explain concepts in 2-D

42

kneestrike and heelstrike, but the code actually uses the angles described by Figure

2.2.

Just after kneestrike, the state space will consist of a stance angle �+st, swing

leg angle �+sw (or �+th), and their respective rates. The post-kneestrike angles are

basically the same as the pre-kneestrike angles, except that the swing thigh and

swing shank are referred to collectively as the swing leg. For both kneestrike and

heelstrike, the principles described and the essence of the algorithm will hold true

regardless of the particular angles used for the con�guration.

�+st = ��st (2.31)

�+sw = ��th = ��sh (2.32)

The post-collision angular rates _�+st and
_�+sw are calculated by considering the

two free-body diagrams (FBDs) shown in Figure 2.7, at the instant of kneestrike.

The impulse from the collision is assumed to dominate all other forces/impulses at

the instant of the collision; this is a standard assumption in rigid-body dynamics.

From the FBDs, angular momentum will be conserved through the collision

for the whole walker about the stance foot contact point (H�

tot=cp = H+

tot=cp), and

the swing leg about the hip (H�

sw=h
= H+

sw=h
). Since this is a 2-D case, there are

equations for angular momentum conservation through kneestrike with which to

solve for the two unknowns _�+st and
_�+sw.

H�

sw=h
and H�

tot=cp
are calculated as follows.

43

(a) (b)

hip (h)

rth/cp

rsh/cp

rst/cp

mst

mth

msh

contact point (cp)

Impulse from ground

Impulse from
stance leg mth

msh

rsh/h

rth/h

Figure 2.7: Free-body diagrams of (a) the entire walker and (b) the swing leg,

each showing the impulses acting at the instant of collision. Angular momentum is

conserved at this instant for the whole walker about the stance foot contact point,

and for the swing leg about the hip.

44

H�

tot=cp
= rth=cp �mthv

�

th + Icth!
�

th +

rsh=cp �mshv
�

sh + Icsh!
�

sh +

rst=cp �mstv
�

st + Icst!
�

st

(2.33)

H�

sw=h
= rth=h �mthv

�

th + Icth!
�

th +

rsh=h �mshv
�

sh + Icsh!
�

sh

(2.34)

where rX=A is the vector from point A to the center of mass of segment X, mX is

the mass of segment X, v�X is the velocity of segment X just before kneestrike, IcX is

the moment of inertia of segment X about its center of mass, and !�

X is the angular

velocity of segment X just before kneestrike. Note that v�X and !
�

X are functions

of _��st and
_��sw. Recall also that in the 2-D case, all the angular momentum is along

the ẑ direction (out of the page).

The equations are identical for H+

sw=h and H+

tot=cp (the angular momenta of the

same two systems just after heelstrike), except that the \-" superscripts become

\+" superscripts. The complication, however, is that _�+st and
_�+sw are unknowns, so

one actually needs to derive the matrix of coe�cients K in the following equation.

2
64fH

�

tot=cp
g � ẑ

fH�

sw=h
g � ẑ

3
75 =

2
64K11 K12

K21 K22

3
75

| {z }
K

2
64
_�+st

_�+sw

3
75 (2.35)

This can be done numerically with a procedure like that of Section 2.4.1 by

setting _�+st and
_�+sw alternately to 1 while the other is zero and computing H+

tot=cp

and H+

sw=h each time, with computations like those in Equations 2.33 and 2.34.

Another method is to generate symbolic code for H+

tot=cp
and H+

sw=h
and pick out

45

the coe�cients of _�+st and
_�+sw using a symbolic algebra package such as Maple

iR
.

The method generally used here is based on a numerical shortcut, and is described

in Section 2.5.5 below.

Once K is found, _�+st and
_�+sw are computed by inverting Equation 2.35; this gives

a set of initial conditions for the smooth, 2-link ODEs.

2.5.3 Heelstrike in 2-D

Although the principles are the same for heelstrike in 2-D as for kneestrike in 2-

D, heelstrike is slightly more complicated because it involves swapping the stance

and swing legs. In this section, the reader is assumed to be comfortable with the

principles outlined above in Section 2.5.2, so some of the explanations will not be

repeated. The model here is assumed to have knees; simpli�cation to a straight-

legged model is straightforward and will be summarized below.

Calculating New Angles

Just before heelstrike, the state space consists of a stance angle ��st, swing leg angle

��sw, and their respective rates (see Figure 4.1). Just after heelstrike, the state space

will consist of a stance angle �+st, swing thigh angle �+th, swing shank angle �+sh, and

their respective rates. The pre- and post-collision angles are related by the following

equations.

�+st = ���st (2.36)

�+th = ���sw (2.37)

�+sh = ���sw = �+th (2.38)

46

Calculating New Angular Rates

The post-collision angular rates _�+st,
_�+th, and

_�+sh are calculated by considering the

three FBDs shown in Figure 2.8, at the instant of heelstrike. As before, one as-

sumes that the collision impulse at the new contact point dominates all other

forces/impulses and that there is no impulse at the trailing (former stance) leg.

While not provably correct, this is a self-consistent assumption producing simula-

tion results which correctly predict the behavior of physical models. This means

that the simulation results can be con�dently used as a guide to construct stable

physical models with appropriate foot clearance, etc.

(a) (b) (c)

impulse at contact
point (cp) from ground

impulse at hip (h)
from old swing leg

impulse at old
stance knee (k)
from old swing leg

Figure 2.8: Free-body diagrams of (a) the entire walker, (b) the former stance leg

(new swing leg), and (c) the former stance shank (new swing shank) showing the

impulses acting at the instant of collision. Angular momentum is conserved at this

instant for the whole walker about the new stance foot contact point, for the new

swing leg about the hip, and for the new swing shank about the new swing knee.

From the FBDs, angular momentum will be conserved through the collision for

the whole walker about the new contact point (H�

tot=cp = H+

tot=cp), for the new swing

leg about the hip (H�

sw=h
= H+

sw=h
), and for the new swing shank about the new

47

swing knee (H�

sh=k = H+

sh=k). Since this is a 2-D case, there are three equations

for angular momentum conservation through heelstrike with which to solve for the

three unknowns _�+st and
_�+th, and

_�+sh.

As with kneestrike, H�

tot=cp, H
�

sw=h, and H
�

sw=k are calculated directly, while the

components of H in the following equation must be obtained with some indirect

method; the method of choice is described in Section 2.5.5 below. Once the com-

ponents of H are determined, one can solve for _�+st,
_�+th, and

_�+sh by inverting H in

the following equation.

