Three identical steel balls, each of mass \(m \), are placed in the cylindrical ring which rests on a horizontal surface and whose height is slightly greater than the radius of the balls. The diameter of the ring is such that the balls are virtually touching one another. A fourth identical ball is then placed on top of the three balls. Determine the force \(P \) exerted by the ring on each of the three lower balls.

Solution:

Top View:

Angles \(\angle OAB \) and \(\angle OBA \) are 90°.

FBD for the ball A (typical). Note, assume no contact between ball A, B, C.

Geometry:

- \(C \) is the centre of the upper ball.
- Length of \(AB = R_B = 2R = R_C \).

From \(\triangle AOB, \ \overline{AO} = \frac{R}{\cos 30°} = \frac{2R}{\sqrt{3}} \).

From \(\triangle AOC, \ \overline{OC} = \sqrt{R_C^2 - OA^2} = R \sqrt{2^2 - \left(\frac{2}{\sqrt{3}}\right)^2} \).

Equilibrium implies:

\[2F_z = 0 \]

So:

\[2F_z = 3R \cos \theta - mg = 0 \]

or:

\[3R \left(\frac{\overline{OC}}{R^2} \right) - mg = 0 \]

[\(\cos \theta = \frac{\overline{OC}}{R} \) from \(\triangle OAC \)]

or:

\[R = \frac{mg}{xy} - \frac{2R}{\sqrt{3}} \]

Equilibrium for ball (see FBD), ball A:

\[2F_x = 0 \Rightarrow P - R \sin \theta = 0 \]

or:

\[P = R \sin \theta = \frac{mg}{\sqrt{x}} = \frac{2R}{\sqrt{3}} \]

So:

\[P = \frac{mg}{2R} \]

(continued)
The semicylindrical shell of mass \(m \) and radius \(r \) is rolled through an angle \(\theta \) by the force \(P \) which remains tangent to its periphery at A as shown. If \(P \) is slowly increased, plot the tilt angle \(\theta \) as a function of \(P \) up to the point of slipping. Determine the tilt angle \(\theta_{\text{max}} \) and the corresponding value \(P_{\text{max}} \) for which slipping occurs. The coefficient of static friction is 0.30.

Ans. \(\theta_{\text{max}} = 59.9^\circ \)

\(P_{\text{max}} = 0.296mg \)

\(\mu_s = \mu_c = \mu \)

Problem 6/131

Solution:

FBD for the Shell:

\[\sum F_x = 0 \Rightarrow P \sin \theta - F = 0 \]
\[\sum F_y = 0 \Rightarrow N - mg + P \cos \theta = 0 \]
\[\sum M_B = 0 \Rightarrow mgd \sin \theta - P(BC) = 0 \]
\[BC = BD + BC = r + y \sin \theta \]

At the start of slipping \(F = \mu N \)

\(N = \frac{P}{\sin \theta} \)

Relation between \(P \) & \(\theta \) can be derived from (3):

\[P = \frac{2 \sin \theta \cdot mg}{\pi(1 + \sin \theta)} \]

Substitute \(F = \mu N \) in (1), we get:

\[P \sin \theta = \mu N \Rightarrow N = \frac{P \sin \theta}{\mu} \]

Substitute \(N = \frac{P \sin \theta}{\mu} \) in (2) to find relation between \(P \) and \(mg \):

\[\frac{P \sin \theta - mg + P \cos \theta = 0 \Rightarrow P = \frac{mg}{\left(\frac{\mu \cos \theta}{\sin \theta} + \sin \theta\right)} \]

Comparing (5) & (7):

\[\frac{\mu}{\mu_{\text{max}} + \sin \theta} = \frac{2 \sin \theta}{\pi(1 + \sin \theta)} \]

Solve (8) numerically to obtain \(\theta_{\text{max}} = 59.9^\circ \)

\(\mu_{\text{max}} = 0.245 \) mg using (5).

(theta=0:0.1:(59.9*pi/180);
\(P=2.*\sin(theta)/(pi.*((1+\sin(theta))));
\) plot(P,theta)
\(xlabel('P/mg')
\) ylabel('theta in radians')
grid on)