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Introduction 
Raibert described his method for planar hopping in three “parts” (controlled vertical hopping, controlled forward 

speed, and controlled body attitude), which he synthesized by developing controllers for each of these parts in 

isolation (e.g. vertical hopping controller ignores fore-aft motion, etc.). We have used similar strategies successfully 

on a tailed biped (De and Koditschek, 2015a) and a quadruped (De and Koditschek, 2016). We are interested in 

knowing why and when we can ignore these coupling interactions, and also how this fact can be leveraged to 

synthesize useful running behavior.  

Hybrid averaging 
We have recently introduced a tool for analyzing stability of hybrid limit cycles (De et al., 2016) using a perturbation 

technique borrowed from smooth dynamical systems theory: dynamical averaging (Guckenheimer and Holmes, 

1990). So far, we have provided sets of sufficient conditions for local stability for tailed SLIP (De and Koditschek, 

2015b) and in-place virtual bipedal gaits (De and Koditschek, 2016) using hybrid averaging as an analytical tool. 

Intuitively, we reinterpret the hopping/running locomotor as a system of coupled 1DoF oscillators that must (a) be 

regulated (maintain their energy), and (b) be coordinated (maintain the appropriate relative phase). These coupled 

oscillators are then analyzed as an 𝜖-perturbation of a set of decoupled oscillators, affording the following benefits: 

1) Equivalence – the original system has a periodic orbit spatially “close” to the averaged system, and these orbits 

have the same (regulated and coordinated) stability properties. 

2) Simplified Dynamics – the averaged system has co-dimension 1, and the removed dimension corresponds to 

one of the “fast” modes of the system. Removing these fast dynamics results in analytical as well as numerical 

computational benefits.  

3) Implicit Form –  deriving the expression for and then analyzing the simplified linearization requires neither 

computing the periodic orbit nor the return map. 

However, in both applications so far, (a) a coordinate change to averageable coordinates had to be hand-crafted, 

and (b) the eigenvalues of the linearization of the return map had to be explicitly computed to verify stability.  

Within-stance symmetry in running 
In Appendix 5B of (Raibert, 1986), the author makes the intuitive observation that forces acting on the center of 

mass through stance must “integrate out” in the horizontal plane for steady horizontal progress. (Altendorfer et al., 

2004) formalized (and (Razavi et al., 2016) later extended) these observations in terms of time-reversal symmetry 

that seems to commonly seen on the stance portion of the periodic orbit of SLIP-like running/hopping models (Razavi 

et al., 2016), and is intricately related to Hamiltonian or equivariant systems (Lamb and Roberts, 1998). 

Our newest results show that time-reversal symmetry manifests as cancellation of cross-terms in the return map 

linearization of the averaged system. These ideas allow us to eliminate both difficulties (a) and (b) in the application 

of hybrid averaging while retaining the benefits 1), 2), 3) listed above. Additionally, we hypothesize that the 

“averaging out” of coupling forces between different degrees-of-freedom is key in the success of the “decoupled 

controllers” (as described in the Introduction). 



Results 

 

Figure 1: Virtual biped models of increasing complexity (figure from (De and Koditschek, 2016)). 

So far, our mode of analysis not only allows for stability proofs for in-place virtual bipedal hopping (using the 

vertically-constrained bipedal “slot hopper” model in Figure 1A), but also helps us identify and prove stability of both 

in-phase and out-of-phase coordination between the two legs, without any informational coupling between them 

whatsoever. Our proof of coordination (De and Koditschek, 2016) shows how these regimes emerge only as a 

function of the non-dimensional rotational inertia of the body. We demonstrated these results on the physical 

quadruped, Minitaur (Figure 1C), snapshots of which are shown in Figure 2.  

 

Figure 2: Preflexive bounding (left) and pronking (right) on Minitaur; stability of both are proved in (De and Koditschek, 2016). 

Our latest improvements to hybrid averaging—leveraging time-reversal symmetry—promise to enable (work in 

progress to be completed by the conference) for the first time a proof of stability of a 5-DOF sagittal runner (Figure 

1B) using decoupled controllers with few parameters and a great deal of empirical robustness. 
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