2
66664

fH�

tot=cpg � ẑ

fH�

sw=hg � ẑ

fH�

sh=k
g � ẑ

3
77775 =

2
66664

H11 H12 H13

H21 H22 H23

H31 H32 H33

3
77775

| {z }
H

2
66664

_�+st

_�+th

_�+sh

3
77775 (2.39)

Heelstrike for Straight-Legged Walkers

If the walker has no knees, simply ignore FBD c in Figure 2.8 and the corresponding

equation (H�

sh=k = H+

sh=k). Instead, solve for _�+st and
_�+th with H of size 2�2 (the

upper left 2�2 block of H in Equation 2.39).

2.5.4 Heelstrike in 3-D

Heelstrike in 3-D follows the same principles as heelstrike in 2-D except that there

are more equations and unknowns, and the post-collision angle calculation and leg

switch are slightly more complicated. It is assumed that the walker has some non-

zero hip spacing and foot radius, as in Figure 5.1; it is also assumed that the walker

has no knees, but extending this procedure to kneed 3-D walkers is straightforward.

48

Calculating New Angles

Just before heelstrike, the state space consists of a heading (or steer) angle ��
1
,

bank (or lean) angle ��
2
, stance leg angle ��

3
, relative swing leg angle ��

4
, and their

respective rates (see Figure 5.1). Note that �4 is measured di�erently than �sw in

the previous cases.

Just after heelstrike, the state space will consist of nominally the same angles and

rates, but with di�erent values. At heelstrike, the base reference frames (Euler-angle

frames) are moved from the old contact point to the new contact point. Frames 0,

1, and 2 do not change their orientation through the heelstrike; thus the heading

angle �1 and the bank angle �2 remain unchanged through the collision. The stance

angle and relative swing angle must be re-calculated. The angles change according

to the following equation.

�+
1
= ��

1
(2.40)

�+
2
= ��

2
(2.41)

�+
3
= ��

4
� � + ��

3
(2.42)

�+
4
= � � �+

3
+ ��

3
(2.43)

(2.44)

See Figure 2.9a for reference. In the case of zero hip spacing, these equations

reduce to the equations for the 2-D case, since the walker becomes a planar object.

Resetting Parameters

As stated above, the x̂, ŷ, and ẑ directions of frames 0, 1, and 2 remain constant

through heelstrike. For frames 3 and 4 (�xed to the stance and swing legs, respec-

49

tively) only the ẑ directions remain constant; the x̂ and ŷ directions change, since

angles �3 and �4 change.

Resetting Position Vectors Since the reference frames switch legs at heelstrike,

the stance and swing legs have switched their relative orientation in the ẑ3 direction.

If the swing leg had been, say, in the positive ẑ3 direction with respect to the stance

leg prior to heelstrike, it will be in the negative ẑ3 direction with respect to the

stance leg after heelstrike. So, the ẑ components of the vectors 2p3,
3pc

3
, and 4pc

4
,

will change in sign at each heelstrike, as shown in Figure 2.9 (also see Figure 5.1).

4p
4
c

3p
4

3p
3
c

(a)

θ1

z0

y0

x0

2p
3

(b)

4p
4
f

−

θ2
−

θ3
−

θ4
− old stance leg

new stance leg

 θ1
+

θ2
+

-θ3
+

θ4
+

new stance leg

Figure 2.9: Diagrams showing (a) how angles are de�ned immediately after heel-

strike, and (b) how the vectors 3p4,
3pc

3
, and 4pc

4
are de�ned after heelstrike.

Resetting I matrices With respect to the legs, frames 3 and 4 have the opposite

orientation for each of their x̂, ŷ, and ẑ directions, meaning that x̂3 points from

foot to hip while x̂4 points from hip to foot, ŷ3 points forward while ŷ4 points

backward, and ẑ3 points laterally while ẑ4 points medially. One consequence of this

50

(also see Figure 2.3) is that the moment of inertia matrices about their centers of

mass are equal (3Ic3 =
4Ic4). However, when switching ẑ3 and ẑ4 directions through

heelstrike, the o�-diagonal ẑ terms in 3Ic3 and
4Ic4 will also switch sign.

Summary of Parameter Changes The changes in signs of certain parameter

vectors and matrices are summarized below. The numbers in parenthesis denote

vector and matrix indices.

2p3(3)
+ = �2p3(3)

� (2.45)

3pc
3
(3)+ = �3pc

3
(3)� (2.46)

4pc
4
(3)+ = �4pc

4
(3)� (2.47)

3Ic3(1; 3)
+ = �3Ic3(1; 3)

� 3Ic3(2; 3)
+ = �3Ic3(2; 3)

� (2.48)

3Ic3(3; 2)
+ = �3Ic3(3; 2)

� 3Ic3(3; 1)
+ = �3Ic3(3; 1)

� (2.49)

4Ic4(1; 3)
+ = �4Ic4(1; 3)

� 4Ic4(2; 3)
+ = �4Ic4(2; 3)

� (2.50)

4Ic4(3; 2)
+ = �4Ic4(3; 2)

� 4Ic4(3; 1)
+ = �4Ic4(3; 1)

� (2.51)

(2.52)

Before and after heelstrike, 3Ic3 =
4Ic4.

Calculating New Angluar Rates

The post-collision angular rates are calculated by considering the FBDs shown in

Figure 2.10, at the instant of heelstrike. As before, it is assumed that the collision

impulse at the new contact point dominates all other forces/impulses and that there

is no impulse at the trailing (former stance) leg.

Angular momentum is conserved through the collision for the whole walker about

51

(a) (b)

old stance leg

new stance leg

old stance leg

impulse from ground
at new contact point (cp)

impulse from
old swing leg
at hip (h)

Figure 2.10: Free-body diagrams of (a) the entire walker and (b) the former stance

leg (new swing leg), showing the impulses acting at the instant of collision. Angular

momentum is conserved at this instant for the whole walker about the new stance

foot contact point, and for the new swing leg about the hip axis.

the new contact point (H�

tot=cp
= H+

tot=cp
), and for the new swing leg about the hip

(H�

sw=h = H+

sw=h). The �rst equation is a vector equation in 3-D, and yields three

scalar equations, while the second equation is only along the hip axis (ẑ3). As before,

H�

tot=cp
andH�

sw=h
are known (vector) quantities. Thus, there are four equations from

angular momentum conservation through heelstrike with which to solve for the four

unknowns _�+
1
, _�+

2
, _�+

3
, and _�+

4
. They are found by solving for the components of H

in Equation 2.53 and then inverting it as before.

