Statics and Strength of Materials Formula Sheet
 (12/12/94, revised 5/10/01 - A. Ruina)

Not given here are the conditions under which the formulae are accurate or useful.

Basic Statics

Free Body Diagram

A $\overrightarrow{\text { FFBD }}$ is a picture of any system for which you would like to apply mechanics equations and of all the external forces and torques which act on the system.

Action \& Reaction

Force and Moment Balance

These equations apply to every system in equilibrium:

$$
\overbrace{\sum_{\begin{array}{c}
\text { All external } \\
\text { forces }
\end{array}} \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}}^{\text {Force }}
$$

$$
\overbrace{\sum_{\begin{array}{c}
\text { All external } \\
\text { torques }
\end{array}} \stackrel{\rightharpoonup}{\mathrm{M}}_{/ C}=\stackrel{\rightharpoonup}{\mathbf{0}}}^{\text {Moment }}
$$

- The torque $\overrightarrow{\mathrm{M}} / C$ of a force depends on the reference point C. But, for a body in equilibrium, and for any point C, the sum of all the torques relative to point C must add to zero).
- Dotting the force balance equation with a unit vector gives a scalar equation,

$$
\text { e.g. }\left\{\sum \overrightarrow{\mathbf{F}}\right\} \cdot \hat{\imath}=0 \Rightarrow \sum F_{x}=0 .
$$

- Dotting the moment balance equation with a unit vector gives a scalar equation, $\begin{aligned} & \text { e.g. } \\ & C=0 \text {. }\end{aligned}\left\{\overrightarrow{\mathbf{M}}_{/ C}\right\} \cdot \hat{\lambda}=0 \Rightarrow$ net moment about axis in direction $\hat{\lambda}$ through

Some Statics Facts and Definitions

- The moment of a force is unchanged if the force is slid along its line of action.
- For many purposes the words 'moment', 'torque', and 'couple' have the same meaning
- Two-force body. If a body in equilibrium has only two forces acting on it then the two forces must be equal and opposite and have a common line of action.
- Three-force body. If a body in equilibrium has only three forces acting on it then the three forces must be coplanar and have lines of action that intersect at one point.
- truss: A collection of weightless two-force bodies connected with hinges (2D) or ball and socket joints (3D).
- Method of joints. Draw free body diagrams of each of the joints in a truss.
- Method of sections. Draw free body diagrams of various regions of a truss. Try to make the FBD cuts for the sections go through only three bars with unknown forces (2D).
- Caution: Machine and frame components are often not two-force bodies.
- Hydrostatics: $p=\rho g h, \quad F=\int p d A$

Stress, strain, and Hooke's Law

	Stress	Strain	Hooke's Law	
Normal:	$\sigma=P_{\perp} / A$	$\epsilon=\delta / L_{0}=\frac{L-L_{0}}{L_{0}}$	$\sigma=E \epsilon$ $[\epsilon=\sigma / E+\alpha \Delta T]$ ϵ tran $=-\nu \epsilon_{\text {long }}$	
Shear:	$\tau=P_{\\|} / A$	$\gamma=$change of formerly right angle	$\tau=G_{\gamma}$ $2 G=\frac{E}{1+\nu}$	

Stress and deformation of some things

	Equilibrium	Geometry	Results
Tension	$P=\sigma A$	$\epsilon=\delta / L$	$\delta=\frac{P L}{A E}$ $\left[\delta=\frac{P L}{A E}+\alpha L \Delta T\right]$
Torsion	$T=\int \rho \tau d A$	$\gamma=\rho \phi / L$	$\phi=\frac{T L}{J G}$ $\tau=\frac{T \rho}{f}$
Bending and	$M=-\int y \sigma d A$	$\epsilon=-y / \rho=-y \kappa$	$u^{\prime \prime}=\frac{M I}{E I}$
Shear in Beams	$\frac{d M}{d x}=V, \quad \frac{d V}{d x}=-w$ $V=\int \tau d A$	$u^{\prime \prime}=\frac{d^{2}}{d x^{2}} u=\frac{1}{\rho}=\kappa$	$\sigma=\frac{-M y}{I}$
$\tau=\frac{V Q}{I t}$			
$\tau t \Delta x=\Delta M Q / I$		$\sigma=\frac{p r}{2 t}$ (sphere) $\sigma_{l}=\frac{p r}{2 t}$ (cylinder) $\sigma_{c}=\frac{p r}{t}$ (cylinder)	
Pressure	$p A_{\text {gas }}=\sigma A_{\text {solid }}$		

Buckling
Critical buckling load $=P_{\text {crit }}=\frac{\pi^{2} E I}{L_{e f f}^{2}}$.

pinned-pinned	clamped-free	clamped-clamped	clamped-pinned
$L_{e f f}=L$	$L_{e f f}=2 L$	$L_{e f f}=L / 2$	$L_{e f f}=.7 L$

Mohr's Circle

Rotating the surface of interest an angle θ in physical space corresponds to a rotation of 2θ on the Mohr's circle in the same direction.

$$
\begin{aligned}
C & =\frac{\sigma_{1}+\sigma_{2}}{2}=\frac{\sigma_{x}+\sigma_{y}}{2} \\
R & =\frac{\sigma_{1}-\sigma_{2}}{2}=\sqrt{\left(\sigma_{x}-C\right)^{2}+\tau_{x y}^{2}}=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
\tan 2 \theta & =\frac{\tau}{\sigma-C}=\frac{2 \tau}{\sigma_{x}-\sigma_{y}}
\end{aligned}
$$

Miscellaneous

- Power in a shaft: $\quad P=T \omega$.
- Saint Venant's Principle: Far from the region of loading, the stresses in a structure would only change slightly if a load system were replaced with any other load system having the same net force and moment.