2
666666664

fH�

tot=cp
g � x̂3

fH�

tot=cpg � ŷ3

fH�

tot=cp
g � ẑ3

fH�

sw=h
g � ẑ3

3
777777775
=

2
666666664

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

3
777777775

| {z }
H

2
666666664

_�+
1

_�+
2

_�+
3

_�+
4

3
777777775

(2.53)

52

2.5.5 A Shortcut for K and H

In each case considered above (kneestrike, 2-D heelstrike, 3-D heelstrike), the post-

collision angular momenta are derived by considering a series of FBDs starting with

the whole walker about its ground contact point and ending with the outermost

link (the swing leg or swing knee) about its hinge axis.

Using the notation and procedure developed in Section 2.3, one can write the an-

gular momentum of each system about its contact point or hinge point, immediately

after collision, dotted with the appropriate axis, as follows.

i+1hi+1 = fmi+1(
i+1pci+1 �

i+1vci+1) +
i+1Ici+1

i+1
!i+1g � ẑi+1 (2.54)

hi can be written as a vector function of the �i as done in Equations 2.35, 2.39,

and 2.53.

2
66664

1h1

...

ihi

3
77775 =

2
66664

H11 : : : H1i

...
. . .

...

Hi1 : : : Hii

3
77775

| {z }
H

2
66664

_�1

...

_�i

3
77775 (2.55)

The matrix H in this case is comprised of the same coe�cients as the mass

matrix M in the angular momentum balance algorithm in Sections 2.3 and 2.4.

That is to say, H = M (see also Section 2.3.4) So, if there is a procedure in place

to �nd the coe�cients of the mass matrix (as described in Section 2.4.1), one can

simply calculateM (after resetting angles and parameters) and substitute it for H.

Note that the use of this shortcut depends on using angles as de�ned in Section

2.3. For some discussions, these exact angles are not used (for example, �th is

53

measured from the slope-normal instead of from the foot-hip reference line in Figure

4.1). This is because de�ning angles like �th in Figure 4.1 can be more intuitive in

some cases, and makes plots easier to follow. However, in the heart of the actual

integration procedure, relative angles are always used as de�ned in Section 2.3;

this shortcut saves some time in equation-writing and helps to eliminate sources of

possible error.

2.6 The Walking Map Or Stride Function

A step can be thought of as a piecewise function f(i�+), the \stride function," which

takes as input the list of values of the various angles and rates (the state variable

vector �) at a de�nite point in the motion, usually just after heelstrike of step i

(denoted by the \+" superscript), and returns the values of � just after heelstrike

i+1, or i+1
�
+. f is also a function of some invariant set of model parameters (mass

distribution, gravity, etc.), but for simplicity, this dependence is excluded from the

notation.

The function f(�) can be generically dissected into the following parts, each of

which has been described previously.

� Numerical integration of smooth motion governed by ordinary dif-

ferential equations (ODEs). The ODEs are generally those of a multi-link

pendulum, possibly with rolling ground contact; they are derived in section

2.3, and procedures for integration in section 2.4. ODEs are integrated until

a collision (heelstrike or kneestrike) is imminent.

� Detection of kneestrike or heelstrike and settling onto the Poincar�e

section. Before the e�ects of any collisions can be computed, the integration

54

procedure must home in on the pre-collision con�guration to ensure that the

state is exactly on the Poincar�e section (at least to numerical tolerance, and

preferrably better). This will usually involve �nding a zero of some function of

the con�guration variables, known as a \collision condition". This procedure

is described in section 2.5.

� Calculation of collision e�ects and renaming variables. Post-collision

velocities are calculated by assuming angular momentum conservation before

and after impact, about various points, for various sub-systems of the robot

links, in much the same way as the equations of motion were derived. In

the case of kneestrike, there are velocity discontinuties, but no renaming of

variables, and the above two steps are repeated until heelstrike is detected.

In the case of heelstrike, the stance and swing legs exchange roles, and so

some renaming of con�guration variables must occur, along with a change in

angular velocities. Collisions are assumed to be plastic, meaning that there

is no rebound (not that there is plastic deformation); these conditions are

enforced in physical models by dead rubber on the feet and leaky suction cups

at the knee joints. The collision calculations are described in more detail in

section 2.5.

The above parts are almost always solved numerically, although one analytical

scheme is presented in Chapter 3 for a very simple model. The �nal result after the

last collision calculation, starting from a given set of initial conditions �, yields one

evaluation of the function f(�).

Figure 2.11 shows a plot of the evolution of one step as a stride function, starting

with i
�
+, and ending with i+1

�
+.

55

τ

iθ+
i+1θ-

i+1θ+

heelstrike
heelstrike

time

hypothetical
phase space
trajectory

jump condition
INPUT
 θ

OUTPUT
 f(θ)

Figure 2.11: One evaluation of f. Time is shown on the horizontal axis, while the

phase space variables are represented by the other axes. In general, the phase space

can be multi-dimensional but in the plot, it is only two-dimensional. The step

period is denoted by � .

In the language of dynamical systems, McGeer's stride function is a Poincar�e

map. Many questions about the dynamics of a given walking model are reduced to

questions about the mapping function f(�).

2.7 Gait Cycles: Fixed Points of the Map

A simple (period-one)gait cycle, if it exists, corresponds to a set of initial values for

the angles and rates which lead back to the same angles and rates after one step.

In the language of nonlinear dynamics, this repeated motion is called a limit cycle.

�
� is a \�xed point" of the function f(�).

f(i�+) = i
�
+ =i+1

�
+ = �

�: (2.56)

56

This corresponds to a zero of the di�erence function g(�).

g(i�) � f(i�)� i
� �i+1

� � i
� (2.57)

In three dimensions, like McGeer, one searches for period-one gait cycles that

switch heading and bank after one step but are otherwise identical. Speci�cally,

using the angles in Figure 2.3,

ig1(�) =
i+1 �1

+ + i�1
+

ig2(�) =
i+1 �2

+ + i�2
+ � �

ig3(�) =
i+1 �3

+ � i�3
+

ig4(�) =
i+1 �4

+ � i�4
+

ig5(�) =
i+1 _�1

+

+ i _�1
+

ig6(�) =
i+1 _�2

+

+ i _�2
+

ig7(�) =
i+1 _�3

+

� i _�3
+

ig8(�) =
i+1 _�4

+

� i _�4
+

(2.58)

Note that this is not the only feasible de�nition of a gait cycle in 3-D. Coleman

et al. (1997) de�ned a 3-D cycle to include two steps (as de�ned here), and used

the standard 2-D de�nition g(�) � f(�)� �.

Besides period-one cycles, higher order cycles (limping gaits) can exist; a period-

two gait cycle returns the same variable values after two steps, for instance; by

de�nition, a period-one gait cycle is also a period-n gait cycle. The term \gait

cycle" by itself implies a period-one gait cycle. Period-one motions are of central

interest because they correspond to the important task of steady walking.

57

2.8 Searching For Gait Cycles

To �nd gait cycles, McGeer coupled the idea of a stride function with a multidi-

mensional Newton-Raphson method. To follow his procedure, one searches, more

or less systematically, for �� such that g(��) = 0. In other words, the di�erence

between i+1
�
+ (the state after heelstrike i + 1) and i

�
+ (the state after heelstrike

i) should be zero at a gait cycle. A Newton-Raphson root-�nding procedure for g

generally converges to the desired numerical accuracy.

One major advantage of the root-�nding algorithm over straightforward simula-

tion in �nding gait cycles is that the root �nding algorithm will locate both stable

and unstable limit cycles, while simulation will only locate stable gait (see below).

2.8.1 Finding Zeros of the Di�erence Function g

Close to the �xed point ��, the di�erence function g(�) can be linearized as follows.

g(�0) � g(��) +
@g

@�
��0 (2.59)

where �0 is the initial guess at a �xed point. @g

@�
is the Jacobian of the di�er-

ence function g (not to be confused with J, the Jacobian of f), which is evaluated

numerically using forward di�erence as follows.

� First, evaluate g at �0 (call this g0).

� Then perturb the �rst element of � by � and re-evaluate g. Call this gp. An

estimate of the �rst column of @g

@�
, then, is given by

gp � g0

�
(2.60)

where a good value for � is the square root of the integration tolerance.

58

� The remaining columns of @g

@�
are formed in a similar way, perturbing the

second, third, etc. elements of �0, re-evaluating g each time, and repeating

the previous calculation in Equation 2.60.

Assuming that g(��) = 0 and g(�0) is close to zero but not less than numerical

tolerance, Newton's Method provides the adjustment to �0,

��0 =
@g

@�

�1

g(�0) (2.61)

and so the new guess for ��) is

�1 = �0 +��0 (2.62)

Together, Equations 2.61 and 2.62 constitute the iterative procedure known as

a Newton or Newton-Raphson method. If the initial guess for � is close enough

to a �xed point, and one is in a parameter region where the numerics behave ap-

propriately, Newton's Method will converge quadratically to the �xed point value

�
�. Although Newton's method has no guarantee of global convergence, in practice,

initial guesses can be based on results from simpler models, for which a solution is

known, and slowly parameters can then be varied, solving for intermediate solutions,

until the solution family disappears or a gait solution is found for the mechanism of

interest. This is a heuristic explanation of the bifurcation technique of homotopy.

Using this technique, gait cycles can usually be found if they exist. So the root

�nding aspects of the work involve a mixture of intuitively based theoretical model

de�nition, on starting new searches on known solutions, and on various numerical

methods.

59

Assuming that one's code is free of error and the model is well-posed, failure of

Newton's method to converge generally has one of the following causes.

1. The initial guess �0 is not close enough to ��. This can be a problem when

dealing with extremely unstable walkers.

2. The slope of one of the state variable vs. parameter plots is approaching

in�nite slope. This is known in the bifurcation literature as a \turning point,"

and is indicated by an unexpected zero value in the stride function Jacobian

J. The solution is to temporarily augment the @g

@�
matrix, or parameterize the

solution path by arclength, as described by Seydel (1988).

3. There is no �xed point for the parameter combination speci�ed, or the solution

path is approaching its terminus. This problem has the same symptoms as

the previous one, but cannot be �xed by augmenting @g

@�
.

4. There is some sort of family of solutions. The solution is to augment @g

@�
to

choose only one particular solution from the family. For instance, this can

occur with planar solutions in 3-D; one �x is to only allow solutions which

head straight downslope.

With a experience, one begins to get a little intuition for path-following and this

makes it easier to recognize one of the above situations.

2.9 Stability of the Gait

Near a �xed point, one can linearize the stride function f as follows.

60

f(�� + �̂) � f(��) + J�̂ (2.63)

where J is the Jacobian matrix of partial derivatives of f with respect to each

angle and rate.

J =
@f

@�
with components

@fi

@�j
(2.64)

After �nding a limit cycle, approximate J by numerically evaluating f a number

of times in a small neighborhood of ��, or use Equation 2.66.

Since f(��) = �
�, small perturbations �̂ to the limit cycle state vector �� at the

start of a step will grow or decay from the ith step to the i+1th step approximately

according to �̂
i+1

� J�̂
i
.

If the map Jacobian J has all of its eigenvalues inside the unit circle, all suf-

�ciently small perturbations �̂ will decay to 0, the system will return to its limit

cycle, and the cycle is asymptotically stable. If the Jacobian has any eigenvalues

outside the unit circle, any perturbation with a component along the corresponding

eigenvector will bump the system o� the limit cycle, and the cycle is unstable. If

an eigenvalue has magnitude of one, then the cycle is neutrally stable for in�nitessi-

mal perturbations along the corresponding eigenvector, and such perturbations will

neither shrink nor grow (to �rst order). Many times, persistent eigenvalues of mag-

nitude one have some obvious physical signi�cance; they can signify a one-parameter

family of gait solutions, for instance.

The eigenvalues of the linearization J are a surprisingly useful characterization

of stability, with one drawback described in 5.1.1.

61

2.9.1 Relationship Between J And @g

@�
in 2-D

Instead of evaluating J column-by-column at a �xed point in 2-D, which is time-

consuming, one can use the relationship

g(�) = f(�)� � (2.65)

to arrive at the relationship between @g

@�
and @f

@�
, namely

@g

@�
=
@f

@�
� I (2.66)

Note that this is only true if Equation 2.65 holds true.

2.9.2 Relationship Between J And @g

@�
in 3-D

Parallelling Equation 2.66, one can use Equation 2.58 to arrive at the relationship

between @g

@�
and @f

@�
in three dimensions.

@g

@�
=
@f

@�
� I� (2.67)

where I� = diag(�1;�1; 1; 1;�1;�1; 1; 1).

2.10 Other Gait Characteristics

Although stability is usually the most interesting gait characteristic, there are other

characteristics such as step period, e�ciency (which can be de�ned in various ways),

minimum swing foot clearance, etc. These characteristics are functions of the model

parameters and of the particular �xed point ��, if more than one exists.

62

2.11 A Graphical Summary

A graphical summary of the above terminology is provided in Figure 2.12. In Figure

2.12, Figure 2.11 is mapped back onto itself so that time is no longer an axis (note

that time does not explicitly enter into the stride function f); this is a common way

of graphically portraying a Poincar�e map.

iθ+

 motion between
 foot collisions
(phase space trajectory)

i+1θ-

i+1θ+

phase spacefoot collision
hypersurface
(both feet
 touch ground)

foot collision
discontinuity

θ*

If i+1θ+ = f (iθ+) = iθ+= θ*

then θ* is a fixed point of f;
limit cycle period t* = ∆t

(leg angles and rates)
θ1

θ2

θn

limit cycle

trajectory, θ*(t)

Stride Function,

 f: iθ+ →i+1θ+

fixed point θ* is asympotically stable
if the modulus of the eigenvalues σi of

Jacobian Df(θ*) are less than one, |σi|< 1

step period, ∆ t = ti+1 - ti+1

Figure 2.12: Schematic of a generic stride function evaluation from i
�
+ to i+1

�
+

and a limit cycle and �xed point �� (in gray). Kneestrikes may also be seen as

discontinuities during the cycle. Summary of jargon is provided in the text boxes.

This �gure is based on a similar one in Coleman (1998b).

63

2.12 Parameter Variations: Embedding the Loop

The gaits of a mechanism can have di�erent stability, depending on the initial state

vector, mass distribution, ramp slope, etc. Sometimes, one would like to see how

certain gait characteristics change as di�erent parameters are varied (the �xed point

also varies, but this is not of primary interest).

Other times, one's goal is to optimize certain gait characteristics, or combi-

nations of characteristics, by varying parameters. For instance, the design of a

successful physical passive-dynamic kneed walker depends on �nding �xed points

that are stable, have su�cient ground clearance for the swing foot at mid-stride,

and su�cient passive locking torque at the stance knee. Parameter variation could

also include adjusting feedback gains and actuation strategies in a controlled model.

In all these cases, the overall strategy is to vary parameters in some continuous

or automated way, �nd �xed points along the way, and analyze the resulting gait

characteristics of interest at each �xed point.

A super�cial counting analysis predicts that if the number of adjustable system

parameters exceeds the number of characteristics of interest, one should be able to

simultaneously modify all the characteristics as desired. However there is no assur-

ance that this generically-possible process will not terminate at a local minimum or

maximum above or below the desired threshold (or a parameter boundary) before

a parameter set can be found with the desired characteristics. Simple optimization

techniques such as steepest-descent algorithms can be used to �nd favorable gait

characteristics as functions of parameters.

In practice, however, such techniques must be modifed to ensure that Newton's

method will be able to locate a �xed point each time it adjusts the parameter set.

64

Usually, Limiting the size of the parameter jumps ensures that the new �xed point

can be found by using the previous �xed point as the initial guess at a new �xed

point. More complicated predictor schemes are described by Seydel (1988). Another

pitfall of automated parameter adjustments, however, is that they can lead into

undesirable parameter regions, where solutions are often lost. See Coleman (1998b)

and Chapter 5 for more discussion.

One can often use McGeer's algorithm with only a rudimentary knowledge of

these tools. (A good introduction to path-following is the book by Seydel (1988).)

Simple one-parameter searches can often provide some utility and insight with a

miminum investment in code-writing, shown below and in Garcia et al. (1998).

2.12.1 Reality Checks

Our simulation code does not guarantee complete realism for a physical model, as

discussed in Chapter 4. A brief example of the use of McGeer's algorithm and

related reality checks follows.

2.12.2 Example: Constructing a Working Kneed Walker

Building physical devices may seem unneeded if one has good simulations. Although

the physical models studied here are relatively simple, designing, building, and

measuring the properties of prototypes often takes some e�ort.

Consider the Ruina lab's version of the kneed walker of McGeer (1990b). The

variables and parameters used in this model are shown in Figure 2.13. (Some

notes on the building of this model are contained in Appendix 2.14.) Tad McGeer

showed, with simulations and a physical model, that for certain (anthropomorphic)

parameter combinations, this model could exhibit stable, human-like gait down

65

shallow slopes.

-θstθth

θsh

g

rS ,mS cT
lT

rT ,mT

wT

wS

cS

lS

γ

εT

R

b) DYNAMIC VARIABLESa) DIMENSIONAL PARAMETERS

εT

εT

εT

Figure 2.13: Our description of McGeer's kneed walking model. Shown above are

(a) model parameters, and (b) dynamic variables. Radii of gyration and masses

of thigh and shank are denoted by rt; mt; rs; and ms, respectively. The foot is a

circular arc centered at the \+". �T is de�ned to be the angle between the stance

thigh and the line connecting the hip to the foot center. Dynamic variable values

�st, �th, and �sh are measured from ground-normal to lines o�set by �T from their

respective segments. A stop (not shown) at each knee prevents hyperextension of

either knee. In straight-legged models, the knee is locked.

To mimic McGeer's work, several undergraduates in the lab 1 �rst built an im-

itation of McGeer's machine with similar leg length and proportions, but di�erent

mass distribution. After adding some masses to make the two legs dynamically

equal, (generic procedure outlined in Appendix 2.14), the parameters were sim-

ulated; the result was prediction of an unstable period-1 gait with minimal foot

clearance (3mm) and knee-locking characteristics as shown in Table 2.1.

1 Some of the people directly and indirectly involved were John Camp, Mario

Gomes, Lanise Baidas, Maria Hagan, Dan Jung, Jacqui Rodrick, Tony Liu, Jill

Startzell, Larry Gosse, Jaime Estupinian, and Yan Yevmenenko. Apologies to those

who contributed but whose names were omitted.

66

Loose reasoning suggested (based on human anatomy and on McGeer's obser-

vations) that a heavy thigh might prove bene�cial. So, the �rst parameter that

varied in the simulation was the thigh mass mt. Adding 0.8 kg at the cm of the

thigh turned out to stabilize the walker and improve foot clearance slightly (see

\1st mod", row 2 of Table 2.1), but not enough to allow for a margin of error in the

physical model.

The next goal was to improve foot clearance without adversely a�ecting stability.

We introduced a point mass that we could add at some arbitrary point on the thigh,

and varied the position and amount of mass. Adding 0.1718 kg a distance of about

0.0298 m from the hip on each leg produced the characteristics shown in row 3 of

Table 2.1, labelled \2nd mod".

Now our model had adequate foot clearance, but we were still having problems

with the stance knee unlocking unexpectedly during the gait. The last modi�cation

was to add 0.773 kg at the hip joint, which improved the minimum torque on

the stance knee during the stride and at kneestrike of the swing leg. After this

modi�cation, the walker walked with acceptable robustness. It was later discovered

that there was a slight impulsive unlocking torque on the stance knee at kneestrike

of the swing leg, but this did not seem to a�ect the gait appreciably.

A strobe photo of the functional walker is shown in Figure 2.14. A materials

list and copies of schematic drawings for constructing a physical model (not exactly

the same as the one shown here) are shown in Appendix 2.14, along with some

comments on model construction. See Chapter 4 for more experimental results and

comparisons to theory for this model. Data from leg angle measurements at three

slopes is shown superimposed on simulation results in Figure 4.6.

67

Table 2.1: Summary of relevant parameters and characteristics for initial kneed

model that didn't work, labelled \original", and various stages of modi�cation, until

we arrived at a working set of parameters, labelled \�nal". The parameters mt, rt,

and ct are shown in Figure 2.13. The gait characteristics \max eig", \min cl", \min

k trq", and \hstr imp" are the largest eigenvalue in modulus, the minimum foot

clearance during the gait, the minimum locking torque on the stance knee during

gait, and the impulsive torque on the new stance knee at heelstrike, respectively.

The gait characteristics are based on simulation results. Parameters that are not

shown are the same as those listed in the caption of Figure 4.3. Base units are

kilograms, meters, and radians.

walker mt rt ct max eig min cl min k trq hstr imp

original 0.9868 0.1354 0.116 1.35 0.003 0.217 0.026

1st mod 1.7868 0.1006 0.116 0.52 0.006 0.266 0.011

2nd mod 1.9568 0.0992 0.108 0.50 0.010 0.293 0.011

�nal 2.3451 0.0992 0.091 0.45 0.012 0.353 0.011

68

Figure 2.14: Our passive dynamic walker walking down a shallow ramp in the Ruina

lab. The double leg-set constrains motions to a plane. The simulation shown in

Figure 4.3 uses parameters measured from this walker.

2.13 How Crucial Is Stability?

In this section, several observations are presented which imply that for the most

part, stability may not necessarily be critical to locomotion or other repeated tasks.

2.13.1 Mild Instability Seems Acceptable

When we relax our muscles and remain static, we are an unstable collection of

(for simplicity) links and hinges. We would certainly collapse in a heap unless we

contract some muscles to stand upright and/or initiate locomotion.

Because humans do have control and need to exercise this control to go where

they want, slow instabilities may not be important. For example, many bicycles

are passively stable in a limited range of speeds Hand (1988). This stability is

lost by a very slow instability at high speeds (starting typically at about 18 mph).

69

Bicycle riders, on the other hand, only sense increased stability at higher speeds

due apparently to the one decreasing eigenvalue.

Passive instabilities that are easily controlled and have long time constants may

have little cost of any kind to controlled biological systems. Although much of this

and other work in passive-dynamic locomotion concentrates on �nding stable gait,

the important essence of this research may end up in �nding limit cycles without

need for exponential stability.

On the other hand, as mentioned previously, the design of physical, absolutely-

uncontrolled passive-dynamic walkers does depend on both motions and stability

(�nding �xed points of f and having the eigenvalues of the Jacobian J inside the

unit circle on the complex plane). Besides stability, a theoretical model may need

to satisfy other performance criteria such as acceptable foot clearance, su�cient

knee-locking torques, minimal collisional impulses, high e�ciency, high speed, etc.

2.13.2 Stabilizing Unstable Limit Cycles is Easy

The energetic cost associated with stabilizing an unstable limit cycle is minimal. If

the perturbations from the limit cycle are in�nitessimal in size, then the actuation

input necessary to remain on the limit cycle is also in�ntessimally small. So an

unstable limit cycle can in theory be stabilized with 0+ energy cost. In practice,

the energy cost is proportional to the amount of mechanical noise present in the

system.

2.13.3 Unstable Period-1 Gaits Don't Always Lead to Falls

As is generally known in nonlinear dynamics, systems which exhibit period-doubling

and chaos can have a chaotic attractor which is bounded and stable in some sense,

70

since the system does not leave the attractor if it starts on or near it.

The simplest walker of Garcia et al. (1998) (also Chapter 3) and a kneed version

in Garcia et al. (1997) (also Chapter 4) both exhibit this period doubling phe-

nomenon in simulations; in both cases, the walker continues to walk at slopes above

those which yield stable period-1 gait. Although the period-1 gait is unstable, the

walker does not fall down because of the stability of the higher-period gaits and the

chaotic attractor.

In addition, the control problem of several steps of varying length can be more

easily dealt with in a chaotic region where many di�erent step lengths and combi-

nations thereof are accessible to the machine, as discussed by McGeer (1993b) and

Garcia et al. (1998).

So, stable period-1 gait is not necessarily a prerequisite for stable controlled

walking.

2.14 Some Notes On Building A Physical Model

2.14.1 Construction

This section contains excerpts and summary from the undergraduate lab reports

by Yevmenenko (1996) and Yevmenenko (1997), which contain instructions and

insights into building a physical passive walker.

71

Hip bar

Outer hip

Hip shaft

Thigh
Inner hip

Knee plate

Knee shaft

Knee plate
extension

Upper knee

Shank

Foot holder

Foot

Knee plate
spacer

Lower
knee

Suction
adjustSuction cup

Figure 2.15: A complete schematic of the physical kneed walker with various parts

labelled.

72

Figure 2.15 shows a general overview of the walker, with individial parts labelled.

The parts are itemized and described below.

� Hips:

Outer Hips 1" x 2" x 5.5" Al (2)

Inner Hip 1" x 3.5" x 7" Al (1)

Hip Shaft 18" SS tube 0.5" OD (1)

Hip Bar: 1" x 1" x 14" Al square tube 0.125" wall (1)

Bearings ABEC 3 single row double-shield 0.5" bore (2)

SS clamp collars 0.5" bore (2)

SS shaft spacers 0.5" bore, 0.188" long (2)

The hips consist of the inner and outer hips, hip shaft, and top hip bar (see

Figure 2.16). The inner hip (see Figure 2.17) clamps onto the hip shaft, while

the outer hips (see Figure 2.18) house the hip shaft bearings. Both plugs

are press-�t into the inner and outer thighs, respectively. The outer hips are

bolted and epoxied to the outer thigh connector. The inner hip doubles as a

connector; it is machined from a block of Al. The top hip bar connector is the

walker's top-most member; It is epoxied and bolted at each end to an outer

hip plug.

73

Hip bar bolted and epoxied to hips

Inner hip clamped onto hip shaft

Thighs press-fit onto outer and inner hips

Clamp collar

Shaft spacer

Bearing

Figure 2.16: A CAD drawing of the inner and outer hip joints.

� Thighs:

1" x 1" x 12" Al square tube 0.125" wall (4)

The thighs are square Al tubing with holes drilled to reduce weight and acco-

modate suction sups for knee stops. The upper ends of the thighs are press-�t

into the inner and outer hip plugs. The lower ends are press-�t into the upper

knees. See Figure 2.19 for speci�cations.

� Knees:

Upper Knees 2" x 2" x 4" Al (4)

Lower Knees 1" x 1" x 3" Al (4)

Outer Knee Shafts 3.5" SS tube 0.375" OD (2)

Inner Knee Shafts 9" SS tube 0.375" OD (1)

Bearings ABEC 3 anged single row double shield 0.375" bore (8)

74

Figure 2.17: CAD details of the inner hip joint. This piece is machined from an

aluminum block.

75

Figure 2.18: CAD details of the outer hips (plugs). These pieces are machined from

aluminum block.

76

Figure 2.19: CAD details of the shanks, thighs, and top hip bar. All of the parts

in this drawing are made from 1 inch square tubing with 0.125 inch wall thickness.

77

Al clamp collars 0.375" bore (8)

SS shaft spacers 0.375" bore, 0.125" long (8)

Figure 2.20 shows an overview of the knee joints. The upper knees (Fig-

ure 2.21) contain the knee bearings and are press-�t into the bottoms of the

thighs, while the lower knees (Figure 2.22) clamp onto the knee shafts and

are press-�t into the tops of the shanks. The inner knee shaft passes through

both inner knees, while each outer knee has its own shaft.

78

Upper knee press-fitted into thigh

Shaft spacer

Knee shaft

Clamp collar Flanged ball-bearing housed inside
(inner ring rotates with shaft)

Knee plate extension

Thigh

NutsScrews

Knee plate spacer

Shank

Lower knee press-fitted onto
shank and clamped onto
knee shaft

Figure 2.20: CAD overview of the knee joints.

79

Figure 2.21: CAD details of the upper knees. All parts are machined from aluminum

block.

80

� Knee-Locker:

Knee-Plate Extensions 1" x 1" x 5.5" Al square tube 0.125" wall (2)

Knee Plates 0.25" x 2" x 4" Al plate (4)

Knee Plate Spacers 1" x 1" x 1.5" Delrin blocks (4)

Suction cups (4)

Rubber stoppers (4)

Thin Brass tubing 1" (8)

Adjustment screws for leaks (4)

The knee-lockers, or knee-stops are McGeer's mechanism to provide a plastic

(no-bounce) collision at kneestrike. The shanks have extensions (described

below) which hit suction cups on the thigh. The suction cups have controlled

leaks so as not to cause sticking. See Figure 2.23 for a sketch of this mecha-

nism. The suction cups are inserted into the thigh, and pierced by the brass

tubing, which runs through the rubber stoppers attatched to the back of the

thigh. The back end of the tubing is tapped for the adjustment screws. Sev-

eral small holes are drilled along the top of the brass tubing in the threaded

zone so that by adjusting the screw, the rate of air leakage from the suction

cup can be controlled. The knee plate extension (Figure 2.25) is bolted to

the lower knee, o�set by the knee plate spacer blocks (Figure 2.26). The knee

plates (Figure 2.24) are bolted to the top of the knee plate extension.

81

Figure 2.22: CAD details of the lower knees. All parts are machined from aluminum

block.

82

Suction Cup
Adjustment
Screw

Rubber Stopper

Thigh

Brass Tubing
w/ small holes

Figure 2.23: Side view of the thigh showing details of the suction-cup mechanism.

� Shanks:

1" x 1" x 15.5" Al square tube 0.125" wall (4)

The shanks (Figure 2.19) are square Al tubing with holes drilled to reduce

weight. The upper ends of the shanks are press-�t into the lower knees and

the lower ends of the shanks are press-�t into the foot holders. The knee-

lockers are attatched to the top of each shank.

� Feet:

Semicircular Feet 0.25" x 2" x 9" Al plate (4)

Foot Holders 1" x 2" x 3" Al (4)

The feet (Figure 2.28) are cut from Al plate and material is milled out to

provide for adjustment slots and also to save weight. The foot holders (Figure

2.27) are press-�t into the lower ends of the shanks and clamp onto the feet.

83

Figure 2.24: Front view of CAD details of the knee plates. They are machined from

0.25 inch thick aluminum plate.

84

Figure 2.25: CAD details of the knee plate extensions. They are cut from square

aluminum tube.

85

Figure 2.26: CAD details of the knee plate spacers. They are machined from delrin

blocks.

86

Figure 2.27: CAD details of the foot holders. They are machined from aluminum

block.

87

Figure 2.28: CAD details of the feet. They are cut from 0.25 inch thick aluminum

plate.

88

� Screws, Nuts, Washers:

0.25" x 1" Alloy hex head shoulder screws (36)

0.25" x 0.625" Alloy hex head shoulder screws (12)

10-24-1.25" Alloy allen head machine screws (3)

8-32-1.75" SS allen head machine screws (16)

6-32-0.5" Alloy allen head machine screws (16)

10-24 Alloy nuts (51)

8-32 SS nuts (16)

6-32 Alloy nuts (16)

0.25" SS at washers (48)

No. 10 SS at washers (54)

No. 8 SS at washers (32)

No. 6 SS at washers (32)

This list represents the approximate amount of hardware that is needed to

fasten the above pieces together.

2.14.2 Creating Dynamically Equivalent Legs

When building walking robots with inner and outer legs or leg pairs, one usually

cannot make the two legs or leg pairs have identical mass distribution because of

practical design considerations. The thigh pairs, for example, are generally con-

nected by cross-members that are at di�erent heights so that they do not collide

with each other during the swinging of the legs. In powered models, the positioning

of the motors and drivetrain might lead to some asymmetry as well. The last step

in model construction is to equalize the parameters of the inner and outer thighs.

This subsection describes one way (there are many di�erent ways) to add masses

89

to two di�erent bodies in 2-D in order to make them dynamically equivalent. Al-

though this technique is straightforward and could be used for any two bodies,

attention is restricted to bodies which are of similar (but not identical) mass distri-

bution, because this assures that the extra masses added will be small as compared

to the weight of the bodies; thus the process will always be feasible.

Problem Statement and Algorithm

Consider two bodies, body 1 and body 2; each has a mass M , cm location c, and

moment of inertia about its cm I. The goal is to add masses so that M�

1
= M�

2
,

c�
1
= c2, and I

�

1
= I�

2
, where the *" superscript denotes a change from the original

value.

Equalizing Mass and Center-of-Mass Location

Assume thatM2 > M1. The �rst step is to add a mass m1 =M2�M1 at a location

l1 to to body 1. After adding m1, the new cm location of body 1 (denoted by c�
1
)

will be at

c�
1
=
M1c1 +m1l1

M1 +m1

(2.68)

To get c�
1
= c2, set c

�

1
equal to c2 in the previous equation and solve for the distance

l1 at which to put the mass m1.

l1 =
c2(M1 +m1)�M1c1

m1

(2.69)

Substituting for m1 and rewriting in terms of M1 and M2 gives

l1 =
M2c2 �M1c1

M2 �M1

(2.70)

90

hinge

M2, I2

c2

A) Initial parameters

M1, I1

c1

hinge

M2, I2

c2

B) c1* and c2* equalized

M1, I1

c1

l1

m1

hinge

M2, I2

c2

C) I1* and I2* equalized

M1, I1

c1

hinge

M2, I2

c2

D) M1* and M2* equalized

M1, I1

c1

m1

m1
l2

l2

m2

2

m2

2

m2

2

m2

2

m2

c2

Figure 2.29: A) Two bodies with similar but unequal mass distribution. Each has

mass M , cm location c, and moment of inertia about its cm I. B) Mass m1 =

M2 �M1 is added to body 1 a distance l2 from the hinge point so that each body

has an overall center of mass located at c�
1
= c�

2
= c2. C) Two masses m2=2 added

to body 2, each at a distance l2 from the center of mass of body 2 so that the overall

moments of inertia of the bodies are equal, I�
1
= I�

2
. D) Mass m2 is then added to

body 1 so that the overall masses of the two bodies are equal, M�

1
=M�

2
.

91

The new moment of inertia for body 1 (denoted by I+
1
) will be

I+
1
= I1 +M1(c

�

1
� c1)

2 +m1(l1 � c�
1
)2 (2.71)

Equalizing Moments of Inertia

Now body 1 and body 2 have equal masses and cm locations, but unequal moments

of inertia. Assume that the new moment of inertia of body 1 (I+
1
) is greater than

the moment of inertia of body 2; if this is not the case, body numbers 1 and 2 are

arbitrary and can be switched.

The next step is to add two masses (mass m2=2 each) to body 2 symmetrically,

each at a distance l2 from the the center of mass, to increase body 2's moment of

inertia while not a�ecting its cm position.

The distance l2 is arbitrary. It might be convenient to make l2 as large as

practically possible, so as to minimize the magnitude of m2. The necessary mass

m2, as a function of l2, is found from the following formula

m2 =
I+
1
� I2

l2
2

(2.72)

where I+
1
is given by Equation 2.71 above.

Lastly, add the same total mass m2 at the cm of body 1 to keep its mass equal

to that of body 2.

Summary

By following the above procedure, the inner and outer leg parameters can be made

equal (as is assumed in the simulation). Most often, this will be necessary for the

inner and outer thighs because of design asymmetries; the inner and outer shanks

92

can usually be constructed identically, and so the procedure is not necessary for the

shanks.

The �nal values for the parameters of the two bodies are as follows.

M�

1
=M�

2
=M2 �M1 +

I+
1
� I2

l2
2

(2.73)

c�
1
= c�

2
= c2 (2.74)

I�
1
= I�

2
= I1 +M1(c

�

1
� c1)

2 +m1(l1 � c�
1
)2 (2.75)

At this point, the walker can be simulated and new parameter adjustments can

be attempted.

Aside On Parameter Sets And Virtual Masses

It is well known in robotics and multi-body dynamics that the usual set of param-

eters (mass, moment of inertia about cm, characteristic length) for a rigid-body

(compound) pendulum are actually more than what is necessary to predict the

pendulum's behavior. Indeed, a one-parameter family of dynamically equivalent

pendula can be constructed which all behave in the same way (identical angles as

functions of time with the same initial state).

Some research, such as that of Kawasaki et al. (1996), Khalil et al. (1990), and

Lin (1995), focuses on various ways to reduce and describe the parameter space for

linked-chain devices such as robots. Most of this work consists of mathematical

regrouping of coe�cients in the equations of motion. However, some parameter

reduction can be achieved intuitively as follows: 1) Nondimensionalization by mass,

length, and time can eliminate two structural parameters and g from the model. 2)

A virtual mass argument can be used to eliminate as many parameters from the

93

model as there are rotational joints, in the following way.

Consider a rigid body pendulum. A point mass added to the body exactly at the

hinge point will have no e�ect on the motions of the pendulum, and yet the pendu-

lum's parameters will change. In a linked chain, by subtracting (or dis-associating)

\virtual mass" from the outer link, and adding (or associating) the same amount

to its inner neighbor right at their hinge (beginning with the outermost link), one

can set the moment of inertia of every link to 0 without changing the nature of the

mechanism. This associates every rigid-body pendulum with an equivalent simple

pendulum and eliminates the need for the moment of inertia parameter.

This is one intuitive example of the over-determined nature of rigid-body pen-

dula. Although we do not present such a strategy here, this virtual mass idea can

be used to concoct a scheme for making inner and outer legs dynamically equivalent

which invloves fewer mass additions than the scheme presented above. In the new

scheme, the virtual mass can be \exchanged" at the hip joint.

